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We find stable singularity-free cosmological solutions in nonflat Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime in the context of Hořava-Lifshitz (HL) theory. Although we encounter the
negative squared effective masses of the scalar perturbations in the original HL theory, the behaviors can
be remedied by relaxing the projectability condition. In our analysis, the effects from the background
dynamics are taken into account as well as the sign of the coefficients in the quadratic action for
perturbations. More specifically, we give further classification of the gradient stability/instability into five
types. These types are defined in terms of the effective squared masses of perturbations M2, the effective
friction coefficients in perturbation equationsH and these magnitude relations jM2j=H2. Furthermore, we
indicate that oscillating solutions possibly show a kind of resonance especially in open FLRW spacetime.
We find that the higher-order spatial curvature terms with Lifshitz scaling z ¼ 3 are significant to suppress
the instabilities due to the background dynamics.
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I. INTRODUCTION

From the invention of big bang theory, resolving the
cosmological initial singularity problem has been one of the
most intriguing research frontiers in theoretical physics.
According to the singularity theorem proved by Hawking
and Penrose [1], a spacetime singularity must exist at a
finite past of the big bang universe based on the general
relativity (GR) unless some unnatural conditions are
imposed. Even if the inflation which resolves the fine
tuning problems in the very early stage of the Universe is
introduced, the initial singularity cannot be remedied [2].
Since the initial singularity spoils the predictability at

the beginning of the Universe, many researchers have
been proposed cosmological scenarios to remove the
singularity(see [3] for a review). For example, in the
context of braneworld [4], string gas [5], loop quantum
gravity [6–8], Horndeski theory (or generalized Galileon)
[9–14], and the nonlocal gravitational theory [15]. In
spite of these efforts, we have not achieved the completely
stable singularity-free cosmological scenario, yet.
Recently, striking studies have been conducted. A quite
wide class of singularity-free cosmological solutions in
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time is proved to be unstable [16–19]. Since the no-go
theorem is established based on the Horndeski theory, in
other words, the most generalized scalar-tensor theory

whose equation of motion is up to second order [20],
one may consider it is difficult to find stable cosmological
solutions without a singularity. However, certain loop-
holes of the no-go theorem are known [21–25]. One
example of such loophole is to consider a Lorenz violating
gravitational theory. The no-go theorem is possibly violated
by introducing higher-order spatial derivative terms [22].
Hořava-Lifshitz (HL) theory is known as a gravitational

theory without Lorentz symmetry, which is a candidate
for quantum gravity [26] (the recent progresses of the HL
theory are reviewed in [27]). As we have known, the spin-2
gravitational field cannot be quantized in perturbative
approach, that is, there is infinite number of loop diagrams
with ultraviolet divergence. In contrast, the HL theory
realizes renormalizability at least at power-counting level
by introducing the Lifshitz scaling,

t → b−zt and xi → b−1xi; ð1:1Þ
which is an anisotropic scaling between time t and space xi.
A dynamical critical exponent z characterizes a degree of
anisotropy. If z is equal to or greater than the spatial
dimension, ultraviolet divergence can be suppressed by
finite number of counter terms [26,28,29].
In the context of the HL theory, a number of attractive

applications for cosmology have been conducted (see [30]
for a review): for example, primordial perturbations
[31–35], gravitational waves [36,37] and other cosmologi-
cal aspects [38–41]. It is remarkable that the bouncing
and oscillating solutions are discovered as singularity-free
cosmological models in HL theory [42–47]. Lifshitz scal-
ing terms up to z ¼ 3 which realizes the power-counting
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renormalizability in four-dimensional spacetime derive
squared and cubed three-dimensional Ricci curvatures in
the action. These terms behave as radiationlike and stiff
matterlike components in nonflat FLRW spacetime. As we
will mention, these components can effectively violate
the energy condition, which is one of the postulates in the
singularity theorem.
In our previous paper [48], we investigated the stability

of the singularity-free cosmological solutions based on the
projectable HL theory. Namely, we impose following the
projectability condition:

Nðt; xiÞ → NðtÞ; ð1:2Þ

where N is the lapse function which is one of the Arnowitt-
Deser-Misner (ADM) variables. It turns out that the HL
theory with the projectability condition suffers from the
instability when the effects of higher-order curvature terms
are irrelevant [49–52]. More specifically, we encounter the
negative squared effective masses of scalar perturbations in
FLRW spacetime. To suppress the instability, we must
consider a strong Hubble friction by introducing a positive
cosmological constant.
In fact, the pathological behavior in infrared region is

possibly remedied by considering a theory without the
projectability condition, that is the nonprojectable HL
theory [53]. It is discovered that the gradient instability
in flat FLRW spacetime can be avoided [54,55]. Therefore,
it is expected that the infrared instabilities of the singularity-
free solutions in nonflat FLRW spacetime are improved.
Although the nonprojectable HL theory possesses the

attractive feature [27,56–63], the most general form of the
gravitational action is extremely complicated. Since what
we would like to clarify is to examine whether the non-
projectable HL theory can improve the infrared behavior
after singularity avoidance or not, we will focus only on an
additional term which is dominant in infrared regime,
which is the minimally extended HL action.
The rest of this paper is organized as follows. In Sec. II,

we construct the nonprojectable HL action with the
minimal extension from the projectable one. The back-
ground dynamics in nonflat FLRW spacetime and the
classification of the singularity-free solutions are reviewed
in Sec. III. In Sec. IV, we perform the perturbative analysis
by deriving the quadratic action. The decomposition of the
perturbation modes and the manner of the gauge fixing are
also summarized. Then, in Sec. V, we discuss the stability
of singularity-free solutions in nonflat FLRW spacetime.
We give further classification of the gradient stability/
instability into five types to consider the background
effects. Sec. VI is devoted to summary and discussions.

II. MINIMALLY EXTENDED NONPROJECTABLE
HOŘAVA-LIFSHITZ THEORY

As we mentioned, Lifshitz scaling with z > 1 induces
the anisotropy between space and time, which means

the general covariance in four-dimensional spacetime is
no longer valid. We instead find a fundamental symmetry
called foliation-preserving diffeomorphism:

t → tþ fðtÞ; xi → xi þ ζiðt; xjÞ; ð2:1Þ

namely, a boost transformation is prohibited. Thus, it is
clearly preferable to adopt the ADM quantities, the three-
dimensional spatial metric gij, the lapse function N and the
shift vector Ni as the fundamental variables. In order to
preserve the invariance under (2.1), the terms in action must
be composed of the following quantities: The extrinsic
curvature which is defined by

Kij ≔
1

2N
ð_gij −∇iNj −∇iNjÞ; ð2:2Þ

where the dot symbol represents the derivative with respect
to time coordinate and ∇i denotes the spatial covariant
derivative. The three dimensional Ricci curvature Rij

associated with the spatial covariant derivative. Since we
relax the projectability condition, the spatial dependence of
the lapse function is restored. Thus, the following vector
quantity can be included in the action:

Φi ≔
∇iN
N

; ð2:3Þ

which represents the acceleration of rest observer on three-
dimensional hypersurface. Furthermore, spatial covariant
derivatives of these quantities also form the invariant
action, i.e., ∇iKjk, ∇iRjk, ∇iΦj, ∇i∇jKkl and so on.
Although we can include every scalar quantities which

are composed of these variables to construct the invariant
action, our model is restricted as follows:

S ¼ m2
LV

2

Z
dt d3xðLK þ LP þ LNPÞ; ð2:4Þ

with

LK ≔ N
ffiffiffi
g

p ðKijKij − λK2Þ; ð2:5Þ

LP ≔ −N
ffiffiffi
g

p ½Vz¼1 þm−2
LVVz¼2 þm−4

LVVz¼3�; ð2:6Þ

LNP ≔ N
ffiffiffi
g

p
V½Φi�; ð2:7Þ

Vz¼1 ≔ 2Λþ g1R;

Vz¼2 ≔ g2R2 þ g3Ri
jRj

i;

Vz¼3 ≔ g4R3 þ g5RRi
jRj

i þ g6Ri
jRj

kRk
i

þ g7R∇2Rþ g8∇iRjk∇iRjk; ð2:8Þ

where mLV is a Lorentz violating scale which is expected
to be around the Planck scale, λ and gi (i ¼ 1–8) are
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dimension-less coupling constants and Λ is a cosmological
constant. LNP is constructed by the terms including Φi
field, which is with no effect to FLRW background. The
reason for the restriction is to ensure the comparability of
our previous result based on the SVW action [64]. As we
will see in the next section, the background dynamics are
identical to those of the SVW action under specific
condition.
We further impose a restriction on LNP. Recall that the

purpose of this paper is to remedy the infrared behavior of
bouncing solutions discovered in the projectable HL theory.
It is naturally expected that the terms with the lowest order
of spatial derivative is essential to stabilize the infrared
region. In fact, such a term is uniquely determined, that is
Φ2 ≔ ΦiΦi. According to the papers [53], the stabilities of
Minkowski and flat FLRW spacetime are remedied by the
nonprojectable HL theory with Φ2 term. Therefore, we do
minimally extend the theory by adding only Φ2 term:

V½Φi� ≔ ςΦ2: ð2:9Þ

with a dimensionless coupling constant ς.
In the rest of this paper, the unitmLV ¼ 1 is adopted. We

additionally can set the value of the coupling constant by
rescaling the time coordinate. Thus, we set g1 ¼ −1, which
is equivalent to take a coordinate in which the propagating
speed of the spin-2 gravitational wave in infrared limit is
precisely unity [37,65].

III. BACKGROUND SOLUTIONS IN FLRW
SPACETIME

The Hamiltonian constraint in the nonprojectable HL
theory is quite different from the projectable one. In other
words, the Hamiltonian constraint is defined at each
spacetime point. In this section, we briefly summarize
the structure of the basic equation system and the classi-
fication of singularity-free solutions in FLRW spacetime.

