
 

Particle creation and decay in nonminimally coupled models of gravity

R. P. L. Azevedo* and P. P. Avelino†

Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas,
PT4150-762 Porto, Portugal

Centro de Astrofísica da Universidade do Porto, Rua das Estrelas,
PT4150-762 Porto, Portugal and Departamento de Física e Astronomia, Faculdade de Ciências,

Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal

(Received 18 January 2019; published 19 March 2019)

In extended models of gravity, a nonminimal coupling to matter has been assumed to lead to irreversible
particle creation. In this paper, we challenge this assumption. We argue that a nonminimal coupling of the
matter and gravitational sectors results in a change in particle momentum on a cosmological time scale,
irrespective of particle creation or decay. We further argue that particle creation or decay associated with
a nonminimal coupling to gravity could only happen as a result of significant deviations from a
homogeneous Friedmann-Lemaítre-Robertson-Walker geometry on microscopic scales and provide a
phenomenological description of the impact of particle creation or decay on the cosmological evolution of
the density of the matter fields.
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I. INTRODUCTION

Despite its success, modern cosmology is faced with
great challenges, including the determination of the origin
of the accelerated expansion of the Universe, and of the
detailed dynamics of galaxies and clusters [1,2]. Within the
framework of general relativity (GR), one usually requires
dark matter and dark energy to dominate the energy density
of the Universe to explain the large scale dynamics of the
Universe. Alternatively, one can forgo this exotic dark
energy component (or even dark matter—see, however,
[3,4]) and instead look for extensions of GR that more
naturally feature phases of accelerated expansion, such as
theories with additional fields, theories with more complex
geometric terms and theories featuring a nonminimal
coupling (NMC) between geometry and matter, such as
fðR;LmÞ theories, where R and Lm are, respectively, the
Ricci scalar and the Lagrangian density of the matter fields
[5–10].
An important feature of NMC theories is that energy

momentum is not usually covariantly conserved, as a
consequence of the matter Lagrangian featuring explicitly
in the equations of motion. This leads to significant
consequences, in particular in a cosmological context
[11,12]. The predictions of NMC theories are crucially
dependent on the Lagrangian of the matter fields, and it is
therefore imperative that the matter fields are appropriately
described. In previous work, Lm ¼ −ρ or Lm ¼ p have

been suggested as the on-shell Lagrangian of a perfect fluid
with proper energy density ρ and pressure p [13–17].
However, it has recently been shown that the correct on-
shell Lagrangian for a fluid composed of solitonic particles
of fixed rest mass and structure is given by the trace of the
energy-momentum tensor of the fluid Lm ¼ T ¼ 3p − ρ
[11,18]. While this description does not apply to dark
energy (or to any fluid with an equation of state parameter
outside the interval 0 ≤ w ≤ 1=3), it is expected to be a
good approximation in the case of baryonic matter, dark
matter and photons (the zero rest mass limit has been
considered in the case of photons). So far it has been used
in the derivation of stringent constraints on NMC gravity
originating from cosmic microwave background (CMB)
and big bang nucleosynthesis observations [11,12].
Energy-momentum nonconservation in NMC theories

has been suggested to be associated with gravitationally
induced particle creation, following a thermodynamic
analysis, which assumed the Lagrangian Lm ¼ −ρ
for a perfect fluid [19]. In this paper, we extend this
analysis arguing that rather than particle creation, the
use of the correct Lagrangian implies a change of particle
momentum on cosmological time scales. We also provide
a phenomenological description of particle creation
and decay associated with the presence of significant
perturbations to the spacetime geometry on microscopic
scales.
Throughout this paper we use fundamental units such

that c ¼ ℏ ¼ kB ¼ 1. Here c is the value of the speed of
light in vacuum, ℏ is the reduced Planck constant, and kB is
the Boltzmann constant. We adopt the metric signature
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ð−;þ;þ;þÞ, and the Einstein summation convention will
be used as usual.

