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We consider vacuum static spherically symmetric solutions in the hybrid metric-Palatini gravity theory,
which is a combination of the metric and Palatini fðRÞ formalisms unifying local constraints at the Solar
System level and the late-time cosmic acceleration. We adopt the scalar-tensor representation of the hybrid
metric-Palatini theory, in which the scalar-tensor definition of the potential can be represented as a Clairaut
differential equation. Due to their mathematical complexity, it is difficult to find exact solutions of the
vacuum field equations, and therefore we adopt a numerical approach in studying the behavior of the metric
functions and of the scalar field. After reformulating the field equations in a dimensionless form, and by
introducing a suitable independent radial coordinate, the field equations are solved numerically. We detect
the formation of a black hole from the presence of the Killing horizon for the timelike Killing vector in the
metric tensor components. Several models, corresponding to different functional forms of the scalar field
potential, are considered. The thermodynamic properties of these black hole solutions (horizon temperature,
specific heat, entropy, and evaporation time due to Hawking luminosity) are also investigated in detail.
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I. INTRODUCTION

The observational discovery of the recent acceleration of
the Universe [1–5] has raised the fundamental theoretical
problem concerning the adequacy of general relativity, in
its standard formulation, to fully account for all the
observed phenomena at both galactic and extragalactic
scales. The simplest theoretical explanation for the
observed cosmological dynamics involves slightly modi-
fying the Einstein field equations by adding to them a
cosmological constant Λ [6]. Together with the assumption
of the existence of another mysterious component of the
Universe, called dark matter [7,8], and assumed to be cold,
the Einstein gravitational field equations can give an
excellent fit to all observational data, thus leading to the
formulation of the standard cosmological paradigm for our
present Universe, called the ΛCDM model. However,
despite its apparent simplicity and naturalness, the

introduction of the cosmological constant raises a number
of important questions for which no convincing answers
have been provided so far. Thus, the ΛCDM model can fit
the observational data at a high level of precision, but
despite being a very simple theoretical approach, no
fundamental theory can explain it. Why is the cosmological
constant so small and so fine-tuned? Why did the Universe
begin to accelerate so recently? And, after all, why is a
cosmological constant necessary at all?
From a theoretical point of view, two possible answers to

the questions raised by the recent acceleration of the
Universe can be formulated. The first, which we may call
the dark energy approach, assumes that the Universe is
filled by a mysterious and unknown component called dark
energy [9–12], which is fully responsible for the accel-
erated expansion of the Universe. The cosmological con-
stant may correspond to a particular phase of the dynamical
dark energy (ground state of a potential, for example), and
the recent de Sitter phase may prove to be just an attractor
of the dynamical system describing the cosmological
evolution. A second approach, the dark gravity approach,
assumes the alternative possibility that at large scales the
gravitational force may have a behavior different from that
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suggested by standard general relativity. In the general
relativistic description of gravity, the starting point is the
Hilbert-Einstein action, which can be written down as
S ¼ R ðR=2κ2 þ LmÞ ffiffiffiffiffiffi−gp

d4x, where R is the Ricci scalar,
κ is the gravitational coupling constant, and Lm is the matter
Lagrangian, respectively. Hence, in dark gravity theories,
for a full understanding of the gravitational interaction, a
generalization of the Hilbert-Einstein action is necessary.
There are two possibilities to construct dark gravity

theories. The first is based on the modification of the
geometric part of the Hilbert-Einstein Lagrangian only. An
example of such an approach is the fðRÞ gravity theory,
introduced in [13,14], in which the geometric part of the
action is generalized so that it becomes an arbitrary
function fðRÞ of the Ricci scalar. Hence, in fðRÞ gravity,
the total Hilbert-Einstein action can be written as
S ¼ R ½fðRÞ=2κ2 þ Lm� ffiffiffiffiffiffi−gp

d4x. The recent cosmological
observations can be satisfactorily explained in the fðRÞ
theory, and a solution of the dark matter problem, inter-
preted as a geometric effect in the framework of the theory,
can also be obtained [15]. In a more general approach, one
modifies both the geometric and the matter terms in the
Hilbert-Einstein action, thus allowing a coupling between
matter and geometry [16,17]. For reviews and in-depth
discussions of fðRÞ and other modified gravity theories,
see [18–27].
Einstein’s general theory of relativity can be obtained by

starting from two different theoretical approaches, called
the metric and the Palatini formalisms [28], respectively.
When applied to the Hilbert-Einstein action, these two
approaches lead to the same gravitational field equations,
with the Palatini formalism also providing the explicit
expression of the symmetric connection in terms of the
derivatives of the metric tensor. However, in fðRÞ gravity,
as well as in other modified theories of gravity, this does not
happen anymore, and it turns out that the gravitational field
equations obtained using the metric approach are generally
different from those obtained by using the Palatini variation
[28]. An important difference is related to the order of the
field equations, with the metric formulation usually leading
to higher-order derivative field equations, while in the
Palatini approach, the derived field equations are always
second-order partial differential equations. On the other
hand, in the Palatini variational formulation, a number of
new algebraic relations appear, which involve the matter
fields and the affine connection, such that the connection
can be determined from a set of equations which couples it
to the metric and to the matter fields.
Based on a hybrid combination of the metric and Palatini

mathematical formalisms, an extension of the fðRÞ gravity
theory was proposed in [29]. In this approach, the (purely
metric) Hilbert-Einstein action is generalized by adding to
it (metric-affine) correction terms obtained in the spirit
of the Palatini approach. Simple extensions of standard
general relativity with interesting properties can be

constructed using both metric and Palatini fðRÞ theories.
However, in each of these theories, a number of different
pathological behaviors appear. Hence, by building a bridge
that relates these two apparently different approaches we
may find a possibility of removing their individual failures.
A hybrid combination of the metric and Palatini for-

malisms was used in [29,30] to construct a new type of
gravitational Lagrangian. This gravitational theory is called
hybrid metric-Palatini gravity (HMPG). From a theoretical
point of view, the main result of this approach is that viable
gravity theories including elements of both formalisms can
be obtained. Moreover, in this class of theories, it is
possible to generate long-range forces that do not contradict
the classical local Solar System tests of gravity. The
analysis of the field equations and the construction of
solutions is greatly simplified with the use of the scalar-
tensor representation of the hybrid metric-Palatini theories.
A simple example of such a hybrid metric-Palatini theory
can be constructed by adopting for the gravitational
Lagrangian the expression Rþ fðRÞ, where R is the
Palatini scalar curvature. Such a gravitational action main-
tains all the well-confirmed results of general relativity,
which are included in the Hilbert-Einstein part of the action
R, and which describes with a high precision gravitational
phenomena at the scale of the Solar System and of compact
objects. On the other hand the metric-affine component
fðRÞ generates novel physical characteristics that may
explain the recent cosmological observations of the accel-
erating Universe. In [31,32], a similar formalism that
interpolate between the metric and Palatini regimes was
proposed for the study of fðRÞ-type theories. This approach
is called the C-theory. In [33], a generalization of HMPG
was introduced.
The study of the cosmological and astrophysical impli-

cations of HMPG has attracted a lot of attention recently.
The properties of the Einstein static universe in HMPG
were studied in [34]. Cosmological solutions obtained with
the help of the scalar-tensor representation of the theory
were presented in [35], were their cosmological applica-
tions were also investigated. The cosmological field equa-
tions were formulated as a dynamical system, and, by
adopting some specific functional forms of the effective
scalar field potential, several classes of cosmological
solutions were obtained. The dynamical system approach
was generalized in [36], where new accelerating solutions
that can be attractors in the phase space were found. In [37],
the evolution of the linear perturbations in HMPG was
considered. The full set of linearized evolution equations
for the perturbed physical and geometrical quantities were
obtained, and it was shown that important deviations from
the ΛCDM model occur in the far past, with ratio between
the Newtonian potentialsΦ and Ψ presenting an oscillatory
signature. Cosmological models were studied in [38]. By
using a combination of baryonic acoustic oscillations,
supernovae and cosmic microwave background data, the
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free parameters of the models can be constrained. The
analysis was further generalized using a specific HMPG
model, given by fðRÞ ∝ R2 [39], and the results were
compared with the local constraints.
In the scalar-tensor representation of the HMPG

theory, new cosmological solutions were obtained in
[40] by either making an ansatz on the scale factor or
on the effective potential. The efficiency of screening
mechanisms in the hybrid metric-Palatini gravity was
investigated in [41]. Bounds on the model were obtained
using data from Solar System experiments, and they can
contribute to fix the range of viable hybrid gravity models.
Gödel-type solutions, in which the matter source is a
combination of a scalar with an electromagnetic fields,
plus a perfect fluid were obtained in the framework of
HMPG theory in [42]. The existence of Gödel-type
solutions indicates that HMPG does not solve the causal
anomaly in the form of closed timelike curves that appears
in general relativity.
HMPG also opens some new perspectives for the study

of dark matter. The virial theorem for galaxy clusters in
HMPG was derived in [43]. It turns out that the total virial
mass of the cluster is proportional to the effective mass
associated with the mass of the effective scalar field.
Therefore, the virial mass discrepancy in clusters of
galaxies can be explained via the geometric terms appear-
ing in the generalized virial theorem. The HMPG dark
matter model also predicts that the effects of the effective
mass associated with the scalar field extend far beyond the
virial radii of the clusters of galaxies. HMPG also allows
for an explanation of the behavior of the rotational
velocities of test particles gravitating around galaxies
[44]. In the equivalent scalar-tensor description, the rota-
tional velocity can be obtained explicitly as a function of
the scalar field. Hence all the geometric and physical
quantities, as well as the coupling constant in HMPG
can be expressed as functions of measurable or observable
parameters, such as, e.g., the stellar dispersion velocity, the
Doppler frequency shifts, the baryonic mass of the galaxy,
and the tangential velocity, respectively.
The HMPG theory has also been explored in a plethora

of other topics. For instance, the problem of the well-
posedness of the Cauchy problem was discussed in [45].
Wormhole solutions in HMPG have also been found in
[46], where it was shown that these exotic geometries are
supported by the higher-order terms. Specific wormhole
solutions in a generalized HMPG theory were also
found [47]. In these solutions, the matter field obeys the
null energy condition (NEC) everywhere, including the
throat and up to infinity, so that there is no need for
exotic matter. In the context of compact objects, the internal
structure and the physical properties of specific classes of
neutron, quark and Bose-Einstein Condensate stars in
HMPG were considered in [48]. For reviews of HMPG
theories, we refer the reader to [49] and [50], respectively.