A. Basic equations

To unify the description, we consider the FLRW space-
time in a spatial coordinate system xi ¼ ðχ; θ;ϕÞ:

ds2 ¼ gijdxidxj

¼ a2½dχ2 þ fðχÞ2ðdθ2 þ sin2θdϕ2Þ�; ð3:1Þ

with

fðχÞ ≔
8<
:

χ for K ¼ 0

sin χ for K ¼ 1

sinh χ for K ¼ −1
; ð3:2Þ

where a is the scale factor which depends only on the
cosmic time, and K is related to the spatial Ricci curvature

as R ¼ 6K=a2. The cases with K ¼ 0; 1 and −1 corre-
spond to the flat, closed and open FLRW spacetime,
respectively. The domain of the coordinate χ is defined
by 0 ≤ χ < ∞ for K ¼ 0, −1 and 0 ≤ χ ≤ π for K ¼ 1.
Furthermore, angular coordinates θ and ϕ take 0 ≤ θ ≤ π
and 0 ≤ ϕ ≤ 2π, respectively.
Then, the dynamical equation for the scale factor and the

Friedmann equation are obtained by taking variation of the
action with respect to a and N:

2 _H þ 3H2 ¼ 2

3λ − 1

�
Λ −

K
a2

−
grK2

3a4
−
gsK3

a6

�
; ð3:3Þ

H2 ¼ 2

3ð3λ − 1Þ
�
Λ − 3

K
a2

þ grK2

a4
þ gsK3

a6

�
; ð3:4Þ

where H ≔ _a=a is the Hubble parameter, gr and gs are the
linear combinations of the coupling constants1:

gr ≔ 6ð3g2 þ g3Þ; ð3:5Þ

gs ≔ 12ð9g4 þ 3g5 þ g6Þ: ð3:6Þ

We have already fixed the gauge as N ¼ 1 and Ni ¼ 0.
In what follows, we assume λ > 1=3.
As we know, the equation of the scale factor (3.3) can be

derived by taking derivative of (3.4) with respect to the
cosmic time. It means the independent equation is only
(3.4). However, the situation with the projectability con-
dition is quite different. Due to the lack of the local lapse
function, the Hamiltonian constraint is an integration over
whole space. Therefore, we have to adopt the scale factor
equation instead of the global Hamiltonian constraint in the
projectable case. Friedmann-like equation is derived by
integration with respect to the cosmic time:

H2 ¼ 2

3ð3λ − 1Þ
�
Λ − 3

K
a2

þ grK2

a4
þ gsK3

a6
þ C
a3

�
; ð3:7Þ

with dustlike term with an integration constant C [39].
Thus, if we consider C ¼ 0 case in the projectable
HL theory, the same background FLRW solutions are
realized [46,48].

B. Singularity-free background solutions

In order to investigate the background solutions, it is
convenient to rewrite the Friedmann equation (3.4) into

1It should be noted that we adopt the different definitions of gr
and gs from our previous paper [48] to simplify the perturbed
action. The previous definitions are

gr ≔ 6K2ð3g2 þ g3Þ; gs ≔ 12K3ð9g4 þ 3g5 þ g6Þ;

thus, the sign of gs is flipped in open FLRW spacetime.
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1

2
_a2 þ UðaÞ ¼ 0; ð3:8Þ

with

UðaÞ ¼ 1

3λ − 1

�
K −

Λ
3
a2 −

grK2

3a2
−
gsK3

3a4

�
: ð3:9Þ

Since the possible ranges for the scale factor are limited
within the region in which U ≤ 0, the background evolution
is completely determined by the coupling constants in LP.
It is remarkable that the gr and the gs terms simulate a
radiation component and a stiff matter component, respec-
tively. The important point is that these terms can effec-
tively violate the energy condition if either or both of grK2

and gsK3 are negative, which may lead singularity-free
solutions even if we do not introduce some exotic matters.
The classification of the possible solutions is given in

Ref. [46]. In our analysis, we focus on the following two
kinds of singularity-free solutions. One is a bouncing
solution denoted by B½sgnðΛÞ;K�, where the function sgnðxÞ
gives a sign of x. An initial contracting universe shifts to
expanding phase at a ¼ aT and keep expanding forever.
The other is oscillating solution denoted by O½sgnðΛÞ;K�.
A universe shows periodic oscillating behavior, in other
words, bounces at a ¼ amin and recollapses2 at a ¼ amax.
Therefore, the scale factor is limited within 0 < amin ≤
a ≤ amax < ∞. As we will see, the typical size of the
oscillating amplitude is expected to be the Lorentz violating
scale, thus, it is difficult to represent the cyclic universe
scenario whose maximum scale factor is macroscopic.

1. Without cosmological constant

In our previous paper [48], we have found that the stable
singularity-free solutions require a positive cosmological
constant based on the projectable HL theory. Once the
projectability condition is relaxed, it is expected to find
stable bouncing solutionswithout a cosmological constant as
is the case in flat FLRWspacetime. Therefore,we summarize
the singularity-free cosmological solutions without a cos-
mological constant in this part.
Since the sign of U determines the possible ranges for the

scale factor, it is convenient to derive the roots of the
equation U ¼ 0:

a½K�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
6

�
gr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2r þ 12gs

q �s
: ð3:10Þ

The points a ¼ a½K�� correspond to the bouncing or recol-
lapsing points of the Universe. Of course, the corresponding

a½K�� must be real and positive to find such points. By
examining the forms of the potentialU, we find the following
three types of singularity-free solutions.
(a) O½0;1�—A universe shows oscillating behavior in closed

FLRW spacetime (K ¼ 1), which we call O½0;1�. This
type of the solutions can be found if the following
conditions are satisfied.

gs < 0; gr > 0 and g2r þ 12gs > 0

with amax ¼ a½1�þ and amin ¼ a½1�− :

In open FLRW spacetime, this kind of solutions is
never found.

(b) B½0;−1�—An initially contracting universe shifts to ex-
panding phase at bouncing point a ¼ aT , and keeps
expanding forever in open FLRW spacetime (K ¼ −1).
This type of the solutions is classified into the following
two cases:

ðiÞ ∀ gr and gs > 0 with aT ¼ a½−1�− :

ðiiÞ gr < 0 and gs ¼ 0 with aT ¼ a½−1�− :

The solutions satisfying the conditions (i) and (ii) are
referred to as B½0;−1� (i) and B½0;−1� (ii), respectively.
In closed FLRW spacetime, we cannot find this type of
the solutions.

(c) B½0;−1�
BC —A universe shows bouncing behavior if the

initial value of scale factor aini is larger than aT ,
whereas it falls down into the singularity if aini ≤ aBC.
Since this type of solution possibly induces a big
crunch (BC), we add a subscript BC. Note that the
domain aBC < a < aT is prohibited because the
Hamiltonian constraint is never satisfied. If the follow-
ing conditions are satisfied in open FLRW spacetime

(K ¼ −1), B½0;−1�
BC can be found:

gs < 0; gr < 0 and g2r þ 12gs > 0

with aT ¼ a½−1�− and aBC ¼ a½−1�þ ;

where aBC is a recollapsing point of the big crunch
universe. This type of bouncing solutions is found
only in open FLRW spacetime.

We show the typical forms of potentials ofO½0;1�, B½0;−1� and
B½0;−1�
BC in Fig. 1 and the distribution of these types of solutions

on the ðgr; gsÞ plane in Fig. 2.
As we will discuss later, we can construct the bouncing

solutions B½0;−1� and B½0;−1�
BC whose squared effective masses

of scalar perturbations are positive. Therefore, there is a
possibility to construct stable singularity-free solutions
without a cosmological constant. It is a striking difference
from the projectable HL theory.

2In this paper, “recollapse” means that the expanding universe
shifts to contracting phase. Thus, a recollapsing point satisfies the
conditions U ¼ 0 and U 0 > 0.
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2. With positive cosmological constant

Although the properties of singularity-free solutions for
Λ > 0 have already given in the papers [46,48], we again
summarize the solutions because the notation is slightly
changed from previous ones. When we consider the case
with nonzero cosmological constant, it is convenient to
introduce the following quantities normalized by a cosmo-
logical constant; ã ≔ a=l, g̃r ≔ gr=l2 and g̃s ≔ gs=l4

with l ≔
ffiffiffiffiffiffiffiffiffiffiffi
3=jΛjp

. Then, the potential U is rewritten as

ŨðãÞ ¼ 1

3λ − 1

�
K − εã2 −

g̃rK2

3ã2
−
g̃sK3

3ã4

�
; ð3:11Þ

where ε≔�1 expresses the sign of the cosmological con-
stant. The three roots of the equation ŨðãÞ ¼ 0 are given by

ã½ε;K�I ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
6ε

�
2þ 4ð1 − g̃rÞ

ξ̃½ε;K�I

þ ξ̃½ε;K�I

�s
; ð3:12Þ

with

ξ̃½ε;K�I ≔22=3ðe2πi=3ÞIpv
�
2−3εg̃r−9g̃s

þ9sgnðKÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g̃s− g̃½ε;K�sðþÞ

��
g̃s− g̃½ε;K�sð−Þ

�r �
1=3

; ð3:13Þ

g̃½ε;K�sð�Þ ≔
1

9
½2 − 3εg̃r � 2sgnðKÞð1 − εg̃rÞ3=2�; ð3:14Þ

where pv means a principal value of cubic root and
I ¼ 1; 2; 3. If ã½ε;K�I takes real and positive value, ŨðãÞ ¼
0 possesses a corresponding root in the possible ranges for
the scale factor. We further derive the roots of ŨðãÞ ¼ 0with
g̃s ¼ 0:

ã½ε;K�� ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
2ε

�
1� sgnðKÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4εg̃r
3

r �s
: ð3:15Þ

We classify the singularity-free solutions with a positive
cosmological constant ðε ¼ þ1Þ into the following three
types:

(a) B½1;K�—A bouncing solution whose bouncing radius is
given as ãT . We refer to this type of solution as B½1;K�.
Unlike the case without a cosmological constant, the
Universe after the bounce approaches de Sitter space-
time. For closed FLRW spacetime (K ¼ 1), we can
find B½1;1� as the following three cases:

ðiÞ g̃½1;1�sðþÞ < g̃s < 0 and g̃r < 1 with ãT ¼ ã½1;1�1 :

ðiiÞ
(
g̃s < 0 and g̃s < g̃½1;1�sð−Þ for j2g̃r − 1j < 1

g̃s < 0 for j2g̃r − 1j ≥ 1

with ãT ¼ ã½1;1�3 :

ðiiiÞ g̃s ¼ 0 and g̃r ≤ 0 with ãT ¼ ã½1;1�þ :

FIG. 1. The typical potential forms for singularity-free cosmo-
logical solutions without a cosmological constant. The dotted
green, solid blue and dashed red curves indicateO½0;1�, B½0;−1� and
B½0;−1�
BC , respectively. We set the coupling constants to gr ¼ 11=2

and gs ¼ −2 for O½0;1�, gr ¼ −1 and gs ¼ 1 for B½0;−1�, gr ¼ −1
and gs ¼ −1=15 for B½0;−1�

BC .

