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Spinning horizonless compact objects may be unstable against an “ergoregion instability.” We
investigate this mechanism for electromagnetic perturbations of ultracompact Kerr-like objects with a
reflecting surface, extending previous (numerical and analytical) work limited to the scalar case. We
derive an analytical result for the frequency and the instability timescale of unstable modes which is valid
at small frequencies. We argue that our analysis can be directly extended to gravitational perturbations of
exotic compact objects in the black-hole limit. The instability for electromagnetic and gravitational
perturbations is generically stronger than in the scalar case, and it requires larger absorption to be
quenched. We argue that exotic compact objects with spin χ ≲ 0.7 (χ ≲ 0.9) should have an absorption
coefficient of at least 0.3% (6%) to remain linearly stable, and that an absorption coefficient of
at least ≈60% would quench the instability for any spin. We also show that—in the static limit—the
scalar, electromagnetic, and gravitatonal perturbations of the Kerr metric are related to one
another through Darboux transformations. Finally, correcting previous results, we give the trans-
formations that bring the Teukolsky equation in a form described by a real potential also in the
gravitational case.

DOI: 10.1103/PhysRevD.99.064007

I. INTRODUCTION

Exotic compact objects (ECOs) are under intense scru-
tiny as probes of near-horizon quantum structures [1–3], as
models for exotic states of matter in ultracompact stars [4],
and even as exotic gravitational-wave (GW) sources that
might coexist in the Universe along with black holes (BHs)
and neutron stars as in certain dark-matter scenarios (see
Refs. [2,3,5] for recent overviews).
The phenomenology of ECOs depends strongly on their

compactness (or, equivalently, on the gravitational redshift
z at their surface). Objects with z ∼Oð1Þ (e.g., boson stars
[6,7]) have properties similar to those of neutron stars and
displayOð1Þ corrections inmost observables (e.g.,multipole
moments [8–11], geodesic motion [12], quasinormal mode
(QNM) ringing [13–16], tidal Love numbers [17–19], etc.)
relative to BHs.
A different class of ECOs (dubbed ClePhOs in the

terminology introduced in Refs. [2,3]) is instead associated
with modifications of the Kerr metric only very close to the
horizon, as in some quantum-gravity scenarios [20–27].
Here, then, z ∼Oð1020Þ or larger for objects with mass

M ∼ 10 M⊙ or higher. It is extremely challenging—if not
impossible [2,3,28]—to rule out or detect these objects
through electromagnetic observations, since their geodesic
structure is almost identical to that of a BH. On the other
hand, GWs emitted by these objects in different scenarios
carry unique information on their properties. This includes
(i) GW echoes in the postmerger ringdown phase of a
binary coalescence [1,18] (see also Ref. [29] for an earlier
study, and Refs. [30–35] for a debate on the evidence of this
effect in aLIGO data); (ii) a (logarithmically small) tidal
deformability that affects the late inspiral [36,37]; (iii) the
absence of tidal heating for ECOs as compared to BHs [37];
(iv) their different spin-induced quadrupole moment
[9–11,38]; and (v) the stochastic GW background from a
population of ECOs [39–41].
In parallel with developing detection strategies for these

signatures, it is also important to assess the viability of
ECOs and, in particular, their stability and their formation
channels. Spinning ECOs are potentially unstable, due to
the so-called ergoregion instability [42] (for a review, see
Ref. [43]). The latter is an instability that develops in any
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asymptotically flat spacetime featuring an ergoregion but
without an event horizon: since physical negative-energy
states can exist inside the ergoregion—a key ingredient in
Penrose’s process [44]—it is energetically favorable to
cascade toward even more negative states. The only way to
prevent such a process from developing is by absorbing the
negative-energy states. Kerr BHs can absorb radiation very
efficiently and are indeed stable even if they have an
ergoregion. On the other hand, compact horizonless geom-
etries are generically unstable in the absence of dissipation
mechanisms.
The ergoregion instability has been studied for various

models [42,43,45–51]. The timescale of the instability
depends strongly on the spin and on the compactness of
the object [43,49,52]. In particular, the instability exists
only for those objects which are compact enough to possess
a photon sphere [43,53]. The latter is naturally present in all
models of ECOs that modify the BH geometry only at
the horizon scale, for example by invoking an effective
surface located at some Planck distance from the would-be
horizon [2,3].
The ergoregion instability of Planck-inspired ECOs has

been recently studied in Ref. [54] for scalar-field pertur-
bations. There, it was shown that, if the ECO interior does
not absorb any radiation, the instability timescale is short
enough to have a crucial impact on the dynamics of the
object. On the other hand, partial absorption (i.e., reflec-
tivity at the object’s surface smaller than unity) may
quench the instability completely, just like in the BH case.
Because the dissipation of energy in compact objects
made of known matter is small, the instability imposes
severe constraints on some particular models of horizon-
less objects [40].
In this paper we extend the analysis of Ref. [54] to

electromagnetic and gravitational perturbations. Since the
ergoregion instability is intimately linked to superradiance
[43,55], and since superradiance is enhanced by field spin
(at least for rapidly spinning objects), one expects that the
instability gets stronger for gravitational perturbations.
Below, we quantify this expectation—both by solving the
full linear problem numerically and by computing the
spectrum of unstable modes analytically in the small-
frequency limit—and we discuss the implications of our
results for current observational constraints on ECOs.
Any instability is, of course, also related to the

boundary conditions of the problem. While formulating
physical boundary conditions for electromagnetic and
gravitational fluctuations, we uncovered a curious relation
between all sets of perturbations in the static limit: scalar,
electromagnetic, and gravitational perturbations of the
Kerr metric are all related to one another through Darboux
transformations. To the best of our knowledge, this
interesting property of BH perturbations in general rela-
tivity has not been reported before. Through this work, we
use G ¼ c ¼ 1 units.

II. SETUP

A. Kerr-like ECO model

Our setup and methods follow Refs. [40,54]. We con-
sider a geometry described by the Kerr metric1 when r > r0
and, at r ¼ r0, we assume the presence of a membrane with
some reflective properties. Different models of ECOs are
characterized by different properties of the membrane at
r ¼ r0, in particular by a (possibly) frequency-dependent
reflectivity [54,59]. In Boyer-Lindquist coordinates, the
line element at r > r0 reads

ds2¼−
�
1−

2Mr
Σ

�
dt2þΣ

Δ
dr2−

4Mr
Σ

asin2θdϕdt

þΣdθ2þ
�
ðr2þa2Þsin2θþ2Mr

Σ
a2sin4θ

�
dϕ2; ð1Þ

where Σ ¼ r2 þ a2 cos2 θ and Δ ¼ r2 þ a2 − 2Mr, withM
and J ≔ aM being the total mass and spin of the object.
Motivated by models of microscopic corrections at the

horizon scale, in the following we shall focus on the case

r0 ¼ rþð1þ ϵÞ 0 < ϵ ≪ 1; ð2Þ

where rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the location of the would-be

horizon. Although the above parametrization requires
a ≤ M, the latter condition is not strictly necessary [54];
the case of so-called “superspinars” (when a > M
[50,51,54,62]) will be discussed elsewhere. Note that ϵ
is related to the compactness of the object and to the
gravitational redshift at the surface, namely M=r0 ≈
M=rþð1 − ϵÞ and z ≈ ϵ−1=2ðrþ=M − 1Þ−1=2. If r0 ∼ rþ þ
lP (where lP is the Planck length, as suggested by some
quantum-gravity-inspired models [1–3]), then ϵ ∼ 10−40 for
a nonspinning object with M ∼ 50 M⊙.

