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It is shown that the Kerr black hole could act as an accelerator for spinning particles. In principle, it could
obtain arbitrarily high energy for an extremal Kerr black hole. In this paper, we extend the previous research
to the Kerr–(anti–)de Sitter background and find that the cosmological constant plays an important role on
the result. For the case of Kerr–anti–de Sitter black holes, like the Kerr background, only the extremal
Kerr–anti–de Sitter black holes can have a divergent center-of-mass energy of collision. While, for the case
Kerr–de Sitter black holes, the collision of two spinning particles can take place on the outer horizon as well
as cosmological horizon of the black holes and the center-of-mass energy of collision can blow up if one of
the collision particle takes the critical angular momentum. Hence, nonextremal Kerr–de Sitter black holes
could also act as accelerators with arbitrarily high center-of-mass energy for spinning particles.
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I. INTRODUCTION

In 2009, Bañados, Silk, andWest(BSW) first showed that
rotating black hole can act as particle accelerators [1]. They
show that for critical Kerr black hole, the collision center-of-
mass energy can be arbitrarily high if two test particles at
rest at infinity collide near the event horizon [1]. Along this
line, a lot of progress has been made in the decade to further
study the issue of BSW mechanism [2–21]. So far, most
authors focus on point particles where trajectory is an
geodesic. However a real particle is an extended body with
self-interaction. It has been shown [22–25] that the trajectory
of a spinning test particle is no longer a geodesic. And it
orbits of spinning particles around black holes background
have governed by the Mathisson-Papapetrou-Dixon (MPD)
equations [10–12]. By employing MPD equations, in [8],
the authors show that for an extremal Kerr black hole, the
collision energy could be divergent with some additional
critical condition be satisfied. However, as shown in [13], the
spin of astrophysical black holes should be less than 0.998M
(M is the mass of the black hole) which means there is no
extremal Kerr black hole existed in the nature.
In the past years, people have found many evidences

coming from the cosmological oberservation which shows
our present universe is in a state of accelerated expansion.
Although many plausible models are constructed to
explain the existence of such accelerated expansion,
most observations favor the cold dark matter model with
a cosmological constant (Λ-CDM model)[14]. At least
phenomenologically the Einstein equations should be

modified with a cosmological constant Λ at cosmological
scale. With a cosmological constant, the Kerr black
hole should be generalized to the Kerr–de–Sitter(Kerr–
dS) background.
On the other hand, the AdS/CFT correspondence

becomes a fruitful field, and had many interesting results
has been made in the past decades [26–28]. In [29], the
authors investigate the issues of conformal field theory
(CFT) dual to collision particles on a given black hole
background. Therefore, it is also interesting to extend Kerr
black hole to Kerr–anti–de Sitter background and study
the process of collisions of spinning particles. Moreover,
in [15], the authors showed that unlike the Kerr case, for
the Kerr–dS black hole, even the nonextremal Kerr–dS
background can serve as an accelerator for point particles
without spin, and its corresponding collision energy can be
divergent when some critical conditions are satisfied.
With all these strong motivations in hand, in this paper,

we study the possibility of Kerr–de Sitter and Kerr–anti–de
Sitter black holes as accelerator for spinning particles. By
using the MPD equations, we investigate the BSW process
of the Kerr–(anti–)de Sitter black hole. Because the Kerr–
(anti–)de Sitter black holes have a more complicated
horizon structure than Kerr black holes, it is very hopeful
that some novel features will be emergent.
The paper is organized as follows. In Sec. II, we introduce

the equations of motion for spinning particles. In Sec. III,
the four momentum of a spinning particle are solved inKerr–
(anti)–dS background. In Sec. IV, we obtained the collision
center-of-mass energy of two spinning particles. And then
we discuss the Kerr–dS and Kerr–AdS background sepa-
rately in Sec.VandSec.VI. The summary and conclusion are
given in Sec. VII.
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Throughout the paper, we adopt the convention that
gravitational constant G and the speed of light c are equal
to unity.