FIG. 2. The distribution of the singularity-free solutions for
Λ ¼ 0 in ðgr; gsÞ plane. The top and bottom figures correspond to
closed and open FLRW spacetime, respectively. The green, blue
and red regions indicate the solutions of O½0;1�, B½0;−1� (i) and

B½0;−1�
BC , respectively. B½0;−1� (ii) is distributed on the blue line. The

gray region is forbidden because the Hamiltonian constraint is
never satisfied.
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The solutions satisfying the conditions (i), (ii) and (iii)
are referred to as B½1;1� (i), B½1;1� (ii) and B½1;1� (iii),
respectively. For open FLRW spacetime (K ¼ −1), we
find B½1;−1� as the following two cases:

ðiÞ g̃s > 0 with ãT ¼ ã½1;−1�3 :

ðiiÞ g̃s ¼ 0 and g̃r < 0 with ãT ¼ ã½1;−1�þ :

B½1;−1� (i) and B½1;−1� (ii) correspond to the conditions
(i) and (ii), respectively.

(b) B½1;K�
BC —A universe with ãini ≤ ãBC evolves into a big

crunch, while it shows bouncing behavior if ãini ≥
ãT > ãBC. We classify this type of solution as B½1;K�

BC .

Unlike B½0;K�
BC , the asymptotic behavior of spacetime

after bounce is de Sitter spacetime. For closed FLRW
spacetime (K ¼ 1), we find the following two cases:

ðiÞ 0 < g̃s < g̃½1;1�sðþÞ with ãBC ¼ ã½1;1�2

and ãT ¼ ã½1;1�3 :

ðiiÞ g̃s ¼ 0 and 0 < g̃r <
3

4
with ãBC ¼ ã½1;1�−

and ãT ¼ ã½1;1�þ :

The solutions satisfying the conditions (i) and (ii) are

referred to as B½1;1�
BC (i) and B½1;1�

BC (ii), respectively. For

open FLRW spacetime (K ¼ −1), the solutions B½1;−1�
BC

can be seen when the following conditions are
satisfied:

0 > g̃s > g̃½1;−1�sðþÞ and g̃r < 0 with ãBC ¼ ã½1;−1�2

and ãT ¼ ã½1;−1�3 :

(c) B½1;1�
O —A universe in closed FLRW spacetime shows

oscillating behavior if the initial scale factor is in
ãmin ≤ ãini ≤ ãmax, or bounces if ãini ≥ ãT > ãmax. We

classify this type of solution as B½1;1�
O . The subscript

represents the oscillating behavior. This type of
solution can be found in closed FLRW spacetime
(K ¼ 1) if the following conditions are satisfied.

g̃s < 0 and g̃½1;1�sð−Þ< g̃s < g̃½1;1�sðþÞ with ãmin¼ ã½1;1�1 ;

ãmax¼ ã½1;1�2 and ãT ¼ ã½1;1�3 :

For open FLRW spacetime, we never find this type of
solution.

The typical forms of potentials and the distribution of the
singularity-free solutions on ðg̃r; g̃sÞ plane are shown in
Figs. 3 and 4, respectively.

FIG. 3. The typical potential forms for singularity-free cosmo-
logical solutions with a positive cosmological constant. The solid

blue, dashed red and dotted green curves indicate B½1;−1�, B½1;1�
BC

and B½1;1�
O , respectively. We set the coupling constants to g̃r ¼ 1=2

and g̃s ¼ 1=20 for B½1;−1�, g̃r ¼ 2=5 and g̃s ¼ 1=9 for B½1;1�
BC , g̃r ¼

3=4 and g̃s ¼ −1=20 for B½1;1�
O .

FIG. 4. The distribution of the singularity-free solutions for
Λ > 0 in ðgr; gsÞ plane. The top and bottom figures correspond to
closed and open FLRW spacetime, respectively. The blue, red and

green regions indicate the solutions of B½1;K�, B½1;K�
BC and B½1;1�

O ,

respectively. B½1;1� (iii), B½1;−1� (ii) and B½1;1�
BC (ii) are located on the

g̃s axis.
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3. With negative cosmological constant

In this paper, we discuss the stabilities of the oscillating
solutions as well as the bouncing solutions. Thus, we do not
exclude the solutions with a negative cosmological constant
(ε ¼ −1), which we cannot construct the bouncing sol-
utions. We find the following two kinds of singularity-free
oscillating solutions:
(a) O½−1;K�—A universe which shows periodic oscillation

whose oscillating amplitude is given by ãmin≤ ã≤ ãmax.
We classify this type of solution as O½−1;K�. If the
following conditions are satisfied in closed FLRW
spacetime (K ¼ 1), O½−1;1� is realized:

g̃½−1;1�sð−Þ < g̃s < 0 with ãmin ¼ ã½−1;1�2

and ãmax ¼ ã½−1;1�1 :

In open FLRW spacetime (K ¼ −1), we find the two
cases of O½−1;−1� are obtained:

ðiÞ 0< g̃s < g̃½−1;−1�sð−Þ with ãmin¼ ã½−1;−1�2

and ãmax¼ ã½−1;−1�1 :

ðiiÞ g̃s¼ 0 and −
3

4
< g̃r < 0 with ãmin¼ ã½−1;−1�þ

and ãmax¼ ã½−1;−1�− :

The solutions satisfying the conditions (i) and (ii) are
referred to as O½−1;−1� (i) and O½−1;−1� (ii), respectively.

(b) O½−1;−1�
BC —A universe in open FLRW spacetime shows

oscillating behavior if the initial radius of the Universe
is in ãmin ≤ ãini ≤ ãmax, or falls into the singularity if
ãini < ãBC < ãmin. We refer to this type of solution as

O½−1;−1�
BC . For open FLRW spacetime (K ¼ −1), we

find the solutions under the following conditions:

g̃s < 0 and g̃½−1;−1�sðþÞ < g̃s < g̃½−1;−1�sð−Þ

with ãBC ¼ ã½−1;−1�3 ;

ãmin ¼ ã½−1;−1�2 and ãmax ¼ ã½−1;−1�1 :

In closed FLRW spacetime, we cannot construct this
type of solution.

The typical forms of potentials and the distribution of the
singularity-free solutions on ðg̃r; g̃sÞ plane are shown in
Figs. 5 and 6, respectively.

IV. PERTURBATION ANALYSIS AROUND A
NONFLAT FLRW BACKGROUND

In this section, we derive the perturbed quadratic action
of the minimally extended nonprojectable HL theory. The
perturbed ADM variables are defined by

N ¼ N̄ þ δN; ð4:1Þ

Ni ¼ N̄i þ δNi; ð4:2Þ

gij ¼ ḡij þ δgij; ð4:3Þ

FIG. 6. The distribution of the singularity-free solutions for
Λ < 0 in ðgr; gsÞ plane. The top and bottom figures correspond
to closed and open FLRW spacetime, respectively. The green

and red regions indicate the solutions of O½−1;K� and O½−1;−1�
BC ,

respectively.O½−1;−1� (ii) is located on the g̃s axis. The gray region
is forbidden because the Hamiltonian constraint is never satisfied.

FIG. 5. The typical potential forms for singularity-free cosmo-
logical solutions with negative cosmological constants. The dotted

green and dashed red curves indicate O½−1;1� and O½−1;−1�
BC , respec-

tively. We set the coupling constants to g̃r ¼ 2 and g̃s ¼ −1=4 for
O½−1;1�, g̃r ¼ −3=4 and g̃s ¼ −1=20 for O½−1;−1�

BC .
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with

δN ¼ α;

δNi ¼ βi;

δgij ¼ hij þ
1

2
ḡabhaihbj; ð4:4Þ

where N̄, N̄i and ḡij denote the background lapse function,
shift vector and three-dimensional induced metric, respec-
tively. Furthermore, α, βi and hij mean first-order pertur-
bation of the above ADM variables. Note that indices of
these perturbed variables are raised by ḡij as hij ≔ ḡiahaj,
hij ≔ ḡiaḡjbhab, h ≔ hii ¼ ḡiahia and βi ≔ ḡiaβa.

A. Harmonic expansion

To decompose the perturbations into scalar, vector and
tensor modes, we perform the harmonic expansion by
equipping the set of tensor harmonics:

Y ¼ fQ;Qi;Qij; Pij; SðoÞi; SðeÞi; SðoÞij; SðeÞij; GðoÞij; GðeÞijg;
ð4:5Þ

whereQ,Qi,Qij, Pij are scalar-type harmonics.Qij and Pij
are trace and trace-less part, respectively. SðoÞi, SðeÞi, SðoÞij,
SðeÞij are vector-type harmonics. The symbols ðoÞ and ðeÞ
correspond to the odd parity and the even parity, respectively.
GðoÞij,GðeÞij are tensor-type harmonics with the odd and the
even parity. The explicit forms and these characteristics can
be seen in Appendixes A and B in Ref. [48].
The scalar perturbations of the ADM variables are

decomposed into

αðscalarÞ ¼
X
n;l;m

αðn;lmÞ
ðQÞ Qðn;lmÞ; ð4:6Þ

βðscalarÞi ¼
X
n;l;m

a2½βðn;lmÞ
ðQÞ Qðn;lmÞ

i �; ð4:7Þ

hðscalarÞij ¼
X
n;l;m

a2½hðn;lmÞ
ðQÞ Qðn;lmÞ

ij þ hðn;lmÞ
ðPÞ Pðn;lmÞ

ij �; ð4:8Þ

the vector perturbations also can be expanded by

βðvectorÞi ¼
X
n;l;m

a2½βðn;lmÞ
ðS;oÞ S

ðn;lmÞ
ðoÞi þ βðn;lmÞ

ðS;eÞ Sðn;lmÞ
ðeÞi �; ð4:9Þ

hðvectorÞij ¼
X
n;l;m

a2½hðn;lmÞ
ðS;oÞ S

ðn;lmÞ
ðoÞij þ hðn;lmÞ

ðS;eÞ Sðn;lmÞ
ðeÞij �; ð4:10Þ

and the tensor part is given by

hðtensorÞij ¼
X
n;l;m

a2½hðn;lmÞ
ðG;oÞ G

ðn;lmÞ
ðoÞij þ hðn;lmÞ

ðG;eÞ G
ðn;lmÞ
ðeÞij �: ð4:11Þ

where the degrees l, m ∈ Z are constrained by 0 ≤ l ≤
n − 1 and 0 ≤ jmj ≤ l. n ≥ 1 is a continuous real number
for K ¼ 0, −1, while a discrete natural number for K ¼ 1.

Since we relax the projectability condition, the localness
of the lapse perturbation α is recovered. Thus, we expand
αðscalarÞ by the harmonic functions.

