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Marginally outer trapped surfaces (MOTSs, or marginal surfaces in short) are routinely used in numerical
simulations of black-hole spacetimes. They are an invaluable tool for locating and characterizing black holes
quasilocally in real time while the simulation is ongoing. It is often believed that a MOTS can behave
unpredictably under time evolution; an existing MOTS can disappear, and a new one can appear without any
apparent reason. In this paper we show that in fact the behavior of a MOTS is perfectly predictable and its
behavior is dictated by a single real parameter, the stability parameter, which can be monitored during the
course of a numerical simulation. We demonstrate the utility of the stability parameter to fully understand
the variety of marginal surfaces that can be present in binary black-hole initial data. We also develop a new
horizon finder capable of locating very highly distorted marginal surfaces and we show that even in these
cases, the stability parameter perfectly predicts the existence and stability of marginal surfaces.
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I. INTRODUCTION

Numerical solutions of Einstein’s equations (with and
without matter) are an important tool in gravitational wave
astronomy (see e.g., [1–9]). In situations without any
symmetries or without any preferred background solution,
these numerical solutions are typically the most accurate
and are frequently used as benchmarks against which
various approximation methods can be tested. In simula-
tions of black-hole spacetimes, computing the gravitational
wave signal is only one part of the solution. It is important
to characterize the black holes as well. For example, in a
binary black-hole merger, one would like to track the
location and velocity of the black holes, and their physical
properties such as mass, angular momentum and higher
multipole moments. Similarly, when the black holes merge
and the final black hole is formed, one would like to know
when a common horizon forms and what the properties of
the final black hole are.
In numerical simulations, one typically uses marginally

trapped surfaces to answer these questions. Previous
numerical methods for locating marginal surfaces are
described in [10–16]. As we shall define in more detail
later, these are closed two-dimensional surfaces with the
topology of a sphere, in a time slice. They have the property

that the outgoing light rays emanating from them in the
normal outward direction have vanishing expansion. The
outermost such surface at a given time is called the apparent
horizon. Through the Penrose-Hawking singularity theo-
rems, the presence of such surfaces, together with various
energy conditions, indicates the presence of a singularity in
the future [17,18]. While not the main focus of this paper,
the notion of a marginally outer trapped surface (MOTS)
also forms the starting point for the study of quasilocal
black-hole horizons. If a MOTS evolves smoothly in time,
we can consider the smooth 3-manifold H formed by
stacking up the MOTSs at different times. Several impor-
tant results hold for this world tube H in different
situations. For example, one can formulate the laws of
black-hole mechanics, define multipole moments, obtain
balance laws for the area and multipole moments, and
calculate black-hole entropy in quantum gravity; see e.g.,
[19–25]. The applications of most relevance for us are in
numerical relativity where they are regularly used to assign
mass, angular momentum and higher multipole moments to
black holes (see e.g., [26–28]).
The alternative to MOTSs and quasilocal horizons are

event horizons. Many of the classic results of black-
hole physics, such as the area increase law, black-hole
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thermodynamics, etc., were initially based on event
horizons (see e.g., [29–33]). However, the global and
teleological nature of event horizons are well known. For
both practical and theoretical reasons, event horizons are
not ideal for extracting the parameters of black holes.
First, their teleological nature makes it impossible to
locate them in real time in a numerical simulation (or an
experiment); we need to know the entire spacetime.
Furthermore, it is primarily in perturbative situations that
event horizons are useful for defining and extracting
parameters like black-hole mass, spin, etc. In more general
situations far from stationarity, such as during a binary
black-hole merger, event horizons are not suitable for this
purpose. For example, it is easy to construct examples
where event horizons form and grow in flat Minkowski
space where there should be no flux of gravitational
radiation. These issues are discussed in more detail
elsewhere (see e.g., [19,20,34–37]).
Despite the utility of marginal surfaces, there still remain

many doubts about their behavior under time evolution. It is
observed that apparent horizons can jump discontinuously.
This jump is now well understood to arise from the
outermost condition for apparent horizons, and the under-
lying marginal surfaces are observed to evolve smoothly
[23,27,38,39]. It is still not clear if this would also hold
for highly distorted marginal surfaces. Do highly distorted
marginal surfaces still continue smoothly? Is there a
quantifiable way in which one can say that a more distorted
MOTS is more unstable? There are cases when a marginal
surface can no longer be found. Is this due to problems with
the horizon finders or is it really that the marginal surface
has ceased to exist? Apart from their intrinsic interest,
answers to such questions are important to ensure the
reliability of various physical quantities that are routinely
calculated in numerical simulations.
At any given time, there can exist several marginally

trapped surfaces in a binary black-hole spacetime. This
may include the two related with the two individual black
holes, and possibly two more, related to the common final
black hole (if it has formed). The outermost of these is
called the apparent horizon but the other marginally trapped
surfaces are of interest as well [see e.g., Fig. 1(b) below
for an example]. At late times, the apparent horizon will
usually approach the event horizon (see however [40,41])
but the fate of the other marginal surfaces in the interior
is not yet fully understood. This question is also of
relevance for understanding the “issue of the final state.”
Mathematically this refers to the question of nonlinear
stability of Kerr black holes. Astrophysically, restricting
ourselves to binary systems, it refers to the fact that at late
times, irrespective of the initial configuration, the end state
is a Kerr black hole in equilibrium. The exterior spacetime,
and how the gravitational wave signal shows this approach
to equilibrium, and also how the horizon approaches
equilibrium have been previously studied. The structure

of the interior is unresolved and the behavior of the interior
marginal surfaces is much less understood.
It might be argued that understanding the interior space-

time is of no physical interest since this region is causally
disconnected from the external world where observations
can be made—but this is incorrect. Physical phenomena in
the interior and in the exterior regions are both a result of
dynamics and nonlinearities occurring outside the event
horizon. Thus, we expect the two regions to be correlated
and, in fact, such correlations have been shown to exist
[28,42–45]. The existence of these correlations leads to the
interesting possibility of inferring properties of the interior
spacetime from gravitational wave observations. Thus, even
from an astrophysical perspective, it becomes important to
understand the interior spacetime in detail.
Mathematically, the conditions under which a marginal

surface evolves smoothly are known. Andersson et al.
[46–49] have shown that the key object for understanding
these issues is the stability operator. This is a second-order
elliptic, possibly non-self-adjoint differential operator
defined on every MOTS. If its smallest eigenvalue (which
is guaranteed to be real) is positive, then the MOTS evolves
smoothly in time. Much less is known rigorously for the
cases when the principal eigenvalue is negative. In these
cases, the world tube swept out by the MOTSs is not
spacelike; this is studied in [50,51]. To our knowledge, this
stability operator has never been used in a numerical
calculation so far. In this paper we demonstrate the utility
of the stability operator in numerical relativity, even for
unstable and extremely distorted marginal surfaces.
In order to really test the utility of the stability operator,

we need to calculate it for marginal surfaces which are
extremely distorted. The difficulty is that current horizon
finders are generally not capable of locating highly dis-
torted surfaces. The most commonly used numerical
algorithms make certain assumptions on the marginal
surfaces they are trying to locate [52]. For example, the
AHFinderDirect method available in the Einstein Toolkit
[15,53,54] assumes that the surface can be represented by a
single-valued function hðθ;ϕÞ of the usual angles ðθ;ϕÞ in
some spherical coordinate system. When this condition is
satisfied, then the marginal surface equation can be cast
as an elliptic equation for hðθ;ϕÞ which can be solved
efficiently. This condition requires that any ray drawn from
the origin of coordinates intersects the surface exactly once,
and a surface satisfying this condition is said to be star
shaped. It is not expected that marginal surfaces should
always satisfy this condition, and we shall study explicit
counterexamples below. The second goal of this paper is
thus the development and implementation of a new
numerical method for finding marginal surfaces which is
computationally as fast as AHFinderDirect yet is capable of
finding arbitrarily distorted surfaces.
Armed with our new horizon finder, we investigate with

high numerical precision the various marginal surfaces
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which can exist in a simple binary black-hole initial dataset,
namely the Brill-Lindquist (BL) dataset representing non-
spinning black holes at a moment of time symmetry. A
similar project aimed at studying apparent horizon jumps

was initiated in [39] and also looked at marginal surfaces in
a sequence of initial data sets. It was applied to a different
initial data construction (Bowen-York); however, only
limited results for the equal mass case were presented

