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A systematic method is presented for determining the conditions on the parameters in the action of a
parity-preserving gauge theory of gravity for it to contain no ghost or tachyon particles. The technique
naturally accommodates critical cases in which the parameter values lead to additional gauge invariances.
The method is implemented as a computer program, and is used here to investigate the particle content of
parity-conserving Poincaré gauge theory, which we compare with previous results in the literature. We find
450 critical cases that are free of ghosts and tachyons, and we further identify 10 of these that are also
power-counting renormalizable, of which four have only massless tordion propagating particles and the
remaining six have only a massive tordion propagating mode.
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I. INTRODUCTION

Following the gauging of the Lorentz group by Utiyama
[1], Kibble was the first to gauge the Poincaré group [2]. In
Kibble’s model, the gauge fields of the Poincaré group
are hAμ and AAB

μ, which correspond to translations and
Lorentz transformations, respectively. Such Poincaré gauge
theories (PGTs) have a geometric interpretation in terms of
a Riemann–Cartan spacetime (U4), which differs from the
more familiar Riemann spacetime (V4) in having nonzero
torsion. In this geometric interpretation, the field strengths
of the translational and rotational gauge fields are identified
as the torsion and curvature, respectively, of the U4

spacetime [3].
The action in PGT has the general form

S ¼
Z

d4x h−1½LGðRAB
CD; T A

BCÞ þ LMðφ;DAφÞ�; ð1Þ

whereh ¼ detðhAμÞ,LG is the free gravitational Lagrangian,
LM is the matter Lagrangian, RAB

CDðh; A; ∂AÞ and
T A

BCðh; ∂h; AÞ are the field strengths corresponding to
the Lorentz and translational parts, respectively, of the
Poincaré group, DA is the covariant derivative, and φ is
the matter field. Here, Greek indices correspond to the
coordinate frame, and capital Latin indices to the local
Lorentz frame. The field strengths can be expressed as
RAB

CD ¼ hCμhDνRAB
μν and T A

BC ¼ hBμhCνT A
μν, where

RAB
μν ¼ 2ð∂ ½μAAB

ν� þ AA
E½μAEB

ν�Þ; ð2Þ

T A
μν ¼ 2ð∂ ½μbAν� þ AA

E½μbEν�Þ; ð3Þ

and bAμ is the inverse h-field, such that bAμhBμ ¼ δAB
and bAμhAν ¼ δνμ.
One property that a healthy theory should possess is

unitarity. The particle spectrum of a unitary theory should
contain no ghosts (particles with negative free field energy)
or tachyons (particles with imaginary masses). Several
authors have previously arrived at no-ghost-or-tachyon
conditions for some subsets of PGT. For parity-conserving
PGT (which we term PGTþ), Neville [4,5] considered
RþR2 actions, and Sezgin and van Nieuwenhuizen [6]
examined the most general action with no more than
two derivatives, i.e., RþR2 þ T 2, using a systematic
method with spin projection operators [4,7,8]. Karananas
[9] and Blagojević and Cvetković [10] studied the most
generalRþR2 þ T 2 action for PGTwith parity-violating
terms.
If the parameters in the action satisfy certain “critical

conditions,” however, the theory may possess additional
gauge invariances. This increases the difficulty of obtaining
the no-ghost condition of the massless sector of a PGT
systematically. Therefore, following a brief primer on spin
projections operators and notation in Sec. II, we present in
Sec. III a systematic approach to investigating all such
critical cases and accommodating the associated additional
source constraints; the method is implemented in
MATHEMATICA using the MATHGR [11] package. We apply
our method to PGTþ in Sec. IV and compare our results
with those previously presented in the literature; we also
identify special cases that are not only free of ghosts and
tachyons, but also power-counting renormalizable. We
conclude in Sec. V.
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We use the Landau–Lifshitz metric signature ηAB ¼
ðþ;−;−;−Þ throughout this paper.

II. SPIN PROJECTION OPERATORS

We begin by briefly reviewing the spin projection
operator (SPO) formalism [7,12,13] and establishing our
notation. The SPOs may be used to decompose a field in
momentum space into parts with definite spin J and
parity P.
A field ζά, where a Greek index with an acute accent

(ά;…) represents the collection of the local Lorentz indices
of the field, may be decomposed as

ζðkÞά ¼
X
J;P;i

ζiðJP; kÞά; ð4Þ

ζiðJP; kÞά ≡ PiiðJP; kÞάβ́ζðkÞβ́; ð5Þ

where there is no sum on i in (5). There may be more
than one component, or none, with spin-parity JP. The
index i (or, more generally, lowercase Latin letters
from the middle of the alphabet) labels these components
in the same spin-parity sector and also labels the SPOs.
The momentum kA is a timelike vector, but for simplicity
we omit the tensor indices of the momentum k and
position x when they appear as function arguments.
Indeed, for brevity’s sake, we will omit the dependence
of fields and SPOs on k or x for the remainder of this
section.
There are also off-diagonal SPOs PijðJPÞάβ́, where i ≠ j,

which complete a basis for parity-conserving operators
acting on ζά. The SPO basis is Hermitian, complete,
orthonormal, and the diagonal elements are positive (or
negative) definite. Thus, they satisfy