II. NONMINIMALLY COUPLED GRAVITY

Many forms of nonminimal coupling models have been
proposed in the literature, some including more complex
geometrical terms like fðR; T; RμνTμνÞ theories [20,21].
Here, we shall consider a model inspired by fðRÞ theories
due to its fairly simple form, broad explanatory power, and
for being able to avoid the Ostrogradsky and Dolgov-
Kawasaki instabilities [22,23]. It is described by the action

S ¼
Z ffiffiffiffiffiffi

−g
p ½κf1ðRÞ þ f2ðRÞLm�; ð1Þ

where κ ¼ ð16πGÞ−1,G is Newton’s gravitational constant,
g is the determinant of the metric gμν, Lm is the Lagrangian
of the matter fields, and f1ðRÞ and f2ðRÞ are generic
functions of the Ricci scalar R. GR is recovered if f1ðRÞ ¼
R and f2ðRÞ ¼ 1. Extremizing the action with respect to
the metric, one obtains the equations of motion of the
gravitational field

FGμν ¼
1

2
f2Tμν þ ΔμνF þ 1

2
κf1gμν −

1

2
RFgμν; ð2Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor, Rμν is the

Ricci tensor, Δμν ≡∇μ∇ν − gμν□, □≡∇μ∇μ,

F ¼ κf01ðRÞ þ f02ðRÞLm; ð3Þ

a prime denotes a derivative with respect to the Ricci scalar,
and the energy-momentum tensor has the usual form

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð4Þ

Taking the covariant derivative of Eq. (2) and using the
Bianchi identities, one obtains the following relation in lieu
of the usual energy-momentum conservation equation

∇μTμν ¼
f02
f2

ðgμνLm − TμνÞ∇μR: ð5Þ

Equation (5) implies that the form of the matter Lagrangian
directly affects not only energy-momentum conservation,
but also particle motion [11,24]. In fact, introducing the
projection operator hμν ¼ gμν þ uμuν, where uμ is the four-
velocity of the fluid, results in the nongeodesic equation for
the motion of a perfect fluid element

duμ

ds
þ Γμ

αβu
αuβ ¼ fμ; ð6Þ

where fμ is an extra force given by

fμ ¼ 1

ρþ p

�
f02
f2

ðLm − pÞ∇νRþ∇νp

�
hμν; ð7Þ

and ρ and p are, respectively, the proper energy density and
pressure of a perfect fluid with energy-momentum tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν: ð8Þ

In previous work [11,18], it was determined that the on-
shell Lagrangian of a perfect fluid composed of non-
interacting particles with fixed mass and structure, i.e.,
solitons, is given by

Lm ¼ T ¼ 3p − ρ; ð9Þ

where T ¼ Tμ
μ is the trace of the energy-momentum

tensor. The particular structure of the particles is not
relevant for this derivation. In the derivation of the
Lagrangian, it was assumed that particles described by
this Lagrangian can neither decay (or conversely, be
created) nor experience fundamental changes to their
structure or mass as a result of the NMC to gravity [25,26].
A flat homogeneous and isotropic universe is described

by the flat Friedmann-Lemaître-Robertson-Walker (FLRW)
metric with line element

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð10Þ

where aðtÞ is the scale factor, t is the cosmic time, and x, y,
and z are Cartesian comoving coordinates.
The dynamics of p-branes in flat N þ 1-dimensional

FLRW universes has been studied in detail in [27,28] (see
also [29]). There it has been shown that the evolution of the
velocity v of a soliton in a flat 3þ 1-dimensional FLRW
spacetime (ignoring interactions other than gravitational) is
given by

_vþ 3

�
H þ

_f2
f2

�
ð1 − v2Þv ¼ 0: ð11Þ

where H ≡ _a=a is the Hubble parameter, and a dot
represents a derivative with respect to the cosmic time.
Hence, the momentum of such a particle evolves as

mγv ∝ ðaf2Þ−1; ð12Þ

where γ ≡ ð1 − v2Þ−1=2.
The 0th component of Eq. (5) is given by

_ρþ 3Hðρþ pÞ ¼ −ðLm þ ρÞ
_f2
f2

: ð13Þ

Taking into account that the proper pressure of the fluid is
given by p ¼ ρv2=3 (assuming, for simplicity, that v is the
same for all particles) and requiring that the number of
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particles per comoving volume be conserved, or equiv-
alently that ρ ∝ γa−3, it is straightforward to show that the
consistency between Eqs. (12) and (13) implies that the
matter Lagrangian is indeed given by Eq. (9) (see [11,18]
for alternative derivations of the same result).

