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A recent analysis by one of the authors [L. Perivolaropoulos, Gravitational interactions of finite
thickness global topological defects with black holes, Phys. Rev. D 97, 124035 (2018).] has pointed out
that Derrick’s theorem can be evaded in curved space. Here we extend that analysis by demonstrating the
existence of a static metastable solution in a wide class of metrics that include a Schwarzschild-Rindler-
anti–de Sitter spacetime (Grumiller metric) defined as ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2ðdθ2 þ sin2θdϕ2Þ
with fðrÞ ¼ 1 − 2Gm

r þ 2br − Λ
3
r2 (Λ < 0 b < 0). This metric emerges generically as a spherically

symmetric vacuum solution in a class of scalar-tensor theories [D. Grumiller, Model for Gravity at
Large Distances, Phys. Rev. Lett. 105, 211303 (2010); 106, 039901(E) (2011).] as well as in Weyl
conformal gravity [P. D. Mannheim and D. Kazanas, Exact vacuum solution to conformal Weyl gravity and
galactic rotation curves, Astrophys. J. 342, 635 (1989).] It also emerges in general relativity in the presence
of a cosmological constant and a proper spherically symmetric perfect fluid. We demonstrate that this
metric supports a static spherically symmetric metastable soliton scalar field solution that corresponds to a
spherical domain wall. We derive the static solution numerically and identify a range of parametersm, b, Λ
of the metric for which the spherical wall is metastable. Our result is supported by both a minimization of
the scalar field energy functional with proper boundary conditions and by a numerical simulation of the
scalar field evolution. The metastable solution is very well approximated as ϕðrÞ ¼ Tanh½qðr − r0Þ�, where
r0 is the radius of the metastable wall that depends on the parameters of the metric and q determines the
width of the wall. We also find the gravitational effects of the thin spherical wall solution and its
backreaction on the background metric that allows its formation. We show that this backreaction does not
hinder the metastability of the solution even though it can change the range of parameters that correspond to
metastability.

DOI: 10.1103/PhysRevD.99.064026

I. INTRODUCTION

Any initially static, finite energy scalar field configura-
tion with positive definite potential energy and a canonical
kinetic term in a flat 3þ 1-dimensional background space-
time will tend to shrink and collapse. In the presence of a
negative potential energy the above scalar field configura-
tion can remain static but it will be unstable.
These statements are a direct consequence of Derrick’s

theorem [1]. Derrick’s theorem can be evaded by violat-
ing any of the assumptions on which it is based. For
example, the violation of the finite energy assumption
leads to the existence of global monopoles [2–5], which
are spherically symmetric solutions with diverging
energy, whose stability is provided by their nontrivial
topological properties. In a physical setup a cutoff scale
is usually present and therefore global monopoles can
form in physical systems. For example in a cosmological

setup the cutoff emerges due to the cosmological horizon
scale while in condensed matter the cutoff scale would
be the monopole correlation scale or the size of the
system. Alternatively, Derrick’s theorem may be violated
by introducing gauge fields in the action [6–11] or by
considering stationary [12–16] rather than static scalar
field configurations.
The attempt to evade Derrick’s theorem by violating the

assumption of a flat space background has only lead to
generalizations of the theorem stating that in the simplest
curved spherically symmetric backgrounds (Schwarzschild
and Reissner-Nordstrom) there is no static metastable finite
energy scalar field configuration (soliton) [17,18].
Therefore the following interesting questions arise:
(1) Can Derrick’s theorem be evaded in the presence of

other nontrivial spherically symmetric background
geometries leading to the existence of finite energy
static scalar field configurations?

(2) If yes, what are the conditions that should be
satisfied by the background metric and fluid energy
momentum tensor to support such configurations?
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(3) What is an explicit example of a static metastable
scalar field configuration that survives in a curved
background but would collapse in a flat back-
ground?

