
 

Electromagnetic fields and charges in expanding universes
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We analyze the properties of the electric and magnetic fields in different reference frames within a
cosmological background spacetime. First, we investigate the conformal properties of the electromagnetic
fields and charge currents, discussing how the spatial curvature of the Universe affects the field on different
scales. Then, we analyze the effects of the expansion of the Universe on local electromagnetic sources using
Fermi coordinates. In particular, we investigate the energy balance and Poynting flux in this locally defined
reference frame. We show that a charge following the Hubble flow in an accelerated FLRW universe is
accelerated as seen by the local inertial frame, leading to non-null radiation.
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I. INTRODUCTION

The frame dependency of the electromagnetic field has
been widely discussed in the literature both in classical and
quantum physics. In curved spacetime, an apparent paradox
appears when we try to join the concept of radiation and the
equivalence principle. As was clarified by Rohrlich [1] and
Boulware [2], the radiation of a charged particle is not a
covariant concept: if a charge is static in a gravitational
field, an observer in a free-falling frame measures radiation
while an observer comoving with the charge does not.
Radiation of charged particles has been analyzed in

different scenarios and in the context of different space-
times (see for instance Refs. [3,4] and [5]) but has not been
treated in a cosmological background. In the standard
model of cosmology, the Universe on large scales is
described by the homogenous and isotropic Friedmann-
Lemaitre-Roberston-Walker (FLRW) spacetime. The met-
ric that represents this model is locally conformal to the
Minkowski metric. The analysis of electromagnetic fields
in a cosmological background is then simplified because
Maxwell’s equations are conformal invariant: well-known
results in flat spacetime can be mapped to an expanding
universe. For this reason, as measured in the frame
comoving with the cosmological fluid, the electric and
magnetic fields always decay adiabatically as the inverse
square of the scale factor, E;B ∼ aðtÞ−2E∘ ; B∘ where E∘ ; B∘ are
defined in Minkowski spacetime. The electric and magnetic
fields are, however, frame-dependent properties of the
electromagnetic field. The adiabatic decay will only occur

for a frame comoving with the cosmic dust in a spatially flat
universe. Changing either the spatial curvature of the
Universe or the reference frame implies that the fields will
be more complex than in Minkowski spacetime.
On the other hand, in nonasymptotically flat spacetimes,

radiation as a far-zone field is nontrivial and not yet well
understood (see Refs. [6] and [7]). A way to analyze
radiation, and energy balance in general, is to consider
quasilocal quantities, where a congruence of observers
must be specified to compute well-defined physical quan-
tities. In order to do this, a very rigorous analysis is needed.
This issue is ultimately important to understand the Unruh
effect and the role of quantum fields in cosmology (see e.g.,
Refs. [8] and [9]). The situation of charges in cosmology
has been recently discussed in the framework of de Sitter
spacetime [10] for some specific cases, but no compre-
hensive treatment is available in the literature for a general
FLRW metric. The main goal of this work is to analyze the
frame dependency of the electric and magnetic fields of
local sources within an expanding universes. In Sec. II, we
present the covariant formalism used to analyze the electric
and magnetic fields in a given reference frame for a general
spacetime background and we analyze the conformal
properties of the EM field. In Sec. III. we apply this to
the local observer, constructed using Fermi normal coor-
dinates. Then, we revisit the charged particle field as
described from this frame. In particular, we investigate
whether if a charge accelerating with the Universe produces
radiation and the differences that appear with the usual
cosmic frame.
Notation: Throughout the paper, we use latin letters a ¼

ð0Þ; ð1Þ; ð2Þ; ð3Þ for Lorentz indices and greek letters
μ ¼ 0, 1, 2, 3 for holonomous coordinates. Bold letters
as V are four-vectors and arrow letters as U⃗ are three-
vectors, i.e., projection to a spatial base.
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II. ELECTROMAGNETIC FIELDS IN
CONFORMALLY FLAT SPACETIMES

A. Frames in spacetime

In a given spacetime, a reference system frame is
represented as a congruence characterized by a tetrad field
ea (and the cotetrad ea), with a tetravelocity eð0Þ ¼ u and
spatial triads eðiÞ for each path in the congruence. The
components of the tetrad field obey the orthonormal
relation given by

gμν ¼ eaμebνηab: ð1Þ

Any vector field V can be expanded in a given frame as
V ≔ Vaea, where Va ¼ Vμeaμ. We use V⃗ ≔ VðiÞeðiÞ for the
spatial part. At each point of the manifold, different frames
are related by local Lorentz transformations. The kinematic
features of the frame are encoded in the Ricci rotation
coefficients (see Refs. [11] and [12]):

eνb∇νe
μ
c ¼ Γa

bce
μ
c: ð2Þ

From here, we can obtain the acceleration of the frame,
given by aðiÞ ≔ ΓðiÞ

ð0Þð0Þ ¼ eðiÞμ uν∇νuμ; hence, only frames in
free fall are not accelerated. Other characteristics of the
congruence follow from

Γð0Þ
ðiÞðjÞ ¼ σðiÞðjÞ þ

1

3
ΘδðiÞðjÞ þ ωðiÞðjÞ; ð3Þ

where σðiÞðjÞ, Θ, and ωðiÞðjÞ are the projected components of
the shear, the expansion, and the vorticity, respectively. It is
also useful to define

hμν ¼ gμν þ uμuν ¼ eðiÞμ eðjÞν δðiÞðjÞ; ð4Þ

as the projector to the congruence rest-space, and the spatial
derivative of a tensor as