Since Karl Schwarzschild obtained the first exact sol-
ution of the general relativistic field equations in vacuum
[51], the search for black hole–type solutions describing the
gravitational field outside massive gravitating bodies
proved to be of fundamental importance for the theoretical
understanding and observational testing of gravitational
theories (see [52] for a review of the exact solutions of the
Einstein field equations). Black hole solutions allow testing
the properties of the gravitational force by using the
electromagnetic emissivity properties of thin disks that
form around compact objects [53–67]. For a review of the
possibilities of testing black hole candidates by using
electromagnetic radiation see [68].
Many black hole–type solutions have been obtained in

different modified theories of gravity, such as in brane
world models [69–72], Eddington-inspired Born-Infeld
[73], higher-derivative gravitational theory with a pair of
complex conjugate ghosts [74], de Rham-Gabadadze-
Tolley (dRGT) theory [75], Gauss-Bonnet massive gravity
coupled to Maxwell and Yang-Mills fields in five dimen-
sions [76], in the framework of the Poincaré gauge field
theory with dynamical massless torsion [77], Rastall theory
[78], second-order generalized Proca theories with deriva-
tive vector-field interactions coupled to gravity [79],
mimetic Born-Infeld gravity [80], a class of vector-tensor
theories of modified gravity [81], and in dilatonic dyonlike
black hole solutions in a model with two Abelian gauge
fields as found in [82]. Black hole solutions that can
accommodate both a nonsingular horizon and Yukawa
asymptotics have been considered in [83]. In [84], it was
shown that a large number of static, spherically symmetric
metrics, which are regular at the origin, asymptotically flat,
and have both an event and a Cauchy horizon for a certain
range of the parameters can be interpreted as exact
solutions of the Einstein equations coupled to ordinary
linear electromagnetism, that is, as sources of the Reissner-
Nordström spacetimes.
In fact, the literature is extremely extensive, and we refer

the reader to a solution-generating technique that maps a
static charged solution of the Einstein-Maxwell theory in
four (or five) dimensions to a five-dimensional solution of
the Einstein-Maxwell-Dilaton theory [85]. Black hole
solutions in Gauss-Bonnet-massive gravity in the presence
of power-Maxwell field were studied in [86–89]. In [90] it
was shown that black-hole solutions appear as a generic
feature of the general Einstein-scalar-Gauss-Bonnet theory
with a coupling function fðϕÞ. The existing no-hair
theorems are easily evaded for this model, and a large
number of regular black-hole solutions with scalar hair can
be obtained. The properties of black holes in static and
spherically symmetric backgrounds in U(1) gauge-invariant
scalar-vector-tensor theories with second-order equations
of motion were studied in [91]. Exact asymptotically anti-
de Sitter black hole solutions and asymptotically Lifshitz
black hole solutions with dynamical exponents z ¼ 0 and
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z ¼ 4 of four-dimensional conformal gravity coupled with
a self-interacting conformally invariant scalar field were
obtained in [92]. The vacuum solutions around a spheri-
cally symmetric and static object in the Starobinsky model
were studied with a perturbative approach in [93]. Dilatonic
black holes in the presence of (non)linear electrodynamics
have been studied in [94,95], respectively.
It is the main goal of the present paper to investigate the

possibility of the existence of spherically symmetric static
vacuum solutions in the HMPG theory. In order to fulfil this
goal, we adopt the scalar-tensor representation of the
theory, in which the scalar-tensor definition of the potential
can be represented as a Clairaut differential equation. Even
in the scalar-tensor representation, resembling the Brans-
Dicke theory, the field equations show a high degree of
mathematical complexity. Hence it turns out that it is
extremely difficult to find exact solutions of the vacuum
gravitational field equations, and therefore for the study of
the behavior of the metric functions and of the scalar field
one must adopt numerical approaches.
The present paper is organized as follows. We briefly

present the theoretical foundations and the field equations
of HMPG in Sec. II. The field equations in spherical
symmetry for the vacuum case are written down in Sec. III,
where their dimensionless formulation is introduced. Some
general properties of the field equations are also discussed.
The field equations are solved numerically in Sec. IV for
two particular choices of the scalar field potential, corre-
sponding to a vanishing potential, and a Higgs-type
potential, respectively. In each case, the behavior of the
metric tensor coefficients and of the effective mass of the
scalar field is considered in detail. The thermodynamic
properties of the HMPG black holes are investigated in
Sec. V, where the black hole temperature, specific heat,
entropy, luminosity and life time are discussed. We discuss
and conclude our results in Sec. VI. In the Appendix, we
present the details of the transformations of the field
equations to a dimensionless form.

II. FIELD EQUATIONS IN HMPG

In the present section, we briefly review the action and
the field equations of HMPG. Its scalar-tensor formulation
is presented, and the post-Newtonian parameters of the
theory are also discussed.

A. Action and gravitational field equations

The action for HMPG can be constructed as [29]

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ Sm; ð1Þ

where we have denoted κ2 ≡ 8πG0=c4, while c and G0 are
the standard speed of light and gravitational constant,
respectively; Sm is the matter action, defined as Sm ¼R
d4x

ffiffiffiffiffiffi−gp
Lm, where Lm is the matter Lagrangean; R is the

metric Hilbert-Einstein term, and R≡ gμνRμν is the
Palatini curvature. The tensor and Rμν is defined by using
an independent connection Γ̂α

μν according to

Rμν ≡ Γ̂α
μν;α − Γ̂α

μα;ν þ Γ̂α
αλΓ̂λ

μν − Γ̂α
μλΓ̂λ

αν: ð2Þ

In the following, the matter energy-momentum tensor
Tμν is defined as

Tμν ≡ −
�

2ffiffiffiffiffiffi−gp
�
δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð3Þ

After varying the action (1) with respect to the metric, we
obtain the gravitational field equations of HMPG as

Gμν þ FðRÞRμν −
1

2
fðRÞgμν ¼ κ2Tμν; ð4Þ

where we have denoted FðRÞ≡ dfðRÞ=dR. After varying
the action with respect to the independent connection one
can easily show that the independent connection is com-
patible with the metric FðRÞgμν, conformal to gμν, with the
conformal factor given by FðRÞ. Hence we can obtain the
field equations in the equivalent form

Rμν ¼ Rμν þ
3

2

1

F2ðRÞFðRÞ;μFðRÞ;ν

−
1

FðRÞ∇μFðRÞ;ν −
1

2

1

FðRÞ gμν□FðRÞ: ð5Þ

By taking the trace of the field equations (4) we obtainR in
terms of the trace T of the matter energy-momentum
tensor as

FðRÞR − 2fðRÞ − R ¼ κ2T: ð6Þ

B. Scalar-tensor formulation

By introducing an auxiliary field E, the hybrid metric-
Palatini action (1) can be reformulated in the equivalent
form of a scalar-tensor theory, having the following action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðEÞ þ f0ðEÞðR − EÞ�; ð7Þ

(for more technical details, we refer the reader to [29]).
As one can easily see, for E ¼ R, the action given by

Eq. (7) reduces to the action (1). Hence, it turns out that if
f00ðRÞ ≠ 0, the field E is dynamically equivalent to the
Palatini scalar R. By introducing the definitions

ϕ≡ f0ðEÞ; VðϕÞ ¼ Ef0ðEÞ − fðEÞ; ð8Þ
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the action takes the form

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ ϕR − VðϕÞ� þ Sm: ð9Þ

If we vary this action with respect to the metric, the scalar ϕ
and the connection, respectively, we obtain the following
field equations,

Rμν þ ϕRμν −
1

2
ðRþ ϕR − VÞgμν ¼ κ2Tμν; ð10Þ

R − Vϕ ¼ 0; ð11Þ

∇̂αð
ffiffiffiffiffiffi
−g

p
ϕgμνÞ ¼ 0; ð12Þ

respectively.
It is interesting to mention that Eq. (8) is a Clairaut

differential equation [96], that is, it has the form

Ef0ðEÞ − fðEÞ ¼ Vðf0ðEÞÞ: ð13Þ

This equation has a linear general solution given by

fðEÞ ¼ hE − VðhÞ; ð14Þ

where h is a constant, or, equivalently,

fðRÞ ¼ hR − VðhÞ; ð15Þ

and a singular solution, which can be found from the
differential equation

∂Vðf0ðEÞÞ
∂f0 − E ¼ 0: ð16Þ

Hence, in our mathematical formalism for the non-
singular solution of the Clairaut equation, the function
fðRÞ is a linear function of the Palatini curvature. In this
case, for the vacuum state with T ¼ 0, the trace equation (6)
becomes

−hR − Rþ 2VðhÞ ¼ 0: ð17Þ

With the use of the nonsingular solution (14), we can
express the potential VðϕÞ of the effective scalar field as

VðϕÞ ¼ ðϕ − hÞEþ VðhÞ; ð18Þ

giving

E ¼ R ¼ VðϕÞ − VðhÞ
ϕ − h

: ð19Þ

It is interesting to note that when VðhÞ ≫ ðϕ − hÞE, the
scalar field generates an effective cosmological constant,

whose numerical value is determined by the functional
form of the potential estimated for a constant value of the
scalar field.
For a zero scalar field potential, VðϕÞ≡ 0, from Eq. (19)

it follows that R ¼ 0, also giving R ¼ 0.
For a potential of the form VðϕÞ¼−ðμ2=2Þϕ2þðζ=4Þϕ4,

we obtain

R ¼ −μ2ðϕ2 − h2Þ=2þ ζðϕ4 − h4Þ=4
ϕ − h

; ð20Þ

R ¼ −h
−μ2ðϕ2 − h2Þ=2þ ζðϕ4 − h4Þ=4

ϕ − h

− μ2h2 þ ζ

2
h4; ð21Þ

fðRÞ ¼ h
−μ2ðϕ2 − h2Þ=2þ ζðϕ4 − h4Þ=4

ϕ − h

þ μ2

2
h2 −

ζ

4
h4: ð22Þ

Once the variation of ϕ is known from the solution of the
gravitational field equations, the Palatini scalar curvature,
the metric Hilbert scalar curvature as well as the function
fðRÞ can be reconstructed directly, with the trace equa-
tion (6) giving the metric Hilbert curvature, while the
functional form of fðRÞ follows directly from Eq. (14).
On the other hand, the solution of Eq. (12) shows that the

independent connection is the Levi-Civita connection of the
metric hμν ¼ ϕgμν. Thus, HPMG is a bi-metric theory, with
Rμν and Rμν related by

Rμν¼Rμνþ
3

2ϕ2
∂μϕ∂νϕ−

1

ϕ

�
∇μ∇νϕþ1

2
gμν□ϕ

�
: ð23Þ

Therefore the two Ricci scalars are related as

R ¼ Rþ 3

2ϕ2
∂μϕ∂μϕ −

3

ϕ
□ϕ: ð24Þ

With the help of this relation we eliminate now in action (9)
the independent connection. Thus we obtain the following
scalar-tensor representation of HMPG [29],

S ¼ Sgðg;ϕÞ þ Sm; ð25Þ

where Sgðg;ϕÞ is given by

Sgðg;ϕÞ¼
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ð1þϕÞRþ 3

2ϕ
∂μϕ∂μϕ−VðϕÞ

�
:

ð26Þ

Despite some superficial analogies, this action essen-
tially differs in their couplings of the scalar to the curvature
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from the w ¼ −3=2 Brans-Dicke theory action. However, it
belongs to the class of general Bergmann-Wagoner-
Nordtvedt scalar-tensory theories [97–99], whose action
for the vacuum state is given by