PijðJPÞά β́ ¼ P�
jiðJPÞβ́ ά; ð6Þ

X
i;J;P

PiiðJPÞά β́ ¼ Iά β́; ð7Þ

PikðJPÞάμ́PljðJ0P0 Þμ́ β́ ¼ δJJ0δPP0δklPijðJPÞά β́; ð8Þ

½φ�
άPiiðJPÞά β́φβ́�P ≥ 0 ∀ i;φά; ð9Þ

where Iά β́ is the identity operator for the field ζ, and in the
final condition φβ́ is an arbitrary field in the same tensor
space as ζ and P (without indices) is the parity.
Now consider the (usual) case in which the action

contains multiple fields ζð1Þά1
; ζð2Þά2

;…; ζðfÞάf
, where the

index a ¼ 1;…; f labels the fields (generally we will

use lowercase Latin letter from the start of the alphabet
for this purpose). One can then generalize the SPO

PijðJPÞά β́ in the single-field case to PðabÞ
ij ðJPÞά β́, where

the latter now projects the jth part with spin-parity JP of

the field ζðbÞ
β́

into the ith part with spin-parity JP of the

field ζðaÞά .
It is clear from the above discussion that the

description of SPOs requires the introduction of several
sets of indices of different types. In an attempt to ease
somewhat this notational burden, we introduce a matrix-
vector formalism that removes two of these sets of
indices. We begin by defining the generalized field
vector

ζ̂≡Xn
a¼1

ζðaÞάa
ea; ð10Þ

where ea is a column vector with ath element equal to
unity and the remaining elements zero. On the left-hand
side (LHS) of (10), we have suppressed the local
Lorentz indices, and it should be understood that the

ath element of ζ̂ consists of the tensor expression ζðaÞάa
.

The contraction of two generalized field vectors ζ̂ and ξ̂
is then given by

ζ̂† · ξ̂ ¼
Xn
a¼1

ζ�ðaÞάa
ξðaÞάa ; ð11Þ

where we have “overloaded” the dot notation on the
LHS to encompass the summations both over the
field index a and the collection of local Lorentz
indices ά.
Turning to the SPOs, we begin by considering the tensor

quantities PðabÞ
ij ðJPÞά β́ as the elements of a block matrix

PðJPÞ, for which the indices (a, b) label the f × f blocks
and the indices (i, j) label the individual elements within
each block. Note that since not every field has parts
belonging to a given spin-parity sector JP, some of the
blocks will have zero size. We then redefine the
indices (i, j) such that PijðJPÞά β́ denotes simply the tensor
expression in the ith row and jth column of PðJPÞ. Finally,
for each such element, we define the f × f matrix

P̂ijðJPÞ≡ PijðJPÞά β́eae†b; ð12Þ

where (a, b) denotes the block in PðJPÞ to which the
element belongs. By analogy with (10), we have again
suppressed the local Lorentz indices on the LHS of (12)
for brevity. The advantage of this notation is that these
generalized quantities (denoted by a caret) satisfy
relationships of an analogous form to those given in
(7)–(9).
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The SPO block matrices PðJPÞ used in this paper for
PGTþ are listed in Appendix. One can obtain the operators
for other fields by the method described in [13].

III. METHOD

We determine whether a theory contains ghosts or
tachyons by adapting the systematic method of spin
projection operators used in [6,9]. We apply the method
to parity-preserving Lagrangians with arbitrary real tensor
fields, for which the linearized Lagrangian can be written as

L ¼ LF þ LI;

¼ 1

2

X
a;b

ζðaÞά ðxÞOðabÞð∂Þά β́ζðbÞ
β́
ðxÞ −

X
a

ζðaÞά ðxÞjðaÞάðxÞ;

¼ 1

2
ζ̂TðxÞ · Ôð∂Þ · ζ̂ðxÞ − ζ̂TðxÞ · ĵðxÞ; ð13Þ

where ζðaÞά ðxÞ are the fields, jðaÞά ðxÞ are the corresponding
source currents, and we have defined the generalized
operator Ôð∂Þ≡OðabÞð∂Þά β́eae†b (again suppressing local

Lorentz indices on the LHS), in which OðabÞð∂Þά β́ is a
polynomial in ∂ and depends linearly on the coefficients of
the terms in the free-field Lagrangian.
By Fourier transformation, the free-field part of the

Lagrangian can be written

LF ¼ 1

2
ζ̂Tð−kÞ · ÔðkÞ · ζ̂ðkÞ; ð14Þ

where, without loss of generality, one may take ÔðkÞ to be
Hermitian. A theory has no tachyon if all particles have real
masses, and it contains no ghost particle if the real parts of
the residues of the saturated propagator at all poles are non-
negative:

Re

�
Res
k2¼m2

ðΠÞ
�
≥ 0; ð15Þ

where the saturated propagator is the propagator sand-
wiched between currents

ΠðkÞ ¼ ĵ†ðkÞ · Ô−1ðkÞ · ĵðkÞ: ð16Þ

To obtain the propagator, one first decomposes ÔðkÞ into
sectors with definite spin and parity:

ÔðkÞ ¼
X
J;P

ÔðJP; kÞ ¼
X
i;j;J;P

aijðJP; kÞP̂ijðJP; kÞ: ð17Þ

Pre- and post-multiplying (17) by SPOs and using the
orthonormality conditions (8), one obtains (omitting the
explicit dependence of quantities on k for brevity)

P̂iiðJPÞ · Ô · P̂jjðJPÞ
¼

X
k;l;J0;P0

aklðJ0P0 ÞP̂iiðJPÞ · P̂klðJ0P0 Þ · P̂jjðJPÞ

¼ aijðJPÞP̂ijðJPÞ; ð18Þ
from which one can read off aijðJPÞ as the coefficient of
P̂ijðJPÞ. The quantity aijðJPÞ may be considered as the
ði; jÞth element of a s × s matrix aðJPÞ, where s is the
number of parts of spin-parity JP across all the fields.
The next step is to invert ÔðkÞ to obtain the propagator.

The orthonormality property of the SPO means that
inverting ÔðkÞ is equivalent to inverting the matrices
aðJPÞ. One may, however, find that some of the a-matrices
are singular, and so cannot be inverted.
If aðJPÞ is singular, then the theory possesses gauge

invariances, as follows. If aðJPÞ has dimension s × s and
rank r, then it has (s − r) null right eigenvectors vw;Ri ðJPÞ,
where i is the vector component index and w is a label
enumerating the null eigenvectors (a null eigenvector is an
eigenvector that corresponds to a zero eigenvalue).
Similarly, the transpose matrix aTðJPÞ has (s − r) null left
eigenvectors vw;Li ðJPÞ. Thus, if the generalized field ζ̂ is
subjected to a change of the form

δζ̂w ¼
X
k;J;P

vw;Rk ðJPÞP̂kjðJPÞ · φ̂; ð19Þ

where φ̂ is some arbitrary generalized field, then the
equations of motion Ô · ζ̂ ¼ ĵ remain unchanged.
The null eigenvectors also lead to constraints on the

source currents ĵ. From the equations of motion, one may
show thatX

l

vw;Ll ðJPÞP̂klðJPÞ · ĵ

¼
X
l;i;j

vw;Ll ðJPÞP̂klðJPÞ · aijðJPÞP̂ijðJPÞ · ζ̂

¼
X
i;j

½vw;Li ðJPÞaijðJPÞ�P̂kjðJPÞ · ζ̂

¼ 0 ∀ k; JP; w: ð20Þ
Hence, one can use the (s − r) field transformations in (19)
to set the corresponding (s − r) parts ζkðJPÞά of the field to
zero and hence fix the gauge. This is equivalent to deleting
the corresponding (s − r) rows and columns in aðJPÞ, and
thereby aðJPÞ becomes nonsingular (this is most easily
implemented by successively proposing each row/column
pair for deletion, and eliminating only those for which the
rank of the matrix is unchanged). We denote the a-matrices
after deleting the rows and columns by bðJPÞ. Note that, if
the rank of aðJPÞ is zero, then there is no particle content in
this spin-parity sector and we will ignore these spin-parity
sectors in the following discussion.
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The inverse of ÔðJPÞ then becomes

Ô−1ðJPÞ ¼
X
i;j

b−1ij ðJPÞP̂ijðJPÞ; ð21Þ

where b−1ij ðJPÞ denotes the ði; jÞth element of the inverse
b-matrix, and the saturated propagator is thus given by

Π ¼
X
i;j;J;P

b−1ij ðJPÞĵ† · P̂ijðJPÞ · ĵ: ð22Þ

The no-ghost condition (15) requires us to locate the
poles of the saturated propagator. We first consider those
arising from the elements of the inverse b-matrices, which
can be written as

b−1ij ðJPÞ ¼
1

det ½bðJPÞ�C
T
ijðJPÞ; ð23Þ

where CijðJPÞ is the cofactor of the element bijðJPÞ. Since
CijðJPÞ is polynomial in k, all poles of b−1ij ðJPÞ are located
at the zeroes of det ½bðJPÞ�. The determinant in each spin-
parity sector can be written as

det ½bðJPÞ� ¼ αk2qðk2 −m2
1Þðk2 −m2

2Þ…ðk2 −m2
rÞ; ð24Þ

where α and m1; m2;…; mq (which we assume are non-
zero) are functions of the Lagrangian parameters but
independent of k, and q and r are non-negative integers.
Thus, b−1ij ðJPÞ has poles only at k2 ¼ 0 and k2 ¼ m2

1;
k2 ¼ m2

2;…; k2 ¼ m2
r .