B. Linear perturbations

Scalar, electromagnetic, and gravitational perturbations
in the exterior Kerr geometry are described in terms of
Teukolsky’s master equations [63–65]:

1The vacuum region outside a spinning object is not neces-
sarily described by the Kerr geometry, due to the absence of an
analog to Birkhoff’s theorem in axisymmetry. This implies that
the multipolar structure of a spinning ECO might be generically
different from that of a Kerr BH. However, in those models that
admit a smooth BH limit, there are indications that all multipole
moments of the external spacetime approach those of a Kerr BH
as ϵ → 0 [9–11,56–58]. In fact, for z → ∞, it is natural to expect
that the exterior spacetime is extremely close to Kerr, unless some
discontinuity occurs in the BH limit. See Refs. [30,40,54,59–61]
for other work discussing the same model.

MAGGIO, CARDOSO, DOLAN, and PANI PHYS. REV. D 99, 064007 (2019)

064007-2



Δ−s d
dr

�
Δsþ1

dsRlm

dr

�

þ
�
K2 − 2isðr −MÞK

Δ
þ 4isωr − λ

�
sRlm ¼ 0; ð3Þ

½ð1 − x2ÞsSlm;x�;x þ
�
ðaωxÞ2 − 2aωsxþ s

þ sAlm −
ðmþ sxÞ2
1 − x2

�
sSlm ¼ 0; ð4Þ

where sSlmðθÞeimϕ are spin-weighted spheroidal harmon-
ics, x≡ cos θ, K ¼ ðr2 þ a2Þω − am, and the separation
constants λ and sAlm are related by λ≡ sAlmþ
a2ω2 − 2amω. When a ¼ 0, the angular eigenvalues are
λ ¼ ðl − sÞðlþ sþ 1Þ, whereas for a ≠ 0 they can be
computed numerically or with approximated analytical
expansions (see Sec. II D below).
It is convenient to make a change of variables by

introducing Detweiler’s function [66]

sXlm ¼ Δs=2ðr2 þ a2Þ1=2
�
αsRlm þ βΔsþ1

dsRlm

dr

�
; ð5Þ

where α and β are certain radial functions. Introducing
the tortoise coordinate r�, defined such that dr�=dr ¼
ðr2 þ a2Þ=Δ, the master equation (3) becomes

d2sXlm

dr2�
− Vðr;ωÞsXlm ¼ 0; ð6Þ

where the effective potential is

Vðr;ωÞ ¼ UΔ
ðr2 þ a2Þ2 þ G2 þ dG

dr�
; ð7Þ

and

G ¼ sðr −MÞ
r2 þ a2

þ rΔ
ðr2 þ a2Þ2 ; ð8Þ

U ¼ VS þ
2α0 þ ðβ0Δsþ1Þ0

βΔs ; ð9Þ

VS ¼ −
1

Δ
½K2 − isΔ0K þ Δð2isK0 − λÞ�: ð10Þ

The prime denotes a derivative with respect to r, and the
functions α and β can be chosen such that the resulting
potential is purely real (see Ref. [66] for the definitions of
α and β in the electromagnetic case and Appendix B for the
gravitational case).2 In the following, we define Rs ≡ sRlm,
Xs ≡ sXlm, and omit the l, m subscripts for brevity.

C. Boundary conditions

By imposing boundary conditions at infinity and at the
surface of the ECO, Eq. (6) defines an eigenvalue problem
whose eigenvalues, ω ¼ ωR þ iωI, are the QNMs of the
system. In our convention a stable mode corresponds to
ωI < 0, whereas an unstable mode corresponds to ωI > 0
with the instability timescale τ ≔ 1=ωI .
In order to derive the QNM spectrum, we impose

outgoing boundary conditions at infinity [65]:

Xs ∼ eiωr� ; r → ∞: ð11Þ

At r ¼ r0, there is a superposition of ingoing and outgoing
waves. In general, the boundary condition depends on the
properties of the membrane of the ECO. In the following,
we will mainly focus on the analysis of a perfectly
reflecting surface—a discussion about the role of partial
absorption by the object is presented in Sec. VI. In the case
of electromagnetic perturbations, we consider a perfect
conductor in which the electric and magnetic fields satisfy
Eθðr0Þ ¼ Eϕðr0Þ ¼ 0 and Brðr0Þ ¼ 0. By writing the
previous conditions in terms of the three complex scalars
of the electromagnetic field in the Newman-Penrose for-
malism [67], we obtain the following boundary conditions
on Teukolsky’s function [43]:

∂rR−1 ¼
�
iK
Δ

−
i
2K

ðλ� Bþ 2iωrÞ
�
R−1; ð12Þ

where3 B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 4maω − 4a2ω2

p
, and the plus and minus

signs refer to polar and axial perturbations, respectively.
Note that the above boundary conditions define a perfectly
conducting object, since the outgoing energy flux is equal
to the incoming flux at the surface. In Sec. III A, we will
show that the boundary conditions in Eq. (12) are equiv-
alent to the following boundary conditions on Dirichlet’s
function, when ϵ ≪ 1:

�
X−1ðr0Þ ¼ 0 axial

dX−1ðr0Þ=dr� ¼ 0 polar
: ð13Þ

Motivated by a “bounce and amplify” argument (see
Sec. VA below), we shall extend this result to gravitational
perturbations of a perfectly reflecting ECO, in which case
we impose

�
X−2ðr0Þ ¼ 0 axial

dX−2ðr0Þ=dr� ¼ 0 polar
: ð14Þ

2Reference [66] has some mistakes in the definitions of the
radial functions α and β in the gravitational case, which we
correct in Appendix B. 3We notice that Ref. [43] has a typo in the definition of B.
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D. Numerical procedure

Equation (6) with the boundary conditions (11) and (12)
[or (13) and (14)] can be solved numerically through a
direct integration shooting method [68]. Starting with a
high-order series expansion at large distances, we integrate
Eq. (6) [or, equivalently, Eq. (3)] from infinity to r ¼ r0; we
repeat the integration for different values of ω until the
desired boundary condition at r0 is satisfied.
The QNMs of the system depend on two continuous

dimensionless parameters: the spin χ ¼ a=M and the
parameter ϵ, defined in Eq. (2), that is related to the
ECO compactness and to the redshift at the ECO surface.
Furthermore, the QNMs depend on three integer numbers:
the angular number l ≥ 0, the azimuthal number m (such
that jmj ≤ l), and the overtone number n ≥ 0. We shall
focus on the fundamental modes (n ¼ 0) with l ¼ m ¼ 1
for electromagnetic perturbations and l ¼ m ¼ 2 for gravi-
tational perturbations which, in the unstable case, corre-
spond to the modes with the largest imaginary part, and
thus the shortest instability timescale. In our numerical
results, we also make use of the symmetry [69]

m → −m; ωR → −ωR; sAlm → sA�
l−m: ð15Þ

The latter guarantees that, without loss of generality, we can
focus on modes with m ≥ 0 only.
Finally, the angular eigenvalues can be computed numeri-

cally using continued fractions [70]. For aω ≪ 1, sAlm can

also be expanded analytically as sAlm ¼ P
n¼0f

ðnÞ
slmðaωÞn,

wherefðnÞslm are knownexpansion coefficients [70]. The above
expression provides an excellent approximation whenever
jaωj≲ 1. In the numerical results presented below, we have
used the full numerical expression of sAlm obtained through
continued fractions. We checked that the analytical approxi-
mation (up to second order) differs from exact eigenvalues by
≲2% for the electromagneticmodes at high spin and by≲4%
for the gravitational modes.