S ¼ 1

2κ2

Z
½fðϕÞRþ gðϕÞ∂μϕ∂μϕþ λðϕÞ� ffiffiffiffiffiffi

−g
p

d4x; ð27Þ

where fðϕÞ, gðϕÞ, and λðϕÞ are arbitrary functions of the
scalar field ϕ. A comparison with the action (26) of the
HMPG theory in the scalar-tensor representation shows that
its action is indeed of the Bergmann-Wagoner-Nordtvedt
type, with fðϕÞ¼1þϕ, gðϕÞ ¼ 3=2ϕ, and λðϕÞ ¼ −VðϕÞ,
respectively. An important property of the Bergmann-
Wagoner-Nordtvedt theories is that, by means of the
transformations [98]

ḡμν ¼ fðϕÞgμν;
dϕ
dϕ̄

¼ fðϕÞ
�
fðϕÞgðϕÞ− 3

2

�
dfðϕÞ
dϕ

�
2
�
;

ð28Þ

the action (27) can be transformed to the form

S ¼ 1

2κ2

Z
½R̄ − nḡμν∂μϕ̄∂νϕ̄þ 2λðϕ̄Þ� ffiffiffiffiffiffi

−ḡ
p

d4x; ð29Þ

where n ¼ �1. A crucial mathematical requirement for
transformations (28) to be valid is that they must be
nonsingular for the considered range of the scalar field
variable.
Let us apply now the transformations (28) to the action

(26) of the HMPG theory. We introduce first the conformal
transformation of the metric ḡμν ¼ ð1þ ϕÞgμν, which
transforms the action (26) to the Einstein frame form

S¼ 1

2κ2

Z �
R̄þ 3

2ϕ

ḡμν∂μϕ∂νϕ

ð1þϕÞ2 −
VðϕÞ

ð1þϕÞ2
� ffiffiffiffiffiffi

−ḡ
p

d4x: ð30Þ

Next, we introduce the scalar field transformation

ϕ ¼ tan2
� ffiffiffi

3

8

r
ϕ̄

�
; ð31Þ

which follows from the second equation in (28). This trans-
formation will transform the HMPG vacuum theory into a
canonical scalar field theory with a very specific potential.
However, the transformation ϕ → ϕ̄ given by Eq. (31) is
singular, with ϕ ¼ 0 for ϕ̄ ¼ ffiffiffiffiffiffiffiffi

8=3
p

kπ, k ¼ 0; 1; 2; 3…, and
ϕ → ∞ for ϕ̄ →

ffiffiffiffiffiffiffiffi
8=3

p ½ð−1Þkπ=2þ 2kπ�, k ¼ 0; 1; 2;….
Hence, even that one could find the solution of the vacuum
field equations of the HMPG theory in the canonical scalar
field representation in the Einstein frame, there is no
guarantee that the obtained solution would generate math-
ematically consistent and well behaved solutions of the field

equations in the Jordan frame, in which the HMPG theory is
naturally formulated.
For the sake of comparison we will also briefly present

the case of the standard Brans-Dicke theory [100,101], with
the vacuum gravitational action given by

S ¼ 1

2κ2

Z �
ϕR −

ω

ϕ
gμν∂μϕ∂νϕ

� ffiffiffiffiffiffi
−g

p
d4x; ð32Þ

which with the help of the transformations

ḡμν ¼ ϕgμν; ϕ ¼ eϕ̄; ð33Þ

can be transformed into the canonical form

S ¼ 1

2κ2

Z �
R̄ −

�
ωþ 3

2

�
ḡμν∂μϕ̄∂νϕ̄

� ffiffiffiffiffiffi
−ḡ

p
d4x: ð34Þ

As one can easily see from Eq. (33), the transformation
law ϕ → ϕ̄ of the scalar field in the Brans-Dicke theory is
nonsingular, except for ϕ̄ → �∞. This makes the scalar
field transformation mathematical properties in standard
Brans-Dicke theory different as compared to the trans-
formation (31) of the scalar field in HMPG theory.
By substituting Eqs. (11) and (23) in Eq. (10), we can

write the metric field equation as an effective Einstein field
equation given by

Gμν ¼ κ2Teff
μν ; ð35Þ

where the effective energy-momentum tensor is defined
according to

Teff
μν ¼ 1

1þ ϕ

�
Tμν −

1

κ2

�
1

2
gμνðV þ 2□ϕÞ þ∇μ∇νϕ

−
3

2ϕ
∂μϕ∂νϕþ 3

4ϕ
gμνð∂ϕÞ2

��
: ð36Þ

The scalar field is governed by an effective Klein-
Gordon–type second-order evolution equation, given by

−□ϕþ 1

2ϕ
∂μϕ∂μϕþ ϕ½2V − ð1þ ϕÞVϕ�

3
¼ ϕκ2

3
T; ð37Þ

(we refer the reader to [29] for more details on the
derivation of this equation). The Klein-Gordon evolution
equation indicates that, unlike in the Brans-Dicke
(w ¼ −3=2) case, in the present theory the scalar field is
dynamical. Therefore, the theory does not experience the
microscopic instabilities that emerge in Palatini models
with infrared corrections [28]. As for the matter energy-
momentum tensor, it turns out that it is independently
conserved, and hence it satisfies the standard condition
∇μT

μ
ν ¼ 0.
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C. The post-Newtonian parameters

The post-Newtonian parameters of gravitational theories
are important indicators that help us to determine theviability
of the theory by using local gravitational tests. In this respect,
we consider the post-Newtonian analysis of HMPG, where
we perturb Eqs. (36) and (37) in aMinkowskian background.
We introduce first a quasi-Minkowskian coordinate system,
in which gμν ≈ ημν þ hμν, with jhμνj ≪ 1, and we take
ϕ ¼ ϕ0 þ φðxÞ, where ϕ0 denotes the asymptotic value of
the field far away from the gravitating sources. Hence for this
class of theories we can obtain the standard post-Newtonian
metric up to second order, together with the following
expressions of the relevant astrophysical parameters (we
refer the reader to [49] for details)

Geff ≡ κ2

8πð1þ ϕ0Þ
�
1þ ϕ0

3
e−mφr

�
; ð38Þ

γ ≡ ½1þ ϕ0 exp ð−mφrÞ=3�
½1 − ϕ0 exp ð−mφrÞ=3�

; ð39Þ

m2
φ ≡ 1

3
½2V − Vϕ − ϕð1þ ϕÞVϕϕ�jϕ¼ϕ0

: ð40Þ

InHMPG, there are two possibilities to obtain thevalue γ ≈ 1
of the PPN parameter γ. The first one is identical to the one
used in thefðRÞ-type theories, and requires the existence of a
verymassive scalar field [22]. The secondpossibility consists
in imposing a very small background scalar field ϕ0 ≪ 1, so
that regardless of the magnitude of mφ, the Yukawa-type
corrections are very small. This latter case leaves the local
gravity tests unaffected, but it allows for the existence of a
long-range scalar field that can modify the cosmological
dynamics of the Universe.

III. SPHERICALLY SYMMETRIC VACUUM
FIELD EQUATIONS IN HMPG

A. Metric and field equations

In the following, we assume that the geometry outside
gravitating objects can be represented by the following line
element in curvature coordinates,

ds2¼−eνðrÞc2dt2þeλðrÞdr2þ r2ðdθ2þ sin2θdφ2Þ; ð41Þ

representing a static and spherically symmetric space-time.
The metric functions νðrÞ and λðrÞ are functions of the
radial coordinate r only, with the range 0 ≤ r < ∞. At least
theoretically, in the framework of HMPG we can construct
asymptotically flat spacetimes, in which νðrÞ → 0 and
λðrÞ → 0 as r → ∞. In the following, our main goal is
to investigate vacuum solutions of the HMPG theory, for
which all the components of the energy-momentum tensor
vanish identically, Tμν ≡ 0.

Using the metric (41), the effective Einstein field
equation (36) provides the following set of vacuum
gravitational field equations

1

r2
½1 − e−λð1 − rλ0Þ�ð1þ ϕÞ − e−λ

�
ϕ00 −

3ϕ02

4ϕ

�

þ ϕ0

2r
e−λðrλ0 − 4Þ − VðϕÞ

2
¼ 0; ð42Þ

�
1

r2
ðe−λ − 1Þ þ ν0

r
e−λ

�
ð1þ ϕÞ

þ ϕ0
�
ν0

2
þ 2

r
þ 3ϕ0

4ϕ

�
e−λ þ VðϕÞ

2
¼ 0; ð43Þ

��
ν00

2
þ
�
ν0

2

�
2

þ ν0

2r

�
e−λ −

1

2

λ0e−λ

r

�
1þ r

ν0

2

��

× ð1þ ϕÞ þ
�
ϕ00 þ ϕ0ν0

2
þ 3ϕ02

4ϕ

�
e−λ

þ ϕ0

r
e−λ

�
1 −

rλ0

2

�
þ VðϕÞ

2
¼ 0; ð44Þ

where a prime denotes the derivative with respect to the
radial coordinate r. The effective vacuum Klein-Gordon
equation (37) is given by

−
�
ϕ00 þ ϕ0ν0

2
−
ϕ02

2ϕ
þ 2ϕ0

r

�
e−λ þ ϕ0λ0

2
e−λ

þ ϕ

3
½2VðϕÞ − ð1þ ϕÞVϕðϕÞ� ¼ 0: ð45Þ

Note that once the functional dependence of the scalar
field potential VðϕðrÞÞ is given, Eqs. (42)–(45) provide
four independent ordinary nonlinear differential equations
for three unknown quantities, νðrÞ, λðrÞ, and ϕðrÞ, respec-
tively. However, similarly to the case of standard general
relativity, Eq. (44) is a consequence of the two other field
equations, and of the generalized Klein-Gordon equation.
Therefore, in order to investigate the black hole properties
in HPMG, it is enough to consider the solutions of the
system formed of Eqs. (42), (43), and (45).

