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The scattering of light by water droplets can produce one of the most beautiful phenomena in nature: the
rainbow. This optical phenomenon has analogues in molecular, atomic, and nuclear physics. Recently,
rainbow scattering has been shown to arise from the gravitational interaction of a scalar field with a
compact horizonless object. We show that rainbow scattering can also occur in the background of a black
hole with surrounding matter. We study the scattering of null geodesics and planar massless scalar waves by
Schwarzschild black holes surrounded by a thin spherical shell of matter. We explore various
configurations of this system, analyzing changes in mass fraction and radius of the shell. We show that
the deflection function can present stationary points, which leads to rainbow scattering. We analyze the
large-angle scattered amplitude as a function of the shell’s parameters, showing that it presents a
nonmonotonic behavior.
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I. INTRODUCTION

Scattering of waves and particles is a very important tool
in many branches of physics. Most of our knowledge about
atomic and nuclear physics comes from scattering experi-
ments as, for instance, the discovery of the Higgs boson in
the ATLAS and CMS experiments at CERN’s Large
Hadron Collider [1]. Moreover, the scattering of light by
the Sun provided the first experimental test of general
relativity (GR) about a hundred years ago [2].
Black holes (BHs) scatter radiation propagating in

their vicinities, a subject which has been widely explored
(see, e.g., Ref. [3]). In the standard scenario, one considers
that a monochromatic wave (propagating from infinity)
impinges upon a BH and is scattered due to the gravita-
tional interaction with the fixed background. Using this
approach, many authors have studied the time-independent
scattering of planar waves by BHs (see, e.g., Refs. [4–21]).
However, most of the attention in the literature has been
drawn to the study of wave scattering by isolated BH (IBH)
solutions [22].
When considering astrophysical setups, BHs are likely to

be surrounded by matter, typically accretion disks [23].
Therefore, the study of the scattering of fields by BHs in the
presence of surrounding matter is very appropriate. Taking
this into account, we study the scattering of the massless
scalar field by a Schwarzschild BH surrounded by a thin
spherical shell of matter [24], which is usually dubbed a

dirty black hole (DBH) and represents a simplified version
of a real astrophysical setup. DBH configurations have
been used in the literature to seek the influence of matter
surrounding BHs—for instance, in gravitational-wave
astronomy [25], in BH quasinormal modes [26,27], and
in BH absorption [28]. Recently, a configuration composed
by a traversable wormhole with a thick shell of matter at a
distance from its throat has been used to study the influence
of the astrophysical environment in the echoes of the
surface of the compact objects [29].
It is also interesting to compare the scattering patterns of

IBHs and DBHs with those of configurations without event
horizons. In Ref. [30], it has been shown that the scattering
by compact stellar configurations can result in interesting
phenomena, closely related to optics. One of them, the
rainbow scattering [31,32], appears whenever there is an
extremum point in the deflection angle, as a function of the
impact parameter, enhancing the scattering amplitude at
that angle.
We show that the existence of matter surrounding the BH

gives support to rainbow scattering, a feature that is not
present in the case of an IBH. We arrive at this conclusion
by investigating the scattering of null geodesics and planar
massless scalar waves by DBHs. In Sec. II, we describe the
DBH configuration used in our study and review some
features of the massless scalar wave propagation in the
DBH spacetime, presenting the boundary conditions suit-
able for the scattering problem. In Sec. III, we present
expressions of the differential scattering cross sections for
null geodesics and scalar waves, and we briefly discuss the
semiclassical approximation for the glory scattering. We
also show that the deflection function possesses stationary
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points for some DBH configurations. In Sec. IV, we des-
cribe the numerical methods and present our numerical
results. We present some final remarks in Sec. V. Throughout
this paper, natural units (c ¼ G ¼ ℏ ¼ 1) are used.