FIG. 1. Sequence for MOTS for BL data. In each of the plots the masses are fixed at m1 ¼ 0.2, m2 ¼ 0.8, and the separation d is
successively smaller.
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there. The MOTS finder used in that work was a pseudo-
spectral axisymmetric code using bispherical coordinates
and therefore not easily generalizable. See also [55] for a
study of distorted horizons in extreme mass ratio systems.
See also [56] for another example. Despite the simplicity of
BL initial data, we demonstrate the remarkably rich
behavior of marginal surfaces, shown here in such great
detail for the first time.1 The MOTSs in BL data do have
some special features which we shall mention later.
However, as far as the goals of our study are concerned,
nothing is lost by restricting ourselves to BL data. Just as
for generic initial data, the number of marginal surfaces is
the same, and these surfaces are not any less distorted.
Furthermore, since numerical accuracy is of paramount
importance here, it is more fruitful to initially focus on
studying sequences of initial data where additional numeri-
cal errors due to time evolution can be ignored. Once the
basic link between stability and existence has been estab-
lished, as will be done in this paper, we can proceed to
apply these methods to other initial data and, more
importantly, to time evolutions in forthcoming work.
The plan for the rest of this paper is as follows. The basic

definitions and mathematical properties of marginally
trapped surfaces are given in Sec. II A, and Sec. II B
summarizes existing methods for locating marginal surfa-
ces. Section III describes our new method, including the
parameterization in Sec. III A, the algorithm in Sec. III B,
and its validation in Sec. III C. Section IV provides the first
set of results, by applying this method to simple binary
black-hole initial data, namely the BL data, representing the
head-on collision of two nonspinning black holes initially at
rest, considering various values of themass ratio and various
separations. Section V explains many of the results seen in
Sec. IVin terms of stability. It shows the crucial link between
the existence and stability of marginal surfaces. Finally, the
universal behavior of the apparent horizon as d → 0 is
shown in Sec.VI, and final conclusions are given in Sec.VII.

II. LOCATING MARGINALLY TRAPPED
SURFACES

A. Definitions and properties

Let S be a closed spacelike 2-surface embedded in a
spacetime M with a Lorentzian metric gab of signature
ð−þþþÞ. Let qab be the Riemannian metric on S
obtained by restricting gab to vectors tangent to S. At
any point p ∈ S, we can perform an orthogonal decom-
position of the tangent space TpM ¼ TpS ⊕ TpS⊥. The
orthogonal space TpS⊥ has a Lorentzian metric, and we
can choose a basis of future directed null vectors ðla; naÞ
in this vector space. We assume also that it is possible to
assign an outward direction on S, and by convention la

is taken to be outward pointing and na inward pointing.

We can in principle rescale la and na by positive
definite functions; however, it is convenient to tie the
scalings of ðla; naÞ together so that their inner product is
preserved: l · n ¼ −1. We are then left with possible
rescalings (the boost transformations) such that la → fla,
na → f−1na, f > 0.
Let ∇a be the derivative operator onM compatible with

gab. The expansions of la and na are, respectively,

ΘðlÞ ¼ qab∇alb; ΘðnÞ ¼ qab∇anb: ð1Þ

Under a boost, the expansions scale as ΘðlÞ → fΘðlÞ and
ΘðnÞ → f−1ΘðnÞ.
S is said to be a marginally outer trapped surface

(MOTS, or simply marginal surface) if ΘðlÞ ¼ 0. This
definition is boost invariant (and invariant under all Lorentz
transformations which preserve the direction of la). While
we will not generally require any condition on ΘðnÞ, it will
be negative in most physical situations, and it is important
to check that this is indeed the case. Closed spacelike
2-surfaces with ΘðlÞ ¼ 0 and ΘðnÞ < 0 are called margin-
ally future trapped surfaces. Even in Schwarzschild space-
time, there are examples of nonsymmetric spatial slices
which get arbitrarily close to the future singularity but do
not contain any marginally trapped surfaces. These slices
would have marginal surfaces, i.e., with ΘðlÞ ¼ 0, but they
would not satisfy ΘðnÞ < 0 [57,58].
In the situation of interest for us, namely numerical

simulations of Einstein’s equations as an initial value
problem, the spacetime M is foliated by spacelike
Cauchy surfaces Σt labeled by a real parameter t. Let St
be a MOTS in Σt. Further, ta denotes the unit timelike
normal to Σt, ra the unit spacelike normal to S in Σt, hab
the Riemannian metric on Σt induced by gab, and Da the
derivative operator on Σt compatible with hab. Denote the
extrinsic curvature of Σt by Kab ≔ −hcahdb∇ctd (the neg-
ative sign is conventional in the numerical relativity
literature). A suitable choice of the null normals is

la ¼ 1ffiffiffi
2

p ðta þ raÞ; na ¼ 1ffiffiffi
2

p ðta − raÞ: ð2Þ

Note that for a given St choosing a different Σt corresponds
to some boost transformation. The MOTS condition is, as
we have seen, boost invariant. Thus, if two hypersurfaces
Σt and Σ0

t contain S, then S is a MOTS in both
hypersurfaces.
In terms of ta and ra, ΘðlÞ ¼ 0 is equivalent to

Dara þ Kabrarb − K ¼ 0: ð3Þ

This is the equation that must be solved on Σt, with given
Kab and hab, to locate the MOTS. If we write the MOTS S
as the level set of some function F, then ra ∝ DaF, and we

1Read the previous sentence in David Attenborough’s voice.
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get a second-order differential equation for F. We shall
write this explicitly below, but for now we conclude this
section with a short summary of some properties of MOTSs
and the relation between MOTSs and black-hole horizons.
In the context of a time evolution, perhaps the first basic

question that arises is whether a given MOTS evolves
smoothly. It is a priori possible that a MOTS is poorly
behaved under time evolution and may arbitrarily cease to
exist, or a new MOTS may be formed arbitrarily. In
numerical simulations, it is empirically observed that a
MOTS does behave smoothly under time evolution.
Mathematically this has so far been proven for MOTSs
with a physically well-motivated stability condition [46–49];
see also [59] for a study of variations of unstable horizons.
Define first the variation of ΘðlÞ in the radial direction

ra, δfrΘðlÞ [60]. Let Sζ be a smooth one-parameter family
of closed spacelike 2-surfaces on Σt such that Sζ¼0

coincides with S. Each point p on S traces a smooth
curve as ζ is varied. Let ka be the tangent vector to this
curve. On each Sζ calculate the outgoing null expansion

Θζ
ðlÞ and differentiate it with respect to ζ. This yields the

variation of ΘðlÞ along ka:

δkΘðlÞ ≔
dΘζ

ðlÞ
dζ

����
ζ¼0

: ð4Þ

It easy to see that the variation is linear for constants but
not for a function: δckΘðlÞ ¼ cδkΘðlÞ for a constant c, but
δψkΘðlÞ ≠ ψδkΘðlÞ when ψ is a nonconstant function.
Choose ka ¼ fra, and define the operator L as

δfrΘðlÞ≕Lf: ð5Þ

It can be shown that L is generally of the form

Lf ¼ −Δf þ γa∂af þ βf; ð6Þ

where Δ is the Laplacian compatible with qab, γa is some
vector field on S (related to the angular momentum) and β
is a scalar. In the case of time-symmetric data (where the
angular momentum and hence γa vanishes), the stability
operator can be simplified to [47]