B. The mass function and the
dynamical system formulation

In order to simplify the mathematical formalism, we
introduce a new function meffðrÞ, and we redefine the
metric tensor component e−λ as

e−λ ¼ 1 −
2GmeffðrÞ

c2r
; ð46Þ

so that
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λ0e−λ ¼ 2G
c2r

�
m0

eff −
meff

r

�
: ð47Þ

Then the basic equations describing the vacuum metric
tensor components in HMPG can be written as

dϕ
dr

¼ u; ð48Þ

dmeff

dr
¼ c2r2

2Gð1þ ϕþ ur=2Þ
�
ð1− 2Gmeff=c2rÞ

× ðu0 − 3u2=4ϕþ 2u=rÞ− 2Gmeff

c2r3
ð1þ ϕÞ þ V=2

�

þmeff

r
; ð49Þ

ν0 ¼
1
r −

h
uð8ϕþ3urÞ
4ϕð1þϕÞ þ 1

r

i
ð1 − 2Gmeff

c2r Þ − rVðϕÞ
2ð1þϕÞ

ð1 − 2Gmeff
c2r Þ

h
1þ ur

2ð1þϕÞ
i ; ð50Þ

ν00 ¼ 2G
c2r

ðm0
eff −

meff
r Þð1þ r ν0

2
Þ

ð1 − 2Gmeff
c2r Þ −

uð5ur − 8ϕÞ
2rϕð1þ ϕÞ

−
2u

rð1þ ϕÞ −
1

ð1þ ϕÞð1 − 2Gmeff
c2r Þ

×
�
2ϕ

3
½2V − ð1þ ϕÞVϕ� þ V

�
−
ν02

2
−
ν0

r
; ð51Þ

u0 ¼
Gu
c2r ðm0

eff −
meff
r Þ þ ϕ

3
½2V − ð1þ ϕÞVϕ�

1 − 2Gmeff
c2r

−
uν0

2
þ u2

2ϕ
−
2u
r
: ð52Þ

To obtain Eq. (51), we have proceeded as follows: we
first rewrite the generalized Klein-Gordon equation (45) as

�
ϕ00 þϕ0ν0

2

�
e−λ−

ϕ0λ0

2
e−λ

¼
�
ϕ02

2ϕ
−
2ϕ0

r

�
e−λþϕ

3
½2VðϕÞ− ð1þϕÞVϕðϕÞ�: ð53Þ

Substituting the left-hand side of this equation into
Eq. (44), we find

��
ν00

2
þ
�
ν0

2

�
2

þ ν0

2r

�
e−λ −

1

2

λ0e−λ

r

�
1þ r

ν0

2

��

þ 5ϕ02

4ϕð1þ ϕÞ e
−λ þ −

ϕ0

rð1þ ϕÞ e
−λ þ ϕ

3ð1þ ϕÞ

× ½2VðϕÞ − ð1þ ϕÞVϕðϕÞ� þ
VðϕÞ

2ð1þ ϕÞ ¼ 0: ð54Þ

We multiply now with eλ to obtain

��
ν00

2
þ
�
ν0

2

�
2

þ ν0

2r

�
−
1

2

λ0

r

�
1þ r

ν0

2

��

þ 5ϕ02

4ϕð1þ ϕÞ−
ϕ0

rð1þ ϕÞ þ
1

ð1þ ϕÞ

×

�
ϕ

3
½2VðϕÞ− ð1þ ϕÞVϕðϕÞ� þ

VðϕÞ
2

�
eλ ¼ 0: ð55Þ

Expressing ν00 from the above equation leads directly
to Eq. (51).

C. The dimensionless form of the field equations

In order to simplify the mathematical and numerical
formalism, we introduce now a set of dimensionless
variables ðη;Meff ; U; vÞ, defined as

r¼ 2GM⊙

c2
nη; meff ¼ nM⊙MeffðηÞ;

u¼ c2

2GM⊙n
UðηÞ; VðϕÞ ¼ 2

�
c2

2GM⊙n

�
2

vðϕÞ: ð56Þ

The explicit representation of the physical and geomet-
rical quantities in the new variables is represented in the
Appendix.
Hence, the system of Eqs. (48)–(52) takes the dimen-

sionless form

dϕ
dη

¼ U; ð57Þ

dMeff

dη
¼ η2

1þϕþηU=2

�
½ð1−Meff=ηÞ�½dU=dη

−3U2=4ϕþ2U=η�−M
η3
ð1þϕÞþv

�
þMeff

η
; ð58Þ

dν
dη

¼
1
η −

n
UðηÞ½8ϕþ3ηUðηÞ�

4ϕð1þϕÞ þ 1
η

oh
1 − MeffðηÞ

η

i
− ηvðϕÞ

1þϕ

ð1 − MeffðηÞ
η Þ

h
1þ ηUðηÞ

2ð1þϕÞ
i ; ð59Þ

d2ν
dη2

¼ 1

η

ð1þ η
2
dν
dηÞðdMeff

dη − Meff
η Þ

ð1 − Meff
η Þ

−
5UðηÞ2

2ϕð1þ ϕÞ þ
2UðηÞ

ηð1þ ϕÞ −
1

2

�
dν
dη

�
2

−
1

η

dν
dη

−
1

ð1þ ϕÞð1 − Meff
η Þ

�
2ϕ

3
½2V − ð1þ ϕÞVϕ� þ V

�
;

ð60Þ
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dUðηÞ
dη

¼−
UðηÞ
2

dν
dη

þU2ðηÞ
2ϕ

−
2UðηÞ

η

þ
UðηÞ
2η

h
dMeffðηÞ

dη −MeffðηÞ
η

i
þ 2ϕ

3
½2vðϕÞ− ð1þϕÞvϕðϕÞ�

1−MeffðηÞ
η

:

ð61Þ

We introduce now a new variable ξ ¼ 1=η, so that

1

r
¼ c2

2GM⊙n
1

η
¼ c2

2GM⊙n
ξ: ð62Þ

When r → ∞, ξ → 0, while for r → 0, we have ξ → ∞.
In the new variable, Eqs. (57)–(61) take the form

dϕ
dξ

¼ −
1

ξ2
U; ð63Þ

dMeff

dξ
¼ ð1 −MeffξÞ½ξ2dU=dξþ 3U2=4ϕ − 2ξU� þMeffξ

3ð1þ ϕÞ − v
ξ4ð1þ ϕþU=2ξÞ −

Meff

ξ
: ð64Þ

dν
dξ

¼ −
ξ −

n
UðξÞ½8ϕþ3UðξÞ=ξ�

4ϕð1þϕÞ þ ξ
o
½1 − ξMeffðξÞ� − vðϕÞ

ξð1þϕÞ

ξ2½1 − ξMeffðξÞ�
h
1þ UðξÞ

2ξð1þϕÞ
i ; ð65Þ

d2ν
dξ2

¼ ð1 − ξ
2
dν
dξÞðξ dMeff

dξ −MeffÞ
ð1 − ξMeffÞ

−
5UðξÞ2

2ξ4ϕð1þ ϕÞ þ
2u

ξ3ð1þ ϕÞ −
1

ξ4ð1þ ϕÞð1 − ξMeffÞ
�
2ϕ

3
½2V − ð1þ ϕÞVϕ� þ V

�

−
1

2

�
dν
dη

�
2

−
1

ξ

dν
dξ

; ð66Þ

dUðξÞ
dξ

¼
ξ2UðξÞ

2

h
ξ dMeffðξÞ

dξ þMeffðξÞ
i
− 2ϕ

3

h
2vðϕÞ − ð1þ ϕÞvϕðϕÞ

i
ξ2½1 − ξMeffðξÞ�

−
UðξÞ
2

dν
dξ

−
1

ξ2
U2ðξÞ
2ϕ

þ 2UðξÞ
ξ

: ð67Þ

In their dimensionless form in ξ, the field equations must
be solved with the fixed initial conditions

Meffð0Þ ¼ 1; νð0Þ ¼ 0; ν0ð0Þ ¼ 0; ð68Þ

and arbitrary numerical values for uð0Þ ¼ u0 and
ϕð0Þ ¼ ϕ0.

D. General properties of the
gravitational field equations

In order to simplify our formalism, we represent the
metric tensor coefficient eν as

eνðrÞ ¼ ΨðϕðrÞÞeβðrÞ; ð69Þ

where ΨðϕðrÞÞ and βðrÞ are functions to be determined
from the gravitational field equations. Then we immedi-
ately find

ν0 ¼ d
dr

lnΨþ β0: ð70Þ

Hence, Eq. (45) can be reformulated as

−
�
ϕ00

ϕ0 −
ϕ0

2ϕ
þ 2

r
þ 1

2

d
dr

lnΨþ 1

2
β0
�
e−λ þ λ0

2
e−λ

þ 1

3

ϕ

ϕ0 ½2VðϕÞ − ð1þ ϕÞVϕðϕÞ� ¼ 0: ð71Þ

We determine the function Ψ by imposing the condition

d
dr

lnΨ ¼ −
2ϕ00

ϕ0 þ ϕ0

ϕ
−
4

r
; ð72Þ

which gives

Ψ ¼ Ψ0

ϕ

r4ϕ02 ; ð73Þ

where Ψ0 is an arbitrary constant of integration. Therefore,
from Eq. (71) we obtain

e−λβ0 ¼ e−λλ0 þUðϕÞ; ð74Þ

where we have denoted
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UðϕÞ ¼ 2

3

ϕ

ϕ0 ½2VðϕÞ − ð1þ ϕÞVϕðϕÞ�: ð75Þ

From Eq. (74), we immediately obtain

β ¼ λþ
Z

eλðr0ÞUðϕðr0ÞÞdr0 þ C; ð76Þ

where C is an arbitrary constant of integration, and

ν ¼ λþ ln
Ψ0ϕ

r4ϕ02 þ
Z

eλðr0ÞUðϕðr0ÞÞdr0 þ C: ð77Þ

From the generalized Klein-Gordon Eq. (45) we can
express the term ϕ0λ0e−λ=2ð1þ ϕÞ as

ϕ0λ0e−λ

2ð1þϕÞ¼
ϕ0e−λ

1þϕ

�
ϕ00

ϕ0 þ
ν0

2
−
ϕ0

2ϕ
þ2

r

�
−
1

2

ϕ0UðϕÞ
1þϕ

: ð78Þ

After substitution in Eq. (42) we obtain

1

r2
ð1 − e−λÞ þ λ0e−λ

r
þ e−λϕ0

1þ ϕ

�
ν0

2
þ 1

4

ϕ0

ϕ

�

−
1

2

ϕ0UðϕÞ
1þ ϕ

−
VðϕÞ

2ð1þ ϕÞ ¼ 0: ð79Þ

Then, after subtracting Eqs. (42) and (43), and
with the use of the relation ðν0 − λ0Þe−λ=r ¼
ðe−λ=rÞd lnΨ=drþUðϕÞ=r, we obtain the equation

1

r
e−λ

d
dr

lnΨ −
2

r2
ð1 − e−λÞ þ e−λϕ0

1þ ϕ

d
dr

ln r2
ffiffiffiffi
ϕ

p

þ UðϕÞ
2

�
1 −

1

2

rϕ0

1þ ϕ

�
−

VðϕÞ
2ð1þ ϕÞ ¼ 0; ð80Þ

which allows us to obtain e−λ as

e−λ ¼
1þ VðϕÞr2

2ð1þϕÞ −
UðϕÞr

2
ð1þ 1

2
rϕ0
1þϕÞ

1þ r
2
d
dr lnΨþ 1

2
ϕ0r2
1þϕ

d
dr ln r

2
ffiffiffiffi
ϕ

p : ð81Þ

For the effective mass functionMeff¼ðc2=2GÞrð1−e−λÞ
we obtain

Meff ¼
c2

2G
r2

1
2
d
dr lnΨþ 1

2
ϕ0r
1þϕ

d
dr ln r

2
ffiffiffiffi
ϕ

p
− VðϕÞr

2ð1þϕÞ þ UðϕÞ
2

ð1þ 1
2

rϕ0
1þϕÞ

1þ r
2
d
dr lnΨþ 1

2
ϕ0r2
1þϕ

d
dr ln r

2
ffiffiffiffi
ϕ

p : ð82Þ

Once the metric tensor component e−λ is known, the
metric tensor component eν can be obtained from Eq. (77).
In the case VðϕðrÞÞ≡ 0, the above equations take the form

e−λ ¼ 1

1þ r
2
d
dr lnΨþ 1

2
ϕ0r2
1þϕ

d
dr ln r

2
ffiffiffiffi
ϕ

p ; ð83Þ

and

Meff ¼
c2

2G
r2

1
2
d
dr lnΨþ 1

2
ϕ0r
1þϕ

d
dr ln r

2
ffiffiffiffi
ϕ

p

1þ r
2
d
dr lnΨþ 1

2
ϕ0r2
1þϕ

d
dr ln r

2
ffiffiffiffi
ϕ

p ; ð84Þ

respectively. Hence in the HMPG theory the geometric as
well as the physical properties of the gravitational field in
the vacuum are completely determined by the scalar field ϕ,
and of its derivatives.