It is worth noting that the reason why there are no odd-
order k terms in the determinant is that only the off-
diagonal elements of b-matrices contain odd-order k terms.
Such an element must belong to a row and column
corresponding to one field with odd indices and the other
with even indices. The odd-order k is always accompanied
by a factor i, so such elements are purely imaginary. Since
the b-matrix is Hermitian, however, its determinant is real.
The terms in odd powers of k must cancel because they are
imaginary, and so the determinant contains only terms with
even powers of k.

A. Massless sector

The no-ghost condition (15) in the massless sector is that
the residue of the saturated propagator (22) at k2 ¼ 0 be
non-negative. Besides the poles at k2 ¼ 0 present in
b−1ij ðJPÞ, the SPOs PijðJPÞ also contain singularities of
the form k−2n, where n is a positive integer.
Letting kA ¼ ðE; p⃗Þ and p≡ ffiffiffiffiffi

p⃗2
p

, the particle energy is
given by E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

p
, and the saturated propagator can

be written (most conveniently in a slightly unorthodox
form) as a Laurent series in k2 in the neighbourhood of
k2 ¼ 0

Πðk2; p⃗Þ ¼
XN
n¼−∞

Q2n

k2n
; ð25Þ

where N is an integer and the coefficients Q2n are some
functions of the on-shell momentum k̄A ≡ ðp; p⃗Þ and the

on-shell source currents jðaÞά ðk̄Þ. If N is zero or negative,
then there is no pole at k2 ¼ 0 and there is no propagating
massless particle. We will only discuss the N > 0 cases
here. The no-ghost conditions (15) are that the residue of
k2 ¼ 0 be non-negative, so Q2 ≥ 0. Furthermore, we
require that the saturated propagator has a simple pole in
k2 at this point, since terms proportional to k−2n with n > 1
contain ghost states [14]. For example, if the Laurent series
of the saturated propagator about k2 ¼ 0 contains a term
proportional to k−4, one can write this as

1

k4
¼ lim

ε→0

1

ε

�
1

k2
−

1

k2 þ ε

�
; ð26Þ

which contains a normal state and a ghost state.
To obtain the coefficients Q2n in the Laurent series (25),

one may expand the SPOs in the saturated propagator,
which can then be written as a sum of terms of the form

ΠðkÞ ¼
XP1ðk2ÞCðkA; ηAB; jðaÞά Þ

P2ðk2Þ
; ð27Þ

where P1ðk2Þ and P2ðk2Þ are polynomials of k2, and Cð� � �Þ
is a scalar that is obtained from contracting the tensors in its
argument. We require that Cð� � �Þ does not contain the factor
k2 because it can be absorbed into P1ðk2Þ. Note that the
coefficient Q2n may not necessarily be given by

X�
Res
k2¼0

�
k2ðn−1Þ

P1ðk2Þ
P2ðk2Þ

�
CðkA; ηAB; jϕ;άÞjk2¼0

�
; ð28Þ

if there exists any nonzero lower-order (smaller n) terms
because there may be kA terms in Cð� � �Þ. One can
accommodate this situation by expanding the tensor
expressions into their components before taking residues.
To this end, it is convenient to choose a coordinate system
such that kA ¼ ðE; 0; 0; pÞ; this greatly simplifies the
calculation without loss of generality, since the saturated
propagator is Lorentz invariant.
Note that the source currents have to satisfy the source

constraints (20). However, (20) is a set of tensor equations,
which is difficult to use systematically in the no-ghost
conditions. We thus expand the source constraints into their
components, and then solve the component equation set
and substitute them back to the saturated propagator. Since
(20) is a set of homogeneous linear equations, we can write
it in matrix-vector form as
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C · j≡

0
BB@

c11 c12 … c1q

..

.
… … ..

.

cm1 cm2 … cmq

1
CCA

0
BBBBBB@

jð1Þ0���0

jð1Þ0���1

..

.

jðfÞ3���3

1
CCCCCCA

¼ 0; ð29Þ

where m and q are integers, cij is the coefficient of the jth
component of the source current in the ith equation, f is the
total number of fields, and the subscripts of jðiÞ are Lorentz
indices. The solution is

j ¼
X
i

Xini; ð30Þ

where ni are the null vectors of C, and Xi are some free
variables. Note that we have to rescale those null vectors
with factors ðE − pÞn in the denominator to avoid intro-
ducing spurious singularities to the saturated propagator,
where n is the minimum integer to make the null vector
nonsingular at E ¼ p. We then replace the source current
components with Xi using (30).
Now the residue only contains the free variables Xi, and

we can put them in a column matrix X. The saturated
propagator can then be written as a matrix M sandwiched
by current vectors X:

Π ¼ X† ·M ·X: ð31Þ
We can also write Q2n in terms of a matrix Q2n in a similar
way:

Q2n ¼ X† ·Q2n ·X: ð32Þ
Since Q2n ¼ 0 for n > N, then k2ðN−1ÞΠ contains only a

simple pole or no pole at k2 ¼ 0, and one obtains

Q2N ¼ Res
k2¼0

½k2ðN−1ÞM� ¼ lim
E→p

½k2NM�: ð33Þ

One then calculates the remaining Q2n by subtracting all
the higher singularities:

Q2n ¼ lim
E→p

�
k2N

�
Π −

XN
j¼nþ1

Q2j

k2j

��
; ð34Þ

Thus, we obtain recursively all of the Q-matrices:
Q2N;Q2ðN−1Þ;…;Q2. For Q2n with n > 1, one requires
that each element in the matrix is zero:

Q2n ¼ 0 ∀ p ≠ 0; n > 1: ð35Þ

For n ¼ 1, corresponding to the k−2 pole, the no-ghost
condition is equivalent to requiring that each eigenvalue of
Q2 is non-negative:

EigenvaluesðQ2Þ ≥ 0 ∀ p ≠ 0: ð36Þ

The number of nonzero eigenvalues is equal to the number
of degrees of freedom (d.o.f.) of the propagating massless
particles.
Solving the inequalities in (36) may be quite time

consuming, however, in the cases where the eigenvalues
contain some roots of cubic or even higher polynomials. It
is therefore convenient to convert them into an alternative
form. In particular, if x1;…; xn are the roots of a poly-
nomial xn þ an−1xn−1 þ � � � þ a0 ¼ 0 and the roots are
guaranteed to be real, then

x1;…; xn > 0 ⇔ ð−1Þn−iai > 0 ∀ ai: ð37Þ

We can extend the above relation to non-negative roots
using the fact that if there are exactly z zero roots, then
a0;…; az−1 ¼ 0 and az ≠ 0. We then collect the conditions
with 0 to n zero roots. This gives the conditions for non-
negative roots.

B. Massive sector

In the massive sector, the no-tachyon conditions are
simply:

m2
s > 0 ∀ s ð38Þ

for every spin-parity sector. If this condition is satisfied,
one must then determine if any of the massive particles is a
ghost. For non-tachyonic particles, k is real around
k2 ¼ m2

s , and so the b-matrices are Hermitian. Although
one can thus expand the saturated propagator and analyze
its poles in a similar manner to that used in the massless
sector, there is a simpler approach in the massive sector,
provided all the masses in all spin sectors are distinct,
which is true in PGTþ. We first discuss this case and
discuss the other more general cases later.
From Eqs. (22)–(24), for an arbitrary current ĵ, the no-

ghost condition (15) may be written as

ð15Þ ⇔
�X
i;j;J

1

αk2q

�Y
r≠s

1

k2 −m2
r

�
CT
ijðJPÞĵ† · P̂ijðJPÞ · ĵ

�
k2¼m2

s

≥ 0 ∀ ĵ; s; J; P;

⇔

�X
i;J

1

αk2q

�Y
r≠s

1

k2 −m2
r

�
CT
D;iiðJPÞĵ†D · P̂iiðJPÞ · ĵD

�
k2¼m2

s

≥ 0 ∀ ĵD; s; J; P; ð39Þ

GHOST AND TACHYON FREE POINCARÉ GAUGE … PHYS. REV. D 99, 064001 (2019)

064001-5



where CT
D;ijðJPÞ ¼

P
k;lUikðJPÞCT

klðJPÞU†
ljðJPÞ, ĵD ¼P

i;jUðJPÞijP̂ðJPÞij · ĵ and UðJPÞij are the elements of a
unitary matrix of which each column is a eigenvector of the
matrix with elements CT

ij (the subscript D thus denotes a
diagonal basis). We can write the last line in (39) safely
because the matrix with elements CT

ijðJP; k2 ¼ m2
sÞ is finite

and Hermitian, so it must have finite real eigenvalues and
the transform matrix with elements UijðJPÞ is finite even at
the pole. Since the current ĵD is arbitrary and b−1D;iiðJPÞ has
either no singularity or a simple pole at k2 ¼ m2

s , which we
will explain later, then using (23) again gives

ð39Þ ⇔
X
i;JP

Res
k2¼m2

s

½b−1D;iiðJPÞ�

· ½ĵ† · P̂iiðJPÞ · ĵ�k2¼m2
s
≥ 0 ∀ ĵ; s; J; P: ð40Þ

Since bijðJP; k2Þ is Hermitian for real k2 about m2
s > 0, its

eigenvalue bD;iiðJP; k2Þ is analytic as a function of k2 about
m2

s > 0 [15], and one can Taylor expand it about k2 ¼ m2
s :