II. SPACETIME AND WAVE PROPAGATION

We shall focus on null geodesics and scalar waves
impinging into a Schwarzschild BH surrounded by a thin
spherical shell. The corresponding spacetime line element
can be written as

ds2 ¼ −AðrÞdt2 þ 1

1 − 2μðrÞ=r dr
2 þ r2dΩ2; ð1Þ

where dΩ2 is the solid angle element of the two-sphere, and
AðrÞ and μðrÞ are radial dependent functions, with μðrÞ
being the mass function. Considering a spherical shell
composed by a perfect fluid with a radius fixed at RS, we
have that in the outer region of the configuration composed
by the Schwarzschild BH with the spherical shell, r > RS,
the line element reads

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 1

1 − 2M=r
dr2 þ r2dΩ2; ð2Þ

with M being the total Arnowitt-Deser-Misner (ADM)
mass. In the region 2MBH < r < RS, by demanding the
metric function AðrÞ to be continuous across the spherical
shell, we obtain

ds2 ¼ −α
�
1 −

2MBH

r

�
dt2 þ 1

1 − 2MBH=r
dr2 þ r2dΩ2;

ð3Þ

with α being given by

α ¼ 1 − 2M=RS

1 − 2MBH=RS
; ð4Þ

where MBH is the BH’s relative mass. Note that both the
BH’s and the shell’s masses are taken into account in the
total ADM mass.
Restrictions on the shell position and mass can be

imposed by requiring the shell’s matter to obey specific
energy conditions. By imposing the dominant energy
condition (DEC) or the strong energy condition (SEC),
restrictions are obtained for the minimum possible value of
the shell radius (see Ref. [28] for explicit expressions of the
minimum shell radius related to each energy condition).
Massless scalar waves are described by the Klein-

Gordon equation, which can be written as follows:

∂aðgab
ffiffiffiffiffiffi
−g

p ∂bΦÞ ¼ 0; ð5Þ

with ∂a ≡ ∂=∂xa.

The massless scalar field Φ can be analyzed using
separation of variables, namely

Φ ¼ ϕðrÞ
r

Ylme−iωt; ð6Þ

where Ylm are the spherical harmonics. We are left with the
following radial equation for ϕ:

d2ϕ
dx2

þ ½ω2 − VðxÞ�ϕ ¼ 0; ð7Þ

where the effective potential is given by

VðxÞ ¼ A

�
lðlþ 1Þ

r2
þ 2μ

r3

�
; ð8Þ

and x is a radial-like coordinate related to r via

dx ¼ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1 − 2μ=rÞp : ð9Þ

It follows directly from Eq. (9) that the BH horizon is
located at x → −∞, and the spatial infinity at x → þ∞.
We are interested in solutions of Eq. (7) that satisfy the

following boundary conditions:

ϕðxÞ ∼
�
Aωle−iωx þRωleiωx; x → þ∞;

T ωle−iωx; x → −∞;
ð10Þ

with the coefficients related by

jAωlj2 ¼ jT ωlj2 þ jRωlj2: ð11Þ

III. SCATTERING CROSS SECTION

Following Ref. [3], we write the differential scattering
cross section dσ

dΩ as a partial wave series, namely

dσ
dΩ

¼
���� 1

2iω

X∞
l¼0

ð2lþ 1Þðe2iδωl − 1ÞPlðcos θÞ
����
2

; ð12Þ

where θ is the scattering angle defined in the interval ½0; π�
and the phase shifts δωl read

e2iδωl ¼ ð−1Þlþ1
Rωl

Aωl
: ð13Þ

One can show that, for small scattering angles (θ → 0),
the differential scattering cross section diverges as [33]

dσ
dΩ

∼ 16
M2

BH

θ4
: ð14Þ

We recall that the corresponding classical scattering cross
section also presents the same behavior for small scattering
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angles [34], as a consequence of the long-range feature of
the gravitational interaction [9].