IV. NUMERICAL BLACK HOLE SOLUTIONS OF
THE VACUUM FIELD EQUATIONS IN HMPG

Since the system of equations describing the vacuum
static spherically symmetric gravitational field does not
seem to admit any simple exact analytical solution of

Schwarzschild or de Sitter–type, in the following we will
concentrate on the numerical solutions of the system of
Eqs. (63)–(67), with the initial condition given by Eq. (68).
These equations are formulated in the variable ξ ¼ 1=r, and
to obtain their solutions we start the integration at ξ ¼ ξ∞,
corresponding to a very large distance from the central
object, i.e., spatial infinity, and to very small values of ξ.
The presence of the singularity, and of the black hole
horizon, is detected as the zeros of the metric tensor
coefficients eν and e−λ, respectively. In our analysis, we
consider several forms of the potential V of the scalar field.

A. The case V(ϕ)= 0

As a first example of numerical vacuum solutions in
HMPG, we consider the case VðϕÞ ¼ 0. In order to numeri-
cally integrate the gravitational field equations (63)–(67),
we need to fix the initial values of the scalar field ϕ, and of
its derivative at infinity, corresponding to the value ξ ¼ 0 of
the dimensionless radial coordinate ξ. As for the metric we
assume that at infinity it is Minkowskian. Hence the nature
of the central singularity in HMPG is essentially deter-
mined by the numerical values the field ϕ and its derivative
ϕ0 takes at infinity. In order to investigate the effect of the
initial conditions, we consider two different classes of
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solutions. In the first class, we assume that the initial value
of the field at infinity is fixed, and we let its derivatives
vary. For the second set of models we take the derivative of
the scalar field as fixed at infinity, and we investigate the
effects of the field variation on the geometry. The variations
of the metric tensor coefficient eν for these two cases is
presented in Fig. 1.
As one can see from the figures describing the variation

of eν, at fixed values of ξ ¼ ξS the metric becomes singular.
The same effect can be also observed in the case of
the evolution of e−λ, presented in Fig. 2. For both metric

tensor coefficients a singular behavior does appear for a
finite value of ξ, indicating the formation of an outer
apparent horizon, and of a black hole. However, the
position of the outer apparent horizon ξS covering the
black hole depends on the initial values at infinity of
the scalar field.
The variation of the effective mass of the black hole is

represented in Fig. 3. As indicated by the figures, the mass
of the black hole significantly increases as compared
to its mass at infinity, where the effects of the scalar field
are neglected. Hence, in HMPG the scalar field gives a

FIG. 2. Variation of the metric tensor components e−λ in the vacuum outside a spherically symmetric compact object in HMPG with a
vanishing scalar field potential. Left: The initial value of scalar field, ϕ0, is fixed at ϕ0 ¼ 1while the initial value of its derivative is taken
to be: u0 ¼ 4 × 10−9 (solid curve), u0 ¼ 8 × 10−9 (dotted curve), u0 ¼ 1.6 × 10−8 (short dashed curve), u0 ¼ 3.2 × 10−8 (dashed
curve), u0 ¼ 6.4 × 10−8 (long dashed curve). Right: The initial value of the derivative of the scalar field, u0, is fixed at u0 ¼ 5.12 × 10−7

while the initial value of the scalar field is taken to be: ϕ0 ¼ 0.5 (solid curve), ϕ0 ¼ 1 (dotted curve), ϕ0 ¼ 2 (short dashed curve),
ϕ0 ¼ 4 (dashed curve), ϕ0 ¼ 8 (long dashed curve).

FIG. 1. Variation of the metric tensor components eν in the vacuum outside a spherically symmetric compact object in HMPG with a
vanishing scalar field potential. Left figure: The initial value of scalar field, ϕ0, is fixed at ϕ0 ¼ 1 while the initial value of its derivative
is taken to be: u0 ¼ 4 × 10−9 (solid curve), u0 ¼ 8 × 10−9 (dotted curve), u0 ¼ 1.6 × 10−8 (short dashed curve), u0 ¼ 3.2 × 10−8

(dashed curve), u0 ¼ 6.4 × 10−8 (long dashed curve). Right figure: The initial value of the derivative of the scalar field, u0, is fixed at
u0 ¼ 5.12 × 10−7 while the initial value of the scalar field is taken to be: ϕ0 ¼ 0.5 (solid curve), ϕ0 ¼ 1 (dotted curve), ϕ0 ¼ 2 (short
dashed curve), ϕ0 ¼ 4 (dashed curve), ϕ0 ¼ 8 (long dashed curve).
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significant contribution to the mass of the gravitating
object.
The exact locations of the outer apparent horizon for

HPMG with a vanishing scalar field potential are repre-
sented in Tables I and II, respectively. As one can see from
Table I, for very small values of u0, the position of the outer
apparent horizon of the HMPG black hole almost coincides
with the Schwarzschild radius of the black hole ξS ¼ 1.
With the increase of u0 there is a significant decrease in the
numerical values of the metric singularity, which can reach
values as low as 0.8 of the Schwarzschild radius, indicating
that the presence of the scalar field pushes the outer
apparent horizon towards the center of the black hole.
A different trend can be observed from the numerical
results presented in Table II. For a fixed but small u0, the
position of the outer apparent horizon is inversely propor-
tional to the initial values of the scalar field. The outer

apparent horizon of the black hole approaches the
Schwarzschild radius for large initial values of the field,
while small values of ϕ0 of the order of one lead to a
significant decrease in the position of ξS.

1. Fitting of the numerical results

As a function of the initial conditions for the scalar field
the expression of the outer apparent horizon of the black
hole can be obtained as

ξSðϕ0;u0Þ¼ 1−148411×
u0
ϕ0

−2.737×1011×u20; ð85Þ

with an R squared value of R2 ¼ 0.99926. The comparison
of the numerical results and of the fitting function is
presented in Fig. 4.

FIG. 3. Variation of the effective mass functionMeffðξÞ in the vacuum outside a spherically symmetric compact object in HMPGwith a
vanishing scalar field potential. Left: The initial value of scalar field, ϕ0, is fixed at ϕ0 ¼ 1while the initial value of its derivative is taken
to be: u0 ¼ 4 × 10−9 (solid curve), u0 ¼ 8 × 10−9 (dotted curve), u0 ¼ 1.6 × 10−8 (short dashed curve), u0 ¼ 3.2 × 10−8 (dashed
curve), u0 ¼ 6.4 × 10−8 (long dashed curve). Right: The initial value of the derivative of the scalar field, u0, is fixed at u0 ¼ 5.12 × 10−7

while the initial value of the scalar field is taken to be: ϕ0 ¼ 0.5 (solid curve), ϕ0 ¼ 1 (dotted curve), ϕ0 ¼ 2 (short dashed curve),
ϕ0 ¼ 4 (dashed curve), ϕ0 ¼ 8 (long dashed curve).

TABLE II. Values of ξ ¼ ξS where the singularity in the static
vacuum field equations of HMPG occurs, for fixed u0 ¼ 5.12 ×
10−7 and for different values of ϕ0 in the case of the vanishing
scalar field potential V ¼ 0.

ϕ0 ξS

0.5 0.770 61
1 0.826 93
2 0.867 64
4 0.900 60
8 0.929 65
16 0.953 35
32 0.970 65
64 0.982 19
128 0.989 39
256 0.993 66
512 0.996 10

TABLE I. Values of ξ ¼ ξS where the singularity occurs,
corresponding to the radius of the outer apparent horizon, for
fixed ϕ0 ¼ 1 and different values of ϕ0ð0Þ ¼ u0 for the case of the
vanishing scalar field potential V ¼ 0.

u0 ξS

5 × 10−10 0.998 56
1 × 10−9 0.997 81
2 × 10−9 0.996 41
4 × 10−9 0.993 91
8 × 10−9 0.989 56
1.6 × 10−8 0.982 19
3.2 × 10−8 0.970 20
6.4 × 10−8 0.951 55
1.28 × 10−7 0.923 93
2.56 × 10−7 0.884 50
5.12 × 10−7 0.826 93
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We have also obtained numerical fits for the three
functions, MeffðξÞ, eνðξÞ and e−λðξÞ, for the same combina-
tion of parameters ϕ0, u0 as in Tables I and II.
For the mass function we consider a representation of the

form

MeffðξÞ ¼ AM þ BMξþ CMξ
2; ð86Þ

where we have further obtained the coefficients AM, BM,
CM as functions AM ¼ AMðϕ0; u0Þ, BM ¼ BMðϕ0; u0Þ, and
CM ¼ CMðϕ0; u0Þ as given below,

AM ¼ 1.00067þ 53919.2u0 − 4814.28 × ϕ0u0

− 3.34854 × 1010 × u20 −
2.72635 × 109u20

ϕ2
0

þ 6.44955 × 109 × u20
ϕ0

; ð87Þ

with an R squared of R2 ¼ 0.999998,

BM ¼ −213635u0 þ
23702.9u0

ϕ0

þ 18747.6 × ϕ0u0

þ 1.52191 × 1011u20 þ
3.86999 × 1010u20

ϕ2
0

−
5.94209 × 1010u20

ϕ0

; ð88Þ

with R2 ¼ 0.965492, and finally

CM ¼ 639111u0 þ
25555.1u0

ϕ0

− 39078.4ϕ0u0

− 5.82573 × 1011u20 −
5.7583 × 1010u20

ϕ2
0

þ 5.73072 × 1011u20
ϕ0

; ð89Þ

with an R squared of R2 ¼ 0.990561, respectively.