bD;iiðJP; k2Þ ¼ bD;iiðJP;m2
sÞ

þ b0D;iiðJP;m2
sÞ · ðk2 −m2

sÞ þ � � � ; ð41Þ
where the prime denotes the derivative with respect to k2.
The determinant is a polynomial in k2, so it must also be
analytic. Since it equals zero at k2 ¼ m2

s , we can write:

det ½bðJPÞ�ðk2Þ ¼ det ½bðJPÞ�0ðm2
sÞ · ðk2 −m2

sÞ

þ 1

2
det ½bðJPÞ�00ðm2

sÞ · ðk2 −m2
sÞ2 þ � � �

ð42Þ
As we are assuming that all the masses are distinct, then
det ½bðJPÞ�0ðm2

sÞ ≠ 0 and det ½bðJPÞ�ðk2Þ ∼Oðk2 −m2
sÞ

when k2 is near m2
s. Hence, there should be one i with

bD;iiðJPÞðm2
sÞ ∼Oðk2 −m2

sÞ, and the other bD;iiðJPÞðm2
sÞ∼

Oð1Þ. Thus, exactly one Resk2¼m2
s
½b−1D;iiðJPÞ� is nonzero.

Together with the property (9), the massive no-ghost
condition therefore becomes

ð40Þ ⇔ Res
k2¼m2

s

½b−1D;iiðJPÞ� · P ≥ 0 ∀ s;

⇔ Res
k2¼m2

s

½Trb−1D ðJPÞ� · P ≥ 0 ∀ s;

⇔ Res
k2¼m2

s

½Trb−1ðJPÞ� · P ≥ 0 ∀ s: ð43Þ

Let us now examine the case where Resk2¼m2
s

½Trb−1ðJPÞ� ¼ 0. This violates the conclusion that exactly
one Resk2¼m2

s
½b−1D;iiðJPÞ� is nonzero. The only assumptions

we made are that there is no tachyon and all masses are
distinct. Therefore, if Resk2¼m2

s
½Trb−1ðJPÞ� ¼ 0, there must

be a tachyon or there exist identical masses.
Hence, the combined massive no-ghost-and-tachyon

conditions are

m2
s > 0 ∀ s; ð44Þ

Res
k2¼m2

s

½Trb−1ðJPÞ� · P > 0 ∀ s; ð45Þ

if the masses in each spin sector are distinct. To obtain
the masses, one merely has to calculate the roots of the
determinants of the b-matrices. We assume that all the roots
that depend on the parameters of the Lagrangian are indeed
non-zero. If one sets a nonzero mass to zero, however, a
massive pole becomes massless pole and one has to
recalculate the massless no-ghost conditions because the
additional massless pole was not included in the calculation
in the previous step. We will discuss such “critical cases”
later and assume that they do not occur here.
If any mass in a spin sector has multiplicity greater than

one, Eq. (41) will not hold. In that case, one has to calculate
b−1D;iiðJPÞ explicitly and use the condition (40) directly. One
should also avoid higher singularities in these cases. In the
PGTþ case that we consider in Sec. IV, however, there is at
most one massive mode in each spin sector.
We note that the condition (45) is the same as Eq. (27b)

in [6], but differs from Eq. (47) in [9]. The reason is that
Karananas considers full PGT, with parity-violating terms,
so that his spin projectors do not satisfy P�

ijðJPÞά β́ ¼
PjiðJPÞβ́ ά and the parity-even and odd parts are mixed.
Hence, (40) is not valid in this case. It is not clear, however,
how one arrives at Eq. (47) in [9] in the full PGT case.
Finally, we note that the full combination of conditions

on the Lagrangian are given by (35), (36), (44) and (45).

C. Critical cases

There are a number of assumptions in the analysis
outlined above, so the process is not complete. To under-
stand this better, let us reexamine the determinants in (24),
which can be written as

det ½bðJPÞ� ¼ k2q
Xr
j¼0

ðA2jk2jÞ ¼ k2qA2r

Yr
j¼1

ðk2 −m2
jÞ;

ð46Þ
where q and r are non-negative integers, and A2j are some
finite functions of the parameters, with A2r ≠ 0 and A0 ≠ 0.
In the above process, we have implicitly assumed mj ≠ 0

and finite. We now discuss what may happen if the
parameters in the Lagrangian satisfy some equalities and
violate these assumptions in a given spin-parity sector JP.
In particular, we consider the following eventualities.
(1) det ½bðJPÞ� ¼ 0: This is equivalent to all A2j ¼ 0.

The determinant becomes zero, and there are more
gauge freedoms. Hence, we need to calculate the
new source constraints and b−1ij ðJPÞmatrix elements,
and the massless, as well as massive poles, have
different forms.

LIN, HOBSON, and LASENBY PHYS. REV. D 99, 064001 (2019)

064001-6



(2) det ½bðJPÞ� ≠ 0, but A0 ¼ 0: The determinant can
then be written as

det ½bðJPÞ� ¼ k2ðqþlÞXr

j¼l

ðA2jk2ðj−lÞÞ; ð47Þ

where A2l ≠ 0, l is a positive integer and r ≥ l > 0.
Some masses becomes zero, so some massive poles
of the propagator become massless. The number of
massive conditions decreases, and the massless
conditions change. Hence, there is no further gauge
invariance, and the source constraints and the matrix
elements b−1ij ðJPÞ remain in the same form. One
needs to calculate the new massless and massive
conditions.