II. EQUATIONS OF MOTION FOR SPINNING
PARTICLES

The trajectory of a spin particle in the curved spacetime
is described by the Mathission-Papapetrou-Dixon(MPD)
equations [8,16]

DPa

Dτ
¼ −

1

2
Ra
bcdυ

bScd;

DSab

Dτ
¼ Paυb − Pbυa; ð2:1Þ

where

υa ¼
� ∂
∂τ
�

a
ð2:2Þ

is the tangent vector of the center-of-mass world line, D
Dτ

is the covariant derivative along υa, and Pa is the canonical
4-momentum of the spinning particles satisfying the
condition

m2 ¼ −PaPa: ð2:3Þ

Moreover, Sab is the antisymmetric spin tensor in which its
square related to the spin and mass of the particle are as
follows [11]

1

2
SabSab ¼ S2 ¼ m2s2; ð2:4Þ

here m and s represent the mass and spin of the particles,
respectively. In order to simplify the calculation in the main
text and to easily gain the physical insight, people are usually
working in a specific framewhich only 3-components of the
spin tensor is nonzero [7]. This adds to the spin supple-
mentary condition [7,8]

SabPb ¼ 0 ð2:5Þ

or equivalently set S0i ¼ 0. Again for latter convenience, we
normalize the parameter τ in Eq. (2.2) as,

uava ¼ −1 ð2:6Þ

which means τ is not the proper time of the spin particle.
The detailed calculation shows the relation between ua and
va can be written as [8,11]

va − ua ¼ SabRbcdeucSde

2ðm2 þ 1
4
RbcdeSbcSdeÞ

: ð2:7Þ

Furthermore, for the spacetimewith a Killing vector field ξa,
we can define the following conserved quantity for spinning
particles,

Qξ ¼ Paξa −
1

2
Sab∇bξ

a; ð2:8Þ

which is very helpful to find the trajectory of the spinning
particle.

III. SPINNING PARTICLES IN KERR–ADS AND
KERR–DS BACKGROUND

In this section, we focus ourself on the Kerr–dS and
Kerr–AdS case. The corresponding spacetime metric in the
Boyer-Lindquist coordinates is [6,21]

ds2 ¼ −
Δr

Σ

�
dt −

asin2θ
Ξ

dφ

�
2

þ Σ
Δr

dr2 þ Σ
Δθ

dθ2

þ Δθsin2θ
Σ

�
adt −

r2 þ a2

Ξ
dφ

�
2

ð3:1Þ

where

Δr ¼ ðr2 þ a2Þ
�
1 −

Λ
3
r2
�
− 2Mr; ð3:2Þ

Σ ¼ r2 þ a2 cos2 θ; ð3:3Þ

Δθ ¼ 1þ Λa2

3
cos2 θ; ð3:4Þ

Ξ ¼ 1þ Λa2

3
; : ð3:5Þ

Here parameters M and a correspond to the mass and
angular momentum per unit rest mass of the black hole,Λ is
the positive(negative) cosmological constant. The roots of
Δr ¼ 0 give the horizon of Kerr–dS and Kerr–AdS black
hole. From Fig. 1, we can see that the Kerr–dS case behaves
differently with the Kerr and Kerr–AdS case.
Figure 2 depicts the roots of Δr in the Kerr–dS case. For

Kerr–dS black hole, there are three roots which correspond
to the inner, outer, and the cosmological horizon, respec-
tively. The particle collision near the cosmological horizon
with Reissner-Nordstrom de Sitter black hole is investi-
gated in [30].
The tetrad reads

eð0Þa ¼
ffiffiffiffiffiffi
Δr

Σ

r �
dta −

asin2θ
Ξ

dφa

�
; ð3:6Þ

eð1Þa ¼
ffiffiffiffiffiffi
Σ
Δr

s
dra; ð3:7Þ
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eð2Þa ¼
ffiffiffiffiffiffi
Σ
Δθ

s
dθa; ð3:8Þ

eð3Þa ¼
ffiffiffiffiffiffi
Δθ

Σ

r
sin θ

�
−adta þ

r2 þ a2

Ξ
dφa

�
: ð3:9Þ

The stationary and rotational symmetry properties of
the Kerr–dS(AdS) metric are characterized by two Killing
vector fields: the timelike Killing vector ξa ¼ ð ∂∂tÞa and the
axial Killing vector ϕa ¼ ð ∂

∂ϕÞa. For the convenience of the
following calculation, we expanded these two Killing
vectors in the tetrad formalism as