One of the main goals of the present analysis is to address
these questions. A recent analysis [19] by one of the
authors has investigated the evolution of finite thickness
topological defects [20–24] in curved space and pointed out
that the violation of Derrick’s theorem in curved space is
possible. Here we extend that analysis by addressing all the
above questions and especially questions 2 and 3. We find a
metastable solution of the scalar field equations in a
properly selected curved background. The solution corre-
sponds to a static spherical domain wall in the presence of
the Scharzschild-anti–de Sitter metric with an additional
Rindler constant acceleration term. This metric emerges
generically in the vacuum of spherically symmetric scalar-
tensor theories [25], in Weyl conformal gravity [26], and
also in general relativity (GR) in the presence of a spheri-
cally symmetric fluid with a black hole in its center. The
gravitational effects of this scalar field configuration and its
backreaction on the background metric in the context of GR
are also found.
The structure of this paper is the following: In Sec. II we

demonstrate that Derrick’s theorem can be evaded in curved
space and state the condition that is required for a
metastable static scalar field solution to exist in a spheri-
cally symmetric background metric. We then focus on the
case of a spherical domain wall and find the necessary
conditions on the background metric for the existence
of a metastable static spherical domain wall solution.
Considering a specific metric we find the range of its
parameters that satisfy these conditions. In Sec. III we
minimize the energy functional and show that metastable
static spherical wall solutions exist for a range of metric
parameters. Using a numerical simulation of dynamical
field evolution we show that for proper initial conditions
the spherical wall remains trapped with fixed radius in the
local minimum of the energy functional. In Sec. IV we
discuss the gravitational effects of the derived spherical
wall solution in the thin wall approximation and the
backreaction on the background metric. The modification
of the solution when backreaction is taken into account is
also discussed. Finally in Sec. V we conclude, summarize
our results, and discuss possible extensions of this analysis.
In what follows we use units such that the speed of light is
unity (c ¼ 1).

II. EVADING DERRICK’S THEOREM
IN CURVED SPACE

Consider the spherically symmetric metric of the form

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2ðdθ2 þ sin2θdϕ2Þ ð2:1Þ

and a canonical scalar field action of the form

S ¼
Z

L
ffiffiffiffiffiffi
−g

p
d4x

¼
Z �

1

2
gμν

∂Φ
∂xμ

∂Φ
∂xν − VðΦÞ

� ffiffiffiffiffiffi
−g

p
d4x ð2:2Þ

with VðΦÞ ≥ 0. Variation of the action (2.2) in the back-
ground metric (2.1) leads to the dynamical field equation

1

fðrÞ
∂2Φ
∂t2 −

1

r2
∂
∂r

�
r2fðrÞ ∂Φ∂r

�
¼ −V 0ðΦÞ; ð2:3Þ

where 0 denotes the derivative with respect to Φ. Assuming
a static spherically symmetric scalar field, the components
of the diagonal energy momentum tensor Tμν ¼ ∂μΦ∂νΦ −
gμνL are

T0
0 ¼

1

2
fðrÞð∂rΦÞ2 þ VðΦÞ ¼ ρΦðrÞ; ð2:4Þ

Tr
r ¼ −

1

2
fðrÞð∂rΦÞ2 þ VðΦÞ ¼ −pΦrðrÞ; ð2:5Þ

Tθ
θ ¼ Tφ

φ ¼ 1

2
fðrÞð∂rΦÞ2 þ VðΦÞ ¼ −pΦθðrÞ: ð2:6Þ

Thus the energy functional takes the form

E ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
T0
0

¼ 4π

Z
r2

r1

�
1

2
fðrÞ

�
dΦ
dr

�
2

þ VðΦÞ
�
r2dr; ð2:7Þ

where the limits of integration r1, r2 refer to the possible
existence of a black hole and a cosmological horizon
respectively where fðrÞ changes sign [fðrÞ > 0 between
the horizons].
According to Derrick’s theorem, the energy functional

(2.7) does not have a stable minimum in flat space when the
field is rescaled by a parameter α. Does the energy have a
stable minimum in a curved space background? In order to
address this question we follow Ref. [19] and consider an
initially static field configurationΦðrÞ and its rescaled form
Φα ≡ΦðαrÞ. We search for an extremum of the energy
functional (2.7) with respect to the scaling parameter α. Let
Eα be the energy of the rescaled field configuration

Eα ¼ 4π

Z
r2

r1

�
r2fðrÞ

�
dΦα

dr

�
2

þ VðΦαÞr2
�
dr: ð2:8Þ

Setting r0 ≡ αr and using the fact fðr1Þ ¼ fðr2Þ ¼ 0 and
the assumption VðΦðr1ÞÞ ¼ VðΦðr2ÞÞ ¼ 0 (the soliton is
far away from the horizons), it is straightforward to show
that for the existence of a static solution a necessary
condition is
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1