B. Gauge fixing

Before calculating quadratic action, we have to remove
the gauge degree of freedom (d.o.f.) from the perturbations.
Since the HL theory respects the foliation-preserving
diffeomorphism (2.1), the infinitesimal transformations of
the perturbed ADM quantities are given by

αðgaugeÞ ¼ ∂tf; ð4:12Þ

βðgaugeÞi ¼ ∂tζi − 2Hζi; ð4:13Þ

hðgaugeÞij ¼ 2∇ðiζjÞ þ 2Hfḡij: ð4:14Þ
We stress that f does not depend on space, thus, only ζi can
be expanded by the harmonics:

ζi ¼
X
n;l;m

a2½ζðn;lmÞ
ðQÞ Qðn;lmÞ

i

þ ζðn;lmÞ
ðS;oÞ S

ðn;lmÞ
ðoÞi þ ζðn;lmÞ

ðS;eÞ Sðn;lmÞ
ðeÞi �: ð4:15Þ

Then, the infinitesimal gauge transformations of the har-
monic expansion (4.6)–(4.11) are given by

pt
X
n;l;m

αðn;lmÞ
ðQÞ Qðn;lmÞ →

X
n;l;m

αðn;lmÞ
ðQÞ Qðn;lmÞ þ ∂tf;

ð4:16Þ

βðn;lmÞ
ðQÞ → βðn;lmÞ

ðQÞ þ ∂tζ
ðn;lmÞ
ðQÞ ; ð4:17Þ

hðn;lmÞ
ðPÞ → hðn;lmÞ

ðPÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðν2 − 3KÞ

3

r
ζðn;lmÞ
ðQÞ ;

ð4:18Þ
X
n;l;m

a2hðn;lmÞ
ðQÞ Qðn;lmÞ

ij →
X
n;l;m

a2
�
hðn;lmÞ
ðQÞ −

2νffiffiffi
3

p ζðn;lmÞ
ðQÞ

�
Qðn;lmÞ

ij

þ 2Hfḡij; ð4:19Þ

βðn;lmÞ
ðSÞ → βðn;lmÞ

ðSÞ þ ∂tζ
ðn;lmÞ
ðSÞ ; ð4:20Þ

hðn;lmÞ
ðSÞ → hðn;lmÞ

ðSÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðν2 − 3KÞ

q
ζðn;lmÞ
ðSÞ ;

ð4:21Þ

hðn;lmÞ
ðGÞ → hðn;lmÞ

ðGÞ : ð4:22Þ

where ν2 is a eigenvalue of the harmonics which is defined
by the following regions (n ≥ 1):
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ν2 ≔

8<
:

n2 − 1; n ∈ R for K ¼ 0

n2 − 1; n ∈ N for K ¼ 1

n2 þ 1; n ∈ R for K ¼ −1
: ð4:23Þ

Since both odd and even parity modes obey the same
transformation law, the parity subscripts are abbreviated in
vector and tensor perturbations.
We shall eliminate hðn;lmÞ

ðPÞ , hðn;lmÞ
ðS;oÞ and hðn;lmÞ

ðS;eÞ by choosing
the following gauge

ζðn;lmÞ
ðQÞ ¼ −

�
8ðν2 − 3KÞ

3

�−1=2
hðn;lmÞ
ðPÞ ; ð4:24Þ

ζðn;lmÞ
ðS;oÞ ¼ −½2ðν2 − 3KÞ�−1=2hðn;lmÞ

ðS;oÞ ; ð4:25Þ

ζðn;lmÞ
ðS;eÞ ¼ −½2ðν2 − 3KÞ�−1=2hðn;lmÞ

ðS;eÞ : ð4:26Þ

Unlike the projectable case, we cannot eliminate αðn;lmÞ
ðQÞ . In

what follows, we have abbreviated the superscript ðn; lmÞ
because the perturbed quantities do not mix with differ-
ent modes.

C. Quadratic action

As is the case in the projectable HL theory, the quadratic
action can be decomposed into the tensor part and the scalar
one. The vector perturbations are not dynamical.

1. Tensor perturbations

Since the additional perturbation terms coming from LNP
are only scalar modes, the tensor part of the quadratic
action is identical to that of the projectable case:

δð2ÞLðtensorÞ ¼ a3

2
½F ðGÞ _h

2
ðGÞ − GðGÞh2ðGÞ�; ð4:27Þ

where we introduced F ðGÞ and GðGÞ which can be regarded
as the kinetic term and the mass term of the tensor
perturbations, respectively. These variables, except for
the total derivative terms, are given by

F ðGÞ ≔ 1; ð4:28Þ

GðGÞ ≔
ν2

a2
þ ν2

3a4
½−2grK þ 3g3ν2�

þ ν2

a6
½−gsK2 þ 6g56Kν2 þ g8ν2ðν2 − 2KÞ�; ð4:29Þ

and we define g56 ≔ g5 þ g6. The tensor quadratic action is
defined for the case with l ≥ 2, because the tensor har-

monics Gðn;lmÞ
ðoÞij and Gðn;lmÞ

ðeÞij are vanished when l < 2.

2. Scalar perturbations

The scalar perturbations are drastically changed since the
lapse perturbation αðQÞ cannot be eliminated by the gauge
condition. Furthermore, LNP adds a new d.o.f. to scalar
perturbations. The quadratic action of the scalar perturba-
tions is given by

δð2ÞLðscalarÞ ¼ −
a3

2
ð3λ − 1Þ _h2ðQÞ þ

a
3
ðν2 − 3KÞh2ðQÞ −

1

27a
ðν2 − 3KÞ½2grð2ν2 − 3KÞ þ 3g3ν2�h2ðQÞ

−
1

9a3
ðν2 − 3KÞ½gsKð4ν2 − 9KÞ þ 2ð3g56 − 4g7ÞKν2 þ ð−8g7 þ 3g8Þν2ð3ν2 − 10KÞ�h2ðQÞ

þ 2
ffiffiffi
3

p
a3ð3λ − 1ÞH _hðQÞαðQÞ þ

4affiffiffi
3

p ðν2 − 3KÞ
�
1 −

2

3a2
grK −

1

a4
KðgsK − 6g7ν2Þ

�
hðQÞαðQÞ

þ 2a½ςν2 − 3a2ð3λ − 1ÞH2�α2ðQÞ − ð3λ − 1Þ 2νffiffiffi
3

p _hðQÞβðQÞ þ 4a3ð3λ − 1ÞνHαðQÞβðQÞ

− 2a3½ðλ − 1Þν2 þ 2K�β2ðQÞ: ð4:30Þ

We eliminated _H by applying the scale factor equation (3.3). Since αðQÞ and βðQÞ are not dynamical, we can eliminate both
of them with the following constraint equations:

βðQÞ ¼
ð3λ − 1Þν

ðλ − 1Þν2 þ 2K

�
HαðQÞ −

1

2
ffiffiffi
3

p _hðQÞ

�
; ð4:31Þ

αðQÞ ¼
ðν2 − 3KÞ½ððλ − 1Þν2 þ 2KÞð3a4 − 2grKa2 − 3KðgsK − 6g7ν2ÞÞhðQÞ − 3ð3λ − 1ÞHa6 _hðQÞ�

3
ffiffiffi
3

p
a4½ςν2ððλ − 1Þν2 þ 2KÞ þ 2ð3λ − 1Þðν2 − 3KÞH2a2� ; ð4:32Þ
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Substituting, (4.31) and (4.32) into (4.30), we achieve the quadratic action of scalar perturbations:

δð2ÞLðscalarÞ ¼ a3

2
½F ðQÞ _h

2
ðQÞ − GðQÞh2ðQÞ�; ð4:33Þ

where

F ðQÞ ≔
2ςð3λ − 1Þν2ðν2 − 3KÞ

3ςν2½ðλ − 1Þν2 þ 2K� þ 6ð3λ − 1Þðν2 − 3KÞH2a2
; ð4:34Þ

GðQÞ ≔ −
2

3a2
ðν2 − 3KÞ þ 2

27a4
ðν2 − 3KÞ½2grð2ν2 − 3KÞ þ 3g3ν2�

þ 2

9a6
ðν2 − 3KÞ½gsKð4ν2 − 9KÞ þ 2ð3g56 − 4g7ÞKν2 þ ð−8g7 þ 3g8Þν2ð3ν2 − 10KÞ�

þ 4ðν2 − 3KÞ2½ðλ − 1Þν2 þ 2K�ð−3gsK2 þ 18g7Kν2 − 2grKa2 þ 3a4Þ2
27a10½ςν2fðλ − 1Þν2 þ 2Kg þ 2ð3λ − 1Þðν2 − 3KÞH2a2�

þ 8Kðν2 − 3KÞ2ð3gsK2 þ 2grKa2 − 3a4Þð3gsK2 − 18g7Kν2 þ 2grKa2 − 3a4Þ
27a10½ςν2fðλ − 1Þν2 þ 2Kg þ 2ð3λ − 1Þðν2 − 3KÞH2a2�

þ 4ð3λ − 1Þðν2 − 3KÞ2H2ð3gsK2 − 18g7Kν2 − 2grKa2 þ 9a4Þ
9a4½ςν2fðλ − 1Þν2 þ 2Kg þ 2ð3λ − 1Þðν2 − 3KÞH2a2�

þ 32ð3λ − 1Þðν2 − 3KÞ3H2ð−3gsK2 þ 18g7Kν2 − 2grKa2 þ 3a4Þð2gsK3 þ grK2a2 − Λa6Þ
27a8½ςν2fðλ − 1Þν2 þ 2Kg þ 2ð3λ − 1Þðν2 − 3KÞH2a2�2 : ð4:35Þ

In closed FLRW spacetime, we focus only on the case
with n ≥ 3. Actually, the case with n ¼ 1 corresponds to a
constant shift of the scale factor, which is less important,
and n ¼ 2 is not dynamical mode. Thus, we can regard
(ν2 − 3K) as a positive value. It should be noted that, even if
we take the limit ς → 0, we cannot replicate the quadratic
scalar action in the projectable case (see (3.26) and (3.27) in
Ref. [48]). In fact, a difference is caused by the gauge
structure. As we have seen, αðQÞ is eliminated by applying
constraint equation (4.31). Due to the recovering the local
lapse function, it cannot be removed by global infinitesimal
transformation f.