III. ECO INSTABILITIES FOR
ELECTROMAGNETIC PERTURBATIONS

A. Analytical results: Extension of Vilenkin’s
calculation to electromagnetic perturbations

Here we extend Vilenkin’s analytical computation [45]
of scalar perturbations in the background of a perfectly
reflecting Kerr-like object to the electromagnetic case. We
use Detweiler’s transformation [Eq. (5)] and introduce
standard “in” and “up” modes, denoted Xþ

s and X−
s ,

respectively, with asymptotic behavior

Xþ
s ∼

�
Bþe−iω̃r� r� → −∞
e−iωr� þ Aþeþiωr� r� → ∞

; ð16aÞ

X−
s ∼

�
eþiω̃r� þ A−e−iω̃r� r� → −∞
B−eþiωr� r� → ∞

; ð16bÞ

where ω̃ ¼ ω −mΩ and Ω ¼ a=ð2MrþÞ is the angular
velocity at the horizon. Since the effective potential in
Eq. (6) is real, X�

s and their complex conjugates X��
s are

independent solutions to the same equation which satisfy
complex conjugated boundary conditions. Via the
Wronskian relationships, the coefficients A� and B� satisfy
the relations [71]

1 − jAþj2 ¼ ðω̃=ωÞjBþj2; ð17aÞ

1 − jA−j2 ¼ ðω=ω̃ÞjB−j2; ð17bÞ

and ω̃Bþ ¼ ωB−, from which it follows that jA−j ¼ jAþj.
We focus on the solution with asymptotics [Eq. (16b)],

and we impose the boundary conditions [Eq. (12)] at the
surface; i.e., we assume that the latter is a perfect conductor.
Near the surface, the function R−1 defined in Eq. (12) has
the following asymptotics:

R−
−1 ∼AΔe−iω̃r� þ Beþiω̃r� r� → −∞; ð18Þ

whereA ¼ A0 þ ηA1 þ � � � and B ¼ B0 þ ηB1 þ � � �, with
η≡ r − rþ. Since Δ ∼ ðrþ − r−Þη near the surface, in
Eq. (18) we consider A ¼ A0 and B ¼ B0 þ ηB1. We
then obtain

B0 ¼
−21=2ðr2þ þ a2Þ1=2ω̃

B
; ð19Þ

A0 ¼
−iB

4KþR� B0A−; ð20Þ

where Kþ ¼ KðrþÞ, R ¼ iKþ þ ðrþ − r−Þ=2 [71]. By
inserting Eq. (18) in the Teukolsky equation, we find

B1 ¼
�

iam
Mðrþ − r−Þ

þ 2ωrþ − iλ
4Mrþω̃

�
B0: ð21Þ

Equation (18) with Eqs. (19)–(21) defines the asymptotic
expansion of R−1 near the horizon at the first order in η. By
inserting Eq. (18) in the boundary condition [Eq. (12)], we
get the following expression:

eiω̃r
0� ∓ A−e−iω̃r

0� ¼ 0 ð22Þ

for the two signs of Eq. (12), respectively, which corre-
spond to polar (−) and axial (þ) modes, and where
r0� ¼ r�ðr0Þ. The above equation takes the same form as
Eq. (11) in Ref. [45] for scalar perturbations. Note that
Eq. (22) implies that the perfect-conductor boundary
conditions [Eq. (12)] correspond to the Dirichlet and
Neumann boundary conditions on the function X−

−1 for
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axial and polar modes, respectively [see above Eq. (13) for
an explicit expression]. Equation (22) yields

ω̃ ¼ 1

2jr0�j
ðpπ −Φþ i ln jA−jÞ; ð23Þ

where p is a positive odd (even) integer for axial (polar)
modes and Φ is the phase of the reflected wave at r ¼ r0.
In order to compute the imaginary part of the mode, we

first recall that jA−j ¼ jAþj, so we need to derive jAþj. For
waves originating at infinity, the “in” mode Xþ

−1 has
asymptotics [Eq. (16a)]. If we express the latter in terms
of Teukolsky’s function R−1, we find

Rþ
−1 ∼ r−1Ce−iωr� þ rDeiωr� r� → ∞; ð24Þ

where the coefficients of incident and reflected waves are
C ¼ 1=ð23=2jωjÞ and D ¼ 4ω2

B CAþ [71]. In the electromag-
netic case the amplification factor is defined as [43]

Z ¼ jDj2
jCj2

B2

16ω4
− 1; ð25Þ

which implies

Z ¼ jAþj2 − 1: ð26Þ

In the low-frequency regime, the amplification coeffi-
cient for generic spin-s waves in the Kerr metric has been
computed by Starobinsky [72]:

Z ¼ −Dlm ¼ 4Qβsl
Yl
k¼1

�
1þ 4Q2

k2

�
½ωðrþ − r−Þ�2lþ1;

ð27Þ

where
ffiffiffiffiffiffi
βsl

p ¼ ðl−sÞ!ðlþsÞ!
ð2lÞ!ð2lþ1Þ!! and Q ¼ r2þþa2

rþ−r−
ðmΩ − ωÞ. In our

calculations we consider Z ¼ −RefDlmg, since the QNM
frequency is complex and ωI ≪ ωR.
By inserting Eq. (27) into Eq. (26) and recalling that

jAþj ¼ jA−j, we derive the imaginary part of the frequency
in Eq. (23):

jA−j2 − 1 ¼ −RefDlmg; ð28Þ

which is analogous to the Vilenkin relation for scalar
perturbations. Note that Z > 0 (i.e., ωI > 0) in the super-
radiant regime ωRðωR −mΩÞ < 0. We have therefore
shown that electromagnetic unstable modes of a perfectly
reflecting Kerr-like object can be understood in terms of
waves being amplified at the ergoregion and reflected at the
boundary.
In Appendix A, we derive an analogous result using a

matched asymptotic expansion. In addition, the latter
allows us to compute the phase Φ in Eq. (23) analytically.

To summarize, the analytical result valid at small frequency
reads4

ωR∼−
π

2jr0�j
�
qþ sðsþ1Þ

2

�
þmΩ; ð29Þ

ωI ∼−
βsl
jr0�j

�
2Mrþ
rþ− r−

�
½ωRðrþ− r−Þ�2lþ1ðωR−mΩÞ; ð30Þ

where r0� ∼M½1þ ð1 − χ2Þ−1=2� log ϵ and q is a positive
odd (even) integer for polar (axial) modes. The above result
is valid for s ¼ −1, for s ¼ 0 [in the latter case, q is a
positive odd (even) integer for Neumann (Dirichlet) boun-
dary conditions on the scalar field], and also for gravita-
tional perturbations when s ¼ −2; the latter result will be
discussed in Sec. V. Furthermore, we note that the
hypothesis of low frequency implies that MωR ≪ 1. In
order to fulfill this condition in the spinning case, it is not
sufficient that log ϵ ≪ 1, but also that MΩ ≪ 1. Indeed, in
the BH limit (ϵ → 0) we obtain ωR ∼mΩ (hence, the
frequency is independent on ϵ as long as ΩM ≫ ϵ) and
ωI ∼ ðmΩÞ2lþ1= log2 ϵ. In this limit, the above analytical
result is strictly valid only when ΩM ≪ 1.
On the other hand, the analytical result is always accurate

near the critical value of the spin such that ωR ≈ 0 and
ωI ≈ 0. The above equations predict that the instability
occurs when ωRðωR −mΩÞ < 0, which, for ϵ → 0, implies
(for s ¼ −1)

χ > χcrit ≈
πq

mj log ϵj : ð31Þ

Therefore, the critical value of the spin above which the
instability occurs can bevery small as ϵ → 0. However, in the
same limit the instability timescale is τ ∝ log2 ϵ=ðmΩÞ2lþ1

[54]. In other words, as ϵ → 0, also slowly spinning ECOs
become unstable. In the same limit, their instability timescale
can be very long but still relevant on dynamical scales [54].