(3) det ½bðJPÞ� ≠ 0, and A2r ¼ 0: The second equality of
(46) becomes invalid since some masses become
infinite. In this case, we can write the determinant as

det ½bðJPÞ� ¼ k2q
Xr−l
j¼0

ðA2jk2jÞ; ð48Þ

where l is a non-negative integer. There is no new
gauge freedom, but the number of the roots is
decreased. The poles are “removed” in this case.
Since only the k2q part will affect the massless poles
in the saturated propagator [see Eq. (22)–(24)], the
forms of the massless poles are unchanged. Hence,
one need only recalculate the massive conditions. In
this case, some non-propagating modes (propagator
with no pole) might appear. We do not forbid these
modes in this paper.

We can find all conditions that cause a theory to be a
critical case by finding all conditions that cause
det ½bðJPÞ� ¼ 0, A0 ¼ 0, or A2r ¼ 0 in any spin sectors.
While some conditions may cause more than one of the
above situations, we can still divide all the critical con-
ditions into three categories.
(A) Those causing det ½bðJPÞ� ¼ 0 in any spin-parity

sector: The source constraints, b−1ij ðJPÞ matrix ele-
ments, and the massless as well as massive poles
have different forms.

(B) Those causing A0 ¼ 0 in any spin-parity sector, and
not belonging to Type A: The form of the source
constraints and the b−1ij ðJPÞ matrix elements are the

same, but the massless and massive conditions have
different forms.

(C) Those conditions not belonging to Type A and Type
B: These conditions cause A2r ¼ 0 in some spin
sectors. Only the form of the massive condition is
changed. We can substitute the conditions into the
massless condition directly.

We can then traverse all possible critical cases. First, we
find the type A, B and C conditions for the parameters in
the original Lagrangian satisfying only one equality. Each
type A and B condition is a child theory of the original
theory. For the type C conditions, any combination of type
C conditions of a theory is also a type C condition of the
theory, provided they are not contradictory. Note that we
are assuming that a child theory does not satisfy the other
sibling critical conditions, and it does not include the
critical cases of itself. Hence, some combinations of type C
conditions might be contradictory, and we have to remove
these cases. We first calculate the no-ghost-and-tachyon
conditions for all the type C child theories. We then
calculate the no-ghost-and-tachyon conditions for the first
type A or B child theory and then find its critical cases.
We traverse the “tree” in a pre-ordered way: we repeat

the above process until the theory we are investigating has
no type A or B child theory, and then return to its parent
theory and consider the next unevaluated child theory of the
parent theory. Because it is possible to reach the same
theory by different routes, we have to check whether the
child theory has been evaluated. If it has been evaluated, we
neither calculate it again nor find its child theories. The
reason why we do not have to find the child theories for
type C conditions is that their type A and B child conditions
must be evaluated in some other branches of their sibling
type A or B conditions. As for the type C child theories,
they are already included in the combination of the sibling
type C conditions. We can then find all possible critical
cases and collect all no-ghost-and-tachyon conditions.
This process is best illustrated by examples, which we

provide in the next section, in the context of PGTþ.

IV. APPLICATION TO PGT+

The most general free-field PGTþ Lagrangian that is at
most quadratic in the gravitational gauge fields may be
written as:

L
b
¼ −λRþ ðr4 þ r5ÞRABRAB þ ðr4 − r5ÞRABRBA þ

�
r1
3
þ r2

6

�
RABCDRABCD þ

�
2r1
3

−
2r2
3

�
RABCDRACBD

þ
�
r1
3
þ r2

6
− r3

�
RABCDRCDAB þ

�
λ

4
þ t1

3
þ t2
12

�
T ABCT ABC þ

�
−
λ

2
−
t1
3
þ t2

6

�
T ABCT BCA

þ
�
−λ −

t1
3
þ 2t3

3

�
T B

ABT CA
C; ð49Þ
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whereRA
B ¼ RAC