III. ENERGY NONCONSERVATION AND
PARTICLE CREATION OR DECAY

Particle creation or decay via a NMC to gravity would
require significant perturbations to the FLRW geometry on
the relevant microscopic scales, since the FLRW metric is
essentially Minkowskian on such scales. The constraints on
gravity on microscopic scales are extremely weak, and it is
possible to construct viable modified theories of gravity in
which the gravitational interaction on such scales is
significantly enhanced with respect to general relativity
(see, for example, [30,31]). However, these small scale
perturbations have not been considered in the derivation of
Eq. (13) and have not been explicitly taken into account in
previous works when considering particle creation or decay
via a NMC to gravity. Consequently, the only consistent
interpretation for the change to the evolution of the energy
density of a fluid made of solitonlike particles associated
with the term on the right-hand side of Eq. (13) is the
modification to the evolution of the linear momentum of
such particles described by Eq. (12). Here, we shall start by
considering the thermodynamics of a homogeneous and
isotropic universe in the absence of significant small-scale
perturbations, and then describe phenomenologically the
case in which microscopic perturbations to the FLRW
geometry result in particle creation or decay.

A. Perfect fluid with Lm =T

In order to study the implications of the usual energy-
momentum tensor conservation law, we shall consider the
thermodynamics of a universe filled with a perfect fluid, in
the presence of a NMC between geometry and matter
described by the action given in Eq. (1). We start by treating
the Universe as a system where the number of particles per
comoving volume is conserved, for which the first law of
thermodynamics takes the form

dðρa3Þ ¼ dQNMC − pdða3Þ; ð14Þ

where dQNMC is the “heat” received by the system over the
interval of time dt due to the NMC between the gravita-
tional and the matter fields. As previously mentioned, in the
literature [19,32–34], an adiabatic expansion (dQ=dt ¼ 0)
is usually considered and an extra term, associated with
particle creation due to the NMC between the gravitation
and matter fields, is added to Eq. (14). However, and given
the lack of alterations to the microscopic geometry respon-
sible for these terms, we are left with associating the NMC
with the nonadiabaticity of the expansion.

Equation (14) may be rewritten as

_ρþ 3Hðρþ pÞ ¼
_QNMC

a3
: ð15Þ

Using Eq. (13), one obtains the “heat” transfer rate with
Lm ¼ 3p − ρ

_QNMC ¼ −ðLm þ ρÞa3
_f2
f2

¼ −3pa3
_f2
f2

¼ −ρv2a3
_f2
f2

: ð16Þ

This implies that for nonrelativistic matter (v ≪ 1), such as
baryons and cold dark matter, _QNMC ∼ 0 so that the usual
energy-momentum conservation approximately holds. On
the other hand, relativistic matter and photons are strongly
impacted by this energy-momentum transfer which is
responsible for a new source of spectral distortion (n-type
spectral distortions) of the CMB power spectrum already
discussed in Ref. [11].

B. Particle creation or decay and effective Lagrangians

Here, we consider the possibility that the perturbations to
the FLRW geometry on microscopic scales may be
responsible for particle creation or decay. Discussing
particle creation and decay with the matter Lagrangian
Lm ¼ T in great detail would, of course, require a micro-
scopic description of the particle structure, which we leave
purposefully generic, and its interaction with gravity on
microscopic scales. While such analysis is beyond the
scope of the present paper, we can treat particle creation
and decay phenomenologically, by introducing a modifi-
cation to the energy-momentum conservation equation. If
particle number is not conserved due to the NMC, an
additional term, associated with particle creation and decay,
should therefore be added to the right-hand side of Eq. (13):

_ρþ 3Hðρþ pÞ ¼ −ðLm þ ρÞ
_f2
f2

− LΓ
_f2
f2

: ð17Þ

Note that LΓ is not a true Lagrangian, but rather a
phenomenological term associated with the effect of the
NMC between matter and gravity on microscopic scales. If
the mass and structure of the particles does not change due
to the NMC to gravity, except (almost) instantaneous
particle creation or decay, the Lagrangian of the perfect
fluid is still described by Lm ¼ T (we also allow for almost
instantaneous scattering events which do not have an
impact in the form of the perfect fluid Lagrangian).
Hence, Eq. (12) still describes the cosmological contribu-
tion to the evolution of the linear-momentum of the
particles. Equation (17) may then be rewritten as
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_ρþ 3Hðρþ pÞ ¼ −ðLeff þ ρÞ
_f2
f2