B. Numerical results

Figure 1 shows the agreement between the QNMs
computed numerically and analytically through a matched
asymptotic expansion. As expected, the agreement is very
good in the small-frequency regime, i.e., when both log ϵ
and ΩM are small. In particular, the agreement is excellent
near the critical value of the spin χcrit (since ω ¼ 0 at the

4Comparison between Eqs. (29) and (23) reveals that the phase
Φ defined in Eq. (23) is a constant and does not depend on the
spin. This analytical result is in contrast with the phase computed
numerically in Ref. [54]. Since the phase is computed from a
matched asymptotic expansion, we believe that the spin depend-
ence of Φ computed in Ref. [54] is due to a different approxi-
mation in the calculation. Indeed, in the region near the surface of
the ECO, Eq. (A3) of Ref. [54] neglects more terms proportional
to aω with respect to Eq. (A1).
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critical value). When a ≈ 0, the agreement improves as
ϵ → 0, since in such limit, ω → 0. On the other hand, when
a ≈M,Mω → mMΩ ≈m=2 as ϵ → 0, and therefore finite-
frequency effects become important, especially for m > 1.
Notice that for both axial and polar modes, the imaginary

part of the frequency changes sign for a critical value of the
spin; i.e., for a > acrit the ECO model becomes unstable
against the ergoregion instability. The instability is still
present in the extremal Kerr case (a ¼ M) and in the
superspinar case (a > M). When a ¼ M, the QNMs
computed analytically are not reliable—since they are
not in the small-frequency regime—thus we can rely only
on the numerical results in order to estimate the instability
in the extremal Kerr case. The instability in the superspinar
case will be discussed in detail in a separate work.
An interesting feature is that the threshold of instability is

the same for both scalar and electromagnetic perturbations
within our numerical accuracy, as shown in the right panel
of Fig. 2. In particular, scalar modes with Dirichlet
(Neumann) boundary conditions on Teukolsky’s function
R0 turn unstable for the same critical value of the spin of

electromagnetic axial (polar) modes. In the next section, we
explain this finding analytically in terms of Darboux
transformations [73] between perturbations of the Kerr
metric with different s indices.
In the left panel of Fig. 2, we notice that the real part of

scalar QNMs with Dirichlet (Neumann) boundary condi-
tions and that of electromagnetic axial (polar) QNMs tends
to be the same in the BH limit, ϵ → 0. This remark is
confirmed by the analytical description of QNMs given in
Eq. (29). According to the latter, the real part of the
frequency is the same for s ¼ 0 and s ¼ −1, and ωR ∼mΩ
for ϵ ≪ 1 and any value of s.
Moreover, as shown in the right panel of Fig. 2, the

imaginary part of the frequency displays a similar trend for
scalar Dirichlet (Neumann) QNMs and electromagnetic
axial (polar) QNMs. The numerics is in agreement with
Eq. (30), according to which the imaginary part of the
frequency in the electromagnetic case is the same as the
scalar one multiplied by a factor β1l=β0l.
We also notice that the electromagnetic axial and polar

modes tend to be the same in the BH limit, as it happens for
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FIG. 1. Real (top panels) and imaginary (bottom panels) parts of the fundamental electromagnetic QNM (l ¼ m ¼ 1, n ¼ 0) of an
ECO as a function of the spin. The left (right) panels refer to axial (polar) modes [corresponding to a minus (plus) sign in Eq. (12)]. The
surface of the ECO is located at r0 ¼ rþð1þ ϵÞ with ϵ ¼ 10−10. The QNMs computed numerically (dashed curves) are in agreement
with the QNMs computed analytically through Eqs. (29) and (30) (continuous curves) when Mω ≪ 1. The cusps in the imaginary part
of the frequency correspond to the threshold of the ergoregion instability, above which the QNMs turn from stable to unstable. Note that
the instability is still present in the extremal Kerr case (a ¼ M) and continuously matches the instability of superspinars (a > M)
[50,51,54,62]. The analytical approximation breaks down in the high-spin regime, since ωRM ∼mΩM ≈m=2 is not small.
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the scalar QNMs with Dirichlet and Neumann boundary
conditions in the same limit [54]. This feature can be
understood analytically by noticing that, as ϵ → 0,
Eq. (12) reduces to

dR−1

dr�
¼ iω̃R−1 ð32Þ

for both axial and polar modes. Therefore, in the BH limit,
axial and polar electromagnetic modes of the ECO are
isospectral. Given that this is the case for a BH [74], it is
natural to conjecture that isospectrality in the BH limit is a
generic feature for any type of perturbation.

IV. STATIC MODES AND DARBOUX
TRANSFORMATIONS

The zero-frequency modes are associated with the onset
of the ergoregion instability [43,54] for reflecting boundary
conditions. Here we seek a relationship between ϵ, the
compactness parameter, and acrit, the critical value of the
spin at which the instability appears.
For ω ¼ 0, Teukolsky’s equation (3) reduces to the radial

equation

Δ−s d
dr

�
Δsþ1

dRs

dr

�

þ
�
a2m2 þ 2isðr −MÞam

Δ
− λ

�
Rs ¼ 0; ð33Þ

where λ ¼ ðl − sÞðlþ sþ 1Þ.

A. Zero-frequency modes: Scalar field

For s ¼ 0, Eq. (33) has the general solution

R0 ¼ cPPiν
l ð2xþ 1Þ þ cQQiν

l ð2xþ 1Þ; ð34Þ

where ν≡ 2am=ðrþ − r−Þ and x≡ ðr − rþÞ=ðrþ − r−Þ.
Here Piν

l ð·Þ and Qiν
l ð·Þ are associated Legendre functions

with the branch cut along the real axis from −∞ to 1. The
boundary condition of regularity as r → ∞ imposes that
cP ¼ 0. At the surface r ¼ r0, we impose totally reflecting
(Dirichlet or Neumann) boundary conditions. That is,

Qiν
l ð1þ 2x0Þ ¼ 0 or

d
dx

Qiν
l ð1þ 2xÞ

���
x¼x0

¼ 0; ð35Þ

where x0 ¼ ϵrþ=ðrþ − r−Þ. By solving Eq. (35) numeri-
cally, we obtain the relationship between ϵ and the value of
a for which a static mode occurs.
For ultracompact objects characterized by ϵ ≪ 1, it is

appropriate to use

Qiν
l ≈

e−πν

2ΓðiνÞ
�
x−iν=2 þ Γð−iνÞΓðlþ 1þ iνÞ

ΓðiνÞΓðlþ 1 − iνÞ xiν=2
�
; ð36Þ

leading to

ln
ϵrþ

rþ − r−
≈ −

πðpþ 1Þ
ν

þ i
ν
ln
Γð1 − iνÞΓðlþ 1þ iνÞ
Γð1þ iνÞΓðlþ 1 − iνÞ ;

ð37Þ
where p is a non-negative even (odd) integer for Neumann
(Dirichlet) modes. This makes it straightforward to find the
relationship between ln ϵ and ν ¼ 2acritm=ðrþ − r−Þ, and
thus acrit, the critical value of a at the threshold of the
ergoregion instability.
Figure 3 shows the zero-frequency modes in the ðϵ; acritÞ

domain, for the Neumann (p even) and Dirichlet (p odd)
boundary conditions, for the l ¼ m modes with m ¼ 1
(solid lines), m ¼ 2 (dashed) and m ¼ 3 (dotted). The plot
shows that the ergoregion instability afflicts corotating
modes of the field. For each m > 0, there is a minimum
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FIG. 2. Real (left panel) and imaginary (right panel) parts of the fundamental scalar and electromagnetic QNMs of an ECO as a
function of the spin, where the surface of the ECO is at r0 ¼ rþð1þ ϵÞ with ϵ ¼ 10−10. The cusps in the imaginary part of the frequency
are the threshold of the ergoregion instability, above which the QNMs becomes unstable. The scalar QNMs with Dirichlet (Neumann)
boundary conditions show a correspondence with the electromagnetic axial (polar) QNMs: the real part of the frequency tends to be the
same for ϵ ≪ 1, and the critical value of instability is identical (within our numerical accuracy).
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value acrit below which the mode is stable. Let us notice that
acrit decreases as m increases, and as ϵ decreases, so that
even slowly rotating ECOs can suffer an ergoregion
instability [54], in principle. (For highly spinning ECOs,
see Refs. [75,76].)
In the limit a → 0 and ϵ → 0, Eq. (37) reduces to

acrit ≈
πðpþ 1Þ
mj log ϵj M; ð38Þ

which is analogous to Eq. (31) derived analytically in the
small-frequency regime. So, for example, a totally reflect-
ing barrier at the Planck scale outside the horizon of a
10 M⊙ BH (ϵ ¼ lP=rþ ∼ 5 × 10−40) will generate an ergo-
region instability in the dipole mode (m ¼ 1) if a≳ 0.035.