V. STABILITY ANALYSIS OF THE
SINGULARITY-FREE SOLUTIONS

To examine whether a singularity-free cosmological
solution is truly realized or not, it is essential to consider
its stability. If the background solution is unstable with
respect to small perturbations, the possibility of singularity
avoidance may be spoiled. Thus, we examine the stabilities
of singularity-free background solutions which are shown
in previous section.
When we discuss the stability of a specific solution, the

sign of F and G in the quadratic action provides guideposts
(Since the discussion holds for both scalar and tensor
modes, the subscripts are abbreviated.). The sign of F is
relevant to the ghost instability. A perturbation mode with
negative F losses the lowest energy state which leads the

fatal collapse of the perturbative approach. Thus, we
consider the condition F > 0 as the absolute requirement.
On the other hand, the case with G < 0 is, in general,

regarded as the gradient instability. Such a situation corre-
sponds to the negative squared mass, which seems to induce
an exponential growth of perturbations. However, that
unstable behavior may be suppressed by the effect of
background dynamics. To clarify the effect from the back-
ground dynamics, we examine the perturbation equation of
motions derived by taking variation of the quadratic action:

ḧþ 3H _hþM2h ¼ 0; ð5:1Þ
where

H ≔ H þ
_F

3F
; M2 ≔

G
F
: ð5:2Þ

From the equation, one can see that the perturbation
dynamics is influenced by the effective friction coefficient
H as a background effect as well as the effective squared
mass M2. The effective friction coefficients of the tensor
perturbations HðGÞ coincide with the Hubble parameter H,
however, those of the scalar perturbations are not:

HðQÞ ¼ H

 
1 −

4ð _H þH2Þa2
3ςν2½ ðλ−1Þν2þ2K

ð3λ−1Þðν2−3KÞ� þ 6H2a2

!
: ð5:3Þ

Wewould like to stress that the positiveH generates friction,
on the other hand, the perturbations feel acceleration if H
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is negative. It is not completely determined by the Hubble
parameterH unlike the projectable case. In what follows, the
forces caused byH > 0 andH < 0 are calledH-friction and
H-acceleration, respectively.
Thus, we pay deep attention to the values of M2 and H

to discuss the stability of the perturbations. In this paper, we
classify the stabilities and instabilities into the following
five types.

(i) Negative-M2 instability: As we mentioned, the neg-
ative M2 causes undesirable exponential growth
unless it is not suppressed by the H-friction. There-
fore, the unstable behavior due to the negativeM2 is
observed in the case with (1) M2 < 0 and H < 0,
(2) M2 < 0 and jM2j≳H2 > 0 which means the
effect of the third term in lhs of (5.1) is relatively
dominant than that of the second term. If any one
of the perturbation modes satisfies this condition,
we classify the solution is under a negative-M2

instability.
(ii) H-accelerated instability: Even if the squared effec-

tive mass is positive, it is possible to enhance the
oscillating amplitude of perturbations. WhenH < 0,
the second term in lhs of (5.1) reinforces the
amplitude rather than friction, thus the perturbation
experiences a H-acceleration. Clearly, the accelerat-
ing effect is manifested if the positive squared
effective mass is relatively smaller than the effect
of H term. Thus, we regard the solution is under a
H- accelerated instability if at least one of the
perturbation modes satisfies 0 < M2 ≲H2 and
H < 0.

(iii) M2- dominated stability: On the other hand, the
negative H is not problematic if it is sufficiently
suppressed by the heavy positive effective squared
mass. Thus, we call the solution is under a
M2-dominated stability if every perturbation mode
satisfy M2 ≳H2 and H < 0.

(iv) H-suppressed stability: If H > 0, we experience a
friction effect which suppresses the dynamics of the
perturbations. With this taken into consideration, we
can find a stable solution even if M2 < 0. That is,
the effective squared mass is negative, however, the
unstable behavior is suppressed by the positive H.
We call the solution is under a H-suppressed
stability if every perturbation mode satisfy jM2j ≲
H2 and M2 < 0.

(v) Complete stability: Clearly, there is no problematic
perturbation dynamics if every perturbation mode
satisfy M2 > 0 and H > 0. We call this situation
complete stability.

In Table I, we summarize the classification of the
stabilities and instabilities.
In principle, the types of stabilities are entirely deter-

mined by the coupling constants in the action. However, it
is difficult to show the explicit conditions for these stabilities

due to the complicated forms of G and F for general cases.
Thus, we firstly consider the late-time evolutions after
bounce in which G and F are quite simplified and the
stability conditions are given in explicit forms. These explicit
conditions can be imposed as necessary conditions for the
stability throughout the whole evolution. Then, we numeri-
cally traceG andF based on the target background solutions.

A. Late-time universe after bounce

When the higher-order curvature terms are neglected,
the forms of G and F are quite simplified. The tensor
perturbations are approximated as

F ðGÞ ¼ 1; GðGÞ ≈
ν2

a2
> 0; ð5:4Þ

which means these are under the complete stability. On the
other hand, those of the scalar perturbations possibly take
negative values. Therefore, we investigate the asymptotic
forms of G and F in the late-time universe after bounce.

1. Asymptotic flat spacetime

Although it is impossible to realize a bounce solution in
flat spacetime, it is expected to be an approximate solution
inside the Hubble radius in the late-time of the Universe.
Therefore, we examine the stability of the flat spacetime as
an asymptotic spacetime after bounce. We assume K ¼ 0,
Λ ¼ 0 and the scale factor is large, then, F ðQÞ and GðQÞ are
given by [53]

F ðQÞ ¼
2ςð3λ − 1Þν2

3ςðλ − 1Þν2 þ 6ð3λ − 1ÞH2a2
; ð5:5Þ

GðQÞ ≈
2ð2 − ςÞν2

3ςa2
: ð5:6Þ

Since GðQÞ cannot be positive if ς < 0, we focus only on the
case with ς > 0. To preserve F ðQÞ > 0 and GðQÞ > 0, we
must impose

λ > 1 and 0 < ς < 2: ð5:7Þ
Then, the solutions are under the complete stability.

TABLE I. The classification of stabilities and instabilities
which is determined by M2 and H.

Stability types H M2 jM2j ≳H2

Negative-M2 instability − − False
− − True
þ − True

H-accelerated instability − þ False
M2-dominated stability − þ True
H-suppressed stability þ − False
Complete stability þ þ True

þ þ False
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2. Asymptotic Milne spacetime

The Milne universe is also a solution of open FLRW
spacetime without a cosmological constant in deep infrared
regime. The scale factor evolves as

a ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3λ − 1

r
t: ð5:8Þ

Then, F ðQÞ and GðQÞ are approximated by

F ðQÞ ≈
2ςð3λ − 1Þν2ðν2 þ 3Þ

3½ςðλ − 1Þν4 þ 2ð2 − ςÞν2 þ 12� ; ð5:9Þ

GðQÞ ≈
2ν2ðν2 þ 3Þ

3a2

×

�ð2 − ςÞðλ − 1Þν2 þ 2ςþ 6ðλ − 1Þ
ςðλ − 1Þν4 þ 2ð2 − ςÞν2 þ 12

�
: ð5:10Þ

Then, the conditions for the positive F ðQÞ and GðQÞ are
given by

λ ≥ 1 and 0 < ς < 2: ð5:11Þ

The important point is we can stabilize asymptotic space-
time after bounce without cosmological constant unlike the
projectable case.
We also analyze the asymptotic dynamics of the pertur-

bations. The asymptotic behaviors of the effective friction
coefficients are given by

H2
ðGÞ ∼

1

t2
; ð5:12Þ

H2
ðQÞ ∼

1

t2
; ð5:13Þ

and those of the effective squared masses are reduced into

M2
ðGÞa

2 ∼
ð3λ − 1Þν2

2
; ð5:14Þ

M2
ðQÞa

2 ∼
ð2 − ςÞðλ − 1Þν2 þ 2ςþ 6ðλ − 1Þ

2ς
: ð5:15Þ

Then, the asymptotic dynamics of the perturbations are
approximated by the following form:

h∼
C1

t
cos
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2a2−1
p

ln t
i
þC2

t
sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2a2−1
p

ln t
i
;

ð5:16Þ

with integration constants C1 and C2. One can see that the
perturbation amplitude approaches to zero.

3. Asymptotic de Sitter spacetime

If a positive cosmological constant is present, it may be
possible that the Universe experiences an accelerating
expansion whose expanding law is given by

a ∼ exp

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

3ð3λ − 1Þ

s
t

!
: ð5:17Þ

Once the Universe enters the accelerating expansion
phase, the spatial curvature turns to be irrelevant within a
few Hubble time, then, the spacetime asymptotically
approaches to de Sitter spacetime. In that case, F ðQÞ and
GðQÞ are approximated by3

F ðQÞ ≈
ςν2

3H2a2
; ð5:18Þ

GðQÞ ≈
2ν2

27a4

�
27ð2þ ςÞ

4Λ
ððλ − 1Þν2 þ 2KÞ

þ ðν2 − 3KÞð4gr þ 3g3Þ
�
: ð5:19Þ

The positivity of F ðQÞ is satisfied if ς > 0 which is
consistent with that of in the asymptotic flat spacetime.
We show the explicit conditions for GðQÞ ≥ 0 in closed
spacetime:

3g3 þ 4gr þ
27ðλ − 1Þð2þ ςÞ

4Λ
≥ 0: ð5:20Þ

and in open spacetime:

3g3 þ 4gr þ
27ðλ − 2Þð2þ ςÞ

10Λ
≥ 0: ð5:21Þ

If the above condition is satisfied, the solutions are under the
complete stability in the asymptotic de Sitter era.
It is clear that the squared effectivemassesM2

ðQÞ approach
asymptotically to zero because it is proportional to a−2.
Therefore, the case with GðQÞ < 0 seems not to be quite
problematic because the solution is under theH-suppressed
stability. To confirm it, we examine the asymptotic dynamics
of the perturbations. The effective friction coefficients
asymptotically behave as

H2
ðGÞ ∼

2Λ
3ð3λ − 1Þ ; ð5:22Þ

3It is natural to consider that there exists an ultraviolet cutoff
momentum pcut at which a nonperturbative quantum effect of
gravity cannot be ignored. More precisely, let νcut be an ultra-
violet cutoff mode which is related with the cutoff momentum as
ν2cut=a2T ≈ p2

cut at the early stage of the Universe. Then, we find
some finite time so that ν2=a2 < H2 for any ν ≤ νcut. Therefore,
the all perturbation modes are rapidly suppressed by the strong
H-friction after that time.
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H2
ðQÞ ∼

2Λ
27ð3λ − 1Þ ; ð5:23Þ

and those of the effective squared masses are

M2
ðGÞa

2 ∼ ν2; ð5:24Þ

M2
ðQÞa

2 ∼
2H2

9ς

�
27ð2þ ςÞ

4Λ
ððλ − 1Þν2 þ 2KÞ

þ ðν2 − 3KÞð4gr þ 3g3Þ
�
: ð5:25Þ

Substituting them into the perturbation equations of
motion, we obtain the asymptotic behaviors. For the case
withM2 > 0, which means the perturbations are under the
complete stability, the asymptotic dynamics of the tensor
perturbations are

hðGÞ∼

2
64C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ðGÞa
2

H2

s
e−HtþC4

3
75cos

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ðGÞa
2

H2

s
e−Ht

1
CA

−

2
64C3−C4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ðGÞa
2

H2

s
e−Ht

3
75sin

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ðGÞa
2

H2

s
e−Ht

1
CA;

ð5:26Þ

and those of the scalar perturbations are given by

hðQÞ ∼ C5 cos

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ðQÞa
2

H2

s
e−Ht

1
CA

− C6 sin

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ðQÞa
2

H2

s
e−Ht

1
CA; ð5:27Þ

with integration constants C3, C4, C5 and C6. We find that
the perturbations are rapidly suppressed and settled into
some constants as hðGÞ ∼ C4 and hðQÞ ∼ C5. Since the
constants C4 and C5 are expected to be a typical amplitude
of the perturbations when the Universe enters the de Sitter
era, we generally observe nonzero value of perturbation
amplitude after entering de Sitter phase.
For the case with M2 < 0, the dynamics of the tensor

perturbations are approximated as

hðGÞ∼

2
64C7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM2

ðGÞa
2j

H2

s
e−HtþC8

3
75

×cosh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM2

ðGÞa
2j

H2

s
e−Ht

1
CA

−

2
64C7−C8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM2

ðGÞa
2j

H2

s
e−Ht

3
75

×sinh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM2

ðGÞa
2j

H2

s
e−Ht

1
CA; ð5:28Þ

and those of the scalar perturbations are given by

hðQÞ ∼ C9 cosh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM2

ðQÞa
2j

H2

s
e−Ht

1
CA

− C10 sinh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM2

ðQÞa
2j

H2

s
e−Ht

1
CA; ð5:29Þ

with integration constants C7, C8, C9 and C10. Then, we
also find that the perturbations are rapidly settled into
some constant as hðGÞ ∼ C8 and hðQÞ ∼ C9, which means
the H-suppressed stability is truly stabilized state.