; ð18Þ

where

Leff ¼ Lm þ LΓ: ð19Þ

In this case, Eq. (14) is changed to [33]

dðρa3Þ ¼ dQNMC − pdða3Þ þ h
n
dðna3Þ; ð20Þ

where n is the particle number density and h ¼ ρþ p is the
enthalpy per unit volume. For simplicity, we have also
implicitly assumed that all particles are identical and that
the corresponding perfect fluid is always in thermodynamic
equilibrium. This is a natural assumption if the rate of
particle creation or decay is much smaller than the particle
scattering rate, a case in which thermalization, following
particle creation or decay occurs (almost) instantaneously.
Equation (20) may be rewritten as

_ρþ 3Hðρþ pÞ ¼
_QNMC

a3
þ h
n
ð _nþ 3HnÞ; ð21Þ

and using Eq. (18) one finds that

_QNMC

a3
þ h
n
ð _nþ 3HnÞ ¼ −ðLeff þ ρÞ

_f2
f2

: ð22Þ

Equations (16), (19) and (22) also imply that

ρþ p
n

ð _nþ 3HnÞ ¼ −LΓ
_f2
f2

: ð23Þ

Introducing the particle creation and decay rate

Γ ¼ _n
n
þ 3H; ð24Þ

and using Eq. (23), one obtains

Γ ¼ −
LΓ

ρþ p

_f2
f2

: ð25Þ

Alternatively, particle creation and decay may be
described as an extra effective creation or decay pressure
pΓ of the perfect fluid that must be included in the
continuity equation [32]

_ρþ 3Hðρþ pþ pΓÞ ¼ −ðLm þ ρÞ
_f2
f2

; ð26Þ

where

pΓ ¼ LΓ

3H

_f2
f2

ð27Þ

may be obtained from Eq. (18).
We have argued that the correct form of the Lagrangian

of a perfect fluid composed of solitonic particles is
Lm ¼ T, even in the presence of (almost) instantaneous
particle scattering and/or particle creation or decay, and
when Leff ¼ Lm, one trivially recovers the results of the
previous subsection. Nevertheless, one may ask whether
or not the Lagrangians suggested in previous work to
describe such a perfect fluid could play the role of effective
Lagrangians. Let us then consider the particular cases with
Leff ¼ −ρ and Leff ¼ p.
If Leff ¼ −ρ then

LΓ ¼ Leff − Lm ¼ −3p; ð28Þ
where we have used Eq. (19) and taken into account that
Lm ¼ T ¼ 3p − ρ. Hence, in this case

pΓ ¼ −
p
H

_f2
f2

; ð29Þ

and there is a particle creation or decay rate given by

Γ ¼ 3p
ρþ p

_f2
f2

: ð30Þ

Notably, if Leff ¼ −ρ the standard conservation equation
for the energy density is recovered.
If Leff ¼ p then

LΓ ¼ ρ − 2p: ð31Þ

In this case, the effective pressure is equal to

pΓ ¼ ρ − 2p
3H

_f2
f2

; ð32Þ

and the particle creation or decay rate is

Γ ¼ −
ρ − 2p
ρþ p

_f2
f2

: ð33Þ

Note that ifLeff ¼ p the standard evolution equation for the
density is not recovered, unless p ¼ −ρ.
In both cases, Leff ¼ −ρ and Leff ¼ p, the particle

creation or decay rate Γ would not in general be a constant.
Rather than depending on the particle properties and on the
way these are affected by the NMC to gravity on micro-
scopic scales, for a given choice of the function f2 the
evolution of Γ given in Eqs. (30) and (33) would depend
essentially on the cosmology and on the macroscopic
properties of the fluid. As discussed before, the FLRW
metric is essentially Minkowskian on microscopic scales
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relevant to particle creation and decay. Consequently, one
should not expect such a cosmological dependence of the
particle creation or decay rate Γ, which questions the
relevance of the effective Lagrangians Leff ¼ −ρ and
Leff ¼ p.

IV. CONCLUSIONS

In this work, we challenged the assumption that the
NMC between geometry and the matter fields might be
responsible for particle creation/decay in the absence of
significant perturbations to the FLRW metric on micro-
scopic scales. We have argued that there is only one
consistent interpretation for the modification to the evolu-
tion of the energy density of a fluid made of solitonlike
particles associated with the NMC between the gravita-
tional and the matter fields in a FLRWuniverse: a change in
particle momentum on a cosmological time scale (rather
than particle creation or decay). We have considered the
possibility that perturbations to the FLRW geometry on
microscopic scales, eventually in association with signifi-
cant extensions to the NMC theory of gravity studied in the

present paper, may be responsible for particle creation or
decay. We have also have provided a phenomenological
description of particle creation and decay by defining an
“effective Lagrangian” that incorporates these effects.
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[23] I. Ayuso, J. Beltrán Jiménez, and Á. de la Cruz-Dombriz,
Phys. Rev. D 91, 104003 (2015).