B. Darboux transformations

Now, let us consider electromagnetic and gravitational
perturbations. It is straightforward to verify that, for ω ¼ 0,
the radial functions Rs are related to one another through
the following transformations:

R−1 ¼ R0 þ
iΔ
am

R0
0; ð39aÞ

R−2 ¼
2a2m2 − lðlþ 1ÞΔ − 2iamðr −MÞ

amð2am − iðrþ − r−ÞÞ
R0

þ 2Δðiamþ r −MÞ
amð2am − iðrþ − r−ÞÞ

R0
0; ð39bÞ

defined up to multiplication by a constant factor. Though
this relation is not unique, it seems to be the unique
transformation for which the fields are regular at large
distances. Equivalent transformations are

R0 ¼ −
iam

lðlþ 1Þ
�
R0−1 þ

iam
Δ

R−1

�
; ð40aÞ

R−2 ¼
am − 2iðr −MÞ
2am − iðrþ − r−Þ

R−1 þ
iΔ

2am − iðrþ − r−Þ
R0−1:

ð40bÞ
C. Zero-frequency modes: Electromagnetic and

gravitational perturbations

In the zero-frequency limit, the boundary condition (12)
on the electromagnetic wave function reduces to

R0
−1 þ i

�
am
Δ

−
ς�lðlþ 1Þ

am

�
R−1 ¼ 0; ð41Þ

where ςþ ¼ 1 for polar modes and ς− ¼ 0 for axial modes.
By comparison with Eq. (40a), we see that axial modes are
generated from a scalar-field solution with a Dirichlet
boundary condition R0ðr0Þ ¼ 0. For the polar modes, we
may take a derivative of Eq. (40a) and use the static
Teukolsky equation (33) to establish that

ΔR0
0 ¼

a2m2

lðlþ 1Þ
�
R0
−1 þ i

�
am
Δ

−
lðlþ 1Þ
am

�
R−1

�
: ð42Þ

Thus, from Eq. (41), the polar modes are generated from a
scalar-field solution with a Neumann boundary condition5

R0
0ðr0Þ ¼ 0. It is natural to posit that this extends to

gravitational perturbations as well, in which case one
has the following boundary conditions in the zero-fre-
quency limit:

R0
−2 ¼ −

� ðl − 1Þðlþ 2Þ
2ðiamþ r −MÞ þ

iam
Δ

�
R−2; ð43aÞ

R0
−2 ¼ −

iamðl − 1Þðlþ 2Þ
2iamðiamþ r −MÞ þ lðlþ 1ÞΔR−2

−
iam
Δ

R−2; ð43bÞ

which are generated from a scalar-field solution with
Dirichlet and Neumann boundary conditions, respectively.
By virtue of the Darboux transformations, it follows

that Eqs. (35) and (37) and Fig. 3 fully describe the
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FIG. 3. The ergoregion instability in the ECO spin-
compactness parameter space. The lines show the zero-frequency
scalar QNMs in the ðϵ; acritÞ domain with Neumann (p even) and
Dirichlet (p odd) boundary conditions on the ECO surface at
r0 ¼ rþð1þ ϵÞ. The solid, dashed, and dotted lines show the
m ¼ 1, 2, and 3 modes with l ¼ m, respectively. The shaded
regions indicate where the corresponding modes suffer the
ergoregion instability.

5In Ref. [54], the Neumann boundary condition is imposed on
the radial wave function Y0, defined as Y0 ¼ ðr2 þ a2Þ1=2R0.
However, in the small-ϵ limit, the QNM spectrum is analogous to
the spectrum obtained by imposing a Neumann boundary
condition on R0.
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zero-frequency modes of not just a scalar field, but also
electromagnetic perturbations for an object with perfectly
reflecting boundary conditions. [Note, however, that the
critical spin is slightly different in the gravitational case, as
discussed in the next section; see Eq. (46).]
To the best of our knowledge, these properties of static

perturbations of the Kerr metric have not been presented
before. In particular, the above relations show that the
ω → 0 limit of generic spin-s perturbations is universal.

V. ECO INSTABILITIES FOR GRAVITATIONAL
PERTURBATIONS

In principle, gravitational perturbations of our Kerr-like
ECO model can be studied by solving Teukolsky’s equa-
tion (3) [or its alternative version in Detweiler’s form (6)]
with s ¼ �2. However, in this case the issue of boundary
conditions is much more subtle (see Ref. [77] for a related
discussion). In the electromagnetic case, the boundary
conditions (12) are derived by assuming that the object
is made of a conducting material, so that the two boundary
conditions in Eq. (12) are ultimately related to the require-
ment that the electric and magnetic field be orthogonal and
parallel to the surface, respectively [43]. An analog
equation for the gravitational case is currently not available.
Furthermore, in analogy with the electromagnetic case, the
boundary condition must depend on the properties of the
object’s surface, which are also unknown and generically
model dependent.
Nevertheless, we now argue that the results of the

previous section can be easily extended to the gravitational
case when ϵ → 0, at least if the object is perfectly reflecting.

A. Analytical results

The previous analytical computation for the electromag-
netic case can be easily understood from a “bounce and
amplify” argument [3,43], i.e., in terms of quasistanding
waves of a reflecting cavity between the surface of the ECO
and the photon sphere. Then the waves slowly leak out
through tunneling in the photon-sphere barrier. The fre-
quency of (corotating) modes is set by the width of the
cavity, i.e., ωR −mΩ ∼ π=r0�, whereas the instability is
controlled by the amplification factor Z of the ergoregion at
this frequency [43], i.e., ωI ∼ ZωR. A right-moving wave
originating at the horizon has the asymptotics given by
Eq. (16b). When it is backscattered by the photon-sphere,
it acquires a factor A−, where jA−j ¼ jAþj due to the
Wronskian relationships (17a) and (17b). After this, the
left-moving wave is further reflected at the surface of
the ECO and is backscattered at the photon sphere again. At
each following bounce at the photon sphere, it acquires a
factor A−. In turn, the factor Aþ describes the backscatter-
ing of a wave originating at infinity [Eq. (16b)] and is
related to the superradiant amplification factor of BHs
through Eq. (26). Thus, at each bounce the wave is

amplified by a factor Z. This argument applies to perfectly
reflecting compact objects, since in this case the energy is
conserved near the surface during subsequent bounces.
A more quantitative way to look at this effect is to notice

that the boundary conditions in Eq. (12) reduce to Dirichlet
and Neumann boundary conditions for the Detweiler
function X−

s . As we have shown, this is true for both
scalar (s ¼ 0) and electromagnetic (s ¼ �1) perturbations.
It is now natural to conjecture that the same is true for
gravitational perturbations, namely that Dirichlet and
Neumann conditions on X−