Lf ¼ −Δf − ðRabrarb þKabKabÞf: ð7Þ

Here Rab is the intrinsic Ricci tensor of Σt, and Kab is the
second fundamental form of S embedded in Σt. In this case
L is seen to be self-adjoint.
In general however, from Eq. (6), L is a second-order

elliptic operator with a discrete spectrum, which is however
not necessarily self-adjoint. Its smallest eigenvalue, known
as the principal eigenvalue Λ0, turns out to be real. It was
shown that if the principal eigenvalue is positive, then the
MOTS evolves smoothly in time [46–48]. This stability

condition is equivalent to saying that an outward deforma-
tion of S makes it untrapped, which is what we expect to
happen for the apparent horizon. We shall study the
stability operator and its first eigenvalues below in much
greater detail in specific examples.
In the introduction, we mentioned briefly the idea of

stacking up marginal surfaces at different times to construct
a smooth 3-surface, a quasilocal horizon. The only notion
from the formalism of quasilocal horizons that we will use
in this paper is that of mass multipole moments. Given a
2-sphere S with an axial symmetry vector ϕa and an
intrinsic Ricci scalar R, it turns out to be possible to
construct a set of geometric multipole moments which
capture the intrinsic horizon geometry [61]. Since we shall
deal with time-symmetric situations, we do not need to
consider the current multipole moments and we restrict
ourselves to the mass multipoles In. These are

In ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4π

r Z
S
RPnðζÞd2V ð8Þ

with the coordinate ζ ∈ ½−1; 1� (the analog of cos θ in
standard spherical coordinates) defined as

∂aζ ¼ 1

R2
ϵbaϕ

b;
Z
S
ζd2V ¼ 0: ð9Þ

Here R is the radius of S, ϵ the volume 2-form on S, and
Pn the nth Legendre polynomial.

B. Locating star-shaped MOTSs numerically

Most MOTS finders assume, first of all, that the
2-surface S is topologically a sphere. This is not a strong
restriction as it can be shown that generically the topology
must be spherical, it is toroidal only in very special
situations, and higher genus surfaces are not allowed
[62]. The other common assumption is that S demarcates
a star-shaped region (Strahlkörper); i.e., any ray drawn
from the origin intersects S exactly once. This is obviously
a coordinate-dependent definition since it depends on the
origin and on the set of coordinates in which straight lines
are drawn. It excludes surfaces of the form shown in
Fig. 1.1 of [52], and we shall show explicit examples of
non-star-shaped surfaces very much like it [e.g., Fig. 1(d)].
Given this assumption, we can parameterize S as

r ¼ hðθ;ϕÞ; ð10Þ

where r is the Euclidean distance from the origin of
coordinates to a point on S and ðθ;ϕÞ are angular
coordinates. Here ðr; θ;ϕÞ is the coordinate system used
in the numerical calculations, and we shall use mid-
alphabet Latin indices i; j;… for tensors in this coordinate
system. Thus, hij is a Riemannian metric [not to be
confused with hðθ;ϕÞ] and Kij the extrinsic curvature.
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We look for level sets of the function

Fðr; θ;ϕÞ ¼ r − hðθ;ϕÞ: ð11Þ

The surfaces of constant F define a sequence of surfaces
and, to compute the normal, we start with the gradient of F:

si ¼ ∂iF; dF ¼ dr − hθdθ − hϕdϕ: ð12Þ

The unit-normal ri is then

ri ¼
si
ksk ; ksk2 ¼ hijsisj: ð13Þ

Since si is directly related to the derivative of hðθ;ϕÞ, as
opposed to ri which has a complicated nonlinear depend-
ence, it is convenient to separate out the norm of si in the
expansion.
Since ri is proportional to ksk−1, looking at the three

terms in Eq. (3), we see immediately that Kijrirj is
proportional to ksk−2 and K does not depend on ksk. In
the first term Diri, since ri is proportional to ksk−1, it is
clear that differentiation will lead to two terms, one
proportional to ksk−3 and the other to ksk−1:

Di

�
siffiffiffiffiffiffiffiffi
s · s

p
�

¼ Disi

ðs · sÞ1=2 −
sisjDisj
ðs · sÞ3=2 : ð14Þ

Thus, the expansion of any level-set surface of F is of the
form

Θ ¼ A
ksk3 þ

B
ksk þ

Kijsisj

ksk2 − K; ð15Þ

where

A ≔ −sisj∂isj −
1

2
sið∂ihklÞsksl; ð16aÞ

B ≔ ð∂ihijÞsj þ hij∂isj þ ð∂i ln
ffiffiffiffiffiffiffiffiffiffiffiffi
det½h�

p
Þsi: ð16bÞ

Here det½h� is the determinant of hij. In terms of the
function h we are trying to solve for, ΘðlÞ depends on h and
its first two derivatives. We thus end up with a second-order
nonlinear elliptic partial differential equation for h whose
coefficients depend on hij, its first derivatives, and Kij.
The method using the above formalism, with the

assumption of a star-shaped surface, i.e., using Eq. (11),
and following the implementation of [15] is routinely used
in numerical simulations. While this is generally sufficient
for many applications, there are cases where highly dis-
torted MOTSs appear. An example is in [28], where certain
highly distorted MOTSs appear and this standard approach
does not work. We will see that this restriction can be

removed by a small change while still leaving most aspects
of the above approach intact.

III. LOCATING A DISTORTED MOTS

We begin by reinterpreting the starting point of the
algorithm, i.e., Eq. (11). Instead of the radial distance r
from the origin, we could choose to use the distance from
a sphere of some radius R0 along rays orthogonal to the
sphere2 (the precise radius of the sphere is not important).
Since the rays emanating from the sphere in the orthogo-
nal direction all meet at the origin, the two interpretations
are identical and the numerical method and results are
unchanged. The restriction to a star-shaped surface obvi-
ously still holds. However, we are free to take as reference
a topologically spherical surface of any arbitrary shape
and we can consider rays orthogonal to it. The rays will
now not necessarily all meet at the origin (or at any other
point), but this is irrelevant. What is important is that the
reference surface can be chosen so that the rays orthogo-
nal to it meet the surface S just once. The reference
surface itself need not be star shaped either; it just needs to
be parameterized suitably, as we shall discuss later.
Furthermore, it is important that the rays do not intersect
each other before reaching S. This typically happens
when S is too far away from the reference surface; it is
beyond the region of validity of this coordinate system
based on the reference surface.
An example of the numerical benefits of choosing a

suitable reference surface is shown in Fig. 2. The surface
S is the MOTS that we are trying to locate. The first
panel of Fig. 2 is the standard method, i.e., using rays
centered at the horizon. The surface S is of the type that is
difficult to locate and comes close to, or even violates,
the property of being star shaped; this is very similar to
Fig. 1.1 of [52] shown there as an example of a
problematic surface. In Fig. 2, the surface S is actually
star shaped, but only barely. We see that the rays centered
at the origin intersect S only once, but the intersections
pile up at the neck. On the other hand, the second panel
shows a reference surface σR which is only slightly
deformed away from an exact sphere. The rays are
now orthogonal to σR and we see that the intersections
are much more uniformly distributed on S. While it is
clearly possible to find reference surfaces which make it
harder to locate S, there are many easily found choices
which greatly improve the numerical results. This also
makes the algorithm very flexible, as it can be tuned to
find extremely distorted surfaces.