For the metric tensor coefficient eνðξÞ, we consider a
representation of the form

eνðξÞ ¼ Aν þ Bνξþ Cνξ
2; ð90Þ

where the coefficients Aν, Bν, and Cν are given as functions
of the initial values of the scalar field as

Aν ¼ 1.01476 − 165700:u0 þ 17233.5ϕ0u0

þ 9.14106 × 1010u20 þ
7.59538 × 109u20

ϕ2
0

−
3.95859 × 1010u20

ϕ0

; ð91Þ

with an R squared of R2 ¼ 0.999985,

Bν ¼ −0.995931þ 2.28588 × 106u0 − 231896ϕ0u0

− 1.36511 × 1012u20 −
1.13951 × 1011u20

ϕ2
0

þ 1.01312 × 1012u20
ϕ0

; ð92Þ

with R2 ¼ 0.997263, and finally

Cν ¼ −1.54598 × 106u0 −
255308u0

ϕ0

þ 120339ϕ0u0 þ 1.18476 × 1012u20

þ 1.24333 × 1011u20
ϕ2
0

−
1.6744 × 1012u20

ϕ0

; ð93Þ

with an R squared of R2 ¼ 0.997204.
For the metric tensor component e−λðξÞ, we adopt the

functional form

e−λðξÞ ¼ 1 − ξMeffðξÞ ¼ 1 − ðAM þ BMξþ CMξ
2Þ

¼ 1þ Aλξþ Bλξ
2 þ Cλξ

3; ð94Þ

where the coefficients Aλ, Bλ, Cλ are given as functions of
the initial conditions at infinity of the scalar field as

Aλ ¼ −0.933912 − 108822u0 þ 10973ϕ0u0

þ 4.6961 × 1010u20 þ
6.11265 × 109u20

ϕ2
0

þ 1.81929 × 1010u20
ϕ0

; ð95Þ

with an R squared of R2 ¼ 0.999976,

FIG. 4. Comparison of the fitting function ξSðϕ0;u0Þ¼
1−148411×u0=ϕ0−2.737×1011×u20 for the position of the
event horizon of the HMPG theory black holes and the numerical
data for the vanishing potential case, for ϕ0 ∈ ½0.15; 5.7665� and
u0 ∈ ½3 × 10−11; 5.9 × 10−7�.
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Bλ ¼ −0.121357þ 357381u0 − 41431ϕ0u0

− 1.12908 × 1011u20 −
7.12164 × 1010u20

ϕ2
0

−
8.9032 × 109u20

ϕ0

; ð96Þ

with R2 ¼ 0.981236, and

Cλ ¼ 0.0645491 − 777792u0 −
36125u0

ϕ0

þ 59800.9ϕ0u0 þ 6.11368 × 1011u20

þ 1.16131 × 1011u20
ϕ2
0

−
6.21693 × 1011u20

ϕ0

; ð97Þ

with an R squared of R2 ¼ 0.961695, respectively.

B. The Higgs-type potential: V(ϕ)= − μ2

2 ϕ
2 + ς

4ϕ
4

As another example of vacuum solutions of the gravi-
tational field equations in HMPG we consider the case of
the scalar field with Higgs-type potential,

VðϕÞ ¼ −
μ2

2
ϕ2 þ ς

4
ϕ4; ð98Þ

where μ2 and ς are constants. The Higgs potential plays a
fundamental role in particle physics, and by analogy with
quantum field theoretical models we assume that −μ2 gives
the mass of the scalar field particle associated with HMPG.
The Higgs self-coupling constant ς takes the value ς ≈ 1=8
for the case of strong interactions [102]. This value is
obtained from the determination of the mass of the Higgs

boson from accelerator experiments, but the self-interacting
properties of the scalar field in HMPG may be very
different than those suggested by QCD. By taking into
account the new variable introduced in the present
approach the scalar field potential can be written in a
dimensionless form as

vðϕÞ ¼ αϕ2 þ βϕ4; ð99Þ

where

α ¼ −
1

4

�
2GnM⊙

c2

�
2

μ2; β ¼ 1

2

�
2GnM⊙

c2

�
2

ς: ð100Þ

The Higgs-type potential generates four-parameter (α, β,
ϕ0, u0) classes of solutions of the static gravitational field
equations in HMPG. However, in the following, we will
restrict our analysis to the investigation of the role played
by the constants α and β of the potential in the formation of
the event horizon of the black holes. Hence, we fix ϕ0 and
u0, and vary the numerical values of α and β. The variations
with respect to ξ of the metric tensor components and of the
mass function are represented, for fixed values of ϕ0 and u0
in Figs. 5 and 6, respectively.
Similarly to the case of the zero scalar field potential, the

metric tensor components become singular at finite values
of the radial coordinate ξ, indicating the presence of an
event horizon, and the formation of a black hole. The
position of the event horizon strongly depends on the model
parameters, with this dependence exemplified in Tables III
and IV, respectively.
The effective mass function MðξÞ, represented in Fig. 7,

shows an increase of the mass of the black hole while

FIG. 5. Variation of the metric tensor components eν in the vacuum outside a spherically symmetric compact object in HMPG with a
Higgs-type potential V ¼ αϕ2 þ βϕ4 of the scalar field. The initial value of the scalar field is fixed at ϕ0 ¼ 1, and its derivative is fixed at
u0 ¼ 10−8, respectively. Left figure: the parameter α is fixed at α ¼ 10−10 while the parameter β is taken to be: β ¼ 2 × 10−10 (solid
curve), β ¼ 3 × 10−10 (dotted curve), β ¼ 4 × 10−10 (short dashed curve), β ¼ 5 × 10−10 (dashed curve), β ¼ 6 × 10−10 (long dashed
curve). Right figure: the parameter β is fixed at β ¼ 10−10 while the parameter α is taken to be: α ¼ 2 × 10−10 (solid curve), α ¼
3 × 10−10 (dotted curve), α ¼ 4 × 10−10 (short dashed curve), α ¼ 5 × 10−10 (dashed curve), α ¼ 6 × 10−10 (long dashed curve).
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approaching the outer apparent horizon. The increase is
strongly dependent on numerical values of the model
parameters and, due to the contribution of the scalar field,
can lead to a significant increase in the gravitational mass of
the central object. In the considered examples, this increase
can be of the order of 20% as compared to the mass at
infinity.

1. Numerical fits of the solutions

We have also obtained numerical fits for the three
functions, MeffðξÞ, eνðξÞ and e−λðξÞ, for all the combi-
nation of parameters ϕ0 ¼ f0.5; 0.6; 0.7; 0.8; 0.9g, u0¼
f1;2;3;4;5g×10−8, α ¼ f1.0; 1.5; 2.0; 2.5; 3.0g × 10−10,
β ¼ f1; 2; 3; 4; 5g × 10−10.
For the mass function, we assume a general representa-

tion of the form

MeffðξÞ ¼ AMH þ BMHξþ CMHξ
2 þDMHξ

3; ð101Þ

where we further consider the coefficients AMH, BMH, CMH
and DMH as functions AMH ¼ AMHðϕ0; u0;α; βÞ,
BMH ¼ BMHðϕ0; u0; α; βÞ, CMH ¼ CMHðϕ0; u0;α; βÞ, and
DMH ¼ DMHðϕ0; u0; α; βÞ, respectively. The explicit form
of these coefficients is given below as

AMH ¼ 1þ 6.04244 × 107β − 3.82478 × 106u0

þ 1.024 × 106u0
ϕ0

þ 3.23921 × 106ϕ0u0

− 1.09018 × 108αþ 2.85266 × 1015αβ; ð102Þ

with an R squared of R2 ¼ 0.999961,

FIG. 6. Variation of the metric tensor components eλ in the vacuum outside a spherically symmetric compact object in HMPG with a
Higgs-type potential V ¼ αϕ2 þ βϕ4 of the scalar field. The initial value of the scalar field is fixed at ϕ0 ¼ 1, and its derivative is fixed at
u0 ¼ 10−8, respectively. Left figure: the parameter α is fixed at α ¼ 10−10 while the parameter β is taken to be: β ¼ 2 × 10−10 (solid
curve), β ¼ 3 × 10−10 (dotted curve), β ¼ 4 × 10−10 (short dashed curve), β ¼ 5 × 10−10 (dashed curve), β ¼ 6 × 10−10 (long dashed
curve). Right figure: the parameter β is fixed at β ¼ 10−10 while the parameter α is taken to be: α ¼ 2 × 10−10 (solid curve), α ¼
3 × 10−10 (dotted curve), α ¼ 4 × 10−10 (short dashed curve), α ¼ 5 × 10−10 (dashed curve), α ¼ 6 × 10−10 (long dashed curve).

TABLE III. Values of ξ ¼ ξS where the singularity in the field
equations occur, indicating the formation of an outer apparent
horizon, for fixed ϕ0 ¼ 1, u0 ¼ 10−8, α ¼ 10−10 and varying β in
the case of the Higgs potential, V ¼ αϕ2 þ βϕ4.

β ξS

2 × 10−10 0.971 40
3 × 10−10 0.955 82
4 × 10−10 0.940 75
5 × 10−10 0.926 15
6 × 10−10 0.912 01
7 × 10−10 0.899 30
8 × 10−10 0.884 99
9 × 10−10 0.872 07

TABLE IV. Values of ξ ¼ ξS where the singularity in the field
equations occur, indicating the formation of an outer apparent
horizon, for fixed ϕ0 ¼ 1, u0 ¼ 10−8, β ¼ 10−10 and varying α in
the case of the Higgs potential, V ¼ αϕ2 þ βϕ4.

α ξS

−2 × 10−10 0.940 75
−3 × 10−10 0.912 01
−4 × 10−10 0.926 15
−5 × 10−10 0.898 29
−6 × 10−10 0.884 98
−7 × 10−10 0.872 07
−8 × 10−10 0.859 52
−9 × 10−10 0.847 34
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BMH ¼ 1.787 × 107β þ 337899u0

þ 159812u0
ϕ0

þ 159110ϕ0u0 − 914980α

− 4.13735 × 1016αβ; ð103Þ

with R2 ¼ 0.997251,

CMH ¼ −4.65809 × 107β − 468798u0 −
310459:u0

ϕ0

− 477549ϕ0u0 − 8.95984 × 106α

þ 1.21263 × 1017αβ; ð104Þ

with R2 ¼ 0.994383, and finally

DMH ¼ 4.73217 × 107β þ 320946u0 þ
425716:u0

ϕ0

þ 701419:ϕ0u0 − 6.8347 × 106α

− 1.04108 × 1017αβ; ð105Þ

with an R squared of R2 ¼ 0.99634.
For the metric tensor coefficient eνðξÞ, we assume an

analytical representation of the form

eνðξÞ ¼ AνH þ BνHξþ CνHξ
2 þDνHξ

3; ð106Þ

where we further consider the coefficients A, B, C, D as
functions of the form AνH ¼ AνHðϕ0; u0; α; βÞ, BνH ¼
BνHðϕ0; u0; α; βÞ, CνH ¼ CνHðϕ0; u0;α; βÞ, DνH ¼
DνHðϕ0; u0; α; βÞ, with the explicit forms of these functions
given below as