4π

dE
dα

����
α¼1

¼ I1 þ I2 þ I3 ¼ 0; ð2:9Þ

where

I1 ¼ −
Z

r2

r1

r3f0ðrÞ
�
dΦ
dr

�
2

dr; ð2:10Þ

I2 ¼ −
Z

r2

r1

r2fðrÞ
�
dΦ
dr

�
2

dr; ð2:11Þ

I3 ¼ −
Z

r2

r1

r2VðΦÞdr: ð2:12Þ

Since I3 < 0 and I2 < 0 we need I1 > 0 in order to satisfy
Eq. (2.9) and have a static solution. Thus, the condition
f0ðrÞ < 0 is required to hold at least for some range
between the horizons. This condition cannot be satisfied
in a flat space where fðrÞ ¼ 1. This is consistent with
Derrick’s theorem. It is also not satisfied in a Schwarzschild
metric [fðrÞ ¼ 1 − 2Gm

r ], where fðrÞ is a monotonically
increasing function. Thus Derrick’s theorem is also appli-
cable for this metric (no static solution exists). A similar
argument [17,18] exists for charged Reissner-Nordström
black holes where

fðrÞ ¼ 1 −
2Gm
r

þ e2

r2
: ð2:13Þ

In this case r1 ¼ Gmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2m2 þ e2

p
and r2 ¼ þ∞ and as

in the Schwarzschild metric fðrÞ is monotonically increas-
ing in the integration range leading to I1 < 0. Thus no static
solution exists. An interesting metric where f0ðrÞ < 0 for
some range between the horizons is the Schwarzchild–de
Sitter metric. Even though this metric can support the static
scalar field solution such a solution has been shown to be
unstable [19]. Here we search for a metric with a metastable
spherically symmetric finite energy scalar field solution.
Let us consider a spherical domain wall scalar field

configuration of radius r0 in a static spherically symmetric
metric of the form (2.1). The potential supporting such a
configuration is the symmetry breaking potential

VðΦÞ ¼ λ

4
ðΦ2 − η2Þ2; ð2:14Þ

where η is the scale of symmetry breaking. A spherical
domain wall is a field configuration that interpolates
between the two degenerate minima �η of the potential
(2.14) as the surface of the wall sphere in physical space is
crossed. On dimensional grounds the thickness of the
domain wall is Δr ≃ λ−1=2η−1 and the variation of the
scalar field across the wall is ΔΦ ¼ 2η.
In the context of the thin wall approximation the

energy functional (2.7) for a domain wall of radius r0 in

a background metric of the form (2.1) may be easily
obtained as

E
4π

≃ r20fðr0Þ
�
ΔΦ
Δr

�
2

Δrþ Vð0Þr20Δr; ð2:15Þ

which may also be written as

Eðr0Þ
4πλ1=2η

≃ 4r̄20fðr̄0Þ þ V̄ð0Þr̄20; ð2:16Þ

where r̄0 ≡ λ1=2ηr0 and V̄ð0Þ≡ Vð0Þ=ðλη4Þ. In what
follows we omit the bar and set η → 1 unless otherwise
specified. It is therefore a good approximation to assume
that the thin wall radius evolves like a point particle in an
effective potential of the form Uðr0Þ ¼ Eðr0Þ given by
Eq. (2.16). Based on this approximation, we anticipate
that a metastable spherical domain wall solution may exist
provided the following two conditions are satisfied:
(1) The effective potential (2.16) should have at least

one local minimum.
(2) The metric function fðr0Þ should be positive at that

local minimum so that it is not hidden by a horizon
and no negative gradient energy (ghost) instabilities
develop.

A necessary requirement for these conditions to be realized
is that r20fðr0Þ should have a minimum in a region
where fðr0Þ > 0 since the potential energy tension term
Vð0Þr20 can only spoil or weaken a minimum (lower its
depth). It is easy to see that the Schwarzschild metric
[r2fðrÞ ¼ r2 − 2Gmr] satisfies the first condition but not
the second and the same is true for the Schwarzschild–de
Sitter metric [r2fðrÞ ¼ r2 − 2Gmr − Λr4=3] even though
in the latter case there is a local maximum for Λ > 0 in the
potential (2.16) [19] indicating the presence of a static but
unstable solution.
The next simplest static spherically symmetric metric to

consider is the Schwarzschild-Rindler-anti–de Sitter metric
(also known as Grumiller metric [25,27–29])

fðrÞ ¼ 1 −
2Gm
r

þ 2br −
Λ
3
r2; ð2:17Þ

which includes a linear term 2br similar to the Rindler
constant acceleration term.1 Solar system constraints
have been imposed on this metric indicating that jbj <
3 nm=sec2 [30,31] and it has been shown that in can lead to
the production of flat rotation curves as well as contribute to
the resolution [32,33] of the Pioneer anomaly [34,35] for
b > 0. As mentioned in the introduction, this metric can
emerge generically as a vacuum solution in spherically

