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Contrary to common belief, (electro)vacuum Brans-Dicke gravity does not reduce to general relativity
for large Brans-Dicke coupling w, a problem which has never been fully solved. Two new approaches,
independent from each other, shed light on this issue producing the same result: in the limit @ — oo an
(electro)vacuum Brans-Dicke spacetime reduces to a solution of the Einstein equations sourced, not by
(electro)vacuum, but by a minimally coupled scalar field. The latter is shown to coincide with the Einstein
frame scalar field. The first method employs a direct analysis of the Einstein frame, while the second
(complementary and independent) method uses an imperfect fluid representation of Brans-Dicke gravity
together with a little known 1-parameter symmetry group of this theory.
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I. INTRODUCTION

There is currently a major theoretical and experimental
effort to detect, or constrain, deviations of gravity from
Einstein’s general relativity (GR), which span many areas
of research and many spatial scales [1-3], including
cosmology [4,5], supermassive black holes [6], stellar mass
black hole binaries emitting gravitational waves [7], and
Solar System tests [1-3,8—12]. The prototypical alternative
to GR is scalar-tensor gravity [13—15], which is motivated
by fundamental theoretical considerations and by obser-
vational cosmology. On the one hand, every attempt to
quantize gravity produces deviations from GR in the form
of higher order equations of motion, extra gravitational
degrees of freedom (d.o.f.), or curvature corrections to the
Einstein-Hilbert action (for example, the low-energy limit
of bosonic string theory, the simplest string theory, yields a
Brans-Dicke gravity with coupling parameter o = —1
[16]). On the other hand, from the cosmological point of
view, explaining the present acceleration of the Universe
without invoking an ad hoc dark energy [17] has led to the
very popular f(R) class of theories [18] (where R is the
Ricci scalar of spacetime). This is nothing but a subclass
of Brans-Dicke theories in disguise, with coupling
parameter @ = 0 and a complicated scalar field potential
(see Ref. [19] for reviews). Also the most successful model
of inflation in the early Universe, Starobinsky inflation,
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is based on quadratic curvature corrections to Einstein
gravity, embodied in the f(R) = R + aR? Lagrangian [20].

It is assumed that viable modified theories of gravity
have some limit to GR and observational tests then tell us
that gravity must indeed be close to GR on the scales at
which such tests are available (which, admittingly, do not
span a vast range [1]). Possessing a GR limit seems to be an
essential ingredient of the required “closeness to GR,” but
there are still gaps in our theoretical understanding of this
limit even for the simplest alternative to GR and the
simplest incarnation of scalar-tensor gravity, which is the
original Brans-Dicke theory [13]. Here we clarify a puzzle
in the limit of vacuum Brans-Dicke gravity (which is
relevant for Solar System tests) to GR.

The scalar-tensor action is (we follow the notation of
Ref. [21], using units in which Newton’s constant G and the
speed of light ¢ are unity)

Ser— 1
ST J6n
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(1.1)

where ¢ > 0 is the Brans-Dicke scalar field, the function
@(¢) (a constant parameter in the original Brans-Dicke
theory [13]) is the “Brans-Dicke coupling,” V(¢) is a scalar
field potential, and ") = Ik d4x\/—_g£(’”) is the matter part
of the action.

The variation of the action (1.1) with respect to the
inverse metric g* and to the Brans-Dicke scalar ¢ yields
the (Jordan frame) field equations [13,14]
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where R, is the Ricci scalar and V, is the covariant

derivative of the spacetime metric g,, while 70" =

g? TE,'L'}) is the trace of the matter energy-momentum tensor
(m) _ _ 255
T, =- Nk The matter stress-energy tensor and the

effective stress-energy tensor of the scalar ¢ are covariantly
conserved separately.

Let us briefly review the limit to GR of Brans-Dicke
theory and its anomaly. GR is reproduced from Jordan
frame Brans-Dicke gravity when ¢ becomes constant: then
the effective gravitational coupling G.;=~¢~' also
becomes constant (for more general scalar-tensor theories
in which ® = w(¢), the limit to GR is @ - o in
conjunction with w=3dw/d¢ — 0 [15,22]). The conten-
tious issue is how fast ¢ approaches a constant. It is
commonly believed (e.g., [23]) that (Jordan frame) Brans-
Dicke gravity reduces to GR as the Brans-Dicke parameter
@ — oo, with the Brans-Dicke scalar ¢ following the
asymptotics

t/’)zqﬁm—f—(’)(l), (1.4)
@

where ¢, > 0 1is a constant. However, a number of analytic
solutions of the Brans-Dicke field equations have been
reported which fail to reduce to the corresponding solutions
of GR as w — oo [24,25] (including anomalies in matter
different from (electro)vacuum [26-28], to which we will
instead restrict). In these situations, the asymptotic behav-
ior of the Brans-Dicke scalar is not the one expected

[Eq. (1.4)] but'
1
$=0¢s+0 <\/—5>

It has also been realized that the asymptotic behavior (1.5)
of the Brans-Dicke field is usually accompanied by a
vanishing trace 7(") of the matter energy-momentum
tensor [25] (this condition is trivially satisfied in vacuo).
This coincidence hints to some degree of conformal
invariance, which has motivated an explanation of why
the @ — oo limit of Brans-Dicke theory fails to reproduce

(1.5)

'See also the discussion of Ref. [29].