DμXσ ≔ hαμhσβ∇αXβ: ð5Þ

Given a frame, we introduce the connection for spatial
vectors ∇⃗, defined in tetrad components as

∇⃗ðiÞXðjÞ ¼ XðjÞ
;ðiÞ þ ΓðjÞ

ðiÞðkÞX
ðkÞ ≡ eμðiÞe

ðjÞ
ν DμXν: ð6Þ

Defining the totally antisymmetric tensor ηρμνσ ≔ffiffiffiffiffiffi−gp ½ρμνσ�, we have the spatial Levi-Civita tensor as
ϵμνσ ≔ ηρμνσuρ. With this, we define the spatial curl as

ð∇⃗ × V⃗ÞðiÞ ≔ ϵμνσe
μ
ðiÞD

νVσ ¼ ϵðiÞðjÞðkÞ∇⃗ðjÞVðkÞ; ð7Þ

and the divergence as

∇⃗ · V⃗ ≔ DμVμ: ð8Þ

B. Covariant electromagnetic field equations

The electromagnetic field is represented by the antisym-
metric Faraday’s tensor Fμν. Maxwell’s equations on a
fixed background spacetime are given by

∇μFμν ¼ 4πjν; ð9Þ

∇½μFρσ� ¼ 0: ð10Þ

The energy-momentum tensor of the electromagnetic
field is

Tμν ¼ 1

4π

�
FμαFν

α −
1

4
FαβFαβ

�
; ð11Þ

holding

∇μTμν ¼ jμFμν; ð12Þ

when the field equations are satisfied. Although Maxwell’s
equations are Lorentz invariant, and also general invariant
when combined with Einstein’s equations, the electromag-
netic field has different properties in different reference
frames. Relative to a congruence, the Faraday’s tensor can
be decomposed as [13]

Fμν ¼ 2u½μEν� þ ϵμνρBρ; ð13Þ

where the electric and magnetic field covectors are defined,
respectively, as

Eμ ≔ Fμνuν; Bμ ≔
1

2
ϵμνρFρν ≡ ⋆Fμνuν; ð14Þ

where ⋆ is the Hodge product of a form. The projected
components of these fields over the tetrad field given by
Ea ¼ eaμEμ and Ba ¼ eaμBμ shows that Eð0Þ ¼ Bð0Þ ¼ 0,
i.e., the electric and magnetic fields are space-like vectors
with respect to the frame. The electromagnetic current jμ

can be written as

jμ ¼ ρeuμ þ Jμ; ð15Þ

where ρe ≔ jð0Þ and Jμ ≔ eμðiÞj
ðiÞ. Projecting Maxwell’s

equations on this frame gives two propagation equations
[14],
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_EðiÞ ¼ σðiÞðjÞEðjÞ þ ðω × E⃗ÞðiÞ −
2

3
ΘE⃗ðiÞ

þ ða⃗ × E⃗ÞðiÞ þ ð∇⃗ × B⃗ÞðiÞ − jðiÞ; ð16Þ

_BðiÞ ¼ σðiÞðjÞBðjÞ þ ðω × B⃗ÞðiÞ −
2

3
ΘB⃗ðiÞ

− ða⃗ × B⃗ÞðiÞ − ð∇⃗ × E⃗ÞðiÞ; ð17Þ

and two constraint equations:

∇⃗ · E⃗þ 2ω⃗ · B⃗ ¼ ρe; ∇⃗ · B⃗ − 2ω⃗ · E⃗ ¼ 0; ð18Þ

where we define ω⃗ðiÞ ≔ 1
2
ϵðiÞðjÞðkÞωðjÞðkÞ. Note that in a

Minkowski inertial frame, this set of equations reduces to
the well-known three-vector form of Maxwell’s equations.
The evolution of the local charge density ρe for a given
congruence is given by

_ρe ¼ −Θρe −DμJμ − aμJμ: ð19Þ

Since jμ is a conserved vector for any Fμν, the total
electric charge defined as Q ¼ R

Σ J
μd3Σμ in a space-like

hypersurface Σ is conserved, as required from the gauge
invariance of the theory. We can decompose Tμν in terms of
a given frame ea in the following way,

4πTμν ¼
1

2
ðE2 þ B2Þuμuν þ

1

6
ðE2 þ B2Þhμν

þ 2QðμuνÞ þ πμν; ð20Þ

where E2 ¼ EμEμ, B2 ¼ BμBμ are the magnitudes of the
fields, Qμ ≔ ϵμνρEνBρ is the Poynting vector, and πμν the
anisotropic stress defined as

πμν ≔
1

3
ðE2 þ B2Þhμν − EμEν − BμBν; ð21Þ

In these formulas, we can interpret the electromagnetic
field as an imperfect fluid with energy density
ρ ¼ ðE2 þ B2Þ=2, isotropic pressure p ¼ ρ=3, energy-flux
Qμ, and anisotropic stress πμν. Projecting (12) over u, we
obtain the local energy conservation with respect to the
congruence:

_ρ ¼ −
4

3
Θρ −DaQa − 2aμQμ − σνμπμν þ EμJμ: ð22Þ

Here, we also see that although the energy-momentum is
Lorentz invariant, the energy density and energy transfer of
the fields depends on the reference frame. From Maxwell’s
equations, Faraday’s tensor F≡ Fμνdxμ ∧ dxν is a closed
two-form, dF ¼ 0, so we can write it as F ¼ dA, or in
component notation:

Fμν ≡∇μAν −∇νAμ: ð23Þ

The potential vector Aμ can be decomposed in a temporal
and spatial in the orthonormal frame, A≡ Að0Þuþ A⃗. It is
possible to show that the magnetic and electric fields
formulas in terms of the potential still hold in the covariant
description as

B⃗ ¼ ∇⃗ × A⃗; E⃗ ¼ − _A⃗þ ∇⃗Að0Þ: ð24Þ

Note that the expression for the magnetic field is valid
even if it has a non-null divergence, i.e., E⃗ · ω⃗ ≠ 0 [15].