1In the context of setting η ¼ 1 the constants Gm, b, and Λ are
dimensionless (we set b̄≡ b

λ1=2η
, Λ̄≡ Λ

λη2
, Φ̄ ¼ Φ

η , and r̄ ¼ λ1=2ηr
and omit the bar unless otherwise specified).
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symmetric scalar tensor theories [25], and in conformal
Weyl gravity [26,36,37]. It also emerges in GR due to a
spherically symmetric background fluid, which could for
example be attributed to nonlinear electrodynamics [38].
The energy momentum tensor that leads to this metric in the
context of GR is diagonal with components

T0
0 ¼ ρ ¼ −

4b
κr

þ Λ
κ
; ð2:18Þ

Tr
r ¼ −pr ¼ −

4b
κr

þ Λ
κ
¼ ρ; ð2:19Þ

Tθ
θ ¼ Tϕ

ϕ ¼ −pθðrÞ ¼ −pϕðrÞ ¼ −
2b
κr

þ Λ
κ
; ð2:20Þ

where κ ¼ 8πG. Such fluids have been discussed in the
context of relativistic stars [39,40].
It is now easy to show that

r2fðrÞ ¼ −2Gmrþ r2 þ 2br3 −
Λ
3
r4 ð2:21Þ

can satisfy both necessary conditions stated above for the
existence of a stable solutions for a range of parameters m,
b, Λ. Indeed for small r the linear term −2mr dominates
while fðrÞ < 0 (inside the horizon). For intermediate r the
quadratic term (tension) dominates and r2fðrÞ becomes an
increasing function leading to the first minimum. This
minimum is inside the horizon and cannot lead to a
metastable solution since the second condition is violated.
For larger r the cubic term 2br3 dominates and for b < 0 it
may lead to a decreasing r2fðrÞ after a local maximum.
Eventually, for even larger r the quartic term dominates.
For Λ < 0 it eventually leads to an increasing r2fðrÞ after a
local minimum at r ¼ rmin, thus satisfying the first con-
dition. If b is not too low then this minimum is positive,

thus satisfying also the second condition [fðrminÞ > 0], and
the formation of a metastable domain wall with approxi-
mate radius r0 ¼ rmin is possible (see the left panel
of Fig. 1).
The existence of such a solution can only be validated by

numerical minimization of the energy functional (2.7) for
various fixed values of m, b, Λ or by solving the static
version of the field equation (2.3) and considering small
perturbations around the solution. In the next section we
follow the former approach.
Three representative forms of r2fðrÞ are shown in Fig. 1

(left panel). The upper curve has no local minimum (b is
not low enough) and thus it cannot lead to a metastable
solution. The middle curve has a local minimum (b is low
enough), and thus a metastable solution may exist if the
potential tension term of the energy functional does not
destroy this minimum. The lower curve has a clear
minimum but the second condition is violated at this
minimum since fðrÞ < 0 (b is too low). Thus the solution
even if it exists will suffer from gradient instabilities
(ghosts) and will be hidden behind a horizon. Indeed as
shown in Fig. 1 (left panel) the energy functional mini-
mization leads to a metastable solution only when both
conditions are satisfied (red dashed line). Otherwise, if the
first condition is violated there is no local minimum and
the configuration collapses (blue continuous line) or if the
second condition is violated, there are ghost instabilities
that manifest themselves as large oscillations at the location
of the minimum (purple line).
The precise range of metric parameters for which a

metastable solution exists can only be found numerically
by minimizing the energy functional. This range however is
a subspace of the parameter range that satisfies the two
conditions necessary for metastability stated above. It is
therefore interesting to identify analytically the parameter
range that satisfies the two metastability conditions for the