AνH ¼ 1þ 3.74259 × 107β − 4377.59u0 þ
22095.4u0

ϕ0

þ 57374.6ϕ0u0 þ 5.63505 × 107α

− 1.60231 × 1017αβ; ð107Þ

with an R squared of R2 ¼ 0.999996,

BνH ¼ −1 − 3.99701 × 107β þ 3.93268 × 106u0

−
858026u0

ϕ0

− 3.0797 × 106ϕ0u0

þ 1.20215 × 108α − 6.73634 × 1016αβ; ð108Þ

with R2 ¼ 0.999962,

CνH ¼ −1.69096 × 107β þ 1.42883 × 106u0

þ 282037u0
ϕ0

þ 14781.9ϕ0u0 − 8.68885 × 107α

þ 1.51073 × 1017αβ; ð109Þ

with R2 ¼ 0.99119, and finally

DνH ¼ −2.6232 × 107β − 1.209 × 106u0

−
671312u0

ϕ0

− 656553ϕ0u0 þ 7.44748 × 107α

− 3.06922 × 1016αβ; ð110Þ

with an R squared of R2 ¼ 0.997681.
For the metric tensor coefficient of e−λðξÞ, we adopt a

functional representation of the form

FIG. 7. Variation of the effective mass functionMeffðξÞ in the vacuum outside a spherically symmetric compact object in HMPGwith a
Higgs-type potential V ¼ αϕ2 þ βϕ4 of the scalar field. The initial value of the scalar field is fixed at ϕ0 ¼ 1, and its derivative is fixed at
u0 ¼ 10−8, respectively. Left figure: the parameter α is fixed at α ¼ 10−10 while the parameter β is taken to be: β ¼ 2 × 10−10 (solid
curve), β ¼ 3 × 10−10 (dotted curve), β ¼ 4 × 10−10 (short dashed curve), β ¼ 5 × 10−10 (dashed curve), β ¼ 6 × 10−10 (long dashed
curve). Right figure: the parameter β is fixed at β ¼ 10−10 while the parameter α is taken to be: α ¼ 2 × 10−10 (solid curve), α ¼
3 × 10−10 (dotted curve), α ¼ 4 × 10−10 (short dashed curve), α ¼ 5 × 10−10 (dashed curve), α ¼ 6 × 10−10 (long dashed curve).
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e−λðξÞ ¼ 1 − ξMeffðξÞ
¼ 1 − ðAMH þ BMHξþ CMHξ

2 þDMHξ
3Þ

¼ 1þ AλHξþ BλHξ
2 þ CλHξ

3 þDλHξ
4; ð111Þ

and we further consider the coefficients AλH, BλH,
CλH, DλH as functions of ϕ0 and u0, respectively,
so that AλH ¼ AλHðϕ0; u0; α; βÞ, BλH ¼ BλHðϕ0; u0; α; βÞ,
CλH ¼ CλHðϕ0; u0; α; βÞ, and DλH ¼ DλHðϕ0; u0; α; βÞ,
respectively. The explicit forms of these functions are
given below as

AλH ¼ −1 − 4.49859 × 107β þ 4.09247 × 106u0

−
966006u0

ϕ0

− 3.19464 × 106ϕ0u0

þ 1.19154 × 108α − 5.17235 × 1016αβ; ð112Þ

with an R squared of R2 ¼ 0.99996,

BλH ¼ −9.47158 × 107β − 1.36178 × 106u0

−
530466u0

ϕ0

− 626997ϕ0u0

− 3.64982 × 107αþ 2.68594 × 1017αβ; ð113Þ

with R2 ¼ 0.993292,

CλH ¼ 1.78597 × 108β þ 1.6928 × 106u0

þ 1.09374 × 106u0
ϕ0

þ 1.71268 × 106ϕ0u0

þ 5.07146 × 107α − 4.84226 × 1017αβ; ð114Þ

with R2 ¼ 0.997681, and finally

DλH ¼ −0.0292287 − 4.65552 × 107β − 618525u0

−
932125u0

ϕ0

− 1.6095 × 106ϕ0u0

þ 1.1466 × 108α − 3.58837 × 1016αβ; ð115Þ

with an R squared of R2 ¼ 0.995662.

V. THERMODYNAMICS OF
HMPG BLACK HOLES

In the present analysis of the vacuum field equations in
HMPG, we have assumed that the mass function and lapse
function eν depend only on the radial coordinate. Hence the
spacetime is static and a timelike Killing vector tμ exists
[103,104]. The definition of the surface gravity κ̃ for a static
black hole that possesses a Killing horizon is given by
[103,104]

tμ∇μtν ¼ tνκ̃: ð116Þ

In the case of a static, spherically symmetric geometry that
can be written as

ds2 ¼ −σ̃2ðrÞfðrÞc2dt2 þ dr2

fðrÞ þ r2dΩ2; ð117Þ

by adopting a suitable normalized Killing vector
tμ ¼ ð1=σ̃∞; 0; 0; 0Þ, the surface gravity of the black hole
can be obtained as [104]

κ̃ ¼
�
σ̃hor
σ̃∞

�
c4

4GMhor

�
1 −

2GM0ðrÞ
c2

�				
hor
; ð118Þ

where the subscript hor indicates that the evaluation of all
physical quantities must be performed on the outer apparent
horizon. For σ ≡ 1, and M ¼ constant, we reobtain the
well-known result of the surface gravity of a Schwarzschild
black hole, κ̃ ¼ c4=4GMhor [103]. The temperature TBH of
the black hole is defined as

TBH ¼ ℏ
2πckB

κ̃; ð119Þ

where kB is Boltzmann’s constant. In the dimensionless
variables introduced in Eq. (56), we obtain the temperature
of the black hole as

TBH ¼ TH
1

MeffðξSÞ
�
1þ ξ2

dMeffðξÞ
dξ

�				
ξ¼ξS

; ð120Þ

where

TH ¼ ℏc3

8πGkBnM⊙
: ð121Þ

By taking into account the representation of the effective
mass as given by Eqs. (86) and (101), we obtain for the
temperature of a HMPG black hole, the expression

TBHðξSÞ ¼ TH
1þ ξ2ðBþ 2Cξþ 3Dξ2Þ
Aþ Bξþ Cξ2 þDξ3

				
ξ¼ξS

¼ THθðξÞjξ¼ξS
: ð122Þ

For the zero potential case V ¼ 0 the variation of the
horizon temperature of HMPG black holes is represented in
Fig. 8. Explicit numerical values of the TBHðξSÞ=TH ratio
are presented in Table V.
The specific heatCBH of the black hole can be obtained as

CBH ¼ dM
dTBH

¼ dM
dr

dr
dTBH

				
r¼rhor

¼ nM⊙

TH

dMeffðξÞ
dξ

dξ
dθ

				
ξ¼ξS

: ð123Þ
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Hence, for the specific heat of a black hole in HMPG, we obtain the general expression

CBHðξSÞ ¼ CH
½Bþ ξð2Cþ 3DξÞ�fAþ ξ½Bþ ξðCþDξÞ�g2

B½2Aξþ 4ξ3ðCþ 2DξÞ − 1� þ ξ½Cð6Aξþ 6Dξ4 − 2Þ þ 3Dξð4AξþDξ4 − 1Þ þ 2C2ξ3� þ B2ξ2
; ð124Þ

where we have denoted CH ¼ nM⊙=TH. The variation of
the specific heat of the HMPG black holes as a function of
the dimensionless horizon radius is represented, for the
zero potential case V ¼ 0, in Fig. 9. Exact numerical values
of the ratio CBHðξSÞ=CH for different values of ϕ0 and u0
are presented in Table VI.
The entropy SBH of the black hole is given by

SBH ¼
Z

rhor

rin

dM
TBH

¼
Z

rhor

rin

1

TBH

dM
dr

dr; ð125Þ

or, equivalently,

SBHðξSÞ ¼ CH

Z
ξS

0

1

θðξÞ
dMeffðξÞ

dξ
dξ: ð126Þ

The variation as a function of the dimensionless horizon
radius ξS of the entropy of the HMPG black holes is
represented, for the zero potential case V ¼ 0, in Fig. 10.
Selected values of the ratio SBHðξSÞ=CH for different values
of ϕ0 and u0 are presented in Table VII.
The black hole luminosity due to the Hawking evapo-

ration can be obtained as

LBH ¼ −
dM
dt

¼ −σABHT4
BH; ð127Þ

where σ is a model dependent parameter, and ABH ¼ 4πr2hor
is the area of the event horizon. Hence for the black hole
evaporation time τ we find

FIG. 8. Variation of the black hole temperature TBHðξSÞ=TH as
a function of the horizon radius ξS of a HMPG black hole in the
absence of a scalar field potential, V ¼ 0, for u0 ∈ ½2.2 × 10−10;
1.1264 × 10−7�, and for different values of ϕ0: ϕ0 ¼ 0.15 (solid
curve), ϕ0 ¼ 0.225 (dotted curve), ϕ0 ¼ 0.3375 (short dashed
curve), ϕ0 ¼ 0.50625 (dashed curve), respectively.

FIG. 9. Variation of the specific heat CBHðξSÞ=CH as a function
of the horizon radius ξS of a HMPG black hole in the absence of a
scalar field potential, V ¼ 0, for u0∈ ½2.2×10−10;1.1264×10−7�,
and for different values of ϕ0: ϕ0 ¼ 0.15 (solid curve), ϕ0 ¼
0.225 (dotted curve), ϕ0 ¼ 0.3375 (short dashed curve), ϕ0 ¼
0.50625 (dashed curve), respectively.

TABLE V. Selected numerical values of the black hole temper-
ature TBHðξSÞ=TH in the absence of a scalar field potential,
V ¼ 0, for ϕ0 ¼ f0.15; 0.225; 0.3375g and u0 ¼ f2.2 × 10−10;
1.76 × 10−9; 1.408 × 10−8; 1.1264 × 10−8g.
ϕ0=u0 0.15 0.225 0.3375

2.2 × 10−10 1.0004 1.000 38 1.000 35
1.76 × 10−9 1.00316 1.002 98 1.002 73
1.408 × 10−8 1.01904 1.018 25 1.017
1.1264 × 10−7 1.05587 1.0653 1.061 76

TABLE VI. Numerical values of the specific heat CBHðξSÞ=CH
of a HMPG black hole in the absence of a scalar field potential,
V ¼ 0, for ϕ0 ¼ f0.15; 0.225; 0.3375g and u0 ¼ f2.2 × 10−10;
1.76 × 10−9; 1.408 × 10−8; 1.1264 × 10−8g.
ϕ0=u0 0.15 0.225 0.3375

2.2 × 10−10 0.435 307 0.435 248 0.431 89
1.76 × 10−9 0.438 87 0.438 458 0.438 062
1.408 × 10−8 0.475 718 0.472 819 0.470 153
1.1264 × 10−7 0.689 67 0.638 562 0.619 363

DĂNILĂ, HARKO, LOBO, and MAK PHYS. REV. D 99, 064028 (2019)