C. Conformal invariance and frames

Since Fμν is antisymmetric and the Levi-Civita’s
connection is symmetric, Maxwell’s equations are equiv-
alent to

∂μF μν ¼ 4πJ ν; ð25Þ

∂ ½μFρσ� ¼ 0; ð26Þ

where F ≔ ffiffiffiffiffiffi−gp
Fμν, J ν ≔ ffiffiffiffiffiffi−gp

jν. If we assume that Fμν

does not change under conformal transformations,

g
∘
μν → gμν ¼ Ω2ðxÞg∘μν; ð27Þ

from Eqs. (25) and (26), it can be shown that Maxwell’s
theory is conformally invariant [16]. This means that
Maxwell’s equations in any spacetime conformally related
to Minkowski’s will have the same well-known flat
solutions, at least locally. Let us note, however, that
(a) the solutions of Fμν will map exactly only if the
conformal transformation is global (see Refs. [17,18]
and [19]), (b) the electric and magnetic fields measured
by inertial observers in a conformally flat spacetime (CFS)
will not coincide with their values in Minkowski spacetime
since these frame are not equivalent and (c) the highly
symmetric case of a FRLW universe is incompatible with
the anisotropy of the energy-momentum tensor of the EM
field; one can either work in a perturbed FRLW metric,
which is no longer a CFS [20], or analyze the fields in this
fixed background. Electric and magnetic fields, in turn, will
have nontrivial characteristics in the CFS as we shall see.
Let us analyse general features of the reference frame in a

CFS. Consider a frame ea in a conformally flat spacetime.
This tetrad field is orthonormal, gμν ¼ eaμebνηab with respect

to the conformal metric gμν. From (1), the vector basis e
∘
a ¼

ΩðxÞea [and the cobasis e
∘a ¼ ea=ΩðxÞ] is a Minkowski-

adapted tetrad field, i.e.,
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e
∘
μ
ae
∘
μ
b
ηab ¼ ημν: ð28Þ

If e
∘
a is an inertial observer (i.e., a frame which assumes

the form e
∘μ
a ¼ δμa in Cartesian coordinates), then the

kinematic properties of ea are determined by the conformal
factor ΩðxÞ because ea ¼ δμa=ΩðxÞ∂μ. The acceleration of
this frame is easily obtained as

aðiÞ ¼ eμðiÞe
ν
ð0Þ∇νe

ð0Þ
μ ¼ ∂i logðΩÞ

Ω
: ð29Þ

The congruence is also characterized with a non-null
shear and expansion:

σðiÞðjÞ ¼ δðiÞðjÞ
∂t logðΩÞ

Ω
; Θ ¼ 3

∂t logðΩÞ
Ω

: ð30Þ

We shall analyze first an only time-dependent conformal
factor, as appears in flat FLRW universes, with line
element:

ds2 ¼ Ω2ðtÞð−dt2 þ d3xÞ: ð31Þ

In this case, the conformal observers are inertial, i.e.,
aðiÞ ¼ 0, but the congruence has an isotropic expansion
[see Eq. (30)]. Later on, we shall discuss space curved
universe and anisotropic scale factors. This means that the
observer represented as ea will measure a decay (grow) of
the fields if the conformal factor grows (decays):

E⃗ ¼ Ω−2E⃗
∘
; B⃗ ¼ Ω−2B⃗

∘
; ð32Þ

where E⃗
∘

and B⃗
∘

are the electric and magnetic fields
measured by an inertial Minkowski observer. Most appli-
cations in cosmology are derived from the use of FLRW
coordinates. The line element in conformal coordinates
transforms to these coordinates according to

dtF ¼ ΩðtÞdt; ð33Þ

where the metric assumes the well-known form:

ds2 ¼ −dt2F þ ΩðtFÞ2δijdxiFdxjF: ð34Þ

Stationary observers in these coordinates, that we call
“cosmic observers,” represented by eFa ¼ f∂tF ; ∂iF=Ωg, are
inertial, and tF is the cosmic time; this frame is comoving
with the cosmic fluid, also known as theHubble flow. It can
be shown that these stationary frames coincide with the
conformal observers, eFa ≡ ea. Thus inertial observers in a
spatially flat comoving with the Hubble flow measure
electric and magnetic fields of the form (32).