GR in vacuo or in electrovacuo [30,31]. We summarize this
explanation in Sec. IV.

The limit to GR is important for three reasons. First, it is
related to the weak-field limit of gravity, in which the
relativistic corrections to Newtonian gravity are parametrized
by the so-called parametrized post-Newtonian (PPN) for-
malism [10]. This formalism is the basis for constraining @
with Solar System experiments [9,10]. Second, various
authors have studied attractor mechanisms in which sca-
lar-tensor gravity converges toward GR, such as during the
early evolution of the Universe [32,33]. Third, scalar-tensor
gravity could be an “excitation” of GR in the context of the
thermodynamics of spacetime, in which the Einstein equa-
tions are derived as a sort of macroscopic equation of state
[34]. Then, GR would represent a “state of equilibrium”
while deviations from it (for example, through the excitation
of other gravitational scalar d.o.f. such as the Brans-Dicke
scalar ¢) could be nonequilibrium states [35,36].

Here we revisit the anomaly in the @ — oo limit of
Brans-Dicke theory with two new approaches. The first one
consists of using the Einstein conformal frame, while the
second describes the Brans-Dicke field equations as effec-
tive Einstein equations with an effective imperfect fluid
made of terms including derivatives of the scalar field ¢.
Both approaches produce the same result.

II. EINSTEIN FRAME APPROACH

The first approach relies on the fact that scalar-tensor
gravity has another close relation with GR, besides the ® —
oo limit. Let us restrict, for simplicity, to vacuum Brans-
Dicke theory: the Einstein frame formulation of this theory
is formally GR with a metric §,, and a (minimally coupled
and canonical) scalar field ¢. So the question arises
naturally: what is the relation between the @ — oo limit

(gflf),(ﬁ(“)) of a Brans-Dicke spacetime (g,;,¢) and its
Einstein frame version (. ¢)? One could expect these

two to coincide, but they do not, as is elucidated in the
following.

A. Einstein frame
In addition to the Jordan frame (g, ¢), another repre-
sentation of scalar-tensor gravity, the Einstein frame
(Jap> @), is used [37]. The metric tensors in the Einstein

and in the Jordan frames are related by the conformal
transformation

Gab = gah = ¢gab’ (21)

while, for the two scalar fields, we have

2w + 3| d¢p

dep = 2.2
Z 6r ¢ (2.2)
Restricting ourselves to Brans-Dicke theory with constant

w, the scalar field is redefined nonlinearly as
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(2.3)
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where ¢ is an integration constant and w # —3/2. Since
both ¢ and g,, depend on the parameter w, barring
miraculous cancellations, in general the Einstein frame
metric §,;, given by Eq. (2.1) depends on w. Similarly, the
Einstein frame scalar ¢ given by Eq. (2.3) depends on o.

In the Einstein frame, the Brans-Dicke action (i.e., (1.1)
with @ = const) assumes the form

- (m)
w= [ 5y [———~“bva¢vb¢ U(¢>+;T@ ,
(2.4)
where
V)
Ui = ¢2'¢_M 2.5)

(Einstein frame quantities are denoted by a tilde). The
action (2.4) is formally the Einstein-Hilbert action of GR
with a matter scalar field which has canonical kinetic
energy density, except that now this scalar couples non-
minimally to matter. The Einstein frame field equations are

~ 1 ~ — /g (m ~ o~~~
Rab - EgabR =8 (e ‘2?*3\/7*[(1[7) + va¢vb¢

1 e _
- Egabgmvc(ﬁvdéb - U(‘f’)gab) . (26

\/ \z?f‘+3¢£ 2 7)
\/ |2 + 3 0

Let us restrict, for simplicity, to vacuum Brans-Dicke

theory by setting TE;Z)

AR

= 0. Then the explicit coupling
between the Einstein frame scalar ¢ and matter disappears
from the action and from the field equations and the
Einstein frame action (2.4) formally reduces to the
Einstein-Hilbert action of GR. Therefore, the Einstein
frame pair (§,,. ) is formally a scalar field solution of
GR corresponding to the original Jordan frame spacetime
(gap» ¢) and it could appear as a natural candidate for a “GR
limit” of the latter.

B. Comparison between the Einstein frame
and the ® — oo limit of the Jordan frame

Since we are interested in the anomaly discussed in the
literature for the limit @ — oo of Brans-Dicke theory, we
are only interested in the vacuum case in the following.