B. Whole history of the Universe

Let us turn our attention to the whole history of the
Universe including the bouncing phase. Although our main
analysis depends on the numerical approach, we, in
advance, consider some simple specific cases again in
which explicit conditions can be derived.

1. Tensor perturbations

Since the coefficients of kinetic terms in tensor pertur-
bations are unity, these are free from the ghost instability.
Therefore, the stabilities are determined only by GðGÞ. As
we mentioned, the forms of F ðGÞ and GðGÞ in tensor
perturbation are identical to those of the projectable case.
Thus, we summarize the positivity conditions of GðGÞ,
which we have argued in previous paper [48].
To investigate the stability of the tensor perturbations, we

focus on the case with large ν2. Then, GðGÞ given in (4.29) is
approximated as

GðGÞ ∼
ν2

a2
þ g3

ν4

a4
þ g8

ν6

a6
: ð5:30Þ

One can see that the ultraviolet stability imposes g8 ≥ 0.
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Although the explicit condition for general case is quite
complicated, we show the conditions with g3 ¼ 0. In closed
spacetime (K ¼ 1), if one of the following conditions is
satisfied, GðGÞ must be positive for any a > 0 and ν2 ≥ 8:

ðiÞ 0<g8 ≤−
3g56
7

; gr < 0; gs ≤−
ðg8−3g56Þ2

g8
;

ðiiÞ 0<g8 ≤−
3g56
7

; gr ≥ 0; gs ≤−
ðg8−3g56Þ2

g8
−
g2r
9
;

ðiiiÞ 0≤ g8; −
3g56
7

<g8; gr < 0; gs ≤ 48ðg56þg8Þ;

ðivÞ 0≤ g8; −
3g56
7

<g8; gr ≥ 0; gs ≤ 48ðg56þg8Þ−
g2r
9
;

Similarly, in open spacetime (K ¼ −1):

ðiÞ 0<g8 ≤ g56; gr > 0; gs ≤−
ðg8−3g56Þ2

g8
;

ðiiÞ 0<g8 ≤ g56; gr ≤ 0; gs ≤−
ðg8−3g56Þ2

g8
−
g2r
9
;

ðiiiÞ 0≤ g8; g56<g8; gr > 0; gs ≤ 4ð2g8−3g56Þ;

ðivÞ 0≤ g8; g56<g8; gr ≤ 0; gs ≤ 4ð2g8−3g56Þ−
g2r
9
;

which are equivalent to GðGÞ ≥ 0 for any a > 0 and ν2 ≥ 2.
It is worth mentioning that these stability conditions in
open FLRW spacetime are not completely conflict, how-
ever slightly difficult to be compatible with the bouncing
conditions (see [48]).

2. Scalar perturbations

The ghost-free condition for scalar perturbations can be
analytically discussed [refer to (4.34)]. Let the coupling
constants be λ > 1=3 and ς > 0, and adopting ν2 − 3K > 0,
the condition F ðQÞ > 0 is equivalent to

ςν2½ðλ − 1Þν2 þ 2K�
2ð3λ − 1Þðν2 − 3KÞa2 > −H2: ð5:31Þ

The most stringent conditions are imposed at the bouncing
and the recollapse points, i.e., H ¼ 0:

ς > 0 and

8<
:

λ > 1 for K ¼ 0

λ ≥ 1 for K ¼ 1

λ > 2 for K ¼ −1
: ð5:32Þ

If the above conditions are satisfied, the ghost instability can
be eliminated throughout the evolution of the Universe.
On the other hand, the positivity conditions of GðQÞ

cannot be expressed without any approximation due to the
extremely complicated form as shown in (4.35). Therefore,

we restrict our analysis to the case with large ν2 modes at
this stage. Then, GðQÞ is given by

GðQÞ ≈
�
ð−8g7 þ 3g8Þ þ

72g27K
2

ςa4

�
2ν6

3a6
; ð5:33Þ

Since ς should be positive, we assume

3g8 ≥ 8g7: ð5:34Þ

Then, GðQÞ ≥ 0 for large ν is guaranteed.

3. Numerical analysis

Before performing the numerical analysis, we summarize
the necessary conditions of stable solutions for each case.
(1) The cases with K ¼ 1 and Λ ≤ 0: Since there exists

a finite maximum value of scale factor amax, i.e., the
solutions O½0;1� and O½−1;1�, we assume the stability
conditions around the bouncing and the recollapsing
points and in the large ν2 region, thus,

ς > 0; λ ≥ 1; g8 ≥ 0 and 3g8 ≥ 8g7:

ð5:35Þ

(2) The cases with K ¼ 1 and Λ > 0: In this cases, we

observe B½1;1�, B½1;1�
BC and B½1;1�

O as the singularity-free
solutions. To guarantee the stabilities around bounc-

ing point (and the recollapsing point if B½1;1�
O ), in

asymptotic de Sitter spacetime and in the large ν2

region, we assume

ς> 0; λ ≥ 1; 3g3 þ 4gr þ
27ðλ− 1Þð2þ ςÞ

4Λ
≥ 0;

g8 ≥ 0 and 3g8 ≥ 8g7: ð5:36Þ

If we focus only on the oscillating phase which is

observed in the solution B½1;1�
O , the stability condi-

tions in the asymptotic de Sitter spacetime can be
relaxed. Then, we impose the same conditions as the
cases with K ¼ 1 and Λ ≤ 0, that is, (5.35).

(3) The cases with K ¼ −1 and Λ ¼ 0: We find B½0;−1�

and B½0;−1�
BC as the singularity-free solutions whose

asymptotic behaviors are the Milne spacetime. Thus,
we impose

0 < ς < 2; λ > 2; g8 ≥ 0 and 3g8 ≥ 7g7:

ð5:37Þ
(4) The cases with K ¼ −1 and Λ > 0: In this case, the

solutionsB½1;−1� andB½1;−1�
BC are realized. Since both of

the solutions approaches the de Sitter spacetime after
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the bounce, we impose the conditions as follows:

ς> 0; λ> 2; 3g3 þ 4gr þ
27ðλ− 2Þð2þ ςÞ

10Λ
≥ 0;

g8 ≥ 0 and 3g8 ≥ 8g7: ð5:38Þ

(5) The cases with K ¼ −1 and Λ < 0: The possible

singularity-free solutions are O½−1;−1� and O½−1;−1�
BC .

Therefore, we impose the stability conditions around
the bouncing and recollapsing points and in the large
ν2 region:

ς> 0; λ> 2; g8 ≥ 0 and 3g8 ≥ 8g7: ð5:39Þ

Then, we shall investigate the spacetime stabilities in each
cases: bouncing solutions with asymptotic de Sitter space-
time, bouncing solutions with asymptotic Milne spacetime
and oscillating solutions. In our numerical analysis, we have
found stable singularity-free solutions throughout the
whole evolutions, which means these solutions are under
the M2-dominated stability when H < 0 and under the
complete stability when H > 0. The important point is that
such stable solutions seem to exist universally. In fact, all
types of background solutions which we have introduced
in Sec. III B can be stabilized. The concrete examples are
shown in Table II.
Bouncing solutions with asymptotic Milne spacetime.—

The solutions B½0;−1� and B½0;−1�
BC correspond to this case.

Recall that these types of singularity-free solutions cannot
be stabilized in the projectable HL theory. Since the Hubble
parameter is dropped as t−1 ∼ a−1, the effect of the squared
effective masses do not suppressed by the Hubble friction,
that is, the values of M2=H2 are negative constants and do
not approach to zero at asymptotic Milne regime.

On the other hand, we can discover the stable solutions in
the nonprojectable HL theory because it is possible to keep
the values of M2

ðQÞ to be positive during the whole
evolution. In Fig. 7, a typical example of such a solution
is shown. The figure shows thatM2=H2 of both tensor and
scalar perturbations keep the positive values and always
greater than unity. Thus, the H-accelerated instability does
not occur for any initial value of the scale factor aini. As far
as our numerical analysis is concerned, such behavior
can also be seen for any possible perturbation mode ν.
Therefore, we regard our example as a solution under
complete stability when H > 0 and under M2-dominated
stability when H < 0 for any aini.
One may wonder whether the squared effective

masses truly suppress the effects of H-acceleration
under the M2-dominated stability, because we do not
mention any explicit criterions of the ratio M2=H2 so
far. Thus, we additionally discuss the dynamical evo-
lutions of each perturbation modes to investigate the
growth of the perturbation amplitudes caused by the
H-acceleration.
To clarify the effects, we numerically solve the pertur-

bation equations of motion (5.1). The initial conditions are
given at aini ¼ 100aT so that _hðGÞ ¼ 0 ¼ _hðQÞ. Since the
equations of motion are linear with respect to hðGÞ and hðQÞ,
the whole evolutions are proportional to the values of the
initial conditions hðGÞini and hðQÞini. Therefore, we trace
the ratios to each initial values, i.e., hðGÞ=hðGÞini and
hðQÞ=hðQÞini. In Fig. 8, the time evolutions are shown.
This result is based on the solution B½0;−1� whose coupling
constants are given in Table II (ii), thus, also corresponds
with Fig. 7. From the figure, we find that the perturbation
amplitudes are enhanced around the bouncing point even if

TABLE II. The examples for the stable singularity-free solutions, which mean that these solutions are under the M2-dominated
stability when H < 0 and under the complete stability when H > 0. The types of solution are introduced in Sec. III. N/A means that
there is no corresponding variables.