D. Charges in conformally flat spacetimes

Charges in free-fall can produce radiation, as it is well
known from a charged particle orbiting around a massive
body. As we shall show below, this could also occur in
a conformally flat spacetime. Solutions of Maxwell’s
equations in a spatially flat FLRW spacetime can be
obtained directly from flat spacetime solutions. Charge
currents, however, are not exactly transformed since
geodesics in flat spacetime are not necessarily geodesics
in the conformal spacetime, except when the geodesic is
null [21]. The mapping of charge currents can be written as

ðFμν; Q; vÞ → ðFμν; Q; v
∘Þ, where the velocities do not share

the same kinematic state.
Let us consider a charge with a tetra-velocity v following

a path γ in a FLRW spacetime. If the charge is geodesic,
then we have ∇vv ¼ 0. The solution of Maxwell’s equa-
tions with this source is given by a flat spacetime solution

of a charge with a transformed tetra-velocity v
∘ ¼ vΩ which

is not geodesic in general. In the particular case where the
charge is comoving with the Hubble flow,

v ¼ ∂tF ≡ ∂t=Ω → v
∘ ¼ ∂t: ð35Þ

The corresponding charge in the conformally trans-
formed space is then geodesic and the solution is the
Coulomb field, that is mapped to the FLRW spacetime as in
(32). If the charge, however, is geodesic but has a non-null
peculiar velocity, its tetra-velocity is

v ¼ γðeFð0Þ þ vðiÞeFðiÞÞ; ð36Þ

where γ ≔ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, and v2 ¼ δðiÞðjÞvðiÞvðjÞ. It is well

known that the spatial components decay as v ∼ 1=Ω, i.e.,
geodesic particles converge eventually to the Hubble flow
[22]. The conformally transformed tetra-velocity is

v
∘ ¼ γð∂∘ t þ vðiÞ∂∘ ðiÞÞ; ð37Þ

but now v
∘

is not longer geodesic since vðiÞ is time
dependent. This means that the electromagnetic field
solution of a geodesic (free-falling) charge not following
the Hubble flow is equal to an accelerated charge solution
in Minkowski spacetime, generating a radiation field in the
cosmological model we are considering. For small peculiar

velocities, the velocity is v⃗
∘
¼ v⃗

∘
0=ΩðtÞ. The acceleration

in the conformally flat space is then colinear to the velocity,

a⃗
∘
¼ −v⃗

∘
HðtÞ. The electric radiation field in the FLRW

spacetime can be written using the result in flat space-
time as

E⃗rad ¼
E⃗
∘
rad

Ω2
¼ QHðtFÞ

r
½v⃗ − ðn⃗ · v⃗Þn⃗�; ð38Þ
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where v⃗ is the peculiar velocity in the cosmic frame and n⃗ is
unit director vector. The radiation rate, as measured by the
Hubble flow frame, can be obtained from the Larmor
formula in the conformal space. Transforming to the
cosmic inertial frame, this radiation rate results:

R ¼ dE
dtF

¼ dE
dt

Ω−1 ¼ 2

3
Q2ða⃗ · a⃗ÞΩ−1 ¼ 2

3
Q2v⃗20HðtFÞ2Ω−1; ð39Þ

which goes to zero once the charge reaches the Hubble
flow. For instance, if the charge starts with a peculiar
velocity v0 at t0 in a universe described by ΩðtFÞ ¼ CtαF

E ¼
Z

∞

t0

RdtF ¼ 2

3
Q2

v⃗20t
−ð1þαÞ
0

C
α2

1þ α
: ð40Þ

If the charge emits radiation, a self-force reaction
appears, affecting the geodesic movement of the charge.
In curved spacetime, this self-force was found by DeWitt-
Brehme and Hobbs (see an updated review in Ref. [23]). In
a CFS, the nonlocal contribution to the self-force, the so-
called tail-term, vanishes and thus the self-interaction is
only local, given by

vμ∇μvν ¼
Q2

3m
ðδνμ þ vνvμÞRμ

ρvρ; ð41Þ

where the Ricci term expresses the local interaction
between the electromagnetic field and the gravitational
field. For small velocities, in the cosmic frame, we have

dv⃗
dtF

¼ HðtFÞv⃗ − 2
Q2

m
_HðtFÞv⃗: ð42Þ

When the particle moves comoving with the Hubble
flow, v⃗ðt0Þ ¼ 0, there is no radiation as we have seen and,
consistently, there is no self-force since the right hand side
vanishes. If v⃗ðt0Þ ¼ v⃗0 ≠ 0, the charge emits radiation, and
choosing a model of universe again as ΩðtFÞ ¼ CtαF, we
can integrate the equations directly obtaining:

v⃗ðtFÞ ¼
v⃗0
tα
exp

�
−
2Q2α

3mtF

�
: ð43Þ

The charged particle decays to the Hubble flow more
rapidly than an uncharged particle, as seen in the cosmic
frame, if α is positive. This result contradicts Haas et al.
[24], who derive their result using conformal coordinates,
integrating the equations within a small parameter approxi-
mation. If we integrate in [24] Eq. (6.2) exactly, we observe
that the charged particle decays to the Hubble flow more
rapidly than an uncharged particle when α0 (as defined in a
conformal scale factor, aðηÞ ¼ ηα

0
) is positive.