As already seen, in the Einstein frame both the metric g,

and the scalar ¢ depend on the parameter w, but the

gravitational coupling is constant. One cannot regard the
Einstein frame fields (g, ¢) as a limit to GR of (g, ¢)
because any dependence on the parameter @ (which is
absent in GR) must disappear after taking the GR limit.
Moreover, §,;, is a solution of the coupled Einstein-Klein-
Gordon equations with Klein-Gordon field ¢. There are
different matter sources in the two conformal frames:
vacuum in the Jordan frame and a Klein-Gordon field in
the Einstein frame, and the GR limit of a Brans-Dicke
solution must have the same matter source.” It is more
meaningful to compare Einstein and Jordan frame in the
w — oo limit, as is done in the next subsection.

C. Comparison between the @ — oo limits
of the Einstein and Jordan frames

The @ — oo limit of a Jordan frame spacetime which is a
solution of the Brans-Dicke field equations (1.2) and (1.3)

is expected to produce3 ¢ = const > 0 and the limit gi‘f)

of the metric, while the scalar field potential reduces to an
effective cosmological constant A = V(¢ )/(2¢s). The
conformal map relating the Jordan and Einstein frame
metrics yields, in this limit,

(2.8)

Gab = PYap = ¢oog,<;;;0) as @ — oo.
By dropping the irrelevant multiplicative constant ¢,

which can always be absorbed by a coordinate redefinition,

one has §,, (@) - gfl? in this limit. Therefore, the Einstein

frame geometry always coincides with the @ — oo limit of
the Jordan frame geometry. The Einstein frame scalar field
is given by Eq. (2.3). In the limit @ — o0, the square root in
the right-hand side of Eq. (2.3) diverges, then the entire
right-hand side diverges, unless ¢ becomes a constant ¢,
as @ — oo, which is indeed what happens. This is not
sufficient, however, to avoid the divergence of ¢: it must
also be by = ¢, Which makes In(¢p/¢ho,) vanish so that ¢
has a chance to remain finite in this limit. The divergence of
¢ as w — oo would be unphysical since this scalar field
must be well defined for all values of w, including large
ones (except, possibly, at spacetime singularities). Hence,
we require ¢y = ¢, and we write

) pw+ﬂ (¢)
——1In
e T

2¢ has a gravitational nature in the Jordan frame but it appears
as a matter field in the Einstein frame, blurring the sharp
distinction between geometry and matter present in Einstein
theory. Ambiguities in the identification of matter and gravita-
tional fields are an obstacle to creating a metatheory of gravi-
tational theories [38].

The constant ¢, is positive because it corresponds to the
inverse of the gravitational coupling strength.

(2.9)
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This argument fixes the arbitrary integration constant ¢,
appearing in Eq. (2.3).
If the Jordan frame scalar has asymptotics

1

for some” p, then the Einstein frame scalar (2.9) can be
written as

(2.10)

I In[1+0(1/o”)] 1 1
W e “avOlerm) @

using the linear expansion In (1 + x) ~ x for |x| < 1. We
do not want to prescribe the asymptotics of ¢, and attempts
to do so would require independent arguments but, a priori,
there are only three possibilities:

(1) If p > 1/2, in particular in the “standard” situation
¢ = ¢ + O(1/w) corresponding to p = 1 [23,39],
then q~5 — 0 as w — oo and, in vacuo, no scalar field
source is left in the limit of the Einstein frame field
equations (except, possibly, for a cosmological
constant if V(¢,) # 0).

(i) If p=1/2, which is the “anomalous” situation
studied in the literature [24,25,30,31], (i) does not
vanish but reduces to a function ¢, which does not
depend on w. Then the limit of the Einstein frame
equations contains a (canonical) scalar field source
¢, unless this function is constant. If ¢ is a
constant instead of depending on the coordinates,
this scalar field disappears from the field equations
(except if there is a potential V(¢) with V(¢ ) # O,
in which case a cosmological constant remains). It
would be tempting to assume that ¢, is constant,
but this assumption is unwarranted at this stage.

(iii) If p <1/2 then ¢ — o as w — +oo, which is
unphysical. Therefore, this case is excluded and
the asymptotics described by p = 1/2 are truly
a borderline, extreme situation. This fact is not
evident from the standard Jordan frame analysis:
one needs to analyze the Einstein frame to reach
this conclusion.

The analysis of the Einstein frame, and of Eq. (2.9) that
accompanies it, selects the scaling ~w~'/% as a critical
behavior which is a boundary of the possible behaviors of ¢
in the Jordan frame. This conclusion about the Jordan
frame was not expected to come from an analysis of the
Einstein frame.

Let us compare now the previous considerations with the
asymptotics of the Jordan frame Brans-Dicke scalar. By
inverting Eq. (2.3), one writes the Jordan frame scalar as

“Here O(w™P) denotes a scalar function of the coordinates
which is of order ™ as w — oo.