2Here orthogonality refers just to a Euclidean metric in the
coordinate system where the numerical calculations are being
performed. Similarly straight lines refer to this fictitious Euclid-
ean metric and not to geodesics of the physical Riemannian
metric.
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A. The new coordinate system

Consider then a reference surface σR parameterized by
two coordinates ðλ1; λ2Þ (the generalization to greater or
fewer dimensions is obvious). The parameters ðλ1; λ2Þ
could be for example angular coordinates ðθ;ϕÞ but this
is not a requirement. Construct then the rays orthogonal to
σR using the Euclidean metric in which the numerical
simulation is being carried out. To any point in the
neighborhood of σR, we can assign coordinates ðξ;λ1;λ2Þ,
where ξ is the Euclidean distance along the orthogonal rays;
see Fig. 3. This coordinate system is valid as long as
the orthogonal rays do not cross. This construction is
very similar to Gaussian or Fermi-normal coordinates in

differential geometry, except that we do not use the actual
curved geometry to define the orthogonal rays, nor dowe use
the proper distance along the rays.
Given the coordinate system ðξ; λ1; λ2Þ, we can represent

the surface S that we are looking for by a height function h.
Then, analogous to Eq. (11), we want to consider level sets
of the function

Fðξ; λ1; λ2Þ ¼ ξ − hðλ1; λ2Þ: ð17Þ

The normal to S is again the gradient of F: si ¼ ∂iF.
Obviously, ðξ; λ1; λ2Þ must be known as functions of the
coordinates used in the simulation. The important point is
that Eq. (15) still remains valid. The difference now is that,
instead of Eq. (11), we use Eq. (17) to define the normal si.
The numerical method for solving the equation is not
affected by this parameterization.
While it should be clear that the method should work

generally, in the rest of this paper, we shall restrict
ourselves to the axisymmetric case where we only need
to consider reference curves parameterized by a single
parameter λ. The validation of the code and results for the
general three-dimensional case will be left to future work.
Let the symmetry axis be the z axis, and let us work in
the x–z plane. We represent a reference surface σR via a
parameterized curve which we shall denote γRðλÞ. We are
free to choose the parameter λ as convenient. For example
we could take it to be the angle with the z axis—but this
would restrict us to take the reference surface as star
shaped. More generally, we could take it to be the path
length of the curve. Whatever the choice, we shall take the
range of the parameters to be from 0 to π. Thus we have a
curve γR∶½0; π� → R2 in the x − z-coordinate plane such
that γRð0Þ and γRðπÞ lie on the z axis and the tangent
vectors γ0Rð0Þ and γ0RðπÞ are perpendicular to the z axis.
Let x⃗ be the vector representing any point in the x–z

plane; we remind the reader again that the simulations are
in Euclidean coordinates. We define

FIG. 2. This figure shows the benefits of using a nonspherical
reference surface. The surface S in both panels is the MOTS we
are trying to locate; it is star shaped, but only barely so. The first
panel is the standard approach using rays centered at the origin
while the second panel uses rays orthogonal to a reference surface
σR. See text for further discussion.

FIG. 3. The coordinate system ðξ; λ1; λ2Þ based on a reference
surface σR and the rays orthogonal to it. ξ is the Euclidean
distance along the orthogonal rays and ðλ1; λ2Þ are the coordinates
of the point P which is the intersection of the ray and σR. The
surface S we are looking for can be represented by a height
function h.
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Fðx⃗Þ ≔ ξðx⃗Þ − hðλðx⃗ÞÞ; ð18Þ

where ξðx⃗Þ and λðx⃗Þ are defined implicitly by

x⃗ðξ; λÞ ¼ γ⃗RðλÞ þ ξ ν⃗RðλÞ: ð19Þ

Here ν⃗R is a vector pointing outwards in the direction
normal to σR in the (Euclidean) x, z coordinates. Note that
we do not require ν⃗R to be normalized to unit length. This
will make the computational tasks much easier, since it
allows us to simply choose νR to be the tangent vector
rotated by π=2.
Using this ansatz, the horizon function h defines the

surface S (for which F ¼ 0) via the curve

γ⃗ðλÞ ¼ γ⃗RðλÞ þ hðλÞν⃗RðλÞ: ð20Þ

As before, taking the normal si to this curve and using it
in Eq. (15) yields the differential equation that we need
to solve.

B. The numerical algorithm

As discussed above, the equation to solve numerically is
(15) with our definition of F from Eq. (18) used to define
the normal si. This is then read as a nonlinear partial
differential equation (PDE) for h, which becomes a non-
linear ordinary differential equation in axisymmetry. Our
method of solving this equation is standard Newton root
finding, suitably extended to differential operators via the
Newton-Kantorovich scheme [63]. Other means of solving
the nonlinear PDE, e.g., [52], can also be used. Let N be
the differential operator so that the equation to be solved is
N ðuÞ ¼ 0. We will need the variational derivative N u of
N ðuÞ defined in the usual manner:

N uðΔÞ ¼ lim
ϵ→0

N ðuþ ϵΔÞ −N ðuÞ
ϵ

: ð21Þ

Here Δ is a variation of u and N u is a differential operator
(obtained by linearizing N ) acting on Δ.
Start with an initial guess uð0Þ, and let uðiÞ be the ith

iteration. If this is sufficiently close to the true solution, we
can expand N ðuÞ linearly around uðiÞ to obtain

0 ¼ N ðuðiÞ þ ΔÞ ≈N ðuðiÞÞ þN uΔ: ð22Þ

We want to choose uðiþ1Þ by solving the linear system of
equations

uðiþ1Þ ¼ uðiÞ −N −1
u N ðuðiÞÞ; ð23Þ

i.e., we solve N uΔ ¼ −N ðuðiÞÞ for Δ (with suitable
boundary conditions to be detailed below) and perform

the steps uðiþ1Þ ¼ uðiÞ þ Δ. This applies whether u is
represented by values on a discrete grid or as spectral
coefficients.
Our implementation uses a pseudospectral method

[63,64] to perform the steps (23), where uðiÞðλÞ ¼ hðiÞðλÞ
and N ðuÞ ¼ ΘðhÞ as defined in (15). The linear equation
for Δ now takes the form

ðδhΘÞΔþ ðδh0ΘÞΔ0 þ ðδh00ΘÞΔ00 ¼ −ΘðhðiÞÞ: ð24Þ

Here, the derivatives of Θ on the left-hand side of (24) are
evaluated at hðiÞ. Note that, in each step, hðiÞ defines a trial
surface SðiÞ which is tested for convergence by computing
its expansion Θ at a finite set of points.
To apply the pseudospectral method, we start with a

choice for hð0Þ, say hð0Þ ≡ 0, and represent Δ using a
truncated series of cosines:

ΔðλÞ ¼
XN
n¼0

an cosðnλÞ; ð25Þ

where we call N the resolution of a particular pseudospec-
tral representation. This choice of basis functions is natural
for the axisymmetric setting and ensures that, for a
reference curve γR satisfying γ0Rð0Þ ¼ γ0RðπÞ ¼ 0, the curve
represented by h using (20) does so too. In addition, it
eliminates the need to impose explicit boundary conditions
when solving the differential equation since this is already
done by each individual basis function.

C. Validating the numerical method

Since the full procedure combines several methods
[computation of the variational derivatives in (24), the
Newton-like root search, the pseudospectral method], each
introducing numerical errors, one possibility for testing the
procedure as a whole is to perform the whole search for S
at different fixed spectral resolutions N of the steps hðiÞ.
At each resolution, we compute the maximum kΘk∞ and
plot the result as a function of N in Fig. 4, for a static initial
data configuration of two black holes (as described in
Sec. IV). The exponential convergence is expected for a
spectral method [63] and also shows convergence of the
Newton-Kantorovich scheme until the floating point round-
off plateau is reached.
The remaining quantity to be tested is the expansion as

computed for a (trial) surface S. This can be accomplished
by comparing the computed expansion with a case where
it is known analytically. One of the simplest of such cases
is a centered sphere in a Schwarzschild slice hab ¼ ϕ4δab,
where

ϕðr⃗Þ ¼ ϕðrÞ ¼ 1þ m
2r

: ð26Þ
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The expansion of r ¼ const surfaces is then given by

Θ ¼ 2

ϕ2ðrÞ
�
1

r
þ 2

ϕ0ðrÞ
ϕðrÞ

�
: ð27Þ

Figure 5 shows that the numerically computed expansion
agrees to high accuracy with the exact value. The event
horizon and apparent horizon coincide in these slices and
are located at r ¼ m=2 in these coordinates. A respective
search with a reference surface chosen to be r ¼ m ¼ 1

converges to a curve γ with jγðλÞj ¼ m=2� 5 × 10−17 and
a numerically evaluated expansion kΘk∞ ≲ 10−15.