A. Geodesic scattering

We can analyze the classical limit of the differential
scattering cross section through a geodesic analysis. For the
case of a Schwarzschild BH surrounded by a thin spherical
shell, the analysis of Ref. [34] can be applied. The differ-
ential scattering cross section for null geodesics is given by

dσ
dΩ

¼ b
sin θ

���� dχðbÞdb

����
−1
; ð15Þ

where b is the impact parameter of the scattered null
geodesic, and the deflection angle χ is related to the
scattering angle θ by χ ¼ �θ − 2nπ, with n ¼ 0; 1; 2;….
The impact parameter as a function of the scattering

angle can be found by analyzing null geodesics incoming
from infinity. Without loss of generality, due to the
spherical symmetry, we can restrict ourselves to the motion
in the equatorial plane. The analysis is similar to the one
presented in Ref. [35]. We obtain

�
du
dφ

�
2

¼
�
1 −

2μ

r

�
1 − Ab2u2

Ab2
; ð16Þ

where u≡ 1=r, and we can write the impact parameter as
b ¼ L=E, with L and E being the angular momentum and
the energy, respectively. Null circular geodesics—also
known as light rings—can be found by solving Eq. (16),
imposing du=dφ ¼ 0 and d2u=dφ2 ¼ 0, obtaining the
radius of the light ring rl, and the corresponding impact
parameter bl. For an isolated Schwarzschild BH, for
instance, there is only one light ring, located at rl ¼ 3M,
with bl ¼ 3

ffiffiffi
3

p
M. In the case of a BH surrounded by a

spherical shell, we have three possible situations [28]:
(i) When RS < 3MBH, we have

rl ¼ 3M; bl ¼ 3
ffiffiffi
3

p
M: ð17Þ

(ii) For 3MBH < RS < 3M, we have two light rings,
namely

rl− ¼ 3MBH; with bl− ¼ 3
ffiffiffi
3

p
MBH=

ffiffiffi
α

p
; ð18Þ

and

rlþ ¼ 3M; with blþ ¼ 3
ffiffiffi
3

p
M: ð19Þ

(iii) When RS > 3M, we have

rl ¼ 3MBH; with bl ¼ 3
ffiffiffi
3

p
MBH=

ffiffiffi
α

p
: ð20Þ

The critical impact parameter bc is closely related to the
impact parameter of circular null geodesics bl. This is due

to the fact that circular null geodesics are unstable,
representing a maximum point in the effective potential
[35]. For b > bc a null geodesic is scattered. For the cases
RS < 3MBH and RS > 3M, we have bc ¼ bl. In the case
with two light rings, we have

bc ¼ minðblþ ; bl−Þ: ð21Þ

By integrating directly Eq. (16), we obtain the deflection
angle as a function of the impact parameter through [34]

χðbÞ ¼ 2βðbÞ − π; ð22Þ
with

β ¼
Z

u0

0

du

��
1 −

2μ

r

�
1 − Ab2u2

Ab2

�−1=2
; ð23Þ

where u0 ¼ 1=r0 denotes the turning point.
By inverting Eq. (22), writing bðχÞ, we can use Eq. (12)

to obtain the differential scattering cross section for null
geodesics.
Many interesting features appear in the discussion of the

scattering of null geodesics (see, e.g., Ref. [34]). The
classical differential scattering cross section, given by
Eq. (15), formally diverges for θ ≈ π, which is related to
the glory effect [36–38], an enhancement of the scattering
amplitude for large scattering angles (see also Sec. III B).
There is also a divergence at scattering angles for which
dχ=db ¼ 0, which in optics is associated with rainbows, and
therefore scattering phenomena near those angles receive
the name rainbow scattering (for an example in a compact
object background, see Ref. [30]) [36–38]. The rainbow
scattering angle is given by θr ≡ jχðbrÞj, and the rainbow
impact parameter br is obtained from the condition
dχ
db jb¼br

¼ 0. The deflection angle is divergent for a critical
value of the impact parameter b ¼ bc. In this case, the
particle orbits around the compact object an infinite number
of times, characterizing a phenomenon called orbiting, and
this kind of scattering is known as spiral scattering [36–38].
In Fig. 1, we show a comparison between the deflection

angle χ of an isolated Schwarzschild BH (ISBH) and
DBHs. The shaded region is delimited by ISBH cases: from
below forMBH ¼ 0.9M, and from above forMBH ¼ M. We
note that, for the ISBH, the deflection angle is a monotonic
function. For the case of a DBH, there may show up some
extremal points (dχ=db ¼ 0), depending on the set of
parameters ðRS;MBHÞ. Rainbow scattering was previously
reported to exist in horizonless compact objects [30], and
Fig. 1 shows that it can occur for DBHs as well. We point
out the presence of two extrema in the DBH case, in
contrast with just one in the compact star configurations
studied in Ref. [30]. When stationary points are present in
the deflection angle, i.e., dχdb jb¼br