E. Electromagnetic fields in spatially curved universes

Electromagnetic fields in a spatially curved universe
have novel features with respect to the spatially flat case.
This is because the map between Minkowski and the
FLRW metric is not global. The presence of spatial
curvature, for instance, could modify the adiabatic decay,
as seen in the cosmic frame, on lengths close to the
associated curvature scale, and thus explain some obser-
vational features of cosmic magnetic fields without intro-
ducing new physics [19]. We shall show now that there is a
modification on the spatial dependence of the fields in the
FLRW models.
Let us consider now a general FLRW metric:

ds2 ¼ −dtþ aðtÞ
�

dr2

1 − Kr2
þ r2dΩ2

�
: ð44Þ

This metric has a null Weyl tensor for all values of K,
which implies that all FLRW metrics are conformally flat.
However, if K ≠ 0, then transformation to conformal
coordinates is not global in general and it depends on
the conformal time T as well as the radial distance R,

ds2 ¼ ΩðT; RÞ2ds20; ð45Þ

where aðtðT; RÞÞ ≠ ΩðT; RÞ and

ds20 ≔ −dT2 þ dX2 þ dY2 þ dZ2: ð46Þ

In general, for K ≠ 0, if we take an inertial frame e
∘
a in

Minkowski spacetime, the transformed conformal frame

ea ¼ e
∘
a=ΩðT; RÞ is not inertial as follows from (29). In

turn, if Fea is a cosmic (inertial) observer adapted to (45),

then the corresponding e
∘
a flat frame will not be inertial in

general. The electric and magnetic field in a cosmic frame
are:

FEðiÞ ¼ E
∘ ðiÞ

ΩðT; RÞ−2: ð47Þ

FBðiÞ ¼ B
∘ ðiÞ

ΩðT; RÞ−2: ð48Þ

Note that this means that electric and magnetic fields, as
seen by the frame comoving with the cosmic fluid, are
related with a factor ∼ΩðT; RÞ−2 to Minkowskian electric

and magnetic fields measured by a noninertial frame e
∘
a.

Moreover, it was shown in Ref. [25] that the transformation
from ðt; rÞ to ðT; RÞ is not unique; so depending on the
choice of ΩðT; RÞ we would have different Minkowskian
frames. In the end, however, the combination would give
unique FEðiÞ and FBðiÞ.
Let us take first an open universe, with K ¼ −1. The line

element can be written as
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ds2 ¼ −dtþ aðtÞ2½dχ2 þ sinhðχÞ2dΩ2�: ð49Þ

Defining dη ¼ dt=aðtÞ, we obtain

ds2 ¼ aðηÞ2½−dη2 þ dχ2 þ sinhðχÞ2dΩ2�: ð50Þ

The component of the inertial frame in these coordinates
can be written as

Feð0Þ ¼ ∂η=aðηÞ; FeðiÞ ¼ ∂μ0=k∂μ0 k: ð51Þ

As it is shown in Ref. [25], we can find a coordinate
transformation from (50) to (46) with of the form:

T ¼ 1

2
½fðηþ χÞþfðη− χÞ�; R¼ 1

2
½fðηþ χÞ−fðη− χÞ�;

ð52Þ

with the function f given by a family of transformation

fðxÞ ≔ c
�
bþ coth

�
x − a
2

��
−1

þ d; ð53Þ

and where

ΩðT; RÞ ¼ aðηÞ sinhðχÞ
R

: ð54Þ

Choosing fðxÞ ¼ Cex whereC is a constant, we have the
transformation:

T ¼ Ceη coshðχÞ; R ¼ Ceη sinhðχÞ: ð55Þ

For concreteness, let us take the radial component of an
electric field, that would transform as

FEðrÞ ¼ Fμνe
μ
ðrÞe

ν
ð0Þ ð56Þ

so we have

FEðrÞ ¼ aðtÞ−2Fμνð∂rÞμð∂ηÞν ¼ aðtÞ−2F∘ ABð∂rÞAð∂ηÞB

¼ aðtÞ−2F∘ AB
∂χ
∂r ð∂χÞAð∂ηÞB ¼ C2e2η

aðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p E
∘
ðRÞ;

ð57Þ

where E
∘
ðRÞ is a radial field as measured by a frame in the

Minkowski spacetime with coordinate ðT; RÞ. From this
expression, we can already note that for short distances to
the center of the radial field, the space curvature is
negligible. For instance, in the case of a Coulomb field,

E
∘
ðRÞ ¼ Q=R2 ¼ Q=ðCeη sinhðχÞÞ2, we obtain

FEðrÞ ¼
Q

aðtÞ2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ; ð58Þ

or in radial coordinates χ,

FEðχÞ ¼
Q

aðtÞ2 sinhðχÞ2 : ð59Þ

Note that the spatial curvature makes the field decay
more rapidly than in flat spacetime. Indeed, expanding for
short distances, we see that

FEðχÞ ¼
1

aðtÞ2
�
Q
χ2

−
Q
3
þ � � �

�
; ð60Þ

where the field is weaker than the Coulomb field by a factor
Q
3
, where the 3 comes from the number of spatial dimen-

sions. This shows a very simple example on how the spatial
curvature could affect the electromagnetic field.
Finally, let us briefly discuss the case of a closed

universe, with K ¼ 1. Even though Maxwell’s equations
are conformally invariant, the change of topology in these
universes forces to change the boundary conditions of the
solution [17]. For instance, the Coulomb field of a single
charge is not a conformal solution in this spacetime: from
the conserved current, the total charge of a closed universe
must be zero. We can show this by rewriting the FLRW
metric for a closed universe as

ds2 ¼ aðηÞ2½−dη2 þ dχ2 þ sinðχÞ2dΩ2�: ð61Þ

Solving Maxwell equations in these coordinates, Infeld
and Schild have shown that the monopole solution is

FEðχÞ ¼
Q

sinðχÞ2 : ð62Þ

This solution has two singularities in χ ¼ 0 and χ ¼ π
and the total charge is zero, as can be seen from Gauss law.
Changing the origin of the frame to the center of the other
singularity, χ0 ¼ π − χ, we have

FEðχ0Þ ¼ −
Q

sinðχ0Þ2 : ð63Þ

We can interpret this solution as two opposite charges
resting in the antipodes of the Universe; the field lines start
at χ ¼ 0 and end in a negative image charge at χ ¼ π. In
this case, the positive spatial curvature enhances the flat
Coulomb field by a factor Q=3.