ξa ¼ −

 ffiffiffiffiffiffi
Δr

Σ

r
eð0Þa þ

ffiffiffiffiffiffi
Δθ

Σ

r
a sin θeð3Þa

!
;

ϕa ¼
ffiffiffiffiffiffi
Δr

Σ

r
eð0Þa þ

ffiffiffiffiffiffi
Δθ

Σ

r
ðr2 þ a2Þ sin θeð3Þa : ð3:10Þ

They are two conserved quantities corresponding to these
two Killing vectors, namely the energy of per unit mass
of the particle e ¼ E

m, and the z component of total angular
momentum per unit mass of the particle j ¼ J

m. By applying
Eq. (2.7) and the tetrad formalism we have

e ¼ −uaξa þ
1

2m
Sab∇bξa;

j ¼ uaϕa −
1

2m
Sab∇bϕa: ð3:11Þ

For simplicity, we only consider the situation where a
spinning particle moves on the orbits in the equatorial plane
ðθ ¼ π

2
Þ. First,we introduce a special spinvector sðaÞ as [8,11]

sðaÞ ¼ −
1

2m
εðaÞðbÞðcÞðdÞu

ðbÞSðcÞðdÞ; ð3:12Þ

or equivalently

SðaÞðbÞ ¼ mεðaÞðbÞðcÞðdÞuðcÞsðdÞ; ð3:13Þ
where εðaÞðbÞðcÞðdÞ is the completely antisymmetric tensor
with the component εð0Þð1Þð2Þð3Þ ¼ 1. And the only non-
vanishing component of sðaÞ to be [8,11]

sð2Þ ¼ −s; ð3:14Þ
where s indicates not only the magnitude of spin but also
includes the spin direction. The particle spin is parallel to the
black hole spin for s > 0, while it is antiparallel for s < 0.
Therefore the remaining nonvanishing tetrad components of
the spin angular momentum are

Sð0Þð1Þ ¼ −msuð3Þ;

Sð0Þð3Þ ¼ −msuð1Þ;

Sð1Þð3Þ ¼ −msuð0Þ: ð3:15Þ
By calculating the tetrad components of Eq. (3.15) and
substituting it to Eq. (3.11), we obtain the expression of the
energy and the angular momentum per unit mass e and j as

e ¼
ffiffiffiffiffiffi
Δr

p
r

uð0Þ þ a
r
uð3Þ þM − Λ

3
r3

r2
suð3Þ; ð3:16Þ

j ¼ a
ffiffiffiffiffiffi
Δr

p
r

uð0Þ þ r2 þ a2

r
uð3Þ þ aðM þ r − Λ

3
r3Þ

r2Ξ
suð3Þ

þ
ffiffiffiffiffiffi
Δr

p
rΞ

suð0Þ: ð3:17Þ

Solving the Eq. (3.16) and Eq. (3.17) gives

uð0Þ ¼ K̃ffiffiffiffiffiffi
Δr

p
K
; ð3:18Þ

uð3Þ ¼ K̄
K
; ð3:19Þ

FIG. 1. The function ofΔr for the Kerr, Kerr–dS, and Kerr–AdS
black hole (a ¼ 0.99).

FIG. 2. The roots of Δr for the Kerr–dS black hole with a
cosmological constant(a ¼ 0.99).
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where

K ¼ −3Msð3sþ a3ΛÞ þ r3ð9þ 3a2Λþ 3s2Λþ a3sΛ2Þ;
ð3:20Þ

K̃ ¼ rð−jð3þ a2ΛÞð3arþ 3Ms − r3sΛÞ
þ 3eð3r3 þ a4rΛþ a2rð3þ r2ΛÞ
þ asð3M þ 3r − r3ΛÞÞÞ; ð3:21Þ

K̄ ¼ 3r2ðjð3þ a2ΛÞ − eð3aþ 3sþ a3ΛÞÞ: ð3:22Þ

Note that we are working on the equatorial plane (θ ¼ π
2
),

so uð2Þ ¼ 0. The normalization condition of uðaÞuðaÞ ¼ −1
gives us

−ðuð0ÞÞ2 þ ðuð1ÞÞ2 þ ðuð3ÞÞ2 ¼ −1: ð3:23Þ

By substituting Eqs. (3.18) and (3.19) to Eq. (3.23), we
obtain

ðuð1ÞÞ2 ¼ K̃2 − ΔrðK̄2 þ K2Þ
ΔrK2

: ð3:24Þ

IV. CENTER-OF-MASS ENERGY

Now we turn to the center-of-mass energy of the
collision particles. For simplicity, we consider the two
equal-mass particles with masses m1 ¼ m2 ¼ m. The
collision center-of-mass energy of two spinning particles
falling from infinity with angular momentum l1, l2 reads [8]