FIG. 1. Three different behaviors of the metric function r2fðrÞ and the corresponding forms of the field configuration after energy
functional minimization. Only the red dotted lines correspond to metastable solutions. It is the only one where r2fðrÞ has three extrema
and two roots. In the other cases we get instabilities either towards collapse (blue lines) or ghost instabilities (purple lines) where the
gradient terms diverge.
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metric (2.17). It is easy to see that for the first condition to
be satisfied r2fðrÞ should have three real extrema while for
the second condition, r2fðrÞ (a fourth order polynomial)
should have only two real roots (see the red dashed line of
the left panel of Fig. 1). Thus the following two equations,

r2fðrÞ ¼ −2Gmrþ r2 þ 2br2 −
Λ
3
r4 ¼ 0; ð2:22Þ

dðr2fðrÞÞ
dr

¼ −2Gmþ 2rþ 6br2 −
4Λ
3

r3 ¼ 0; ð2:23Þ

should have two and three roots, respectively. It is
straightforward to show that for Eq. (2.23) to have three
real solutions [three extrema of r2fðrÞ] while Eq. (2.22) has
only two real roots jΛj must be in the range

jΛj ∈
����� 27bGm − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9bGmþ 1Þ3

p
þ 2

18G2m2

����;
���� − ð12bGmþ 1Þ3=2 − 18bGm − 1

18G2m2

����
�
; ð2:24Þ

with Λ < 0 and b < 0. For m ¼ 0 this range becomes

jΛj ∈ b2
�
3;
27

8

�
: ð2:25Þ

The conditions (2.24) and (2.25) constitute necessary but
not sufficient conditions for the existence of a spherical
metastable wall solution. In the next section we show that a
subspace of the above parameter range indeed corresponds
to a metastable spherically symmetric wall.

III. MINIMIZATION OF THE
ENERGY FUNCTIONAL

It is straightforward to show that extremization of the
energy functional (2.7) for a static field configuration leads
to the static version of the field equation (2.3). In fact the
existence of a nontrivial minimum of the energy functional
implies the existence of a metastable scalar field solution.
In this section we find numerically a range of parameters
that allow for a nontrivial static scalar field configuration
that minimizes the energy functional with boundary con-
ditions that correspond to a spherical wall [Φðr1Þ¼−1,
Φðr2Þ ¼ 1].
The algorithm used to perform the energy minimization

involves the following steps:
(1) Identify a set of parameters m, b, Λ in the candidate

range (2.24) with b < 0 and Λ < 0 preferably
towards the lower limit of jΛj where the minimum
of r2fðrÞ is deeper. This range of parameters secures
that r2fðrÞ has a minimum and at the minimum we
have fðrÞ > 0 but it does not secure that the energy
functional that includes the potential energy tension
term has a nontrivial minimum.

(2) Solve numerically the equation r2fðrÞ ¼ 0 to find
the lowest nonzero root that is identified with the
horizon r1 (for m ¼ 0 we clearly have r1 ¼ 0). Note
that in the presence of only two roots there is no
cosmological horizon (r2 → ∞).

(3) Consider the energy functional (2.7) with fðrÞ given
by (2.17) and discretize it as a sum over N ¼ 200
lattice points as

E ¼ 4πdr
XN
n¼0

½r2i fðriÞΦ0ðriÞ2=2

þ ðΦðriÞ2 − 1Þ2=4�; ð3:1Þ

where ri ¼ idrþ r1 and dr ¼ ðr2 − r1Þ=N and we
have taken the outer boundary r2 ≫ r0 where r0 is
the radius of the wall [r0 is close to the second
minimum of r2fðrÞ]. Also we have set ΦðriÞ≡Φi

and Φ0ðriÞ ¼ Φiþ1−Φi
dx .

(4) Minimize the sum (3.1) with respect to the field
lattice values Φ1;…;ΦN−1 keeping fixed the boun-
dary conditions Φ0 ¼ −1, ΦN ¼ þ1. This is easily
done using Mathematica [41,42].

(5) Plot the interpolated field configuration that mini-
mizes the energy functional. If the transition be-
tween the energy vacua occurs at a radius r0 > r1
then indeed a nontrivial metastable spherical wall
solution exists for the considered parameter values.
If the transition between the vacua occurs at r0 ¼ r1
(the lowest r boundary) then the minimum energy
configuration corresponds to a collapsed configura-
tion, which could not collapse beyond r1 due to the
imposed boundary condition at r1. Such a configu-
ration clearly does not correspond to a static solution
since it implies that the energy functional has no
nontrivial minimum (blue line of Fig. 1).

(6) Repeat the above process scanning the parameter
space to identify a range that leads to metastable
spherical wall solutions.