FEðχÞ ¼
1

aðtÞ2
�
Q
χ2

þQ
3
þ � � �

�
ð64Þ

The behavior of all these Coulomb fields combined are
shown in Fig. 1.
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III. COSMOLOGICAL EFFECTS ON LOCAL
ELECTROMAGNETIC FIELDS

Observers following the Hubble flow, as were charac-
terized above, are free-falling in the FRLW universe. The
spatial hyper-surfaces of constant time tF in the comoving
coordinates (34) of this frame, have geodesic distances
given by aðtFÞrF. This means that the radial coordinate rF
is not a true spatially geodesic coordinate, i.e., space as
defined by this foliation is expanding (this can be shown in
a coordinate independent way as in Ref. [26]). If we want to
characterize local measurements within this spacetime, we
need a geodesic frame whose local description reduces to
Minkowski near the frame and thus does not expand for
close distances. This particular frame is the so-called local
Fermi frame (LFF) [27]. This coordinate system has been
recently used to obtain convenient expressions for cosmo-
logical observables [28]. In the next section, we shall
calculate the values of the electromagnetic field in this
frame and use it to obtain the local radiation rate.

A. Fermi coordinates in cosmology

We shall apply the LFF to analyze the behavior of the
EM field as measured by a local reference system, where
the expansion of the Universe appears as second-order
corrections to the dynamics in Minkowski spacetime (see
Refs. [29] and [30]). These frames are constructed around
an observer who follows a geodesic world-line γ and carries
an orthonormal tetrad eaðτÞ, parallel transported through
γðτÞ. We can introduce a set of coordinates ftL; xiLg such
that in a neighborhood of γðτÞ, the metric assumes the form:

Lg00 ¼ −1 − LR0i0jðtLÞxiLxjL þOðx3LÞ;
Lg0i ¼ −

2

3
LR0ijkðtLÞxjLxkL þOðx3LÞ;

Lgij ¼ δij −
1

3
LRijklðtLÞxkLxlL þOðx3LÞ; ð65Þ

where we define:

LRαβγδ ≔ RμνρσeμðαÞeνðβÞeρðγÞeσðδÞ: ð66Þ
At xL ¼ 0, the metric reduces to the Minkowski metric.

These coordinates are valid in a tube-like region around
the inertial path γ with rL < L, where L is a measure of
the radius of curvature of spacetime. In order to obtain the
Fermi coordinates of an expanding universe, we use FLRW
coordinates as in (34). It is possible to construct Fermi
coordinates around a fundamental inertial observer with
proper time τ ¼ tF and associated frame eμFð0Þ ¼ δμFð0Þ and

eμFðiÞ ¼ Ω−1δμFðiÞ with the transformation up to third order

given by

tF ¼ tL −
HðtLÞ
2

r2L þ � � � ;

xiF ¼ xiL
ΩðtLÞ

�
1þHðtLÞ2

4
r2L

�
þ � � � ; ð67Þ

where r2L ≔ δijxiLx
j
L and HðtLÞ ≔ _Ω=Ω (see Ref. [28]). In

these coordinates, the metric up to second order holds:

ds2 ¼ −½1 − ð _H þH2Þr2L�dt2L þ
�
1 −

1

2
H2r2L

�
d3xL þ � � �

ð68Þ

Contrary to the comoving case, the integral paths of
spatial Fermi coordinates, x⃗L ¼ constant, are not geodesics.
In Fermi coordinates, at first order, the geodesic deviation
equation is given by

̈x⃗L − ðä=aÞx⃗L ¼ 0; ð69Þ

By choosing these coordinates, in the small velocity limit,
we replace the expansion of space (as seen in the comoving
frame) to a modification of the inertial structure: coordi-
nates are fixed, and free-falling bodies are accelerated. The
LFF, stationary in these coordinates can be described, up to
second order, with the tetrad frame:

Leμa ¼ δμa þ ψμ
ar2L; ð70Þ

where ψμ
a ¼ diagð−1

2
ðH2þ _H2Þ;1

4
H2;1

4
H2;1

4
H2Þ, in Fermi

coordinates. The kinematics of this frame, at the lowest
order, is characterized by a radial acceleration given by

Lai ¼ xiLΩ̈ðtLÞ=ΩðtLÞ; ð71Þ

which depends on the acceleration of the Universe and
increases as we move away from the central inertial
observer. This means that particles in rest with respect
of this frame are accelerated, dragged by the acceleration of
the Universe. Conversely to the cosmic frame, the LFF is a
rigid coordinate system at first order since expansion

FIG. 1. Electric field of an static charge for different curvatures
at a fixed time.
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appears at the next order,Θ ¼ − 3
2
HðtLÞ _HðtLÞr2L. From this

expression, we see that if _H ≡ 0, the frame is rigid, as in the
case of a de Sitter universe.