Ecm ¼
ffiffiffi
2

p
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gabuað1Þu

b
ð2Þ

q
; ð4:1Þ

Substituting Eqs. (3.18), (3.19), and (3.22) to Eq. (4.1), one
can easily obtain

gabuað1Þu
b
ð2Þ ¼ u0ð1Þu

0
ð2Þ − u1ð1Þu

1
ð2Þ − u3ð1Þu

3
ð2Þ ¼

K̃ð1ÞK̃ð2Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̃2

ð1Þ − ΔrðK̄2
ð1Þ þ K2

ð1ÞÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̃2
ð2Þ − ΔrðK̄2

ð2Þ þ K2
ð2ÞÞ

q
ΔrKð1ÞKð2Þ

−
K̄ð1ÞK̄ð2Þ
Kð1ÞKð2Þ

;

ð4:2Þ

where

KðiÞ ¼ Kjs¼si;j¼ji ;

K̃ðiÞ ¼ K̃js¼si;j¼ji ;

K̄ðiÞ ¼ K̄js¼si;j¼ji ; i ¼ 1; 2 ð4:3Þ

are the quantities corresponding to the particle 1 or 2. One
can easily see that for the case Λ ¼ 0 our result of the
center-of-mass energy is the same as Kerr spacetime with
spinning particles [8]. For Λ ¼ 0 and a ¼ 0, our result
reduces to the situation of the Schwarzschild black hole
with spinning particles [7]. And of course the case of the
Kerr black hole with spinless particles is recovered when
we set Λ ¼ 0 and s ¼ 0 [1].
At first sight, one may naively think that Ecm could

diverge when the particles approach the horizon since the
value of Δr is zero at the horizon. However, the denom-
inator of Ecm could also be divergent. Therefore, we need to
carefully analyze the asymptotic behavior of Ecm when it
approaches horizon. To this aim, we define

E0 ¼ K̃ð1ÞK̃ð2Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̃2

ð1Þ − ΔrðK̄2
ð1Þ þ K2

ð1ÞÞ
q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̃2

ð2Þ − ΔrðK̄2
ð2Þ þ K2

ð2ÞÞ
q

: ð4:4Þ

The first fraction of Eq. (4.2) may be divergence when
particles collide at the horizon r ¼ rþ. In order to ensure if

Eq. (4.2) could be infinite at the horizon, we expand E0

near the horizon r ¼ rþ

E0 ¼ aþ bðr − rþÞ þ � � � ð4:5Þ

where the first coefficients of the Taylor expansion a reads

a ¼ E0jr¼rþ ¼
h
K̃ð1ÞK̃ð2Þ −

ffiffiffiffiffiffiffiffiffi
K̃2

ð1Þ
q ffiffiffiffiffiffiffiffiffi

K̃2
ð2Þ

q i
r¼rþ

¼ 0: ð4:6Þ

On the other hand, from Eq. (4.4), we can write that

b ¼ dE0

dr

����
r¼rþ

¼
K2

ð2ÞðK̄2
ð1Þ þ K2

ð1ÞÞ þ K2
ð1ÞðK̄2

ð2Þ þ K2
ð2ÞÞ

2K̃ð1ÞK̃ð2Þ
Δ0

r

ð4:7Þ

where Δ0
r ¼ dΔr

dr . By using the expression of Δr, and note
that near the horizon Δr ∼ r − rþðnonextremalÞ or Δr ∼
ðr − rþÞ2ðextremalÞ. The Eq. (4.2) at horizon (r ¼ rþ) can
be written as