IV. APPLICATION TO TIME-SYMMETRIC
BINARY BLACK-HOLE INITIAL DATA

A. Brill-Lindquist initial data

We apply our new MOTS finder algorithm to the Brill-
Lindquist (BL) initial dataset. This is perhaps the simplest
initial dataset [65] representing multiple nonspinning black
holes at a moment of time symmetry. Thus, each black hole
has vanishing momentum. The original work [65] consid-
ered also electric charge and an arbitrary number of black
holes, but here we shall ignore charge and restrict ourselves
to two black holes. While simple, this initial dataset is not
simplified in terms of the various kinds of MOTSs that can
appear. As shown numerous times in the literature, (see
e.g., [28]), the general picture is that, when the two black
holes in the binary are initially well separated, there are
two independent MOTSs, one for each black hole. These
two MOTSs approach each other and, at a certain point, a
common MOTS appears which surrounds the individual
MOTSs. This common MOTS immediately bifurcates into
an inner and outer MOTS. The inner common MOTS
shrinks and approaches the two individual MOTSs, while
the outer common MOTS (the apparent horizon) grows and
sheds its multipole moments to approach an equilibrium
state, i.e., a Kerr black hole.3 The eventual fate of the inner
MOTS and the two individual MOTSs is still unknown,
though some partial results are known [28,66].
Time symmetry means that the extrinsic curvature

vanishes: Kab ¼ 0. The 3-metric is conformally flat: hab ¼
ϕ4δab. The two black holes are represented by two
punctures in the background conformal metric δab. The
Euclidean distance between the punctures is d and the
conformal factor at any point r⃗ is

ϕðr⃗Þ ¼ 1þ m1

2r1
þ m2

2r2
: ð28Þ

Here r1 and r2 are the Euclidean distances of r⃗ from the two
punctures and m1 and m2 are the bare masses of the two
black holes. As shown in [65], the total Arnowitt-Deser-
Misner (ADM) mass of the system is MADM ¼ m1 þm2.
The two punctures are regular asymptotic ends, and ADM
masses can thus be calculated at the punctures:

Mð1Þ
ADM ¼ m1 þ

m1m2

2d
; ð29Þ

Mð2Þ
ADM ¼ m2 þ

m1m2

2d
: ð30Þ

The difference

MADM −Mð1Þ
ADM −Mð2Þ

ADM ¼ −
m1m2

d
ð31Þ

FIG. 4. Convergence of the expansion using results of
searches with different spectral resolutions N for the series
representation of hðiÞ. The quantity kΘk∞ is computed taking an
initial grid with higher density than the resolution N and
performing a local maximum search from the point of largest
deviation from zero. The left panel shows the convergence of
the outermost common (apparent) horizon and the two indi-
vidual MOTSs, while the right panel shows the convergence for
the inner common MOTS which has a more distorted shape and
hence requires a higher resolution. The expected exponential
falloff continues until the floating point roundoff plateau is
reached. As can be seen, this happens at different resolutions
depending on the specific form of the respective surface S and
the reference surface σR. The configuration used here is that of
Fig. 1(c) with reference surfaces taken as the respective
horizons for d ¼ 0.405.

FIG. 5. Accuracy of the expansion computed for an r ¼ const
surface in a Schwarzschild slice with mass m ¼ 1. The reference
surface σR is here chosen to be a sphere of radius r=2.

3Or, in our simplified case of axial symmetry and no spins, a
Schwarzschild black hole.
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is interpreted as the binding energy. For nonspinning black
holes, the irreducible mass, i.e., Mirr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16π

p
with A

being the area of the MOTS, provides an appropriate notion
of horizon mass. The difference between the bare masses

and the horizon masses (MADM −Mð1Þ
irr −Mð2Þ

irr ) is inter-
preted similarly, yields similar results, is applicable for a
much wider variety of initial data, and is in fact physically
more meaningful [27,67].
The qualitative structure of the MOTSs described above

as arising from time evolution is also present when the
static distance d is reduced. As far as the various MOTSs
are concerned, there is no reduction in complexity by
simplifying the initial data. The main difference is that for
time-symmetric data a MOTS is also a surface of extremal
area (boosted Bowen-York data, in which MOTSs are not
extremal, were used to explore this point in [39]). As in
time evolution, and as shall be shown below, all of the
individual and the inner and outer MOTSs are present. As d
becomes smaller, the inner common MOTS becomes
highly distorted and extant horizon finders have not been
able to find it. With our new numerical method, we shall be
able to track this inner MOTS even as it becomes highly
distorted and eventually disappears. It should be kept in
mind however that changing d alone is not equivalent to
time evolution and quantitative results may not carry
through to a real time evolution. In a real time evolution
the data will not remain time symmetric. Also, decreasing d
alone keeps the total ADM mass fixed but leads to

increasing Mð1;2Þ
ADM as is obvious from the above equations.

A true time evolution will, in principle, keep all ADM
masses fixed.

B. Results: Distorted MOTSs in BL data

We can now begin with our main results, namely
properties of marginal surfaces in BL data for various
values of the massesm1;2 and separations d. By convention,
we shall take m1 ≤ m2 and the mass ratio is defined as
q ¼ m2=m1 ≥ 1. The total mass will be kept fixed to unity:
M ¼ m1 þm2 ¼ 1. For any given mass ratio, we generally
successively decrease the value of d in the results below.
Once we have found a MOTS for a particular d, it is used
as a reference surface for the next smaller value of d. We
have already seen that there are generally four different
marginal surfaces. Whenever convenient, the apparent
horizon will be denoted SAH, the inner horizon by Sin,
the larger individual MOTS by Slarge and the smaller
individual MOTS by Ssmall. Obviously for the equal mass
case both Slarge and Ssmall have the same size and the
distinction between them will be irrelevant.

1. The various MOTSs for mass ratio 1:4

The first set of plots shows the various MOTSs for BL
data with a mass ratio 1∶4, chosen as an illustrative
example. This value of the mass ratio is also the one used

in [66] as an example, and we shall reproduce and extend
the results shown in Fig. 2 of [66].
Since the total mass is normalized to unity, the individual

masses are m1 ¼ 0.2 and m2 ¼ 0.8. Note that, since the
data is time symmetric, the MOTSs are all minimal surfaces
and thus they cannot touch each other with a common
tangent vector (otherwise, by the maximum principle for
elliptic operators, they must coincide [66]). The common
horizon is seen to exist for d ≤ 0.6987162.4 For larger
separations we only have the two individual horizons.
Figures 1 and 6 show the horizons for d ¼ 0.69850,
0.6500, 0.4000, 0.2500, 0.166052351. This last value is
a little before the inner common MOTS ceases to exist. The
last panel [Fig. 6(b)] shows the detailed picture near the
neck of the MOTS. It is clear that the inner common MOTS
is far from star shaped at this point (in fact this happens
much earlier for larger d), yet our new horizon finder has no
fundamental difficulty in locating it.
For each of the MOTSs, we also look for surfaces of

constant expansion [16,69] on both sides. We confirm that
indeed the behavior of the apparent horizon is as expected:
the expansion goes smoothly from negative to positive
values as we cross the apparent horizon going outwards.
This is not the case for the inner MOTS. The constant
expansion surfaces lie on both sides of the MOTS and thus
they do not form a regular foliation in any neighborhood of
the MOTS; see Fig. 7. This is consistent with the fact that,
as we shall see below, the inner MOTS (unlike the apparent
horizon) is unstable in the sense discussed in Sec. II A and
it thus is not guaranteed to be a barrier between trapped and
untrapped surfaces in any neighborhood [46].
As we decrease d, we observe that the inner common

MOTS is not found for d < 0.166052351, and shortly after
that, for d < 0.16461385 the larger individual MOTS is not
found as well. For all smaller values of d, the smaller
individual horizon and the apparent horizon continue to
exist; the apparent horizon becomes smoother just as in a
time evolution [28]. The remaining inner MOTS corre-
sponding to the smaller black hole becomes smaller in
coordinate space. We briefly summarize the properties of
the 1∶4 configuration as d is decreased.