(2.12)

[ 16r -
¢:¢OCXP( m(ﬁ)

The Jordan frame scalar ¢ depends on w, a property
familiar from the study of exact Jordan frame solutions
of Brans-Dicke theory, especially in cosmology [31,40] and
in spherical symmetry [41-44]. In order for the @ — o
limit to not cause unphysical divergences in the Einstein
frame, ¢ must go over to a scalar function ¢ (x)
independent of w in this limit, say

- ~ 1
3 = ) +0( ) 2.13)
with ¢ > 0. There are now two possibilities:

1. oo (x) # 0.—If o (x) # 0, Eq. (2.12) implies that

1
x) = O —1:
d(x) = ¢o + (\/W)

these are exactly the asymptotics (1.5) which are known to
make the ® — oo limit fail to reproduce GR in the Jordan
frame. Hence, a finite and nonzero Einstein frame ¢ in the
@ — co limit (i.e., a finite ¢, (x) # 0) always implies an
“anomalous” scaling of the Jordan frame ¢ of (electro)
vacuum Brans-Dicke theory if ¢, # 0. Vice-versa, using
Eq. (2.9), one concludes that the “anomalous” Jordan frame
scaling (2.14) always determines a finite nonzero ¢, in the
Einstein frame, and there is a one-to-one correspondence
between these two phenomena in the two frames.

2. oo(x) = 0.—If instead ¢y, (x) =0, say P(x) =
O(1/w%) with g > 0, then the comparison of Egs. (2.11)
and (2.13) gives p =g+ 1/2 > 1/2 and it follows from
Eq. (2.12) that

(2.14)

b=+ 0( i) (a=0. @19

The “standard” behavior [23] of Eq. (1.4) is reproduced by
the special value g = 1/2.

D. General conclusions

It is not clear from this analysis whether values of p other
than 1/2 and 1 are possible, but nothing seems to forbid
them as long as one keeps p > 1/2. However, such values
have not appeared in the literature thus far. All that one can
say in the Einstein frame approach described here is that p
must be larger than, or equal to, 1/2 and that p > 1/2
corresponds to the vanishing of the function ¢, (which
does not depend on ) and of the Einstein frame scalar ¢ in
the @ — oo limit.

The way ¢ approaches a constant is detailed by the decay
of its gradient as |w| becomes larger and larger,
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167 167 -\~ -~
V ¢ = _— \ =7 V. o. 2.16
a¢ ¢0 |260 + 3| exp ( |260 + 3|¢> (l¢ ( )
Let us examine now the limit of the Jordan frame field

equations (1.2) and, in particular, of the term in their right-
hand side

Aab = % <va¢vh¢ - %gahvc¢vc'¢) . (217)
In the Jordan frame analysis available in the literature, the
failure of Brans-Dicke theory to reproduce the expected GR
limit (which corresponds to ¢» = const and to the right-hand
side of the vacuum field equations equal to zero) has been
traced to the fact that, in conjunction with the asymptotics
(1.5), the tensor A ,;, does not vanish in the @ — oo limit but
remains of order unity [24,25]. In fact, using Eq. (2.16), the
tensor A, (before taking any limit) reads

® ,, 2 /1 lbrm
Aab = _2¢(2)e Bwi3? |2w i 3|
-1 o
X (va¢vb¢_§gab96dvc¢vd¢> (218)
2 167
= 167zsign(a))‘ Zwaj&— 3‘ (%) &2V Tt
S
X (Va‘f’vbcﬁ—i%aﬁgc‘ivctﬁvdqb) (2.19)

and, taking the @ — oo limit in which ¢ — ¢y,

- . R D
Aoy = A5 = $asign(w) (V09,6 - 3707909,
(2.20)

The Einstein frame metric g‘f;j’) solves the Einstein equa-

tions which have as a matter source the scalar field ¢ with

canonical stress-energy tensor A(;f), obtained as the limit of

the Jordan frame stress-energy tensor:

877 o] =AY

Einstein frame

(2.21)

Jordan frame limit ’

The Einstein frame scalar ¢ is minimally coupled to the
curvature and has canonical kinetic energy density (if
o > 0). If we focus only on the metric tensor and the
spacetime geometry, the two candidates for a GR limit of
Brans-Dicke theory, i) the @ — oo limit of the Einstein
frame metric and ii) the @ — oo limit of the Jordan frame
metric coincide (apart from the irrelevant positive multi-
plicative constant ¢, which can always by eliminated by
rescaling the coordinates).

Since this GR limit gf}f) = géf) obtained with these two
different methods is not a solution of the vacuum Einstein

equations (which would require A(;;o) to vanish identically)

but solves the coupled Einstein-Klein-Gordon equations,
the limit to GR is regarded as an anomaly. The previous
discussion using the Einstein frame deepens our under-
standing of the limit to GR.