Using the above procedure we have found that there is
indeed a finite metric parameter range for which there is a
metastable spherical domain wall solution. Such a solution
is shown in Fig. 2. An analytic fit of the form ΦðrÞ ¼
Tanhðqðr − r0ÞÞ is also shown in the same figure. Clearly,
this ansatz provides an excellent fit to the numerically
obtained metastable solution (blue continuous line). The
field configuration and the corresponding energy density of
the metastable solution are also shown in Fig. 3 demon-
strating the spherically symmetric nature of the solution.
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A range of metric parameters accepting metastable
spherical wall solutions is shown as the yellow region in
the left panels of Figs. 4 (m ¼ 0) and 5 (Gmη ¼ 0.1). These
panels are based on the assumption that backreaction of the
wall metric on the background metric is negligible. The
middle and right panels of these figures show the defor-
mation of the stability region in the presence of back-
reaction expressed through the dimensionless parameter
κ̄ ≡ 8πGη2. In the next section we evaluate the effects of
backreaction, which become important when κ̄ becomes

comparable with the dimensionless parameters jbj
η and jΛj

η2
.

The existence of the spherical wall metastable solution
may also be demonstrated by numerical simulation of field
evolution obtained by solving numerically the dynamical
field equation (2.3) with initial conditions close to the
metastable solution obtained by minimization of the energy
functional. Thus we can obtain the range of the initial
conditions that get trapped at the metastable solution and

FIG. 3. The field configuration of the metastable spherical wall solution form ¼ 0 b ¼ −0.255, Λ ¼ −0.2 (left panel). The spherically
symmetric thin shell corresponding to the energy density is also shown (right panel).

FIG. 2. The field configuration that minimizes the energy
functional for b ¼ −0.21 and Λ ¼ −0.14, m ¼ 0 (blue line).
An analytic fit (red dashed line) of the form ΦðrÞ ¼
Tanhðqðr − r0ÞÞ is also shown to provide an excellent fit to
the numerically obtained metastable solution.

FIG. 4. The yellow area corresponds to the stability region in the parameter space b, Λ for m ¼ 0 where there is a minimum of the

energy functional with no gradient instabilities at the location of the wall. For κ̄ ¼ 8πGη2 ≪ jbj
η and κ̄ ¼ 8πGη2 ≪ jΛj

η2
(here we restored η

for clarity) we anticipate negligible backreaction of the wall metric on the background metric (left panel). Points above the top dashed
line correspond to nonexistence of a minimum of r2fðrÞ (b is too small) while points below the lower dashed line have a deep minimum
with fðrminÞ < 0 and thus they correspond to gradient (ghost) instabilities (b is too low). The middle and left panels show how the
stability region changes as the level of backreaction increases. As discussed in Sec. IV backreaction tends to lower the energy minimum
and lead to fðrminÞ < 0. Thus the yellow region tends to decrease from below (see also Fig. 8 of Sec. IV).
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visualize the general form of the evolution of the spherical
wall. The time evolving scalar field configuration for three
characteristic times and three different initial conditions is
shown in Fig. 6. In the left panel we show the time
evolution of the static spherical metastable wall solution
obtained by minimizing the energy functional (2.7) with
parameter values m ¼ 0, b ¼ −0.25, Λ ¼ −0.2. For the
initial condition, we have used a fit of this solution by the
Tanh½qðr − r0Þ� function, which provides an excellent fit
(see, e.g., Fig. 2). As expected the evolution leads to no
change of the initial configuration for an arbitrarily long
time of evolution. In the middle panel we show the
evolution of a spherical wall slightly shifted to the left
with respect to the static solution. The wall initially slightly
expands moving outwards to the right towards the energy
minimum (red dashed line), but eventually it shrinks and

collapses (green dotted line) as it cannot get trapped at the
energy minimum. Similarly when the initial wall has a
radius larger than the static solution it initially shrinks
towards the radius of the static solution (energy minimum)
where it delays its evolution until it eventually collapses
(green dotted line at the right panel).
The above discussion and existence of an energy func-

tional minimum and static metastable solution can be
generalized for any metric of the form (2.1) with a power
series fðrÞ,

fðrÞ ¼ 1 −
XN
n¼−N

anrn: ð3:2Þ

The Einstein tensor corresponding to this metric is

Gμ
ν ¼

XN
n¼−N

2
666664

anðnþ 1Þrn−2 0 0 0

0 anðnþ 1Þrn−2 0 0

0 0 1
2
annðnþ 1Þrn−2 0

0 0 0 1
2
annðnþ 1Þrn−2

3
777775
: ð3:3Þ

FIG. 5. Same as Fig. 4 for Gmη ¼ 0.1.