¼ 0, we shall refer to them
as the maximum rainbow scattering angle θr;max ≡
jχðbr;maxÞj and the minimum rainbow scattering angle
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θr;min ≡ jχðbr;minÞj, which are related to a local maximum

ðd2χdb2 jb¼br;max
< 0Þ and a local minimum ðd2χdb2 jb¼br;min

> 0Þ of
the deflection function, respectively.
In Fig. 2, we show the rainbow scattering angle χðbrÞ, as

a function of the shell position, for the case MBH ¼ 0.9M.
The two curves plotted in Fig. 2 are more separated (and the
rainbow angles larger) when the shell is nearer to the BH,
getting closer to each other (and the rainbow angles
smaller) as the shell radius increases, eventually making
the rainbow angles disappear (the Schwarzschild limiting
case presents no rainbow angle). One interesting fact,
which we shall revisit in Sec. III B, is that when the shell
is located at RS ¼ 3.45M, the minimum rainbow angle,

θr;min, occurs approximately in the backward direction,
θr;min ≈ π (cf. the dashed horizontal line in Fig. 2).
Similarly, when the shell is located near RS ≈ 3.5M, the
maximum rainbow angle is also close to the antipodal
direction, θr;max ≈ π (cf. Fig. 2).
In Fig. 3, we exhibit a stream of null geodesics coming

from infinity with impact parameters varying from b ¼
1.02bc to 1.08bc, with a fixed step size of 0.0005bc. This
configuration represents the case in which MBH ¼ 0.9M
and RS ¼ 3.4M. For this case, the two extrema of the
deflection angle are at b ≈ 1.053bc (maximum) and b ≈
1.06bc (minimum). When 1.036 < b=bc < 1.065 (interval
delimited by the two bold scattering trajectories in Fig. 3),
there are at least two geodesics with the same deflection
angle, due to its nonmonotonical behavior. This character-
istic leads to an amplification in the scattering amplitude at
the rainbow angles, which, for this case, occurs for large
scattering angles (cf. Fig. 1). Additionally, as in the case of
horizonless compact objects [30], a caustic forms (cf.
Fig. 3) related to the rainbow angles.

B. Semiclassical glory scattering:
Wave approach for large angles

Another important approximation for the scattering of
planar waves by BHs is the semiclassical approach to the

5 6 7 8 9 10
20°

60°

100°

140°

180°

220°

FIG. 1. Deflection angle as a function of the impact parameter
for MBH ¼ 0.9M, and shell positions RS=M ¼ 6.0, 4.0, 3.6 and
3.4, with the latter case being represented in Fig. 3. The shaded
region is delimited by the isolated BH cases, with MBH ¼ 0.9M
(from below) and MBH ¼ M (from above). In all cases, the
deflection function diverges at the respective critical impact
parameter b ¼ bc.

3.2 3.4 3.6 3.8 4.0 4.2 4.4

100°

150°

200°

250°

300°

FIG. 2. Rainbow scattering angles (θr;min and θr;max) as func-
tions of the shell position, forMBH ¼ 0.9M. The dark (black) line
is a track of the relative minimum shown in Fig. 1, while the light
(red) line is a track of the relative maximum. As RS increases, the
two lines come together. The horizontal dotted line corresponds
to χðbrÞ ¼ π.
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FIG. 3. Scattering of null geodesics by a DBH. In this case, we
haveMBH ¼ 0.9M and RS ¼ 3.4M, such that we have extrema in
the deflection angle (cf. Fig. 1). We choose different impact
parameters to illustrate the rainbow scattering. We choose
incident geodesics with impact parameters equally spaced. Note
that between the two bold (black) solid lines there is a concen-
tration of lines, illustrating that in this region there are at least two
geodesics with the same deflection angle. The (black) solid circle
represents the location of the shell at RS ¼ 3.4M.
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glory scattering, valid for θ ≈ π. This well-known phe-
nomenon in optics is also present in BH scattering, being
reported in many previous works, occurring mainly
because of the strong deflections close to the critical impact
parameter [39]. In the geodesic approximation analysis, we
have mentioned that the scattering cross section is singular
in the limit θ → π. However, we do not have such a
divergence in the partial wave results, obtaining instead
finite values for the scattering cross section at θ ¼ π.
The semiclassical approach gives an analytical formula