Large d.—Only Slarge and Ssmall exist.
d ≈ 0.6987.—Common horizon appears and bifurcates
into SAH and Sin.
d≲ 0.6987.—Sin becomes increasingly distorted.
d≲ 0.1660.—Sin no longer found.
d≲ 0.1646.—Slarge no longer found.
Small d.—Only SAH and Ssmall exist.

In previous work, say [28], when the inner horizon was not
found, it was reasonable to suspect that the numerical
method being used there was not able to find it. Here, we

4We remark that for the equal mass case we find the common
horizon for d ≤ 0.76619742, which agrees within our final step
size Δd ¼ 10−8 with the results found in [68].
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FIG. 7. The constant expansion surfaces near the apparent horizon and the inner commonMOTS. This shows that the apparent horizon
is stable while the inner MOTS is not. See text for discussion. The right panel shows a close-up of the intersection of surfaces of constant
positive and negative expansion with the inner MOTS. The bottom panel shows that the constant expansion surfaces and MOTSs do not
coincide and, even though being close, they have different curvatures leading to different expansion values.

FIG. 6. The same as Fig. 1 above, but for the smallest value of d before the inner commonMOTS disappears. The right panel (b) shows
the details of the highly distorted inner MOTS at its neck.
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have evidence that the inner horizon in fact does not
exist. While it is difficult to prove nonexistence with
absolute certainty here, we can eliminate a few clear
possibilities.
First, we note that, at the point before the MOTS

disappears, there is no indication of any numerical prob-
lems at the earlier step (in this case for a slightly larger
value of d). It is true that resolving the neck requires higher
resolution, but this is feasible with modern computers. Note
also that the larger individual MOTS disappears as well and
it does not have any such features that need to be resolved.
Second, the foliation by the constant expansion surfaces, in
the region near where the inner MOTS is found just before
it disappears, shows only negative values of the expansion:
ΘðlÞ < c, where c is some nonzero negative number. Just
before the MOTS disappears, c is positive and decreases

to 0 when the last instance of the MOTS is found. This shall
be further discussed below in more detail.

2. Varying the mass ratio

We next investigate a number of geometric quantities on
the various MOTSs as functions of d and for different mass
ratios. In these results, we consider the mass ratios 1∶1,
1:1.5, 1∶2, 1:3, 1∶4 and 1∶5. As before the total mass is
always kept fixed: MADM ¼ m1 þm2 ¼ 1.
Figure 8 shows the areas of the four horizons as functions

of d. The apparent horizon is the easiest to understand in
terms of the irreducible massMirr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Area=16π

p
. Since the

black holes have zero angular momentum, Mirr is also the
correct mass that one should assign to the black hole [26]. As
discussed earlier (see also [27]), the differenceMADM −Mirr

FIG. 8. The area of the various horizons in BL data with different mass ratios as a function of the separation.
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is a measure of excess radiative energy present between the
horizon and spatial infinity. As we make d smaller and
eventually set it to zero, we have just a single black hole
and we recover a slice of the Schwarzschild spacetime
(in isotropic coordinates). For a Schwarzschild black hole,
since it is globally static, there is clearly no radiation and the
horizon mass must equal the ADMmass. The horizon area is
then just 16πM2

irr ¼ 16πM2
ADM. Sincewe setMADM ¼ 1, we

expect that as d → 0, Area → 16π ≈ 50.265, which is what
is found in Fig. 8(a) for all the mass ratios.
For the inner and the larger individual MOTS shown in

Figs. 8(b) and 8(c), the areas are seen to increase mono-
tonically as d is reduced. Clearly, just when the common
horizon is formed, the inner MOTS and the AH coincide
and their areas must necessarily agree. The inner MOTS
area increases more rapidly and eventually has a larger area
than the apparent horizon. The smaller horizon initially has
a much smaller area than any of the other marginal surfaces.
For d → ∞, its irreducible mass must agree with the bare
mass m1. Thus, for a mass ratio q ¼ m2=m1, we must have
Mirr ≈ 1=ð1þ qÞ, which implies that its area is approx-
imately 16π=ð1þ qÞ2. Thus, the area is smaller for the
more asymmetric system. For the larger MOTS, the same
argument shows that the area must be 16πq2=ð1þ qÞ2 for
large d. This is larger for more asymmetric systems.
For very small d, the area of the smaller MOTS increases

very rapidly and the “small” black hole ends up having the
largest area. This can be understood by recalling that the
punctures are asymptotically flat regions by themselves. As
the individual horizon nears the puncture, it is moving
towards asymptotic infinity at the other end of the Einstein-
Rosen bridge. It is thus not surprising that its area increases
rapidly for very small d.
The next set of plots shows the maximum value of the

intrinsic Ricci scalar on the horizons. As before, the
apparent horizon is easy to understand. For a “round”
sphere of radius R in Euclidean space, the scalar curvature
is R ¼ 2=R2. Following the same argument as above for
the area we get R ¼ 8π=Area ¼ 8π=ð16πM2

irrÞ → 0.5 as
d → 0. This is confirmed in Fig. 9(a). Similarly, the
curvature of the smaller MOTS, which we have seen
approaches asymptotic infinity and infinite radius, is R ¼
2=R2 → 0 as also seen in Fig. 9(d). For the inner MOTS,
we have seen already in Fig. 6(b) that it is highly distorted
and is almost pinching off at its neck. Thus, we expect
increasingly large curvature at the neck, which is what is
seen in Fig. 9(b). The behavior of the larger individual
MOTS shown in Fig. 9(c) shows an interesting maximum
for which we have no obvious explanation.
We can now postulate a scenario for the final fate of the

remaining MOTS corresponding to the smaller black hole
as d → 0. For the exterior spacetime, in the “close-limit”
approximation [70], for small d we should be able to
express the exterior spacetime as a perturbation of the
Schwarzschild solution. Thus we expect that the interior

spacetime should also approach a slice of Schwarzschild
in this limit. Since the coordinate radius of the MOTS
vanishes asymptotically, it is plausible that the MOTS
vanishes “into” the puncture, after which the puncture itself
ceases to exist. Then we are just left with the other puncture
so that asymptotically we have just a slice of Schwarzschild
spacetime. This scenario could go wrong if the coordinate
radius r of the MOTS (defined as the distance from the
puncture to the location of the MOTS on the z axis
towards the other puncture) does not decrease sufficiently
rapidly with d, and the MOTS intersects the other puncture.
Note that the proper distance will not be useful here since
the proper distance from the puncture is always infinite.
The question therefore is what happens to the ratio r=d as
d → 0. This is shown in Fig. 10. We see that r=d
asymptotes to a constant value less than unity which
supports the scenario outlined above. For the equal mass
case, r=d → 0 as d → 0, again showing that the equal mass
case is qualitatively different.

V. STABILITY AND EXISTENCE

The previous section has illustrated some general proper-
ties of the different marginal surfaces for various values
of the mass ratio. We have seen cases when the inner and
larger marginal surfaces are not found or are highly
distorted. The fundamental question of their existence
and stability has been posed but we do not yet know
why they cease to exist in certain cases. Are marginal
surfaces inherently ill behaved or can these properties be
understood in terms of predictable and regular quantities?
In this section we answer these questions and show that
there is a deep link between existence and stability. We
shall start by trying to find the various MOTSs numerically
as exhaustively as possible. Later we shall turn to the
stability parameter to explain the failure to find some of
these marginal surfaces.
We have already demonstrated the stability of the

apparent horizon and the instability of the inner common
MOTS in Fig. 7. We saw that the inner common MOTS Sin
is not a barrier between trapped and untrapped surfaces, and
there exist constant expansion surfaces which lie on both
sides of Sin. Apart from this visual illustration, stability can
be quantified by a real parameter. Recall that the stability
of a MOTS is governed by the spectrum of the stability
operator defined in Eq. (6). In particular, positivity of the
principal eigenvalue guarantees smooth time evolution. The
stability parameter is defined to be the principal eigenvalue
which shall be discussed shortly.
Since stability is connected with existence, we begin by

investigating the critical values of d below which the inner
and larger MOTSs, Sin and Slarge, respectively, cease to
exist. Since the apparent horizon and smaller individual
MOTS exist for all d as we have seen, the question of
existence is more relevant for the inner and larger MOTS.
Figure 11 shows the critical values of d, denoted dvanish for
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different mass ratios. The inner MOTS is seen to vanish just
a little bit before the larger individual MOTS; i.e., the
individual MOTS persists for slightly smaller values of d,
and this is not a numerical artifact. It is not the case that
these two surfaces touch each other just before vanishing.
Referring again to the properties of minimal surfaces, if
they did touch and their tangent vectors were aligned, then
they would have had to coincide. In this case, the smaller
MOTS acts as a barrier which prevents the Sin and Slarge

from touching.
To show this conclusively, we can compute the proper

distance between Sin and Slarge at their closest points of
approach, namely along the negative z axis; see Fig. 12.
This shows that the two surfaces never touch and are well
separated just before they disappear compared to our
numerical resolution.