(c0)

Summary. The limit g’ of the Einstein frame metric

coincides with the @ — oo limit gif) of the Jordan frame

metric g,,, but it does not solve the Einstein equations with

V(g — —
the same matter source — % Gap = —Ag,, and ¢p = const

expected to be left over in the Jordan frame equations (1.2)
after the @ — oo limit. The Einstein frame limiting metric

gg? solves instead the Einstein equations with a canonical

minimally coupled scalar field ¢ described by the stress-
energy tensor

O U S
Ty = ViV — Eg(ab)gffo)vc¢vd¢ - U(¢)gab' (2-22)

III. EXAMPLES

All stationary, spherically symmetric, asymptotically flat
black holes of Brans-Dicke theory without potential reduce
to those of GR, a well-known no-hair theorem (which is
generalized to axial symmetry, to more general scalar-
tensor theories, and to potentials with zero minimum) [45].
For these black holes, the Brans-Dicke scalar ¢ becomes
trivial (i.e., constant) outside the event horizon. Apart from
this situation, the most general spherical, static, asymp-
totically flat solution of the vacuum Brans-Dicke equations
is a 3-parameter family depending on g)arameters ao, Pos
and y. If y # 0, this general solution is” [41,42,44,48]

ds? = —el@tho)/r g2 1 eo—ao)/r L 4d7"2
sinh(y/r)
+e(ﬁ0_0’0)/r L 2}’de2 (3 1)
sinh(y/r) @r :
c
P(r) = goe™P/", Py = (3.2)

V2w + 3]

where dQé) = d6* + sin’0dg? is the line element on the
unit 2-sphere, and®

4y = a} + 207, (3.3)

5As shown in Ref. [44], under certain conditions this solution
can be recast in the less general Campanelli-Lousto form [46,47].

®This relation only holds for y > 0 and there is no loss of
generality in choosing positive y when y # 0 [49].
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while ¢ is a scalar charge. If y = 0, the general solution is
instead [44] the Brans class IV spacetime [50]

ds? = —e2B/rgp2 + eZB(C—H)/r(er + rde%2)>, (34)
B(r) = e, (35)
where
B:_M, co__ P (3.6)
2 (a9 + Bo)

According to the results of the previous section, in the limit
® — oo this spacetime should reduce to a solution of GR
with the same symmetries but sourced by a canonical,
minimally coupled scalar field ®(r) which must coincide
with the Einstein frame scalar ¢(r). But the general
spherical, static, asymptotically flat solution of the
Einstein equations sourced by a free scalar field is well
known: it is the Fisher-Janis-Newman-Winicour-Buchdahl-
Wyman (FINWBW) solution hosting a central naked
singularity [49,51]. Let us check if our statement based
on Sec. II is true. By taking the limit @ — oo, the Brans-
Dicke line element (3.1) reduces to

2
ds(

) _ _eao/rdtZ + e—ao/r< ]//I"

t oo
sinh(y/r)) dr

—ay/r )//I" : 2 2
+ e~/ <sinh()//i’)) rodQp,. (3.7)
This is indeed recognized as the FINWBW geometry
[49,51].

The Jordan frame scalar field ¢(r) = ¢oe /" — ¢y =
const as w — oo. However, the scalar field sourcing the
FINWBW geometry in GR is [49,51]

[6)) —
O(r)=—. D, =—

r 4\/7

and is exactly the Einstein frame cousin of ¢(r), i.e.,

D(r) = ¢(r) [44].

Let us consider now the case y = 0, in which the Brans-
Dicke solution is the Brans class IV geometry (3.4)—(3.6)
[50]. It is well known that, in the @ — oo limit, this solution
does not reduce to the corresponding vacuum solution of
the Einstein equations with the same symmetries, which is
the Schwarzschild solution, and it cannot describe a black
hole but only a wormhole throat or a naked singularity
[52,53] (indeed, the failure of the Brans solutions [50] to
reproduce the Schwarzschild spacetime was one of the first
occurrences prompting investigation of the anomaly in the
GR limit of Brans-Dicke theory [25]). It is easy to see that
the @ — oo limit of Egs. (3.4)—(3.6) produces B — /2,
C — 0, and the Yilmaz geometry [54,55]

(3.8)

ds} (3.9)

) = e R + ),

which is indeed the Einstein frame counterpart of Brans
class IV [44]. The Jordan frame scalar field of Brans class
IV ¢(r) = ¢oe 8" — ¢y = const but the scalar field
sourcing the Yilmaz geometry is instead

)

o(r) ==

(3.10)

which coincides with the Einstein frame counterpart of
#(r), ie., ®(r) = ¢(r) again.

IV. THE EFFECTIVE FLUID APPROACH

Letus discuss now an independent approach to the problem
of the anomaly in the GR limit of BD theory. In this approach,
the Brans-Dicke field equations are rewritten as effective
Einstein equations with the terms dependent on ¢ and its
derivatives moved to the right-hand side to provide an extra
source (in addition to the real matter stress-energy tensor
Ti'Z)). In the rest of this article we consider only vacuum or
conformally invariant matter with 7") = 0. Since we want to
define an effective fluid with 4-velocity proportional to the
gradient of ¢, this 4-vector must necessarily be timelike and
this section, unlike the previous one, is restricted to situations
in which V¢¢ is always timelike.