064028-18



τ ¼
Z

tfin

tin

dt ¼ −
1

4πσ

Z
tfin

tin

dM
r2horT

4
BH

; ð128Þ

or equivalently,

τðξSÞ ¼ −τH
Z

ξS

0

1

ξ2θ4ðξÞ
dMeffðξÞ

dξ
dξ; ð129Þ

where we have denoted

τH ¼ c4

8πG2σnM⊙T4
BH

: ð130Þ

The variation of the Hawking evaporation time as a
function of the dimensionless horizon radius ξS of the
HMPG black holes is represented, for the zero potential
case V ¼ 0, in Fig. 11. Explicit exact numerical values of
the evaporation time τBHðξSÞ=τH are presented, for different
values of ϕ0 and u0, in Table VIII.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have investigated the possible
existence of black hole–type structures in the framework of
the HMPG theory, by considering the simplest case,
corresponding to a vacuum static and spherically symmet-
ric geometry. Even within this simple theoretical model the
field equations of the theory become extremely compli-
cated, and, therefore, in order to obtain solutions of the field
equations, one must resort to numerical methods. To this
effect, we have reformulated the static spherically sym-
metric Einstein field equations in their scalar-tensor rep-
resentation in a dimensionless form, and introduced the
inverse of the radial coordinate as the independent variable.
This representation allows an easier numerical integration
procedure, which also requires fixing the numerical values
of the scalar field, of its derivative, and of the effective
mass at infinity. The appearance of a singular behavior in
the field equations or, more exactly, in the behavior of the
metric tensor coefficients, is interpreted as indicating the
presence of an event horizon and, consequently, of a black
hole–type object. The mass of the black hole is given by the

FIG. 10. Variation of the entropy SBHðξSÞ=CH of a HMPG
black hole as a function of the horizon radius ξS in the absence
of a scalar field potential, V ¼ 0, for u0 ∈ ½2.2 × 10−10;
1.1264 × 10−7�, and for different values of ϕ0: ϕ0 ¼ 0.15 (solid
curve), ϕ0 ¼ 0.225 (dotted curve), ϕ0 ¼ 0.3375 (short dashed
curve), ϕ0 ¼ 0.50625 (dashed curve), respectively.

TABLE VII. Numerical values of the entropy SBHðξSÞ=CH of a
HMPG black hole in the absence of a scalar field potential,
V ¼ 0, for ϕ0 ¼ f0.15; 0.225; 0.3375g and u0 ¼ f2.2 × 10−10;
1.76 × 10−9; 1.408 × 10−8; 1.1264 × 10−8g.
ϕ0=u0 0.15 0.225 0.3375

2.2 × 10−10 2.414 × 10−4 2.267 × 10−4 2.076 × 10−4

1.76 × 10−9 1.905 × 10−3 1.790 × 10−3 1.641 × 10−3

1.408 × 10−8 1.384 × 10−2 1.303 × 10−2 1.199 × 10−2

1.126 × 10−7 8.938 × 10−2 8.181 × 10−2 7.299 × 10−2

FIG. 11. Variation of the evaporation time τBHðξSÞ=τH as a
function of the horizon radius ξS of a HMPG black hole in the
absence of a scalar field potential, V ¼ 0, for u0 ∈ ½2.2 × 10−10;
1.1264 × 10−7�, and for different values of ϕ0: ϕ0 ¼ 0.15 (solid
curve), ϕ0 ¼ 0.225 (dotted curve), ϕ0 ¼ 0.3375 (short dashed
curve), ϕ0 ¼ 0.50625 (dashed curve), respectively.

TABLE VIII. Numerical values of the evaporation time
τBHðξSÞ=τH of a HMPG black hole in the absence of a scalar
field potential, V ¼ 0, for ϕ0 ¼ f0.15; 0.225; 0.3375g and
u0 ¼ f2.2 × 10−10; 1.76 × 10−9; 1.408 × 10−8; 1.1264 × 10−8g.
ϕ0=u0 0.15 0.225 0.3375

2.2 × 10−10 2.421 × 10−4 2.273 × 10−4 2.082 × 10−4

1.76 × 10−9 1.938 × 10−3 1.819 × 10−3 1.666 × 10−3

1.408 × 10−8 1.513 × 10−2 1.419 × 10−2 1.299 × 10−2

1.126 × 10−7 1.444 × 10−1 1.222 × 10−1 1.058 × 10−1
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effective mass of the model, which represents the total
contribution of the ordinary mass of the black hole plus the
contribution from the scalar field.
We have considered the solutions of the gravitational

field equations of the HMPG theory for two choices of the
scalar field potential VðϕÞ, corresponding to the cases of
the vanishing potential, and of the Higgs-type potential,
respectively. In both cases, our results indicate the for-
mation of an event horizon, and consequently of black
holes. The position of the event horizon depends on the
values of the scalar field and of its derivative at infinity (the
initial conditions), indicating the existence of a complex
relation between scalar field and black hole properties. For
the zero potential case and for particular scalar field initial
conditions the event horizon can be located at distances of
the order of 0.7 of the standard Schwarzschild radius,
indicating the formation of more compact black holes as
compared to standard general relativity. In the case of the
Higgs-type potential, the position of the event horizon is
also strongly dependent on the parameters α and β of the
potential, indicating a multiparametric dependence of the
black hole properties. In all the cases studied, it turns out
that the numerical results can be fitted well by some simple
analytical functions. In the zero potential case, the metric
function eνðrÞ can be described by a function of the type
eν ¼ 1 − B=r − C=r2 þD, with A, B, C, D constants that
depend on the initial conditions at infinity. The metric
tensor component e−λ also contains a term proportional to
1=r3. Similar simple analytic representations can describe
the numerical results for the case of the Higgs-type
potential. These analytical representations are extremely
useful in the study of the thermodynamic properties of the
HMPG black holes, as well as the dynamics and motion
of matter particles around them. In particular, they may
be used for the study of the electromagnetic properties of
accretion disks that form around black holes, and which
could allow discriminating this type of theoretical objects
from their general relativistic counterparts, and for obtain-
ing some constraints on the model parameters.
We have also investigated in detail the thermodynamic

properties of the obtained numerical black hole solutions.
One of the essential and interesting physical properties of
black holes is their Hawking temperature. As compared to
the standard general relativistic Hawking temperature, the
horizon temperature of the HMPG black holes shows a
strong dependence on the initial conditions at infinity, and
the properties of the scalar field potential. As one can see
from Fig. 8, a decrease in the horizon radius leads to a
higher black hole temperature, which, in the case of the
specific initial conditions considered in Fig. 8, is of the
order of 10%, as compared to the standard general
relativistic case. Similar effects appear for the specific
heat, entropy and evaporation time of the HMPG black
holes, all these quantities being strongly dependent on the
initial conditions of the scalar field at infinity. In particular,

the black hole evaporation times may be very different in
HMPG as compared to standard general relativity. Of
course, our results on the thermodynamics of black holes,
obtained for the zero potential case and for a limited set of
initial conditions at infinity may be considered on quali-
tative nature only. But even at this level, they indicate the
complexity of the behavior of the HMPG black holes and of
the interesting physics related to them.
Black hole solutions are also well known in standard

scalar field models. For a nonminimally coupled scalar
field such exact analytical solutions have been obtained and
studied a long time ago in [105–110] (for a recent review,
nonsingular static, spherically symmetric solutions of
general relativity with minimally coupled scalar fields
see [111]). These solutions have been generally obtained
in the Einstein frame, in which there is no coupling between
the scalar field and the Ricci scalar. On the other hand,
because of the specific coupling between the scalar field
and the Ricci scalar, the HMPG theory appears to be
naturally formulated in the Jordan frame. Despite its
superficial resemblance with the Brans-Dicke theory with
coupling w ¼ −3=2, there are fundamental differences
between the HMPG theory and scalar field models in
the Einstein or Jordan frames. One such important differ-
ence appears in the zero potential case. While in the
standard scalar field models the solutions with zero
potential have in general no horizons, our investigations
show that this is generally not the case in the HMPG theory,
where even in the zero potential case the formation of
ordinary black holes occur. In the standard scalar field
models, such a situation may occur for solutions admitting
a conformal continuation, meaning that a singularity in the
Einstein-frame manifold maps to a regular surface in the
Jordan frame, and the solution is then continued beyond
this surface [112].
All possible types of spacetime causal structures that can

appear in static, spherically symmetric configurations of a
self-gravitating minimally coupled scalar field ϕ in general
relativity, with an arbitrary potential VðϕÞ, were considered
in [113]. It was first shown that a variable scalar field does
not modify the possible structures with a constant scalar
field. Moreover, in general relativistic scalar field models
with arbitrary VðϕÞ there are no regular black holes with
flat or AdS asymptotics. It also follows that the possible
globally regular, asymptotically flat solutions are solitons
with a regular center, without horizons and with at least
partly negative potentials VðϕÞ. For a similar discussion of
higher dimensional models see [114]. These results cannot
be recovered in HMPG theory, in which in the case of
Higgs-like potentials black hole solutions presenting an
event horizon exist. In fact, our numerical investigations
did not reveal the presence of any globally regular solution.
An important result in black hole physics is the no-hair

theorem [115–118], stating that asymptotically flat black
holes cannot possess external nontrivial scalar fields with
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non-negative field potential VðϕÞ. The results obtained in
the present paper indicate that the no-hair theorem in its
standard formulation cannot be extended to HMPG theory.
All the considered black hole solutions are asymptotically
flat, and scalar fields with positive potentials exist around
them. However, the question if such structures result from a
particular choice of the scalar field potentials and of the
model parameters, or they are intrinsic properties of the
theory deserves further investigation.
HMPG black holes may present a much richer theoretical

structure, properties and variability, associated with an
equally rich external dynamics, as compared with the
standard general relativistic black holes. These properties
are related to the presence of the intricate coupling between
the scalar field, geometry and matter, which leads to very
complex, strongly nonlinear, field equations. These new
effects can also lead to some specific astrophysical
signatures and imprints, whose observational detection
could lead to new perspectives in gravitational physics
and astrophysics. The possible astrophysical/observational
implications of the existence of HMPG black holes will be
considered in a future publication.
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APPENDIX: THE DIMENSIONLESS
REPRESENTATION OF THE GEOMETRIC

AND PHYSICAL QUANTITIES

In the following, we present the explicit relations for the
transformation of the dimensional quantities to dimension-
less ones under the scaling introduced in Eq. (56). They are
as follows:

dmeff

dr
¼ nM⊙

dMeff

dη
c2

2GM⊙n
¼ c2

2G
dMeff

dη
; ðA1Þ

2GmeffðrÞ
c2r

¼ 2GnM⊙MeffðηÞ
c2 2GM⊙

c2 nη
¼ MeffðηÞ

η
; ðA2Þ

du
dr

¼ c2

2GM⊙n
dU
dη

c2

2GM⊙n
¼

�
c2

2GM⊙n

�
2 dU
dη

; ðA3Þ

ur ¼ c2

2GM⊙n
UðηÞ 2GM⊙

c2
nη ¼ ηUðηÞ; ðA4Þ

meffu ¼ nM⊙MeffðηÞ
c2

2GM⊙n
UðηÞ

¼ c2

2G
MeffðηÞUðηÞ; ðA5Þ

u
r
¼ c2

2GM⊙n
UðηÞ c2

2GM⊙nη
¼
�

c2

2GM⊙n

�
2UðηÞ

η
: ðA6Þ
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