B. Electric and magnetic fields in the local frame

Maxwell’s equations in the LFF, at the lowest-order
expansion, read:

_EðiÞ ¼ qHðtLÞ2ðx⃗L × E⃗ÞðiÞ þ ð∇⃗ × B⃗ÞðiÞ − jðiÞ; ð72Þ

_BðiÞ ¼ −qHðtLÞ2ðx⃗L × B⃗ÞðiÞ − ð∇⃗ × E⃗ÞðiÞ; ð73Þ

and

∇⃗ · E⃗ ¼ ρe; ∇⃗ · B⃗ ¼ 0: ð74Þ

where q ≔ −äðtLÞaðtLÞ= _aðtLÞ2 is the deceleration param-
eter. These equations show that electromagnetic fields in the
LFF are very different from the onesmeasured by the cosmic
frame. Consider the case of a highly conducting medium,
where, following Ohms law, we have EðiÞ ¼ jðiÞ ¼ 0. The
propagation equation for the magnetic field is

_BðiÞ ¼ qHðtLÞ2ðx⃗L × B⃗ÞðiÞ; ð75Þ

in contrast with the propagation as seen by the cosmic frame:

F _BðiÞ ¼ −2HðtFÞFBðiÞ: ð76Þ

Note that (75) depends on the acceleration state of the
Universe and not on the expansion rate given by H. In a
similar fashion, the dynamics of free-falling particles in the
Newtonian approximation of the FLRW spacetime are
affected by a cosmological force that depends on the
acceleration of the Universe [31]. For small time scales
we can assume qHðtLÞ ∼ q0H0, and then solve the propa-
gation equation with the differential operator

D̂≔ exp ½tLðq0H0Þx⃗L×�≔
X∞
n¼0

ðtLq0H0Þnðx⃗L×Þn=n!; ð77Þ

that gives the Rodrigues’s formula of a vector [32]. With an
initial field seed B⃗0, the solution of (75) is

B⃗ðtÞ ¼ D̂B⃗0 ∼ B⃗0 þ ðq0H0ÞtLx⃗L × B⃗0 þOðx⃗2LÞ; ð78Þ

where the magnitude of the field is frozen in time
jB⃗ðtLÞj ¼ jB⃗0j. This solution could be applied to local
cosmological scenarios, as galaxies and galaxy clusters,
and will be explored elsewhere.
If the Universe is accelerating, two systems following the

Hubble flow have geodesic deviation that can be measured
in the LFF using Eq. (69). If one of these systems is

charged, there is a relative acceleration that will induce, in
principle, an electric radiation field as measured in the
proper frame of the other system. In order to analyze this,
we have to evaluate the fields in the LFF. Note that the
value of E and B on LFF and the cosmic frame will
coincide on the geodesic xL ¼ 0. However, building an
extended frame is needed to evaluate quasilocal quantities
such as the radiation rate. On the other hand, we need to
specify a coordinate system to map the values of the fields
to physical points in spacetime.
In the next section, we investigate the simple case of a

charged particle in a spatially flat universe as seen by
the LFF.

C. Charged particle and local radiation

Let us consider a charge following the Hubble flow in a
FLRW spacetime. Choosing conformal coordinates, the
particle is represented with the four-current:

jμ ¼ Q
Z

dτ
dzμ

dτ
δð4Þðxμ − zμÞffiffiffiffiffiffi−gp ≡Qδð3ÞðxiÞδμ0Ω−4; ð79Þ

where the particle is placed at the origin of the coordinate
system ðxμ ¼ 0Þ and has a velocity given by dzμ=dτ ¼
δμ0=Ω (see also the discussion in Ref. [10]). As we have seen
in the previous sections, the solution is the Coulomb field:

Fi0 ¼
Q
r3
xi: ð80Þ

The electric field measured by a cosmic observer is then
given by FEðiÞ ¼ Q=ðr3FΩ2ÞxiF, in accordance with (32).
Note that no magnetic field arises even though the electric
field is now time dependent. This can be justified from
Eqs. (72) and (73), showing that a time-dependent solution
of E with B ¼ 0 is possible if the congruence is expanding.
Now, we obtain the electromagnetic field of a charged

particle as seen by a LFF. In order to do this, we first
express the Coulomb field (80)—in CF coordinates—into
FLRW coordinates

FFi0 ¼
Q

ΩðtFÞr3F
xiF: ð81Þ

The transformation matrix between FLRW coordinates
and Fermi coordinates can be calculated from Eq. (67). In
the new coordinates, the non-null components of Faraday’s
tensor are

LF0i ¼
∂xμF
∂x0L

∂xνF
∂xiL

FFμν

¼Q
xiL
r3L

−
Q
2

xiL
rL

�
HðtLÞ2−HðtLÞ

ä
a

�
þOðHrÞ4; ð82Þ

Then, there is no magnetic field in this frame and the
electric field measured by these observers is given by
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LEðiÞ ¼ LFμν
Leμð0Þ