Type Λ λ g2 g3 g4 g5 g6 g7 g8 ς gr gs aBC amin amax aT

(i) O½0;1� 0 1 − 1
18

1
3

− 1
108

0 7
90

1
2

1 1 1 − 1
15

N/A 0.304 0.491 N/A

(ii) B½0;−1� 0 6 − 1
18

1
8

0 1
3

− 2
3

−1 3 3
2

− 1
4

4 N/A N/A N/A 1.094

(iii) B½0;−1�
BC

0 5
2

− 1
18

− 1
3

1
20

− 1
4

1
4

0 1 1
2

−3 − 3
5

0.526 N/A N/A 0.851

(iv) B½1;1� 1 1 1
6

− 1
6

− 1
12

1
3

− 1
3

− 1
2

1 3
2

2 −1 N/A N/A N/A 1.525

(v) B½1;1�
BC

2 2 1
9

− 1
2

− 1
12

1
3

− 1
6

− 1
2

1 1 −1 1 0.707 N/A N/A 1.272

(vi) B½1;1�
O

2 1 2
45

0 − 1
108

2
75

0 0 2 1
2

4
5

− 1
25

N/A 0.256 0.511 1.083

(vii) B½1;−1� 1 5
2

0 − 1
6

0 1
6

− 1
3

1
2

2 1 −1 2 N/A N/A N/A 0.928

(viii) B½1;−1�
BC

2 3 − 1
3

1
2

− 1
30

1
5

− 1
3

−1 1 3
2

−3 − 2
5

0.403 N/A N/A 0.745

(ix) O½−1;1� −1 1 − 1
12

1
2

− 1
108

1
40

0 1 1 1 3
2

− 1
10

N/A 0.282 0.604 N/A

(x) O½−1;−1� −1 3 1
4

− 1
2

0 − 1
40

1
5

0 3 1 3
2

3
2

N/A 0.730 1.821 N/A

(xi) O½−1;−1�
BC

− 3
2

5
2

1
8

− 1
2

1
216

− 1
60

1
150

−1 2 1
2

− 3
4

− 1
50

0.174 0.507 1.309 N/A
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the solution is under theM2-dominated stability. Thus, we
should clarify the growth rates of the perturbations. In
Table III, we show the detail data of the maximum ratios
hðGÞ=hðGÞini and hðQÞ=hðQÞini throughout the evolutions
for each perturbation modes. From the data, the

amplitude possibly grows up to about 50 times and
tends to be higher as the perturbation mode ν2 is lower.
Since the large perturbation mode ν2 corresponds to the
heavy effective squared mass M2, the result seems
appropriate.
Bouncing solutionswith asymptotic de Sitter spacetime.—

The solutions B½1;1�, B½1;1�
BC , B½1;1�

O with a ≥ aT , B½1;−1� and
B½1;−1�
BC correspond to this case. Actually, the previous work

based on the projectable HL theory has shown that
we cannot construct a solution under the complete stability.
Instead of this, it is possible to find solutions under the
H-suppressed stability due to the negativeM2

ðQÞ in infrared
regime.
On the other hand, it turns out that solutions under

the complete stability can be realized in the nonproject-
able case. As an example, we show the evolutions of the
M2=H2 in Fig. 9. As can be seen from the figure, both
tensor and scalar perturbations keep the positive values
during whole evolution of the solution. As far as our
analysis is concerned, the squared effective masses of
tensor and scalar perturbations are monotonically

TABLE III. The maximum ratios hðGÞ=hðGÞini and hðQÞ=hðQÞini
throughout the evolutions for each perturbation modes based on
Table II (ii).

ν2 maxðhðGÞ=hðGÞiniÞ maxðhðQÞ=hðQÞiniÞ
2 49.425 32.907
5 33.761 20.835
10 24.876 13.945
50 11.612 5.933
100 8.263 4.132
300 4.795 2.308

FIG. 7. The typical example of the ratios of the squared effective
mass to the squared effective friction coefficient M2=H2 in the
bouncing solution with asymptotic Milne spacetime. The top
and the bottom figures stands for M2

ðGÞ=H
2
ðGÞ and M2

ðQÞ=H
2
ðQÞ,

respectively. The example solution is B½0;−1� whose values of
coupling constants are given in Table II (ii). The red, orange,
yellow, green, blue and purple curves indicate the evolutions with
ν2 ¼ 2, 5, 10, 50, 102 and 103, respectively (ν2 ¼ n2 þ 1). The
horizontal dot-dashed black lines indicateM2 ¼ H2. The vertical
dashed gray line indicates the bouncing radius.

FIG. 8. The evolutions of perturbations in the bouncing solution
B½0;−1� where the coupling constants are listed in Table II (ii). In the
top (bottom) figure, the evolution of tensor (scalar) perturbations
are illustrated. The initial conditions are selected byaini ¼ 100aT ≈
109.41, and _hðGÞ ¼ 0 ¼ _hðQÞ. The red, blue and green curves
correspond to ν2 ¼ 2; 10 and 100, respectively. The vertical dashed
black line means the time of bouncing tb ≈ 317.19.
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increasing functions with respect to the perturbation
mode ν2. Therefore, we conclude this solution is under
complete stability for any possible ν2.
The magnitude relationships between M2 and H2 are

also analyzed. As we discussed, both M2
ðGÞ and M2

ðQÞ
drop as a−2, in contrast, the effective friction coefficients
are settled to a constant. Thus, there must exist a certain
value of the scale factor such that any one of M2 is
equal to H2. We define such a value of scale factor as a
critical scale factor acrit. In our numerical example Fig. 9,
the critical scale factor is acrit ¼ 5.118 at which the
lowest ν2 mode of the tensor perturbation shows M2

ðGÞ ¼
H2

ðGÞ and M2
ðGÞ is weaker than H2

ðGÞ for a > acrit. Thus,

in order to prevent H-accelerated instability, the initial
value of the scale factor aini needs to be smaller than that
critical value.

We also mention the growth of the perturbations
around the bouncing point. Actually, it is found that
the behavior is not quite different from the previous case
with asymptotic Milne spacetime. It is reasonable
because the effect of a cosmological constant is expected
to be relatively weaker than those of higher-order
curvature terms.
Oscillating solutions.—We examine the stabilities

of the oscillating solutions, specifically, O½0;1�, B½1;1�
O

for amin ≤ a ≤ amax, O½−1;1�, O½−1;−1� and O½−1;−1�
BC for

amin ≤ a ≤ amax. In this case, we also construct solutions
whose squared effective masses are positive and dominate
theH-term within the possible ranges of the scale factor. A
typical example is shown in Fig. 10. In our analysis,M2 of
all perturbation modes are positive and greater than H2. It
means that the solution is under the M2-dominated
stability when H < 0 and under the complete stability

FIG. 9. The typical example of the ratios of the squared
effective mass to the squared effective friction coefficient
M2=H2 in the bouncing solution with asymptotic de Sitter
spacetime. The top and the bottom figures stands forM2

ðGÞ=H
2
ðGÞ

and M2
ðQÞ=H

2
ðQÞ, respectively. The example solution is B½1;1�

whose values of coupling constants are given in Table II (iv). The
red, orange, yellow, green, blue and purple curves indicate the
evolutions with ν2 ¼ 8, 15, 24, 99, 399 and 899, respectively
(ν2 ¼ n2 − 1). The horizontal dot-dashed black lines indicate
M2 ¼ H2. The vertical dashed gray line gives the bouncing
radius, while the vertical dashed pink line shows the critical scale
factor acrit ¼ 5.118.

FIG. 10. The typical example of the ratios of the squared
effective mass to the squared effective friction coefficient
M2=H2 in the oscillating solution. The top and the bottom
figures stands forM2

ðGÞ=H
2
ðGÞ andM

2
ðQÞ=H

2
ðQÞ, respectively. The

example solution is O½−1;−1� whose values of coupling constants
are given in Table II (x). The red, orange, yellow, green, blue and
purple curves indicate the evolutions with ν2 ¼ 2, 5, 10, 50, 102

and 103, respectively (ν2 ¼ n2 þ 1). The solid and dashed
colored curves represent the evolutions with HH > 0 and
HH < 0, respectively. The vertical dashed gray lines indicate
the maximum and minimum radii of the oscillation.
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when H > 0. It is remarkable that, in that case, the scalar
perturbations with low ν2 show HHðQÞ < 0 around the
bouncing point, which means that the scalar perturbations
feel H-friction slightly before the bounce and receive H-
acceleration slightly after the bounce.
Additionally, we show the dynamics of the tensor and

scalar perturbations in the oscillating solution in Fig. 11.
From these figures, the typical amplitudes of the perturba-
tions are almost constant even if the Universe experiences a
number of oscillations. Thus, we conclude the solution is
stable with respect to the linear perturbations.

VI. SUMMARY AND DISCUSSIONS

We have investigated the stability of the singularity-free
cosmological solutions based on the nonprojectable HL
theory whose action is given by (2.4). Since our aim is to
remedy the infrared behaviors of the singularity-free
solutions in the projectable HL theory, we introduced only

the single additional term Φ2 which is expected to be
dominant in infrared limit. It is remarkable that our
gravitational action realizes the identical background sol-
utions in FLRW spacetime based on the projectable HL
theory with C ¼ 0. Therefore, the bouncing solutions and
the oscillating solutions which are induced by the higher-
order spatial derivative terms in the action are also found as
in the projectable case.
By considering the quadratic action, we discuss the

stability of the singularity-free solutions with respect to
tensor and scalar perturbations. The stabilities can be
estimated by the sign of the coefficients F and G showed
in (4.27) and (4.33). F < 0 corresponds to the ghost
instability which is equivalent to a lack of the lowest
energy state. The case with G < 0 is known as the gradient
instability which is interpreted as a unstable behavior due
to the negative squared effective mass. However, it is
possible to consider the case that the unstable behavior
caused by G < 0 is suppressed by the effect of background
dynamics. As we showed in (5.1), the stability of the
perturbations can be judged by the sign of the effective
friction coefficients H and the effective squared masses
M2, additionally the magnitude relationships betweenH2

and jM2j. Thus, we introduced five types of stabilities and
instabilities (i) negative-M2 instability, (ii) H-accelerated
instability, (iii)M2-dominated stability, (iv)H-suppressed
stability, and (v) complete stability.
The novel feature of the singularity-free cosmological

solutions in the nonprojectable HL theory is that we can find
the bouncing solutions which satisfy the M2-dominated
stability condition when H < 0 and the complete stability
conditionwhenH > 0. Such solutions cannot be constructed
in the projectable HL theory, that is, the squared effective
masses must be negative in infrared region.
We additionally investigate the stability of the oscillating

solutions. The solution (x) we have shown in Sec. V B 3 is
the stable solution which satisfy theM2-dominated stability
condition when H < 0 and the complete stability condition
whenH > 0. In fact, the typical amplitudes of the perturba-
tions stay almost constant.
However,wewould like to indicate that it is not impossible

to construct an oscillating solution whose typical perturba-
tion amplitude is exponentially enhanced even if either
M2-dominated stability condition or the complete stability
condition is satisfied. That instability is caused by a reso-
nance. Whether the resonance is induced or not can be
investigated by the Hill’s method [66] which is summarized
in Appendix. We numerically show a example of the
oscillating solution with resonance instability in Fig. 12
and the coupling constants of the solution is shown in
Table IV.Note that this solution is satisfied bothM2-stability
condition and complete stability condition (see Fig. 13).
In that case, certain modes of the tensor perturbation
show unstable behavior. The Hill’s method indicates that