FIG. 6. Simulation of the field evolution with parameter values m ¼ 0, b ¼ −0.25, Λ ¼ −0.2 and initial wall approximated by
Tanh½qðr − r0Þ� with initial radius r0 equal to the radius to the static solution (left panel r0 ¼ 3.3), slightly smaller (middle panel
r0 ¼ 3.1), and slightly larger (right panel r0 ¼ 3.5) than the radius of the static solution. The initial configuration remains static in the
left panel but it collapses in both other panels.
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Therefore, the energy-momentum tensor supporting the
metric function (3.2) is

T0
0 ¼

1

κ

XN
n¼−N

anð1þ nÞrn−2 ¼ ρ; ð3:4Þ

Tr
r ¼ T0

0 ¼ −pr; ð3:5Þ

Tθ
θ ¼

1

2κ

XN
n¼−N

annð1þ nÞrn−2 ¼ −pθ; ð3:6Þ

Tϕ
ϕ ¼ Tθ

θ ¼ −pϕ: ð3:7Þ

As expected the term n ¼ −1 corresponds to a zero energy
momentum term (vacuum solution) while for n ¼ 2 we
obtain the cosmological constant term (constant energy
density pressure) and for n ¼ 0we have the case of a global
monopole (zero angular pressure components and energy
density, radial pressure ∼r−2). We could now consider
polynomial forms of r2fðrÞ and for each local minimum
with fðrminÞ > 0 we could identify new static metastable
wall solutions following the same method as for the
Grumiller metric (2.17). The systematic study of this
general class of solutions is an interesting extension of
our analysis.

IV. GRAVITATIONAL EFFECTS OF WALL
SOLUTION—BACKREACTION ON METRIC

A crucial assumption made in the above derivation of
the static solution is that the backreaction of the wall energy
density on the background metric is negligible. Here we
quantify the implications of this assumption on the param-
eters of the background metric and the scalar field.
For backreaction to be negligible, the energy density of
the scalar field should be much smaller than the energy
density of the background fluid. Thus we demand

ρΦ ≪ ρb þ ρΛ ¼ −4b
κr

þ Λ
κ
; ð4:1Þ

where ρΦ is the scalar field energy density given by
Eq. (2.4). For the potential (2.14) the total energy density
takes the form

ρtot ¼
λη4

κ̄

�
κ̄

�
1

2
fðr̄Þð∂ r̄Φ̄Þ2 þ 1

4
ðΦ̄2 − 1Þ2

�
−
4b̄
r̄
þ Λ̄

�
;

ð4:2Þ

where κ̄ ¼ 8πGη2, b̄≡ b
λ1=2η

, Λ̄≡ Λ
λη2
, Φ̄ ¼ Φ

η , and

r̄ ¼ λ1=2ηr. Thus for r̄ > 1 the requirement for negligible
backreaction indicates that

κ̄ ≪ b̄ ð4:3Þ

κ̄ ≪ Λ̄: ð4:4Þ

It is straightforward to rederive the static metastable
domain wall solution taking also into account the effects
of backreaction of the wall energy-momentum tensor on the
background metric. This task involves the following steps:
(1) Assume a metric of the form (2.1) and set

fðrÞ ¼ 1 − gðrÞ: ð4:5Þ

The Einstein equation for the energy density
G0

0 ¼ κT0
0 ¼ κρtot takes the form

g0ðr̄Þ
r̄

þ gðr̄Þ
r̄2

¼ κ̄

�
1

2
fðr̄Þð∂ r̄Φ̄Þ2 þ 1

4
ðΦ̄2 − 1Þ2

�

−
4b̄
r̄
þ Λ̄: ð4:6Þ

For κ̄ ¼ 0 (no backreaction) the solution of (4.6)
leads to the background metric function (2.17).

(2) Using the unperturbed background metric (2.17) for
a set of metric parameters we minimize the energy
functional and find the static metastable wall sol-
ution. We then use it to evaluate the scalar field
energy density ρΦðrÞ, which is the factor multiplying
κ̄ in Eq. (4.6).

(3) Fix κ̄ and use the evaluated scalar field energy
density to solve the Einstein equation (4.6) with
boundary condition gðr1Þ ¼ 1 [r1 is the radius of the
inner horizon where fðr1Þ ¼ 0] to find gðrÞ, which
includes the effects of the wall energy density.