�2 imply perfect reflection at
the surface (i.e., no absorption by the interior). With this
working assumption, the analytical derivation of Sec. III A
follows straightforwardly, and the final result in Eqs. (29)
and (30) is valid also for low-frequency gravitational
perturbations ðs ¼ �2), the only difference being due to
the phase of ωR computed in Sec. II of Appendix A, namely

ωR ∼ −
πðqþ 1Þ
2jr0�j

þmΩ; ð44Þ

ωI ∼−
β2l
jr0�j

�
2Mrþ
rþ− r−

�
½ωRðrþ− r−Þ�2lþ1ðωR−mΩÞ; ð45Þ

where q is a positive odd (even) integer for polar (axial)
modes. Note that the above result is a particular case of
Eqs. (29) and (30) for s ¼ −2. In particular, in the
gravitational case, the real part of the frequency has a
factor π of difference in the phase compared to the scalar
and electromagnetic cases.
Equation (44) implies that the gravitational modes

become unstable for a critical value of the spin, which is
different from the electromagnetic case, in particular (for
s ¼ −2):

χ > χcrit ≈
πðqþ 1Þ
mj log ϵj : ð46Þ

For example, for ϵ ¼ 10−10 and l ¼ m ¼ 2, χcrit;em ≈ 0.14,
whereas χcrit;grav ≈ 0.20 for axial modes, and χcrit;em ≈ 0.07,
whereas χcrit;grav ≈ 0.14 for polar modes.
Furthermore, in the ϵ → 0 limit (ωR → mΩ), the insta-

bility timescale is proportional to the inverse of the
term βsl½mΩðrþ − r−Þ�2lþ1½qþ sðsþ 1Þ=2� in ωI . Since
β11 ¼ 4β01, the instability timescale for electromagnetic
perturbations is simply 4 times shorter than for scalar
perturbations. On the other hand, for gravitational pertur-
bations the dominant mode has jsj ¼ l ¼ m ¼ 2, which
gives β22 ¼ β11=25. Taking into account also the
½mΩðrþ − r−Þ�2lþ1½qþ sðsþ 1Þ=2� term, in the ϵ → 0
limit we obtain

τ222 ¼
25ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ2q

32χ2ð1 − χ2Þð1þ qÞ τ111; ð47Þ
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where τslm ¼ 1=ωI for a given ðs; l; mÞ. Note that τ222 >
τ111 for any spin, showing that the dominant (l ¼ 2)
gravitational instability is actually weaker than the dom-
inant (l ¼ 1) electromagnetic instability in the low-
frequency limit. This is consistent with the fact that the
amplification factor for s ¼ l ¼ 2 waves is smaller than
that of s ¼ l ¼ 1 waves at low frequency [43] (see also
Fig. 5 below).
Finally, our conjecture is also supported by the zero-

frequency limit discussed in Sec. IV, where we showed that
the behavior for scalar, electromagnetic, and gravitational
perturbations is universal in the zero-frequency limit.
Indeed, the boundary conditions in Eq. (14) respectively
reduce to Eq. (43) for ω → 0 (which also requires a → acrit)
and ϵ → 0.

B. Numerical results

We solve Teukolsky’s equation (3) for gravitational
perturbations numerically by assuming Dirichlet and
Neumann boundary conditions for Detweiler’s function
X−2 [see Eqs. (14)]. A representative example is shown in
Fig. 4, where we present the fundamental (n ¼ 0) l¼m¼2

gravitational modes of an ECO as a function of the spin.
The qualitative behavior of the modes is very similar to the
electromagnetic case (compare Fig. 4 with Fig. 1), and the
agreement with the analytical result derived in the previous
section is very good in the regime whereMω ≪ 1, i.e., near
the threshold of the instability.
Note that in this case the frequency is overall larger, since

ωRM → 2ΩM ≈ 1 for m ¼ 2 and χ → 1. In this limit,
the quantity aω ≈ 1 and the angular eigenvalues need to be
computed numerically.

VI. DISCUSSION: THE ROLE OF ABSORPTION
AND ASTROPHYSICAL IMPLICATIONS

Owing to the logarithmic dependence in Eq. (30), the
ergoregion instability timescale for perfectly reflecting
ECOs is always very short, even for Planck-inspired objects
with ϵ ∼Oð10−40Þ [54]. The most natural development of
the instability is to remove angular momentum until the
superradiant condition is saturated [53]. Thus, spin mea-
surements of dark compact objects indirectly rule out
perfectly reflecting ECOs. Furthermore, the absence of
any detectable gravitational-wave stochastic background in
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FIG. 4. Real (top panels) and imaginary (bottom panels) parts of the fundamental gravitational QNM (l ¼ m ¼ 2, n ¼ 0) of an ECO as
a function of the spin. The left (right) panels refer to axial (polar) modes corresponding to Dirichlet (Neumann) boundary conditions on
Detweiler’s function X−2, and the surface of the ECO is at r0 ¼ rþð1þ ϵÞ, with ϵ ¼ 10−10. The QNMs computed numerically (dashed
curves) are in agreement with the QNMs computed analytically through Eqs. (44) and (45) (continuous curves) when Mω ≪ 1. In the
extremal Kerr case (a ¼ M), the analytical approximation is not valid, since Mω ¼ Oð1Þ.
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LIGO O1 [78,79] sets the most stringent constraints to date
on these models [40]. (It is worth mentioning that the
stochastic gravitational-wave background specifically from
the spin-down of remnants of binary mergers is not
inconsistent with gravitational wave observations, as dis-
cussed in Ref. [41].)
However, the instability can be totally quenched by

(partial) absorption by the object interior [54]. In the
case of scalar perturbations, this requires reflectivity
∼0.4% smaller than unity [54]. This number corresponds
to the maximum superradiant amplification factor for scalar
perturbations of a Kerr BH [43,80], and it is indeed
consistent with the “bounce and amplify” argument pre-
sented in the previous section. Namely, from Eq. (16b) a
right-moving monochromatic wave is backscattered by the
ECO potential and acquires a factor A− ¼ Aþ. The reflected
wave travels to the left and is further reflected at the surface.
Let us assume that the reflection coefficient (i.e., the
ratio between the outgoing energy flux and the ingoing
energy flux) at the object’s surface is jRðωÞj2. Then, the
left-moving wave Aþe−iω̃r� is reflected at the surface as
AþReiω̃r� (see Ref. [81] for a model based on geometrical
optics and Ref. [59] for a generic discussion). The process
continues indefinitely, and the wave acquires a factor AþR
for each bounce. Therefore, the condition for the energy in
the cavity to grow indefinitely in time is jAþRj2 > 1 or

jRj2 > 1

1þ Z
; ð48Þ

where both the amplification factor Z ¼ jAþj2 − 1 and the
ECO reflection coefficient jRj2 are evaluated at the
dominant frequency ω ¼ ωR. In the low-frequency regime,
Z is approximately given by Eq. (27), but it can be
computed numerically for any frequency and spin
[43,65]. Since jRj2 ≤ 1, Eq. (48) implies that a necessary
condition for the instability is Z > 0; i.e., the relevant
frequency needs to be in the superradiant regime to trigger
the instability. Furthermore, if the object is perfectly
reflecting (jRj2 ¼ 1), the instability is quenched only when
Z < 0, i.e., only in the absence of superradiance. Likewise,
if the object is almost a BH (R ≈ 0), the instability is absent
for any finite amplification factor Z.
Equation (48) also implies that, in order to quench

the instability completely, it is sufficient that jRj2 > 1=
ð1þ ZmaxÞ ≈ 1 − Zmax, where Zmax is the maximum
amplification coefficient,6 and the last approximation is
valid when Zmax ≪ 1, as is typically the case [43,65].
The above discussion is consistent with the analysis of