for the glory scattering, to which we can compare the full
numerical results from the partial wave analysis (see also
Ref. [3] for more details). The semiclassical glory approxi-
mation can be written as [39]

dσ
dΩ

����
θ≈π

¼ 2πωb2g

���� dbdχ
����
χ¼π

J20ðωbg sin θÞ; ð24Þ

where J0 is the Bessel function of the first kind (of order 0),
and bg ≡ bðχ ¼ πÞ. In order to improve the semiclassical
approximation, one can consider the contributions from the
orbiting cases, as described in Refs. [14,17].
One interesting feature that follows from Eq. (24) is

related to the rainbow scattering. Notably, this semiclassical
formula which describes the glory scattering diverges if the
rainbow angle is precisely at χ ¼ π, due to the divergence
of db=dχ. This points to a limitation in the analytical
semiclassical description of the backward scattering when
the rainbow angle is at π. We shall show, by using the full
numerical partial wave analysis, that there is no actual
divergence in such cases, although the amplitude of the
differential scattering cross section of the backscattered
wave is indeed amplified for large rainbow angles (see
Sec. IV C).

IV. NUMERICAL RESULTS

We numerically integrate the radial differential equation,
given by Eq. (7), from the event horizon, assuming a purely
ingoing wave [cf. Eq. (10)], up to large distances (r ≫ M
and r ≫ ω−1). By comparing the numerical solution with
the expected behavior at the spatial infinity region, we
extract the transmission and reflection coefficients. [For
more details about the numerical integration of Eq. (7), see
Ref. [28].] The convergence of the summation in Eq. (12) is
usually very poor, due to the Coulomb-like characteristics
of the potential at long distances. However, we can over-
come this problem by implementing a different approach
called reduced series, introduced in Ref. [40]. By using
a fourth-order reduced series, we find that adding up to
l ∼ 50 is enough for the range of frequencies we analyzed.
Our numerical results are stable against changes in the
numerical infinity and event horizon, as well as for the
maximum value of l.

In this section, we present a selection of our numerical
results for the differential scattering cross section, consid-
ering various DBH configurations—that is, different
choices of MBH and RS.

A. Partial wave analysis

Let us focus on the case of a DBH with fixed relative
massMBH ¼ 0.9M, varying the radial position of the shell.
In Fig. 4 we plot the results for scattered waves with
frequency ωM ¼ 3.0. The numerical results show that both
the amplitude and the interference fringes change when the
shell’s position is modified. For larger values of the shell’s
radius, the number of interference fringes of the scattering
cross section decreases. This happens because the case of
large Rs tends to an ISBH with M ¼ MBH (cf. Sec. IV D).
The scattering amplitude also changes because it scales
with the mass of the BH.
One may ask if different DBH configurations can present

similar scattering patterns. This may happen for IBHs and
was identified in others contexts [17,21]. Interestingly, the
scattering of scalar waves with different frequencies can
present a similar interference pattern for different DBH
configurations. This is illustrated in Fig. 5, where we plot
two cases with different shell positions and the same MBH,
exhibiting similar interference patterns.

20 ° 40 ° 60 ° 80 ° 100 ° 120 ° 140 ° 160 ° 180 °
0.1

1

10

100

1000

θ

FIG. 4. Scattering cross section of DBHs for different shell
radii, with fixed MBH ¼ 0.9M and ωM ¼ 3.0. We see that both
the interference fringes and the scattering amplitude change with
the variation of the radial position of the shell.
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FIG. 5. Scattering cross section of different DBH configura-
tions with a similar interference pattern.
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It is also important to analyze how the scattering cross
section changes for different values of MBH, and conse-
quently, different shells’masses. Some results are shown in
Fig. 6, where we fix the radial position of the shell at
RS ¼ 4M, changing the value of MBH. Note that we are
comparing curves with the same wave frequency
(ωM ¼ 3.0). We see that the decreasing of MBH increases
the number of fringes in the scattering pattern. For ISBHs,
the number of interference fringes is higher for higher
values of the wave frequency, as well as for higher values of
the BH’s mass.