A. Imperfect fluid equivalent of the Brans-Dicke field

When the gradient V“¢ is timelike, one introduces the
fluid 4-velocity

Va
PR (4.1)
V _Ve¢ve¢
which is normalized, u“u, = —1. This 4-velocity provides

a3 + 1 splitting of spacetime into the time direction u“ and
the three-dimensional space X, perceived by the comoving
observers of the effective fluid, which has the Riemannian
metric

hap = Gap + Ualty,. (4.2)
h,’ is the usual projection operator which satisfies
hapu® = hgu® =0, (4.3)
h,h? . = he., ht, =3. (4.4)
The fluid 4-acceleration
u = ubV,ut (4.5)

is purely spatial, #“u,. = 0. The projection of the velocity
gradient onto the 3-space X, is the purely spatial tensor

Vab = hachbdvduc’ (46)
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which is decomposed according to

0
Vab = eab + @up = 0 + _hab + @y, (47)

3
where 0,, = V(ab) (expansion tensor) is the symmetric part
of Vi, 0=6°. = Veu, is its trace,

0
Oup = gab — 7 hab

3 (4.8)

(shear tensor) is the trace-free part of ,,, and the vorticity
tensor w,;, = V|, vanishes identically because the fluid is

generated by a scalar and u is irrotational. The tensors £,
V., €xpansion 6,,, and shear ¢, are purely spatial,
(4.9)

Opu’ = 0,,u’ = o,ut = o u’ =0,

and 6%, = 0. In general, it is [56]
0 . .
Vbua = Oup + ghab + Wyp — U Uy = vab —UsUyp. (410)

The projection of this equation onto the time direction
produces i, while the projection onto the 3-space orthogo-
nal to u® gives V. In our particular case (4.1), we have [57]

V.oV

hab_gah_%’ (411)

1 V.oV PV, V P

Vou,=——|V,V)p - ——————

Uy \/W( a b¢ v6¢ve¢ )7
(4.12)
I’.‘a = (_ve¢ve¢)_zvb¢[(_ve¢ve¢)vavb¢

+ VgV, V.V, ). (4.13)

The kinematic quantities of the effective fluid are given in
Ref. [57], while the effective stress-energy tensor of ¢ is
described by

® 1
SﬂTg,) = e (va¢vb¢ - Egabvcfﬁvc(ﬁ)

1 \%
+ $ (vavb¢ - gabD¢) - ﬂgab

and it is covariantly conserved, together with that of ordinary
matter

(4.14)

ver —o,  ver —o. (4.15)
The effective stress-energy tensor Tf;f)) can be written [57,58]

in the imperfect fluid form

Tap = puatty + qatty + qpitg + gy, (4.16)
where

p =T u'u’, (4.17)
9da = _Tcduchad’ (4]8)
Hab = Phab + T = Tcdhachbd’ (419)

1 b 1 b
P =_g"y = h"Ty, (4.20)

3 3

Tap = Hab - Phalﬂ (421)

are the effective energy density, heat flux density, stress
tensor, isotropic pressure, and anisotropic stresses (the trace-
free part z,;, of the stress tensor I1,;) in the comoving frame.
In this frame, we have

q.u‘ = ,,u’ = nu’ = u" = zu’ =0,

7, =0. (4.22)

These effective quantities were computed explicitly in
Refs. [57,58], obtaining:

_ @ e V 1 va¢vb¢vavb¢
8rp?) = —ﬁzv AV 2% + 5 <D¢ - W) , (4.23)
VepVe
sl = s (VaV.Vath = VoV, Vo) (4.24)
vcd)vachﬁ vc¢vd¢vcvd¢
TGV T (4.25)
O \%
a1l — (—veqbveqs)-l [(— V- - ﬂ> (Vb — 90 V0V, )
A& V, oV, V<V .V
T (VT - ViV T = VgV U+ ) (4.26)
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= ¢ — % — 1 l c
I ARAAR
() — — e XYY YTbTa¥
8P\ = 2¢2V¢ - 2¢ 3¢<2D¢+ Vo4 ) (4.28)
@ _ 1 VpVIgV, Vg
8””ab ¢ve¢v ¢ |: (v ¢vh¢ gabv ¢v ¢) (Dd) - Ve¢ve¢ )
LA S AN R A AR A (4.29)

B. A symmetry of (electro)vacuum Brans-Dicke gravity
and of its equivalent effective fluid

In (electro)vacuum, the Brans-Dicke action (1.1) is
invariant under the 1-parameter group of symmetries [30]