[24] O. Bertolami, F. S. N. Lobo, and J. Páramos, Phys. Rev. D
78, 064036 (2008).

[25] J.-P. Uzan, Living Rev. Relativity 14, 2 (2011).
[26] E. J. Copeland, A. Rajantie, C. Contaldi, P. Dauncey, and H.

Stoica, AIP Conf. Proc. 957, 21 (2007).
[27] L. Sousa and P. P. Avelino, Phys. Rev. D 83, 103507 (2011).
[28] L. Sousa and P. P. Avelino, Phys. Rev. D 84, 063502 (2011).
[29] P. P. Avelino and L. Sousa, Phys. Rev. D 93, 023519 (2016).
[30] P. P. Avelino, Phys. Rev. D 85, 104053 (2012).
[31] P. Avelino, J. Cosmol. Astropart. Phys. 11 (2012) 022.
[32] I. Prigogine, J. Geheniau, E. Gunzig, and P. Nardone, Proc.

Natl. Acad. Sci. U.S.A. 85, 7428 (1988).
[33] I. Prigogine, J. Geheniau, E. Gunzig, and P. Nardone, Gen.

Relativ. Gravit. 21, 767 (1989).
[34] J. A. S. Lima and I. Baranov, Phys. Rev. D 90, 043515

(2014).

PARTICLE CREATION AND DECAY IN NONMINIMALLY COUPLED … PHYS. REV. D 99, 064027 (2019)

064027-5

https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.12942/lrr-2001-1
https://doi.org/10.1086/381970
https://doi.org/10.1086/381970
https://doi.org/10.1086/383178
https://doi.org/10.1086/383178
https://doi.org/10.1016/j.physletb.2004.08.045
https://doi.org/10.1103/PhysRevD.72.063505
https://doi.org/10.1103/PhysRevD.75.104016
https://doi.org/10.1088/0264-9381/25/20/205002
https://doi.org/10.1088/0264-9381/25/20/205002
https://doi.org/10.1140/epjc/s10052-010-1467-3
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1103/PhysRevD.97.064018
https://doi.org/10.1103/PhysRevD.97.064018
https://doi.org/10.1103/PhysRevD.98.064045
https://doi.org/10.1103/PhysRevD.98.064045
https://doi.org/10.1103/PhysRevD.79.104006
https://doi.org/10.1103/PhysRevD.79.104006
https://doi.org/10.1103/PhysRevD.86.044034
https://doi.org/10.1103/PhysRevD.86.044034
https://doi.org/10.1142/S0218271814500217
https://doi.org/10.1142/S0218271814500217
https://doi.org/10.1103/PhysRevD.90.124065
https://doi.org/10.1103/PhysRevD.90.124065
https://doi.org/10.1088/1361-6382/aa9a11
https://doi.org/10.1088/1361-6382/aa9a11
https://doi.org/10.1103/PhysRevD.97.064019
https://doi.org/10.1103/PhysRevD.97.064019
https://doi.org/10.1140/epjc/s10052-015-3620-5
https://doi.org/10.1140/epjc/s10052-015-3620-5
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1016/j.physletb.2013.07.026
https://doi.org/10.1103/PhysRevD.88.044023
https://doi.org/10.1103/PhysRevD.79.104010
https://doi.org/10.1103/PhysRevD.79.104010
https://doi.org/10.1103/PhysRevD.91.104003
https://doi.org/10.1103/PhysRevD.78.064036
https://doi.org/10.1103/PhysRevD.78.064036
https://doi.org/10.12942/lrr-2011-2
https://doi.org/10.1063/1.2823765
https://doi.org/10.1103/PhysRevD.83.103507
https://doi.org/10.1103/PhysRevD.84.063502
https://doi.org/10.1103/PhysRevD.93.023519
https://doi.org/10.1103/PhysRevD.85.104053
https://doi.org/10.1088/1475-7516/2012/11/022
https://doi.org/10.1073/pnas.85.20.7428
https://doi.org/10.1073/pnas.85.20.7428
https://doi.org/10.1007/BF00758981
https://doi.org/10.1007/BF00758981
https://doi.org/10.1103/PhysRevD.90.043515
https://doi.org/10.1103/PhysRevD.90.043515