gabuað1Þu
b
ð2Þ ¼

Δ0
r½K2

ð2ÞðK̄2
ð1Þ þ K2

ð1ÞÞ þ K2
ð1ÞðK̄2

ð2Þ þ K2
ð2ÞÞ�

2K̃ð1ÞK̃ð2ÞKð1ÞKð2Þ

−
K̄ð1ÞK̄ð2Þ
Kð1ÞKð2Þ

: ð4:8Þ
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Therefore, if wewant theEcm to blow up for the nonextremal
black holes, the only possibility is that K̃ðiÞ ¼ 0 orKðiÞ ¼ 0,
where i ¼ 1, 2 at horizon. On the other hand we note that
for the non-extremal Kerr–dS black hole, for a given
cosmological constant Λ, there always exists some a such
thatΔ0

r < 0 [15]; while, for the nonextremalKerr–AdS black
hole, the Δ0

r > 0. We will discuss these two cases separately
in the following sections.

V. KERR–DE SITTER BLACK HOLE

In this section, we consider the spin particles are accel-
erated in Kerr–dS backgroundðΛ > 0Þ. Let j ¼ lþ s as the
total angular momentum, with l being the orbital angular
momentum, where (l ¼ j − s) [7]. Since va is a timelike
vector, we know that dtdτ > 0 near the horizon r ¼ rþ. Using
Eq. (2.7) and the normalization condition Eq. (3.23), the
relation between va and ua can be solved

vð0Þ ¼ X−1
�
1 −

Ms2

r3

�
uð0Þ;

vð1Þ ¼ X−1
�
1 −

Ms2

r3

�
uð1Þ;

vð3Þ ¼ X−1
�
1þ 2Ms2

r3

�
uð3Þ; ð5:1Þ

where

X ¼ 1 −
Ms2

r3
½1þ 3ðuð3ÞÞ2�: ð5:2Þ

The general form of 4-velocity va of a spinning particle can
be expressed as [8]

va ¼ dt
dτ

� ∂
∂t
�

a
þ dr
dτ

� ∂
∂r
�

a
þ dφ

dτ

� ∂
∂φ
�

a
: ð5:3Þ

Plugging Eqs. (3.6)–(3.9) into Eq. (5.3), we have

vð0Þ ¼
ffiffiffiffiffiffi
Δr

Σ

r �
dt
dτ

−
asin2θ
Ξ

dφ
dτ

�
;

vð1Þ ¼
ffiffiffiffiffiffi
Σ
Δr

s
dr
dτ

;

vð3Þ ¼
ffiffiffiffiffiffi
Δθ

Σ

r
sin θ

�
−a

dt
dτ

þ r2 þ a2

Ξ
dφ
dτ

�
: ð5:4Þ

Combining Eqs. (5.1) and (5.4), we can get

dt
dτ

¼ ða2 þ r2Þð1 − Ms2

r3 Þ
ffiffiffiffiffiffi
Δr

p
uð0Þ þ að1þ 2Ms2

r3 ÞΔruð3Þ

XrΔr
;

ð5:5Þ

dr
dτ

¼
ffiffiffiffiffiffi
Δr

p ð1 − Ms2

r3 Þuð1Þ
Xr

; ð5:6Þ

dφ
dτ

¼ Ξða ffiffiffiffiffiffi
Δr

p ð1 − Ms2

r3 Þuð0Þ þ Δrð1þ 2Ms2

r3 Þuð3ÞÞ
XrΔr

: ð5:7Þ

SubstitutingEqs. (3.18), (3.19), and (5.2) to Eq. (5.5), we can
write it as

dt
dτ

¼ ða2 þ r2Þðr3 −Ms2ÞK̃ þ aðr3 þ 2Ms2ÞΔrK̄

½r3 −Ms2ð1þ ðK̄KÞ2Þ�KrΔr

ð5:8Þ

Since Δrjr¼rþ ¼ 0, the numerator can be simplified as

ða2 þ r2Þðr3 −Ms2ÞK̃ at the horizon, and note that s≪M
[8,16]. The condition dt=dτ > 0 is equivalent to

K̃ > 0: ð5:9Þ

Solving this equation gives us an upper limit of the total
angular momentum j

j <
3ð3Masþ Λa4rþ þ Λa2r3þ þ 3a2rþ − Λar3þsþ 3arþsþ 3r3þÞ

ðΛa2 þ 3Þð3Msþ 3arþ − Λsr3þÞ
¼ jc: ð5:10Þ

When Λ ¼ 0, this upper limit of total angular momentum jc
is coincide with the critical angular momentum in Kerr black
hole background [8]. Although at first glance, the limit
case j ¼ jc(which corresponds K̃ ¼ 0) cannot be obtained.
However, similar to [8], in the case of j ¼ jc, we still have
vava < 0, namely the collision particles with critical angular
momentum j ¼ jc is still timelike.
Figure 3 shows the effect of the different a and cosmo-

logical constants Λ on the critical angular momentum jc.