Ref. [54] for scalar perturbations, but it is actually valid for
any kind of perturbations of our ECO model in the BH
limit. In general, Eq. (48) implies that the larger the BH

amplification factor, the larger is the minimum absorption
rate necessary to quench the instability. The superradiant
amplification factor (and hence the minimum absorption
rate required to quench the instability) depends signifi-
cantly on the spin. This is shown in Fig. 5, where we
present ZðωÞ for different values of the spin of a Kerr BH
and for different types of perturbations [43,65]. As pre-
dicted by the analytical result, electromagnetic perturba-
tions have the largest amplification factor at low frequency.
On the other hand, gravitational perturbations can be
amplified much more than electromagnetic or scalar
perturbations at high frequency, which by the superradiant
condition ωðω −mΩÞ also requires highly spinning
objects. The minimum absorption coefficient, 1 − jRj2,
required to quench the instability depends strongly on the
spin. For an ECO spinning at χ ≲ 0.9 (χ ≲ 0.7), an
absorption coefficient of at least 6% (0.3%) is sufficient
to quench the instability for any type of perturbation. On
the other hand, since the maximum superradiance ampli-
fication factor is ≈138% (for l ¼ m ¼ 2 gravitational
perturbations of almost extremal BHs [43,65]), Eq. (48)
predicts that an absorption coefficient of at least ≈60%
would quench the instability in any case.
In other words, if a specific ECO can be parametrized by

an absorption coefficient of (say) ≈1% and it is rapidly
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FIG. 5. Superradiant amplification factor for a Kerr BH as a
function of the frequency ω of the incident wave for different
values of the BH spin and for different types of perturbations (we
set l ¼ m ¼ 1 for scalar and electromagnetic perturbations, and
l ¼ m ¼ 2 for gravitational perturbations). The analytical
approximation [Eq. (27)] valid at low frequency (black dashed
lines) is compared to the exact numerical result [43,65]. In each
panel, we report the minimum absorption coefficient at the ECO
surface, 1 − jRj2, necessary to quench the instability, as obtained
by saturating Eq. (48).

6A less stringent condition is jRðωRÞj2 > 1=ð1þ ZðωRÞÞ,
where ωR is the dominant QNM frequency.
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spinning when produced (say, χ ≈ 1), it would lose angular
momentum over a short timescale given by the ergoregion
instability, until it reached a critical value of the spin
corresponding to the saturation of Eq. (48). From Fig. 5, in
this example the saturation would roughly correspond to a
final spin χ ≈ 0.8.

VII. CONCLUSION

We have computed the ergoregion instability for electro-
magnetic and gravitational perturbations of a model of
Kerr-like ECO, both numerically (for any compactness and
spin) and analytically (in the low-frequency regime, which
is valid for small spin and in the BH limit). These cases are
qualitatively similar to the scalar case studied in Ref. [54]
and allow us to draw a general picture of the ergoregion
instability for ECOs. In particular, we showed the follow-
ing: (i) Our analytical result can also be extended to the
gravitational perturbations of a perfectly reflecting ECOs in
the BH limit. (ii) The instability can be understood in terms
of waves trapped within the photon-sphere barrier and
amplified by superradiant scattering [43]. Therefore, for
any kind of perturbations, the instability is completely
quenched if the absorption rate at the ECO surface is at
least equal to the maximum superradiance amplification for
a given spin-s perturbation of a Kerr BH with the same
mass and spin. (iii) The numerical results for both electro-
magnetic and gravitational perturbations agree well with
the analytical ones in the small-frequency approximation.
As a byproduct of our analysis, we have also found a set

of Darboux transformations that relate the waveforms of
s ¼ 0;�1;�2 perturbations of the Kerr metric in the
static limit. It would be interesting to check whether similar
transformations exist also between bosonic and fermionic
(s ¼ �1=2) perturbations. For the latter, there is no
superradiance [43], and therefore even highly spinning,
perfectly reflecting ECOs should be stable against s ¼
�1=2 perturbations.
An interesting extension concerns superspinars, i.e.,

string-inspired, regularized Kerr geometries spinning above
the Kerr bound [62]. The ergoregion instability of these
models has been studied for scalar perturbations [50,54]
and for gravitational ones [50,51]. However, in the latter
case, the boundary conditions adopted do not correspond to
Dirichlet or Neumann conditions on the Detweiler function,
which, as we argued in this work, are the appropriate ones
for gravitational perturbations. In light of our results, it
would be interesting to extend the stability analysis of
superspinars, both for perfectly reflecting and for partially
absorbing models.
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APPENDIX A: ANALYTICAL ASYMPTOTIC
MATCHING FOR SPIN-s PERTURBATIONS

In this appendix, we derive the electromagnetic and
gravitational QNMs of an ECO analytically in the small-
frequency regime through a matched asymptotic expansion.
In the region near the surface of the ECO, the radial wave

equation (3) reduces to [72]

½xðxþ 1Þ�1−s∂xf½xðxþ 1Þ�sþ1∂xRsg
þ ½Q2 þ iQsð1þ 2xÞ − λxðxþ 1Þ�Rs ¼ 0; ðA1Þ

where x ¼ ðr − rþÞ=ðrþ − r−Þ, Q ¼ ðr2þ þ a2ÞðmΩ − ωÞ=
ðrþ − r−Þ, and λ ¼ ðl − sÞðlþ sþ 1Þ. Equation (A1) is
valid when Mω ≪ 1, and it is derived by neglecting the
terms proportional to ω in Eq. (3) except for the ones which
enter into Q. The general solution of Eq. (A1) is a linear
combination of hypergeometric functions:

Rs ¼ ð1þ xÞiQ½C1x−iQ2F1ð−lþ s; lþ 1þ s; 1− Q̄þ s;−xÞ
þC2xiQ−s

2F1ð−lþ Q̄; lþ 1þ Q̄;1þ Q̄− s;−xÞ�;
ðA2Þ

where Q̄ ¼ 2iQ. The large-r behavior of the solution is

Rs ∼
�

r
rþ − r−

�
l−s

Γð2lþ 1Þ
�

C1Γð1 − Q̄þ sÞ
Γðlþ 1 − Q̄ÞΓðlþ 1þ sÞ

þ C2Γð1þ Q̄ − sÞ
Γðlþ 1þ Q̄ÞΓðlþ 1 − sÞ

�
þ
�

r
rþ − r−

�
−l−1−s

×
ð−1Þlþ1þs

2Γð2lþ 2Þ
�
C1Γðlþ 1 − sÞΓð1 − Q̄þ sÞ

Γð−l − Q̄Þ

þ C2Γðlþ 1þ sÞΓð1þ Q̄ − sÞ
Γð−lþ Q̄Þ

�
; ðA3Þ

where the ratio of the coefficients C1=C2 is fixed by the
boundary condition at the surface of the ECO.
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At infinity, the radial wave equation (3) reduces to [50]

r∂2
rfsþ2ðlþ1− iωrÞ∂rfs−2iðlþ1− sÞωfs ¼ 0; ðA4Þ

where fs ¼ eiωrr−lþsRs. The general solution of Eq. (A4)
is a linear combination of a confluent hypergeometric
function and a Laguerre polynomial:

Rs ¼ e−iωrrl−s½C3Uðlþ 1 − s; 2lþ 2; 2iωrÞ
þ C4L

2lþ1
−l−1þsð2iωrÞ�; ðA5Þ

where C4 ¼ ð−1Þl−sC3Γð−lþ sÞ by imposing only out-
going waves at infinity. The small-r behavior of the
solution is

Rs ∼ C3rl−s
ð−1Þl−s

2

Γðlþ 1þ sÞ
Γð2lþ 2Þ

þ C3r−l−1−sð2iωÞ−ð2lþ1Þ Γð2lþ 1Þ
Γðlþ 1 − sÞ : ðA6Þ

The matching of Eqs. (A3) and (A6) in the intermediate
region yields

C1

C2

¼ −
Γðlþ 1þ sÞ
Γðlþ 1 − sÞ

�
Rþ þ ið−1Þlðωðrþ − r−ÞÞ2lþ1LSþ
R− þ ið−1Þlðωðrþ − r−ÞÞ2lþ1LS−

�
;