(4) Use the derived metric function search for a mini-
mum of the energy functional (3.1) and if it exists
derive the new static metastable solution, which now
includes the effects of backreaction. In the limiting
case of an infinitely thin domain wall solution with
energy density

ρΦ ¼ EΦ

4πr20
δðr − r0Þ ð4:7Þ

(where EΦ is the total energy of the wall) Eq. (3.1) is
easily solved and leads to the metric function

fðrÞ ¼ 1 −
2m
r

−
2EΦΘðr − r0Þ

r
þ 2br −

Λ
3
r2;

ð4:8Þ
which is consistent with Birkhoff’s theorem.

(5) Repeat the above steps with different metric param-
eters at step 2, to identify the metric parameter region
for which a metastable solution exists including the
effects of backreaction. The new parameter region of
stability is shown in the middle (κ ¼ 0.5) and
right (κ ¼ 1) panels of Figs. 4 (m ¼ 0) and 5
(Gmη ¼ 0.1).
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The effects of a small backreaction (κ̄ ¼ 0.02 on the
static solution and on the energy functional are shown in
Figs. 7 and 8, respectively). In evaluating the energy
functional we approximated the field configuration as
ΦðrÞ ¼ Tanh½3ðr − r0Þ�.

V. DISCUSSION OUTLOOK

We have shown that Derrick’s theorem can be evaded in
curved space leading to finite energy static metastable
scalar field configurations. We have also found an explicit
example where this violation occurs leading to the for-
mation of a static metastable spherical domain wall in a
Schwarzschild-Rindler-anti–de Sitter background space.
We have shown that backreaction effects do not destabilize
the solutions even though they change the range of metric
parameters where the wall is metastable. By generalizing
this background metric, an infinite number of such

solutions may be found for all metrics that have a metric
function fðrÞ such that r2fðrÞ has a minimum at a point
where fðrÞ > 0.
As mentioned above, the background metric (2.1)–(2.17)

considered in our analysis may emerge in the context of
GR by a background fluid with energy density given by
(2.18). It may also emerge in a more generic manner as
a vacuum solution in IR gravity in the context of an
effective spherically symmetric scalar tensor theory [25], or
as a vacuum solution of Weyl conformal gravity [26]. It
emerges naturally as a vacuum solution in spherically
symmetric scalar-tensor theories whose t − r subspace is
described by the action

S ¼ −
1

κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½Φ2Rþ ð∂ΦÞ2 − VðΦÞ�; ð5:1Þ

with

VðΦÞ ¼ ΛΦ2 þ bΦþ cþOð1=ΦÞ; ð5:2Þ
where Λ, b, and c are constants (c can be set to 1 by a
rescaling of Φ). The potential in the context of this
spherically symmetric scalar tensor theory is constrained
to have terms up to quadratic order in Φ since higher order
terms would lead to a curvature singularity for largeΦ [25].
Also the terms Oð1=ΦÞ produce subleading contributions
in the IR limit (large r). Finally the form of the nonminimal
coupling Φ2R is also generic as any other choice of the
power of Φ would not reproduce the Newtonian potential
∼ −M=r at smaller r. Thus, this is a generic action in this
class of theories with a corresponding generic vacuum
solution (2.17). This vacuum metric for b > 0 has been
shown to reproduce well the flat galactic rotation curves
[43] as it leads to an effective potential for the motion of
massive particles of the form [29]

Veff ¼ −
GM
r

þ l2

2r2
−
GMl2

r3
−
Λ
6
r2 þ br

�
1þ l2

r2

�
; ð5:3Þ

where l is the angular momentum of the massive particle.
The term br gives rise to the constant Rindler acceleration
which if positive (attractive) can play the role of dark matter
in the galactic rotation curves.
If the derived metastable spherical wall forms on

cosmological scales it may produce interesting cosmologi-
cal observational signatures including a characteristic
lensing pattern [44–46] as well as possible glitches in
the galactic rotation curves. The investigation of such
observational signatures is an interesting extension of this
project. The derivation of similar solutions in systems with
axial or planar symmetry is also an interesting extension of
this analysis.
Numerical analysis files: TheMathematica files used for

the numerical analysis of this study and the construction of
the figures are publicly available [42].

FIG. 7. The static wall solution in the absence and in the
presence of backreaction. Notice that backreaction changes not
only the depth but also the position of the minimum of the energy
functional (see also 8).

FIG. 8. The effects of a small backreaction. (κ̄ ¼ 0.02 on the
static solution and on the energy functional. We have used the
parameter values m ¼ 0, b ¼ −0.25, Λ ¼ −0.2).
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