FIG. 10. The ratio of the coordinate radius of the smaller MOTS
and the puncture separation d, as d approaches 0.

FIG. 9. The maximum value of the Ricci scalar on the various MOTSs in BL data with different mass ratios as a function of the
separation. The purpose this plot is to give a rough quantitative idea about the distortions of the various marginal surfaces.
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A search for constant expansion surfaces in the relevant
region reveals an upper limit on the value of the expansion.
As mentioned earlier in Sec. IV B 1, we find that we do
not have any surfaces with ΘðlÞ > c for some negative
constant c. To show this, we start with the AH which has
of course zero expansion. Then we proceed in the inward
direction finding surfaces with increasingly negative
expansions. We can parameterize these surfaces also using
their areas and we can plot the expansion as a function of
the area. We expect that as we go inwards, we should
initially have the expansion decreasing and becoming more
negative. If the inner common MOTS exists, then this
expansion must eventually start to increase. If it increases to
zero, then we have found the inner common MOTS and we

should generally be able to extend the expansion to positive
values. Taking the area as a function of the expansion, we
should expect to find the MOTSs appear as local minima.
As in Fig. 7, the constant expansion surfaces do not form a
regular foliation and can intersect each other.
The results of this search for constant expansion surfaces

are shown in Fig. 13. In this figure, the blue dots represent
the MOTSs. The lowest blue dot is the AH. The curves with
the different distance parameters do not actually coincide
at that point, but, for the values of d that we have chosen,
the areas are very close to each other and cannot be
distinguished by eye on the plot [see also the curve for
mass ratio 1∶4 in Fig. 8(a)]. Going inwards from the AH
corresponds to moving leftwards from the AH and the
curves for different d can soon be differentiated. All the
curves eventually turn over and the expansion starts to
increase towards 0. However, not all the curves actually
reach 0; e.g., for d ¼ 0.14 the curve stops well before that.
Thus, for d ¼ 0.14, not only are we unable to find surfaces
of zero expansion, we also cannot find any surfaces with
ΘðlÞ > c for some negative number c. At the critical value,
the curve stops precisely at 0 and for larger d the curves
extend to positive expansions. In each case, the MOTSs all
occur at local minima of the area.
Based on this detailed numerical study, we are led to

suspect that the inner and larger MOTS simply cease to
exist below critical values of d. Since it is inherently
difficult to show that something does not exist, is this a
limitation of our numerical method? Would we continue to
find these marginal surfaces if only we looked even more
carefully?

A. The stability parameter

To answer this question, we turn now to the stability
operator defined in Sec. II A. As mentioned there, the sign
of the principal eigenvalue is important. The positivity of
this principal eigenvalue implies stable time evolution and

FIG. 11. The values of d for which the inner and larger MOTSs
vanish for different mass ratios. The difference between the
values for each mass ratio are small (but still much larger than
numerical error). This is discussed in more detail in the next
section (see Fig. 17 below). The equal mass case is qualitatively
different and is not shown in this plot.

FIG. 12. The proper distance between Sinner and Slarge as a
function of d. As d is decreased, the proper distance decreases
initially as one might expect. Surprisingly, this does not continue
and the curve turns over, and the proper distance is increasing just
before Sinner vanishes. This shows that Sinner and Slarge remain
well separated from each other. The equal mass case is quali-
tatively different and in the limit of equal masses we must
asymptotically get the purple curve. The calculations become
more expensive as q → 1 and it is not entirely straightforward to
understand this limit numerically.

FIG. 13. Constant expansion surfaces parameterized by the
value of the expansion and the area for mass ratio 1∶4, for
different values of d. See text for explanation.
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should thus also be relevant to the question of whether the
surfaces can be found inCauchy data.Wedenote the principal
eigenvalue as the stability parameter. Before presenting
numerical results, it is useful to briefly describe what we
might expect theoretically, and in particular what kind of
MOTSs are expected to have negative stability parameter.
It can be shown that, for vacuum time-symmetric data, the
stability operator of Eqs. (6) and (7) can be written as

Lf ¼ −Δf þR
2
f: ð32Þ

As before,R is the intrinsic Ricci scalar on S. The spectrum
of the Laplacian on a general distorted sphere can be very
complicated and from a full knowledge of the spectrum we
can infer somegeometrical properties ofS such as its area and
its genus (see e.g., [71,72]). Asymptotic properties of the
spectrum are also known but here we shall need the lower
eigenvalues. Regarding the MOTS stability operator itself,
Jaramillo [73–75] has pointed out the relevance of studying its
full spectrum in the context of generic MOTS dynamics. An
interesting physical interpretation of the stability operator as a
“pressure operator” is presented in [73], and [74] connects it
with the problem of a quantum charged particle. The stability
operator is also related to extremality [75,76]. Numerical
studies should be able to extend these results and lead to a
better understanding of the stability operator in generic
situations.
Some obvious simplifications are possible in special

cases. For a “round” 2-sphere, with R ¼ 2=R2, the princi-
pal eigenvalue is simply

Λ0 ¼
1

R2
¼ 1

4M2
irr

: ð33Þ

This will be relevant for the AH as d → 0, and for the
individual horizons as d → ∞. Thus, round spheres are
always stable and it follows then that the inner MOTS
cannot be spherically symmetric. The higher eigenvalues
are easily obtained from the spectrum of the Laplacian
on a sphere of radius R, i.e., Λn ¼ ½1þ nðnþ 1Þ�=R2;
n ¼ 0; 1; 2; 3;…, with multiplicity 2nþ 1.
More generally in the absence of any symmetries, from

the Rayleigh-Ritz formula, if ψ is a square integrable
function (with unit norm) on S,

Λ0 ¼ inf
ψ

Z
S

�
k∂ψ jj2 þ 1

2
Rψ2

�
d2V: ð34Þ

Thus, we are more likely to get instabilities when there are
significant regions of negative curvature on S; in fact, there
must be regions of negative curvature for unstable marginal
surfaces. The work of [46–48] also uses the Rayleigh-Ritz
formula, albeit a generalized version valid for the non-self-
adjoint case.