Gab = Gab = ¢2a9abv (430)

b= =, a#1/2, (4.31)
provided that the Brans-Dicke parameter and the scalar

field potential are changed to

~ _o+6a(l —a)
o(w,a) = =207 (4.32)
V() = g5V (§r=) (4.33)

[because a # 1/2, the conformal transformation (4.30) is
completely different from the transformation leading to the
Einstein frame metric (2.1)]. To understand the use of a, the
idea is that one first discovers a l-parameter symmetry
group of (electro-)vacuum Brans-Dicke theory. This group
is parametrized exactly by the parameter a appearing in the
exponents of both metric and scalar field redefinitions (in
different ways). This parameter is well defined independ-
ently of any limit of the theory. Then, we discover that the
limit @ — oo of the theory corresponds to the limit o —
1/2 and we use this fact advantageously for the particular
problem at hand. Is is shown in Ref. [30] that the operations
(4.30), (4.31) constitute a 1-parameter group of symmetries
which, thus far, has seen two uses in the literature: to
generate new solutions of the field equations from known
ones [59], and to study the anomaly in the @ — oo limit of
Brans-Dicke gravity [30,31]. It is this second use that we
are interested in here.

The relation (4.32) between the parameters @ and « can
be inverted, obtaining

_20+3++/(20+3)20 +3)
B 2(2& + 3) ’

(4.34)

and @ - 1/2 as @ — oo, hence one can trade these two
limits and think of obtaining larger and larger @ by means

of consecutive symmetry transformations (4.30), (4.31). In
(electro)vacuo, this transformation connects theories within
an equivalence class and a change of the w-parameter
@ — @ simply moves a Brans-Dicke theory within this
equivalence class [30,31]. This is true also for the @ — o
limit, which can be seen as a transformation (4.30), (4.31)
leading to larger and larger @ and cannot break this
restricted conformal invariance and move the theory
outside of the equivalence class. GR, which is not con-
formally invariant, does not belong to this class and it
cannot be reproduced’ by the @ — co limit under these
circumstances—one needs to first break the conformal
invariance and exit this class to be able to obtain GR as
the limit [30,31].

Naturally, the symmetry (4.30), (4.31) corresponds to a
symmetry of the effective fluid. Under (4.30), (4.31), the
fluid 4-velocity is mapped to [57]

u. — ﬁc = % = ¢“uc, (435)
\% _ngvc¢vd¢
u® - = ¢puc, (4.36)

while §*°u,it, = g*u,u;, = —1. The effective fluid quan-
tities transform according to [57]

~(3) _(p) @ (1+a) (a=2),
Tab _Tab "‘47[45[ b 20 \% ¢V DYup
—<vavb¢—gabm¢>], (437)
o 3at )y,
P =g (1= 20 - 9.4 2.
(4.38)
3P = (1 - 2a)p4'?, (4.39)

"Quantization breaks this symmetry [60].
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P — 2| (1 —2gyp#) L AE=2=2) G _ﬂ}
P@) = 2 {(1 2a) PP + e VPV, ¢ 820’
(4.40)
09 — (1 -2 4 -~ {Mve(pv b V] h
ab ab 871'¢ ¢ e ab»
(4.41)
7D = (1-2a)2?). (4.42)

In the limit a — 1/2 (corresponding to @ — o) the
imperfect fluid quantities, i.e., the heat flux Z]E,‘ﬁ) and the

anisotropic stresses ﬁs’z) , which are proportional to (1 — 2a)

vanish identically, but there remain nonvanishing contri-
butions to the effective energy density and pressure:

= () = (c0) 1 (2604—3) 1 c
Ty =T, = oy {—2452 V.V, — Egahv AV
V(¢)
_\9) 4.43
2¢ gab:| ’ ( )
@ - 1] (2ow+3) 1%

@) |22y p+ | (444
P = P() ¢ |: 3271'¢2 ¢ L¢+ 167T¢:|’ ( )
_a - 1] 2ew+3) 1%

PO 5 p = [T gepy - | (445
= () ¢ |: 32”¢2 ¢ c¢ 16ﬂ¢:| ( )
By introducing gab = ¢gab7 gab = ¢—lgab’ o=
%ln(ﬁ) (i.e., the Einstein frame metric, inverse

metric, and scalar field), these quantities are written as

I . 1 .
Tib) = sign(2w + 3) [Vadi’vbtl) - Ega,,(gfdchwdcb)}

= U(®)Jap> (4.46)
ion(2w +3) = =

Bleo) = —% FOV,OV,® + U(D),  (4.47)

Pl = S0+ 3) g 9,0 - U(®).  (4.48)

The stress-energy tensor reduces to that of a minimally
coupled scalar field which has the perfect fluid form
[58,61]. If 2w + 3 > 0, it is a canonical scalar, while if
2w + 3 < 0, itis a phantom field. The imperfect fluid terms
(the heat flux density g* and the anisotropic stresses 7)
vanish in the limit @ — 1/2, while the second order
derivatives of ¢ (which cause the effective stress-energy
tensor of the Brans-Dicke field to deviate from the
canonical form) are all contained in the terms p(®) and
P®) which, being weighted by a factor (1 — 2a), vanish in
this limit. What is more, if 2w + 3 > 0, the canonical and

minimally coupled scalar field @ left in the limit is nothing
but the Einstein frame scalar corresponding to the Jordan
frame ¢, i.e., ® = (i) However, the Einstein frame was not
used in any way in the considerations of this section. This
result reproduces that of Sec. II using an independent and
complementary method, but is limited by the requirement
that the gradient V¢¢ be timelike.