LeνðiÞ

¼ Q
xiL
r3L

½1þHðtLÞ2r2Lð1þ 2qÞ þOðHrÞ4�: ð83Þ

The first-order term in (83) is the Coulomb field as
expected from small rL. The next correction to the
Coulomb field depends on the square of the cosmic velocity
Hr and the state of acceleration of the Universe. For
instance, if we take a de Sitter universe, 1þ 2q≡ −1, then
the accelerated expansion of the Universe reduces the
strength of the field and LEðiÞ goes to zero as we approach
the cosmological horizon H2r2 → 1.
Note that in the case of the cosmic frame, the electric

field decays with time (if the Universe is expanding) and
decays away from the charge as a Coulomb field. This
difference arises, of course, from the different natures of the
frames. In the cosmic frame, observers are inertial but
expanding at all scales, inducing an adiabatic decay of the
fields. In the LFF, the congruence is accelerating away from
the inertial observer placed at xL ¼ 0 and expanding at the
next order.
When the charge is comoving with the LFF, since the

magnetic field is zero by symmetry, there is no energy flux,
Qμ ¼ 0. If the charge is not comoving with the geodesic
observer but is placed near at xμ ¼ Xδμ1 (in FLRW/con-
formal coordinates) then the charge is accelerating away as
seen by the geodesic observer. Indeed, from (67), the
position of the charge at first order in the LFF is
xμL ¼ XLδ

μL
1 , with XL ¼ ΩðtLÞX. This means that the

charge has a velocity given by

V⃗ ¼ dX⃗L=dtL ¼ HðtLÞX⃗L; ð84Þ

where X⃗L ≔ XL∂1L
, and an acceleration given by A⃗ ¼ dV⃗=

dtL ¼ ðΩ̈=ΩÞX⃗L, as seen by the LFF. The Coulomb
solution of a charge placed outside the origin in conformal
coordinates is

Fi0 ¼
Q
r̄3
ðxi − Xδi1Þ; ð85Þ

where r̄ ¼ jxi − Xδi1j. Proceeding as above, we obtain at
second order in HðtLÞ and first order in XL a nonzero
magnetic field given by

B⃗ ¼ ðV⃗ × E⃗Þ
�
1 −

1

2
qHðtLÞ2r2L þOðHrÞ4

�
; ð86Þ

where E⃗ is the Coulomb field. Note that the magnetic field
is zero if the position of the charge is the origin or if the
Universe is not expanding, i.e., if V⃗ ¼ 0; if the Universe is
not accelerated, q ¼ 0 and the magnetic field is analog to
one measured by a boosted frame in flat spacetime. This
implies a nonzero Poynting flux given by

Q⃗ ∼
Q2HðtLÞXL sinðθÞ

4π

�
1

r4L
þ qHðtLÞ2

2r2L

�
θ̆; ð87Þ

with magnitude

Q ∼
Q2HðtLÞXL

4π
j sinðθÞj

���� 1r4L þ qHðtLÞ2
2r2L

����; ð88Þ

where we have used spherical coordinates around the
observer, with θ̆ the azimuth unit vector. Along the radial
direction of the moving charge, there is no radiation as in
the analog situation in flat spacetime. Note that the r−2 term
is analog to a radiation-type flux, driven by the acceleration
of the Universe; if the Universe is not accelerated, then the
Poynting flux goes like r−4 as a uniformmoving charge. On
the other hand, is not entirely similar to a uniformly
accelerated charge in Minkowski spacetime because the
sinðθÞ part and acceleration dependence is linear and not
quadratic. Let us consider a rigid sphere around the
observer that includes the accelerating charge. This
rigid—not expanding—sphere can be constructed in a
FLRW with Fermi coordinates fixing a radius jxiLj, see
Fig. 2. Through this sphere, we can compute the radiation
rate obtaining an analogue Larmor formula, given by

R ¼ 1

2
Q2AHðtLÞ: ð89Þ

From the local reference frame, if the Universe is
expanding at an accelerated rate, the charged particle
accelerates with the Universe, and thus there is a non-null
radiation. In this case, the energy provided as electromag-
netic energy comes from the accelerated universe itself.
By choosing a rigid sphere we compute fluxes without
spurious deformation effects [33]; however, in an expand-
ing universe, this sphere requires energy to stay rigid, i.e.,
an external acceleration, that should be included in the final
energy balance as gravitational energy.
We stress that energy balance in curved spacetime is a

subtle subject. If the spacetime has no time-like Killing
vector, there is no obvious concept of conserved energy,
i.e., energy is not a relativistic invariant in this case. This is
associated with the problem of gravitational energy and its

FIG. 2. Charged particle Q accelerating in the local Fermi
frame enclosed in a rigid sphere.
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multiple definitions. An interesting unsolved problem is the
formulation of a conceptual framework to treat, for in-
stance, the conversion of gravitational energy into electro-
magnetic energy and vice-versa, see Refs. [34] and [35]. for
various approaches.

IV. CONCLUSIONS

We have investigated the electromagnetic fields and
charges in a cosmological background. We showed that
although Maxwell’s equations are conformally invariant,
the well-known adiabatic decay only occurs in a frame
comoving with the Hubble flow in the flat FLRW model.
We proved that if a charged particle is free-falling but with a
peculiar velocity, it has a radiation field, contrary to
expectations. When the Universe is spatially curved, we
have shown that the field of a static charged particle
changes its behavior depending on this curvature. In

particular, if the Universe is open, the field decays faster
than the Coulomb field. To study the electromagnetic fields
in local reference frames within an expanding spacetime,
we built a Fermi frame for a FLRW geometry. As seen by a
local observer the electric and magnetic field presents novel
interesting features. In particular, we analyzed the case of a
charged particle. We have found that if the charge is
accelerating with the cosmological expansion, the local
frame detects nonzero radiation.
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