We now present our numerical results for the stability
parameter. Plots of the stability parameter are shown in
Fig. 14 for all four kinds of marginal surfaces as a function
of d. These plots have several very interesting features
which we now discuss.
First, the apparent horizon is always seen to be stable as

expected in Fig. 14(a). When it is first formed, its stability
parameter is zero but it rapidly increases before leveling off.
Its asymptotic value is 0.25, consistent with the above
argument for Λ0 since its irreducible mass approaches
unity. Similarly, in Fig. 14(d) the smaller MOTS remains
stable as it grows, and its stability parameter vanishes
asymptotically (consistent again with it vanishing in the
limit d → 0).
The other two horizons are particularly interesting. The

stability parameter for the larger individual MOTS is
positive [Fig. 14(c)]. Remarkably, it ceases to exist exactly
when the stability parameter vanishes. This shows that the
absence of this MOTS below a critical value of d is not an
accident and is not a limitation of our numerical method.
This confirms the link between stability and existence for
this MOTS.
Now we turn to the inner commonMOTS. It is born with

zero stability parameter and, of course, it coincides with the
apparent horizon at birth. The stability parameter is strictly
negative for smaller values of d, and it decreases mono-
tonically as d is decreased; see Fig. 14(b). A close-up of the
regime when the common MOTSs are just formed is shown
in Fig. 15, demonstrating the bifurcation of the common
MOTS into two branches.
Does the existence of this MOTS, for which the stability

parameter is always negative and decreasing, cast doubt on
the relevance of the stability operator? To investigate this,
we go back to the work of Andersson et al. [46–48]. The
important issue is whether the stability operator is invertible;
i.e., we need to ensure that zero eigenvalue states are not
allowed. This is guaranteed automatically when the principal
eigenvalue is positive. In the case when the principal
eigenvalue is negative, we must require that none of the
higher eigenvalues vanish. More specifically, since the
principle eigenvalue is initially zero and decreases mono-
tonically, we need only investigate the second eigenvalue.
When the MOTS is formed, it must be positive. The question
then is: does it decrease and does it ever vanish and then
become negative? Figure 16 shows the second eigenvalue as
a function of d for the different mass ratios. Even more
remarkably, we see that this eigenvalue vanishes exactly at
the point when the inner common MOTS vanishes. Again,
this supports our claim that the MOTS does not exist for
small d and that its disappearance is not merely a limitation
of our numerical method. More importantly, we see again the
importance of the stability operator to the question of the
existence of marginal surfaces.
Finally, going back to the question of whether the inner

and larger MOTS vanish at different times (Fig. 11), we can
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look at when the stability parameter for the larger MOTS
and the second eigenvalue for the inner common MOTS
vanish. Figure 17 shows the principal eigenvalue for the
larger MOTS and the second eigenvalue for the inner
common MOTS. Both of these eigenvalues vanish but at
different values of d. This confirms again that the inner
common MOTS vanishes before the larger individ-
ual MOTS.

VI. THE MASS MULTIPOLES

The geometric mass multipole moments In have been
defined previously in Eq. (8). We can apply this to any of
the MOTSs that we have found, but it is the most interesting
to calculate them for the apparent horizon. As described

in [28], these moments approach their final stationary
values (in general corresponding to a Kerr black hole),
and it is of interest to calculate the rate at which they decay.
In the present case, the “final” black hole is Schwarzschild
and d is a proxy for time. Thus, except I0 (which is a
geometric invariant), we expect all the In to vanish
asymptotically as d → 0.
Figure 18 shows the mass multipole moments for the 1∶4

configuration as a function of d. The lowest moment I0 is a
geometric invariant, the integral of the Ricci scalar over S.
The Gauss-Bonnet theorem shows that I0 ¼

ffiffiffi
π

p
for a

sphere. We see next that the mass dipole I1 vanishes.
This is true generally as shown in [61], with the physical
interpretation being that the invariant coordinates auto-
matically place us in the center-of-mass frame of the

FIG. 14. The stability parameter for MOTSs in BL data with different mass ratios as a function of the separation.
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horizon. For all n ≥ 2, Fig. 18 shows that the In fall off as
power laws as d → 0 and it turns out that this falloff rate is
independent of the mass ratio. This is similar to what one
expects in a time evolution. When a distorted horizon is
initially formed, its initial configuration and which
moments are excited depends on the data which produced
the horizon. Thus, in a binary black-hole system, this would
depend on the mass ratio, spin configurations, etc.
However, the approach to equilibrium has universal proper-
ties and this is reflected in the falloff of the In. A simple
numerical fit of the numerical data for mass ratio 1∶4 and
other mass ratios gives

In ∝ dn; n ≥ 2: ð35Þ
We have verified this for n ≤ 7. Whether this behavior
carries over to time evolutions remains to be seen.

VII. CONCLUSIONS

The stability operator is known to be very important in
mathematical studies of marginally trapped surfaces.
Among other results, it shows the link between stability
and smoothness under time evolution. It also controls other
properties of a MOTS in a given time slice, such as its
behavior as a barrier for completely trapped and untrapped
surfaces. In this paper we have shown the importance of
the stability operator for understanding marginally trapped
surfaces in numerical calculations. By monitoring the

FIG. 15. The stability parameters of the apparent horizon and
the inner common MOTS near the point of formation for different
mass ratios. We see clearly the formation and bifurcation of the
marginal surfaces into a stable and unstable branch.

FIG. 16. The second eigenvalue of the stability operator for the
inner horizon for different mass ratios. This MOTS ceases to exist
precisely when the second eigenvalue vanishes. As in many of the
other plots, the equal mass ratio case is qualitatively different in
that the individual MOTSs continue to exist and become unstable
only asymptotically as d → 0. This limit is however not easy to
explore numerically.

FIG. 17. The second eigenvalue of the stability operator for the
inner common MOTS and the principal eigenvalue for the larger
individual horizon for mass ratio 1∶4. Both these curves have
appeared in earlier plots, but here we show them close to where
the surfaces cease to exist. We see that the eigenvalues both
vanish and do so at different values of d. The large MOTS persists
somewhat longer than the inner common one. Similar results hold
for the other mass ratios.

FIG. 18. Mass multipoles jInj of the apparent horizon as a
function of the distance. Values below 10−9 are in the numerical
noise. This plot is for the 1∶4 mass ratio configuration; however,
the falloff rates with d do not depend on the mass ratio. The first
moment I0 ¼

ffiffiffi
π

p
is a geometric invariant, and the others fall off

as In ∼ dn.
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lowest eigenvalues of the stability operator, we can effec-
tively diagnose whether any problems might be expected in
the horizon finder or in the time evolution. In the case when
the principal eigenvalue is already negative, then the second
eigenvalue must be considered. The horizon will cease to
exist when this second eigenvalue vanishes.
In general, the stability operator is not self-adjoint. Thus,

apart from the principal eigenvalue, higher eigenvalues can
be complex. It is easier for them to avoid the origin even if
their real parts vanish. For the inner horizon in generic
cases when the principal eigenvalue is already negative, it is
not clear if there is any reason for the eigenvalues to
precisely vanish. It might also happen that instabilities can
arise when the eigenvalues get sufficiently close to 0.
Following up on the results presented here, these questions
will be investigated in forthcoming work.
Another important part of this paper is a new numerical

algorithm and its implementation for locating MOTSs
capable of finding highly distorted surfaces with no addi-
tional computational cost. The method is a modification of
the commonly used AHFinderDirect and is based on
choosing a reference surface. We have implemented a
pseudospectral scheme to represent the surface and we use
a Newton-Kantorovich method for solving the resulting
nonlinear PDE. This implementation is at present valid in
axisymmetry, but no in-principle difficulty is foreseen for
the full three-dimensional case. This will be incorporated
into the Einstein Toolkit software and thus available
generally for black-hole simulations.
We have applied this method to sequences of Brill-

Lindquist data as the separation between the puncture is
decreased and a rich structure of marginal surfaces is
explored. The distance parameter d can be pushed to 0 and

some of the inner marginal surfaces become highly dis-
torted. Our horizon finder is able to locate these with high
accuracy. The stability parameter works as advertised: the
larger individual horizon ceased to exist precisely when its
stability parameter vanishes. The inner horizon is born with
zero stability parameter and it decreases monotonically as d
is decreased. The second eigenvalue thus becomes relevant
and this MOTS disappears exactly when this second
eigenvalue vanishes. Distorted as they are, the MOTSs
are successfully tracked by our new numerical horizon
finder all the way to their disappearance due to losing
physical stability.
Finally, we have found universal behavior (i.e., inde-

pendent of the mass ratio) of the mass multipole moments
in the limit d → 0. Forthcoming work will apply this
horizon finder to time evolutions. One of the goals will
be to find the fate of the inner horizons in binary black-hole
spacetimes and to verify if this universality in the approach
to the final state still holds.
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