As a final comment, consider the Brans-Dicke field
equation (1.3) for the scalar field which, in the presence of
conformal matter (including (electro)vacuum), and for
@ = const and V(¢) =0, reduces to [J¢p = 0. Since this
equation does not contain explicitly the parameter w, its
form is not affected by the limit @ — oo and, indeed, the
scalar field @ left behind in the @ — oo limit solves the
same formal equation [J® = 0 (although the metric and its
covariant derivative operator change during the limit).

V. CONCLUSIONS

When considering particular solutions of Brans-Dicke
theory, one should keep in mind that the limit of the metric
tensor taken in a specific coordinate system may not be
unique [62]. A possible, rigorous way to take the limit of a
spacetime as a parameter varies consists of the geometric,
coordinate-invariant method of Ref. [63]. The two methods
employed in the present work are also covariant.

We have studied the limit of (electro)vacuum Brans-
Dicke gravity with no scalar field potential as the Brans-
Dicke coupling parameter @ becomes infinite. The first
method, based on an analysis of Einstein frame quantities,
elucidates the relation between the two GR relatives of
Jordan frame spacetimes in Brans-Dicke theory, the
Einstein frame formulation and the Jordan frame limit
@ — oo. The second method combines an effective fluid
description of Brans-Dicke gravity (in which the Jordan
frame scalar ¢ is equivalent to an imperfect fluid sourcing
effective Einstein equations) with a 1-parameter symmetry
group of the theory [30]. The two methods are independent
of each other and complementary and produce the same
result. As @ — oo, the metric g,, of an (electro)vacuum
Brans-Dicke spacetime (M, g,;, ) (Where M is the space-
time manifold) tends to a metric which does not solve the
(electro)vacuum Einstein equations. It solves instead the
Einstein equations sourced by a minimally coupled scalar
field. Moreover, this scalar coincides with the Einstein
frame scalar field ¢ corresponding to the Jordan frame
scalar ¢ present before taking any limit. Contrary to much
reasoning in the literature, the methods used do not rely
crucially on assuming a priori the asymptotics of the
Brans-Dicke scalar field as @ — oo. The formal explan-
ation of the failure of the @ — oo limit of (electro)vacuum
Brans-Dicke theory to reproduce a GR solution with the
same matter source, proposed long ago in Ref. [30], is put
on a more physical basis by the present analysis.
Essentially, the @ — oo limit does not freeze the scalar
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gravitational d.o.f. of Brans-Dicke theory but demotes it to
the role of an “ordinary” minimally coupled scalar field
with stress-energy tensor quadratic in the first derivatives of
this field and no contribution linear in the second deriv-
atives. This is still a nontrivial dynamical field, but it has
changed its gravitational nature to that of a matter field.

As an example, we have performed a test of our
conclusions using the general static, spherical, asymptoti-
cally flat solution of the vacuum Brans-Dicke equations
[41,42,44] (excluding black holes, for which the Brans-
Dicke scalar is trivial outside the event horizon [45]). The
result, which produces the FINWBW metric hosting a
central naked singularity, confirms the conclusions of
Secs. II and IV.

Shedding light on this problem that is two decades old is
important for three reasons. First, contrary to two decades
ago, there is now a major experimental effort to test, or
constrain, gravity at many scales involving cosmology
[4,5], supermassive black holes [6], binary systems of
compact objects emitting gravitational waves [7], and the
Solar System [1-3,9,10]. Since the PPN formalism based
on the weak-field limit of gravitational theories [10] is the
basis for many of these analyses, one should worry about

the exact meaning of this formalism if vacuum Brans-Dicke
solutions (which describe wormhole throats or naked
singularities) do not go over to the corresponding GR
solutions (usually, the Schwarzschild geometry which
describes a black hole). Second, a clear picture of the
anomalous limit of (electro)vacuum Brans-Dicke theory to
GR may help understanding dynamical attractor mecha-
nisms of scalar-tensor to GR gravity. Finally, in the context
of the thermodynamics of spacetime [34,35], modified
theories of gravity (including scalar-tensor gravity) could
correspond to deviations from an equilibrium state corre-
sponding to Einstein theory [36]. The implications of the
new picture of the ® — oo limit of (electro)vacuum Brans-
Dicke theory for these two areas of research will be
discussed in future publications.
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