B. Classical analysis: Rainbow scattering

It has been inferred from the behavior of the deflection
angle (cf. Fig. 1) that rainbow scattering can occur in DBH
backgrounds. In Fig. 7, we show the geodesic scattering
cross section for different DBH configurations. We note
that, in all the cases exhibited, the cross sections present
divergences related to rainbow angles. Moreover, for this
fixed BH relative mass (MBH ¼ 0.9M), it is possible to see

that the closer the shell is located to the BH, the larger the
rainbow angle (cf. also Fig. 1).

C. Glory scattering and rainbows

As mentioned in Sec. III B, the semiclassical glory
scattering approach, given by Eq. (24), points to a diver-
gence in the backward scattering whenever the rainbow
angle is located exactly at θr ¼ π. Just like the classical
divergence for large angles, we shall show here that the
glory rainbow [41] divergence is eliminated once the full
partial wave analysis is taken into account.
In order to analyze the glory rainbow scattering, we

define the deviation from the isolated Schwarzschild BH as

η≡ dσDBH=dΩ
dσIBH=dΩ

����
θ¼π

− 1; ð25Þ

where dσDBH=dΩ and dσIBH=dΩ are the differential scat-
tering cross sections for the DBH and for the ISBH with
mass MBH, respectively. As a representative case, we use
MBH ¼ 0.9M, varying the shell’s position. When the shell
is located at RS ¼ 3.45M (or RS ¼ 3.5M), the rainbow
angle θr;min (or θr;max) is located near 180° (see Fig. 2),
which leads to a divergence in the semiclassical approach to
the glory scattering, given by Eq. (24). In Fig. 8, we plot η
as a function of the shell’s position, computed numerically
using the partial wave analysis, choosing different frequen-
cies. We note that the glory rainbow scattering presents a
significant increase in the backward direction. This
enhancement is improved for high frequencies, which is
consistent with the fact that the semiclassical approach is
mostly valid in that regime. Additionally, we see that the η
goes to zero as RS increases, meaning that the maximum

20° 40° 60° 80° 100° 120° 140° 160° 180°

1

10

100

1000

θ

FIG. 6. Scattering cross section for a fixed shell’s radial
position (RS ¼ 4M) and different values of MBH. All the curves
were generated for ωM ¼ 3.0. The number of interference fringes
increases for higher values of the ratio MBH=M.
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θ

FIG. 7. Geodesic scattering cross section of DBHs with relative
mass MBH ¼ 0.9M and different positions for the shell
RS ¼ 3.6M, 4M, and 4.3M. In all the cases, there are divergences
associated with rainbow angles, located at θr ≈ 158.72° (for
RS ¼ 3.6M), at θr ≈ 120.46° (for RS ¼ 4M), and at θr ≈ 102.49°
(for RS ¼ 4.3M).
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0.0

0.2

0.4

0.6
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1.2

FIG. 8. Deviation η, defined by Eq. (25), computed numerically
for different frequencies (ωM ¼ 1.0, 2.0, and 3.0) and
MBH ¼ 0.9M, as a function of the shell’s radius. The vertical
dotted line locates the shell’s position for which the rainbow
angle is at χ ¼ π, where we see an enhancement in η, but no
divergence. Asymptotically, the DBH scattering cross section
tends to the case of an ISBH with mass MBH, in a power-law
falloff that depends on the frequency of the scattered wave.
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amplification occurs when the rainbow angle is at θr ¼ π.
Moreover, the differential scattering cross section for the
DBH tends to the ISBH case in the large-Rs limit. This is
expected, mainly because the energy density of the shell
decreases as we increase its radial position [42].
In Fig. 9, we exhibit the scattering cross section for a

DBH (with MBH ¼ 0.9M and RS ¼ 4.0M) computed
numerically, together with the classical scattering cross
section, given by Eq. (15), and the semiclassical approach
for the glory scattering, given by Eq. (24). We see that at
large scattering angles—and away from the cases with
θr ≈ π—the semiclassical result for the scattering cross
section is in excellent agreement with the numerical result,
and at small scattering angles the classical and the partial
waves results diverge in the same way, as expected.