FIG. 11. The evolutions of perturbations in the oscillating
solution O½−1;−1� whose coupling constants are listed in Table II
(x). In the top (bottom) figure, the evolution of tensor (scalar)
perturbations are illustrated. The initial conditions are set to
aini ¼ ðamin þ amaxÞ=2 ≈ 1.275, and _hðGÞ ¼ 0 ¼ _hðQÞ. The red
and blue curves correspond to ν2 ¼ 2 and 10, respectively. The
dashed and solid black lines indicate the bouncing time and the
recollapsing time, respectively. The first bouncing and recollaps-
ing times are given by tmin ≈ 1.660 and tmax ≈ 6.006. The
oscillating period of the scale factor is T ≈ 8.692.
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the degree of enhancement is characterized by ϵ� defined in
(A7). If jϵ�j exceeds 1, the amplitude of the corresponding
perturbation mode exponentially grows. In fact, the solution
includes certain tensor perturbation modes with jϵ�j > 1 as
we show in Fig. 14. It shows that even if all stability
conditions we have discussed are satisfied, the oscillating
solution is possibly unstable due to the resonance.
The oscillating solutions with resonance instability can

be discovered if we set the coupling constant g8 to be
positive, however, relatively smaller than that of the stable
solutions listed in Table II as far as our numerical analysis is
concerned. One may notice that such a manipulation
corresponds to consider the small effective squared mass.
See (4.28) and (4.35), it is found that ultraviolet dominant
terms g8ν6=a6 decrease. Thus, it is natural to consider that
the heavy effective squared masses prevent the oscillating
solution from the resonance instability. Actually, we can
see from Fig. 14 that the degree of enhancement jϵ�j
approaches unity as the perturbation mode ν2 increases. We
would like to stress that the resonance instability is mainly
the problem in open FLRW spacetime. Since the perturba-
tion mode ν2 takes discrete number greater than or equal to
eight in closed FLRW spacetime, the resonance instability
is not quite problematic. In general terms, the positive
heavy squared effective masses M2 is preferred to avoid
the instabilities due to the background dynamics, i.e.,
H-accelerated instability and the resonance instability.
Thus, the higher-order curvature terms with z ¼ 3 are

significant to stabilize the spacetime as well as inducing
the bounce.
We also mention the stability of singularity-free solu-

tions based on the general covariant HL theory which is an
alternative modification to remedy the behavior of scalar
perturbation [67]. In this theory, the scalar propagating
d.o.f. is eliminated by the additional fields, whereas the
tensor perturbations are not modified. It is notable that
the identical background solutions in FLRW spacetime to
those of projectable and nonprojectable HL theory can be
reproduced under certain conditions [68–70]. Therefore,
the stability analyses we have performed are also valid in

FIG. 13. The typical example of the ratios of the squared
effective mass to the squared effective friction coefficient
M2

ðGÞ=H
2
ðGÞ in the oscillating solution with resonance instability.

The example solution is O½−1;−1� whose values of coupling
constants are given in Table IV. The red, orange, yellow, green,
blue and purple curves indicate the evolutions with ν2 ¼
2; 5; 10; 50; 102 and 103, respectively (ν2 ¼ n2 þ 1). The hori-
zontal dot-dashed black lines indicateM2

ðGÞ ¼ H2
ðGÞ. The vertical

dashed gray lines indicate the maximum and minimum radii of
the oscillation.

FIG. 14. The ϵ� dependence on the tensor perturbation mode
ν2. The coupling constants are listed in Table IV. The solid blue
line shows jϵþj, while the dashed orange line gives jϵ−j. jϵ−j
reaches a maximum (≈1.030) at ν2 ≈ 2.162 and jϵþj reaches a
maximum (≈1.021) at ν2 ≈ 2.556. This system causes the
resonance around those modes.

FIG. 12. The evolutions of the tensor perturbations in the
oscillating solution where the coupling constants are listed in
Table IV. The oscillating period of the scale factor is T ≈ 8.723.
The ν2 ¼ 2.162 (red) and 2.556 (green) modes show the
resonance, while the ν ¼ 2.300 (blue) mode is stable.

TABLE IV. An example of the coupling constants for the
oscillating solution with resonance.

Type Λ λ g2 g3 g4 g5 g6 g7 g8 ς gr gs amin amax

O½−1;−1� −1 3 1
4

− 1
2

0 1
20

− 1
15

− 1
5

1
5

3
2

3
2

1 0.629 1.832
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the general covariant HL theory. For example, the back-
ground solutions with g3 ¼ 0 hold positive squared effec-
tive masses if the conditions we have explicitly shown in
Sec. V B 1 are satisfied. Then, we can construct the stable
singularity-free solutions only by examining M2

ðGÞ=H
2.

The perturbative approach we have performed is based on
a postulate. The effect of the backreaction can be ignored.
In other words, the background dynamics are never affected
by the perturbations. Of course, that assumption is not trivial.
If the perturbation amplitudes are much enhanced, it is
possible that the perturbation fields impinge on the back-
ground dynamics. Our numerical analysis shows that the
typical amplitudes of the perturbations are enhanced around
bouncing point. The degree of enhancement tends to be
larger if jM2j is small. Therefore, one may wonder how
much the perturbation amplitude is allowed not to affect to
the background dynamics. For certain perturbationmode, we
can give an estimation. In fact, the tensor perturbations with
ν2 ¼ 8 in closed FLRW spacetime include the homogeneous
modes, which corresponds the Bianchi-type IX spacetime
whose anisotropy is small (in detail, see [48]). Thus it might
be possible to estimate the effect of backreaction by con-
sidering more general background including inhomogeneity
and anisotropy.

ACKNOWLEDGMENTS

The authors would like to thank K. Maeda and K. Aoki
for their insightful comments and discussions.M. F. and S. S.
are grateful to the EarlyBird Program fromWasedaResearch
Institute for Science and Engineering, Grant-in-Aid for
Young Scientists. The work of S.M. was supported in part
by Grants-in-Aid from the Scientific Research Fund of the
Japan Society for the Promotion of Science (No. 18J11983).

APPENDIX: RESONANCE IN THE
OSCILLATING SOLUTION

In the oscillating solutions, the perturbations feel peri-
odical external forces, which may causes a resonance and
the rapid growth of the perturbations. To clarify whether the
resonance is induced or not, we examine the perturbation
equations by adopting Hill’s method. Since the procedures
are completely the same between tensor and scalar pertur-
bations, the subscripts which represent tensor and scalar
modes are abbreviated in what follows.
To rewrite the equations into the Hill’s form, we consider

a field redefinition as

ĥ ≔
ffiffiffiffiffiffiffiffiffi
a3F

p
h: ðA1Þ

Then, the perturbation equations are transformed as

d2ĥ
dt2

þ ω2ðtÞĥ ¼ 0; ðA2Þ

with

ω2ðtÞ ≔ 1

4

�
_F 2

F 2
−
2ð3H _F þ F̈ Þ

F
− 9H2 − 6 _H þ 4M2

�
:

ðA3Þ
Since the effective squared angular frequency ω2ðtÞ is
essentially a function which depends only on the scale
factor, the oscillating period is expected to be the same as
that of the scale factor. We further introduce the following
equation in the matrix expression as

d
dt

XðtÞ ¼
�

0 1

−ω2ðtÞ 0

�
XðtÞ; ðA4Þ

XðtÞ ≔
 
ĥðtÞ
_̂hðtÞ

!
: ðA5Þ

Here, ĥðtÞ is an arbitrary perturbation function, and XðtÞ is
a real solution vector for the Hill equation (A2).
Let T be a period which is characterized by the effective

squared angular momentum ω2, then the evolution of X is
expressed as

Xðtþ TÞ ¼ AXðtÞ; ðA6Þ
where A is a 2 × 2 matrix which represents the time
translation t → tþ T. Suppose fϵþ; Xϵþg and fϵ−; Xϵ−g
are two independent eigensystems of matrix A, where ϵ�
are eigenvalues and Xϵ� are corresponding eigenvectors.
Then, (A6) can be rewritten as some linear combination of
the following relations:

Xϵ�ðtþ TÞ ¼ ϵ�Xϵ�ðtÞ: ðA7Þ
Therefore, we find that both jϵþj ≤ 1 and jϵ−j ≤ 1 are
required to suppress the resonance of the perturbations.
To specify the explicit conditions for jϵ�j ≤ 1, we

introduce two independent complex vector X1 and X2

whose initial conditions are

X1ð0Þ ¼
 
ĥ1ð0Þ
_̂h1ð0Þ

!
¼
�
1

0

�
; ðA8Þ

X2ð0Þ ¼
 
ĥ2ð0Þ
_̂h2ð0Þ

!
¼
�
0

1

�
: ðA9Þ

Any solution vector can be constructed by the linear
combination of X1 and X2. Substituting (A8) and (A9)
into (A6), we find

A ¼
 
ĥ1ðTÞ ĥ2ðTÞ
_̂h1ðTÞ _̂h2ðTÞ

!
: ðA10Þ

Solving the Hill equation (A2) with these initial conditions,
A can be estimated. The eigenvalues of A are obtained
from the following equation.
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ϵ2 − ðtrAÞϵþ detA ¼ 0: ðA11Þ

Since the Hill equation (A2) and the initial conditions (A8)
and (A9) give detA ¼ 1, the eigenvalues ϵ� are given by

ϵ� ¼ trA�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrAÞ2 − 4

p
2

: ðA12Þ

One can see that jtrAj ≤ 2 is equivalent to jϵ�j ¼ 1. When
ϵ� is a complex number, the perturbations correspond
to the real part of XðtÞ. For the case with jtrAj > 2, any one
of jϵ�j is greater than unity. Thus, we conclude that if
jtrAj ≤ 2, the perturbation keeps oscillating forever with-
out growing or decaying. On the other hand, the perturba-
tion shows an exponential instability if jtrAj > 2.
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