We can see that the jc becomes bigger as cosmological
constants Λ(spin of the black hole a) increase.
Therefore, for a nonextremal Kerr–dS background, the

collision particles with critical angular momentum j ¼ jc
has K̃ ¼ 0. ByusingEq. (4.8),wehave a blowupgabuað1Þu

b
ð2Þ,

which in turn implies an arbitrarily high center-of-mass
energy Ecm.
Now, we verify that for the critical situation whether the

spinning particle can really reach the horizon. It is found
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that the radial turning points occurred at the point of ur ¼ 0

[7]. Since ur ¼ Pr

m , at the turning points, ðPrÞ2 ¼ 0. Using
Eqs. (3.18), (3.19), and (3.24), the nonvanishing compo-
nents of the momentum are

Pt

m
¼ ðr2 þ a2ÞK̃ þ aK̄Δr

ΔrKr
; ð5:11Þ

Pϕ

m
¼ ðaK̃ þ K̄ΔrÞΞ

ΔrKr
; ð5:12Þ

�
Pr

m

�
2

¼ K̃2 − ΔrðK̄2 þ K2Þ
K2r2

: ð5:13Þ

Note that for the nonextremal Kerr–dS black hole, Δr ∼
ðr − rþÞ and K̃ ¼ 0, we get ðPr

mÞ2jr¼rþ ¼ 0. Obviously, the
spinning particles can reach the horizon and the collision
energy Ecm is divergent near the horizon. Therefore, the
collision center-mass-energy Ecm blow up at r ¼ rþ when

the critical collision angular momentum j ¼ jc is satisfied
even for the non-extremal Kerr–dS black hole.
On the other hand, from Eq. (4.8), it seems that the

center-mass-energy Ecm could also be divergent when
K ¼ 0. However, in this case, the particle cannot approach
the horizon because of ðPr

mÞ2jr¼rþ ≠ 0 when K ¼ 0.
Next, we focus on the point in which the collision of

spinning particles takes place on the cosmological horizon
r ¼ rc. Similarly, if we ensure the Eq. (4.2) could diverge,
the E0 of Eq. (4.4) near the cosmological radius rc is
expanded as

E0 ¼ aþ bðr − rcÞ þ � � � ð5:14Þ
We find that the first coefficients of the Taylor expansion a
are still equal to zero. And, fromEq. (4.4), we can rewrite that

b ¼ dE0

dr

����
r¼rc

¼
K2

ð2ÞðK̄2
ð1Þ þ K2

ð1ÞÞ þ K2
ð1ÞðK̄2

ð2Þ þ K2
ð2ÞÞ

2K̃ð1ÞK̃ð2Þ
Δ0

r:

ð5:15Þ

(a) (b)

0.5 0.7

FIG. 3. (a) Critical angular momentum j as a function of spin s for the Kerr–dS background with different value of Λ, (a ¼ 0.5).
(b) Critical angular momentum j as a function of spin s for the nonextremal Kerr–dS background with different value of Λ, (a ¼ 0.7).

(a) (b)

FIG. 4. (a) The collision center-of-mass energy Ecm as a function of different angular momentum near the horizon for Kerr–dS
background (a ¼ 0.99, Λ ¼ 0.5). (b) The collision center-of-mass energy Ecm as a function of different angular momentum near the
cosmological horizon for Kerr–dS background (a ¼ 0.99, Λ ¼ 0.5).
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Therefore, we can obtain the same equation as Eq. (4.8). In
addition, we must consider the sign of Δ0