We have chosen ωM ¼ 3.0 for both the semiclassical
and the numerical computations.

D. DBHs versus ISBHs

Let us now compare the results for DBHs with those for
ISBHs. In Fig. 10, we show the scattering cross section for
an ISBH together with the one for a DBH of the same mass
(MBH ¼ 0.9M). We choose the same DBH configuration as
in Fig. 3 (with RS ¼ 3.4M), which presents rainbow scat-
tering. The peaks of the DBH orbiting oscillations as well
as the backscattered glory are larger than the ISBH ones.
In Fig. 11, we exhibit additional results of DBHs and

ISBHs for ωM ¼ 3.0. We note that in the limits RS → 2M
and RS ≫ 2M, the fringes have precisely the same patterns
as ISBHs with masses M and 0.9M, respectively.

20° 40° 60° 80° 100° 120° 140° 160° 180°
0.1
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FIG. 9. Classical scattering cross section, given by Eq. (15),
semiclassical analytical formula for the glory scattering, given by
Eq. (24), and numerical results obtained through Eq. (12). We
have chosen a DBH configuration with MBH ¼ 0.9M and
RS ¼ 4.0M. The numerical and semiclassical results were ob-
tained for ωM ¼ 3.0.
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FIG. 10. Scattering cross section for an ISBH compared with
the one for a DBH of same mass (MBH ¼ 0.9M) and RS ¼ 3.4M,
the same configuration chosen in Fig. 3. We note an enhancement
of the glory maximum for this configuration with a large
rainbow angle.
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FIG. 11. Comparison between scattering cross sections of DBHs and ISBHs. In the left panel, we consider an ISBH withMBH ¼ 0.9M
and different DBH configurations [withMBH ¼ 0.9M and RS ¼ 2.5M (top) or 20.0M (bottom)]. In the right panel, we consider the same
DBH configurations used in the left panel and an ISBH withMBH ¼ M. Depending on the values of the DBH parameters (RS andMBH),
the results of DBHs approach those of ISBHs.
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V. FINAL REMARKS

We have computed the scattering cross section of planar
massless scalar waves for spherically symmetric black
holes surrounded by a thin spherical shell, showing that
the presence of matter surrounding the BH modifies its
scattering properties. Our analysis accounts for changes in
the radial position of the shell, as well for changes in the
mass fraction of the system. We have shown that in the
presence of surrounding matter, the differential scattering
cross section presents the same general characteristics of
the scattering of planar waves by ISBHs [43]—i.e., a
divergence in the forward direction, an oscillatory pattern
for intermediate-to-large angles due to the spiral scattering,
and a glory peak in the backward direction.
Some nonexistent phenomena in the case of IBHs appear

in the case of BHs surrounded by shells. One of them,
notably, is rainbow scattering. Rainbow scattering has
recently been reported for the case of horizonless compact
objects [30], and here we have shown that it can happen for
BHs when they are surrounded by matter. When the
rainbow angle is located at the antipodal direction, we
have shown that the divergence presented by the semi-
classical glory scattering approximation is associated with
an enhanced glory peak, obtained in the context of full
numerical partial wave analysis. Furthermore, the rainbow
scattering can significantly enhance the backscattered

amplitudes, for certain values of the radial position and
the mass of the shell.
We have shown that when the shell is located close to the

BH, the scattering cross section results approach those for
an ISBH with mass equivalent to the total DBH configu-
ration mass. When the shell is placed far away from the BH,
the results tend towards those of an ISBH of mass equal to
the BHwithout the thin spherical shell. This is in agreement
with the behavior presented by the absorption cross section
of DBHs [28].
We expect the features studied here to be present in more

realistic scenarios. The DBH model adopted in this paper is
a simplification, since astrophysical BHs generally present
rotation and nonspherical accretion disks. To consider more
realistic models is a natural extension of our work, allowing
a wider understanding of the scattering by DBHs.
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