ðA7Þ

where

R� ≡ Γð1� Q̄ ∓ sÞ
Γðlþ 1� Q̄Þ ; S� ≡ Γð1� Q̄ ∓ sÞ

Γð−l� Q̄Þ ;

L≡ 1

2

�
2lΓðlþ 1þ sÞΓðlþ 1 − sÞ

Γð2lþ 1ÞΓð2lþ 2Þ
�
2

: ðA8Þ

A. Electromagnetic case

For s ¼ −1, the ratio C1=C2 is derived by imposing the
boundary conditions of Eq. (12) in the near-horizon
expansion of the solution in the near-horizon region. At
the surface, we obtain

C1

C2

¼∓ B−1Q̄xQ̄0 ; ðA9Þ

where x0 ¼ xðr0Þ, and the minus and plus signs refer to
polar and axial perturbations, respectively.
By equating Eq. (A7) with Eq. (A9), we obtain an

algebraic equation for the complex frequency ω. An
approximate solution of ω can be found in the regime
a ≪ M and ϵ ≪ 1, i.e., Q̄ ≪ 1. In this case, Eq. (A7)

reduces to C1=C2 ¼ Q̄=½lðlþ 1Þ�, whereas B ≈ lðlþ 1Þ in
Eq. (A9). It follows that

x−2iQ0 ¼ ∓1: ðA10Þ

By using the tortoise coordinate r0� ¼ r�ðr0Þ, where
logðx0Þ ∼ r0�ðrþ − r−Þ=ðr2þ þ a2Þ, Eq. (A10) yields

e−2iQr0�ðrþ−r−Þ=ðr2þþa2Þ ¼ ∓1; ðA11Þ

which is analogous to Eq. (A18) in Ref. [50] for the scalar-
field case. The solution of Eq. (A11) is

ω ¼ −
πq
2jr0�j

þmΩ; ðA12Þ

where q is a positive odd (even) integer for polar (axial)
modes. Equation (A12) is also valid for scalar perturbations
where q is a positive odd (even) integer for the modes with
Neumann (Dirichlet) boundary conditions on Teukolsky’s
function.

B. Gravitational case

For s ¼ −2, the ratio C1=C2 is derived by imposing the
boundary conditions of Eq. (14) in the near-horizon
expansion of the solution in the near-horizon region. At
the surface, when Q̄ ≪ 1, we obtain

C1

C2

¼∓ 2

ðlþ 2Þðlþ 1Þlðl − 1Þ Q̄xQ̄0 ; ðA13Þ

where the minus and plus signs refer to polar and axial
perturbations, respectively. When Q̄ ≪ 1, Eq. (A7) reduces
to C1=C2 ¼ −2Q̄=½ðlþ 2Þðlþ 1Þlðl − 1Þ�. By equating the
latter equation with Eq. (A13), we get

x−2iQ0 ¼ �1; ðA14Þ

whose solution is

ω ¼ −
πðqþ 1Þ
2jr0�j

þmΩ; ðA15Þ

where q is a positive odd (even) integer for polar (axial)
modes. We conclude that in the gravitational case, the
frequency has an additional phase π with respect to the
scalar and electromagnetic case.

APPENDIX B: TRANSFORMATIONS OF
TEUKOLSKY’S EQUATION
TO A REAL POTENTIAL

In this appendix, we revisit and extend the computation
by Detweiler [66] and derive the transformation of
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Teukolsky’s function to bring Eq. (3) into a form like
Eq. (6) with a real potential. In doing so, we correct some
mistakes of Ref. [66]. On the other hand, we note that the
electromagnetic case presented in Ref. [66] is correct, and
we refer the reader to the original work for the explicit
transformation.7

The Starobinskii identity for gravitational perturbations
reads [65]

1

4
R2 ¼ DDDDR−2; ðB1Þ

where D ¼ ∂r − iK=Δ. According to Eq. (B1), we can
write

R2 ¼ aR−2 þ
b
Δ
dR−2

dr
; ðB2Þ

where

a ¼ ða1 þ ia2Þ; ðB3Þ

b ¼ ib2; ðB4Þ

and

a1 ¼ 4

�
8K4

Δ4
þ 8K2

Δ3

�
M2 − a2

Δ
− λ

�

−
4ωK
Δ3

ð3r2 þ 2Mr − 5a2Þ þ 12r2ω2 þ λðλþ 2Þ
Δ2

�
;

ðB5Þ

a2 ¼ 4

�
−
24ωrK2

Δ3
þ 1

Δ2

�
4λðr−MÞK

Δ
þ 4ωrλþ 12ωM

�	
;

ðB6Þ

b2¼ 4

�
8K3

Δ2
þ4K

Δ

�
2ðM2−a2Þ

Δ
−λ

�
−
8ω

Δ
ðMr−a2Þ

	
:

ðB7Þ

The radial functions α and β which define the Detweiler’s
function in Eq. (5) are

α ¼ κaΔ2 þ jκj2ffiffiffi
2

p jκjða1Δ2 þ ReκÞ1=2 ; ðB8Þ

β ¼ iκb2Δ2ffiffiffi
2

p jκjða1Δ2 þ ReκÞ1=2 ; ðB9Þ

where

κ ¼ 4½λ2ðλþ 2Þ2 þ 144a2ω2ðm − aωÞ2
− a2ω2ð40λ2 − 48λÞ þ aωmð40λ2 þ 48λÞ�1=2
þ 48iωM; ðB10Þ

Reκ ¼ 4½λ2ðλþ 2Þ2 þ 144a2ω2ðm − aωÞ2
− a2ω2ð40λ2 − 48λÞ þ aωmð40λ2 þ 48λÞ�1=2;

ðB11Þ

jκj ¼ f16½λ2ðλþ 2Þ2 þ 144a2ω2ðm − aωÞ2
− a2ω2ð40λ2 − 48λÞ þ aωmð40λ2 þ 48λÞ�
þ ð48ωMÞ2g1=2: ðB12Þ

With this choice of parameters, α and β satisfy the
following relation:

α2 − α0βΔsþ1 þ αβ0Δsþ1 − β2Δ2sþ1Vs ¼ κ; ðB13Þ

which guarantees that the Detweiler’s function defined in
Eq. (5) satisfies Eq. (6). Furthermore, the conserved flux of
energy is the same if computed by two independent
solutions of Teukolsky’s equation [Eq. (3)] or two inde-
pendent solutions of Detweiler’s equation [Eq. (6)] [83].
This is an important consistency check, since the energy
flux is a measurable quantity and cannot depend on the
transformation of the perturbation variable.
Equation (7) gives the following potential:

Vðr;ωÞ¼−K2þΔλ
ðr2þa2Þ2þ

Δðb2p0ΔÞ0
ðr2þa2Þ2b2p

þG2þ dG
dr�

; ðB14Þ

where

p≡ jκj½2ða1Δ2 þ ReκÞ�−1=2: ðB15Þ

The effective potential (B14) is purely real and has the
following asymptotic forms: Vðr → þ∞;ωÞ → −ω2 and
Vðr → rþ;ωÞ → −ω̃2.

7To the best of our knowledge, Ref. [82] reported a misprint in
the effective potential, Eq. (B23) of Ref. [66], but did not provide
the corresponding expressions for the functions α and β. In this
Appendix, we correct several mistakes in Eqs. (B3)–(B14)
in Ref. [66] and provide the explicit expressions of α
and β, extending the calculations in Ref. [83] to gravitational
perturbations.
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