r near the cosmo-
logical horizon rc. From the Eq. (3.2), which reads

Δ0
r ¼ −

4

3
Λr3 þ

�
2 −

2

3
Λa2

�
r − 2M: ð5:16Þ

Since we know the cosmological horizon rc ∼ 1ffiffiffi
Λ

p is big

enough when cosmological constant Λ takes vanishingly
small value and the cosmological constant is positive in
Kerr–dSbackground. Therefore, the first itemof Eq. (5.16) is
negative and the absolute value of the first item is far greater
than the other items, this makes Δ0

r < 0. Therefore we have
the same conclusion as the case of r ¼ rþ. Namely, when
r ¼ rc, the collision particles with critical angular momen-
tum j ¼ jcjr¼rc , the collision center-of-mass energyEcm also
diverges at r ¼ rc.
From Fig. 4 we can clearly see that one of the two

collision particles with critical angular momentum jc can
be accelerated to arbitrarily high energies near the inner
horizon as well as cosmological horizon for Kerr–dS
background.

VI. KERR–ANTI–DE SITTER BLACK HOLE

Now we turn to Kerr–anti–de Sitter background. In this
case unlike Kerr–dS background, the Δ0

r ≤ 0. The Ecm

blow up means that K̃ðiÞ ¼ 0 or KðiÞ ¼ 0, where i ¼ 1, 2.
This condition can be realized when r ¼ rþ. However, in
order to ensure the particle can escape to infinity, we need
to require that the derivative of ðPrÞ2 respect to r must be
positive at the horizon rþ [15].

dðPr

mÞ2
dr

����
r¼rþ

> 0: ð6:1Þ

Substituting Eq. (5.13) to the above formula, we can get

dðPr

mÞ2
dr

����
r¼rþ

¼ 2K̃K̃0 − Δ0
rðK̄2 þ K2Þ

2KrðK0rþ KÞ : ð6:2Þ

Since for the nonextremal Kerr–anti–de Sitter black hole,

the Δ0
r > 0, then the dðPrm Þ2

dr jr¼rþ is always negative at the
horizon, which means the center of the energy Ecm cannot
reach arbitrarily high. For the extremal Kerr–AdS black

hole Δ0
r ¼ 0, which means dðPrm Þ2

dr jr¼rþ ¼ 0, however, we

found that d
2ðPrm Þ2
dr2 > 0, the collision particles can still escape

to infinity. This phenomenon also found for the extremal

Kerr–AdS black hole with spinless collision particles [15].
From these analysis, we get a conclusion that Ecm can only
blow up for extremal Kerr–AdS black hole.

VII. CONCLUSIONS

In this paper, we have analyzed the possibility that Kerr–
dS and Kerr–AdS black holes could act as accelerators for
spinning particle. We find that the result is very different
from the case of Kerr black holes due to the existence of
the nonvanishing cosmological constant. On the one hand,
it turns out that two particles to collide in the outer horizon
with the critical spinning angular momentum j ¼ jc can
reach arbitrary high center-of-mass energy. Moreover,
the center-of-mass energy is also divergent when particles
collide on the cosmological horizon with the critical
spinning angular momentum j ¼ jcjr¼rc . Besides, for the
case of the Kerr black hole, it has to be extremal. However,
for the case of the Kerr–dS black hole, it does not need to
be extremal. Hence, nonextremal Kerr–dS black holes
could also serve as particle accelerators with arbitrarily
high center-of-mass energy Ecm, which is very different
from the cases of the Kerr and Kerr-AdS black holes. By
detailed analysis, the sign of Δ0

r is different for Kerr–AdS
and Kerr–dS case, and this is exactly why the Kerr–dS case
is so different.
Why is the Kerr–dS case so different with the Kerr and

Kerr–AdS black holes? In particular, when the cosmologi-
cal constant is very small, people will usually expect the
final center-of-mass energy Ecm has only small deviation
from Kerr background. However, since we know that the
cosmological constant Λ set a scale for the universe
rh ¼ 3ffiffiffi

Λ
p . For short distance(r < rh), the physics are almost

the same as in zero cosmological constant case. However,
for the large distance case (r > rh), the cosmological
constant becomes very relevant and the physics will be
strongly influenced by the value of the cosmological
constant [31,32]. Note that the positive cosmological
constant represents a repulsive force and we are considering
particles falling off from infinity. Therefore the acceleration
effect of the cosmological constant of the Kerr–dS black
hole becomes dominant and finally makes the center-of-
mass energy Ecm blow up.
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