BC,R ¼ RA
A, and we have adopted the

conventions in [6] for the parameters, which simplifies
calculations and enables a straightforward comparison with
the literature.
To determine the particle spectrum, one must first

linearize the Lagrangian. We expand it around a
Minkowski background with

hAμ ¼ δA
μ þ fAμ; ð50Þ

and we set the A-field to beOðfÞ. The inverse of h becomes

bAμ ¼ δAμ − fAμ þOðf2Þ: ð51Þ
Since the effect of transforming Greek indices to Latin
indices is onlyOðf2Þ, we can ignore the difference between
them and only use Latin indices in the linearized theory. We
can decompose f into symmetric and antisymmetric parts:

fAB ¼ aAB þ sAB: ð52Þ
Note that one may add a constant term c0 to the right-

hand side of (49), but after the weak field expansion the
Lagrangian becomes

L ¼ c0 − tð2λ∂AABA
B þ c0sÞ þOðt2Þ: ð53Þ

The constant term in (53) does not affect the equation of
motion, so we can neglect it, and the ∂A term can be
eliminated by partial integration regardless of whether c0 is
zero. If c0 ≠ 0, however, the c0s term in theOðtÞ part of the
Lagrangian results in the equation of motion c0 ¼ 0 at
order t, which contradicts c0 ≠ 0. Furthermore, we consider
only the Minkowski background here, and adding a
cosmological constant term will cause the background to
de Sitter. Hence, c0 must always be zero, and so we do not
add the constant term to (49).
Before considering the general case of PGTþ, however,

we begin by first studying the simpler cases of PGTþ with
vanishing torsion and curvature, respectively, which one
should note are not merely critical cases of (49), because
additional constraints are placed not only the coefficients,
but also on the fields.

A. Zero-torsion PGT+

One may impose vanishing torsion as follows [3]. First,
we define

cAμν ≡ ∂μbAν − ∂νbAμ ð54Þ

ΔABμ ≡ 1

2
ðcABC − cCAB þ cBCAÞbCμ; ð55Þ

then the A-field can be written as AABμ ¼ ΔABμ þ KABμ,
where ΔABμ are the Ricci rotation coefficients or “reduced”
A-field [16], and Kμλν ¼ − 1

2
ðT μλν − T νμλ þ T λνμÞ is the

contorsion. Hence, setting the torsion to zero is equivalent
to replacing AABμ with ΔABμ. The Lagrangian of torsionless
PGT is thus

L
b
¼ −λRþ 2r4RABRAB þ ðr1 − r3ÞRABCDRABCD: ð56Þ

We employ the general method described in Sec. III to
this case, and present our results Fig. 1, which also
illustrates our methodology in diagrammatic form. The
top “node” in the figure (entitled “root”) represents the full
theory described by (56), without imposing any relation-
ship between the parameters in the Lagrangian. The line “l”
in each node lists the number of d.o.f. in the massless sector
and the condition for that sector to be ghost-free; alter-
natively it is marked with “G” to denote that the sector must
contain a ghost, or “dip.G” to denote that it must contain a
dipole ghost. The line “v” in each node lists the massive
particles and the conditions that must be satisfied for them
to be neither ghosts nor tachyons; alternatively, it is marked
with a “G” if one of them must be a ghost or tachyon. If
there is no massive particle, then × is written.
The arrows between nodes point from parent theories to

their child theories. The first line of the label on each arrow
indicates the type of the critical case, and the second line
denotes that one is setting the expressions in ½…� to zero in
the parent theory to obtain the child theory. The first line in
each node (except the “root” node) contains the full set of
critical conditions for that theory. Note that for each theory,
the conditions that make it critical (the expressions
in the arrows from that node) are required not to hold.
For example, for the theory with λ ¼ 0 in the second
row of Fig. 1, one requires 2r1 − 2r3 þ r4 ≠ 0 and
r1 − r3 þ 2r4 ≠ 0. The bottom node corresponds to the
Lagrangian vanishing identically.

FIG. 1. The critical cases of zero-torsion PGTþ, for which the
Lagrangian has the form (56). See the text for details.
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For the subset of cases considered previously by other
authors, we compare our results with those in the literature
in Sec. IV D.

B. Zero-curvature PGT+

One may impose zero curvature in PGTþ (to obtain
teleparallel PGTþ) by setting AABμ ¼ 0 [3], and the
corresponding Lagrangian is given by

L
b
¼

�
t1
3
þ t2
12

�
T ABCT ABC þ

�
−
t1
3
þ t2

6

�
T ABCT BCA

þ
�
−
t1
3
þ 2t3

3

�
T BA

BT C
AC: ð57Þ

Applying the method described in Sec. III to this case
yields the results presented in results Fig. 2, which uses the
same conventions as in Fig. 1. We again compare our
results with the literature in Sec. IV D.

C. Full PGT+

We now turn our attention back to the general case of full
PGTþ, for which the Lagrangian is given by (49). Starting
from the “root” theory, for which no relationship is imposed
on the parameters in the Lagrangian, our method outlined
in Sec. III systematically identifies 1918 critical cases
(excluding the “vanishing” Lagrangian case for which all
parameters are zero), which thus cannot be displayed in
diagrammatic form such as in Figs. 1 and 2. Of these
critical cases, we find that 450 can be free of ghosts and
tachyons, provided the parameters in each case satisfy
some conditions without generating another critical case.

The full set of results displayed in an interactive form can
be found at: http://www.mrao.cam.ac.uk/projects/gtg/pgt/.

D. Comparison with previous results

We content ourselves here with presenting in Table I our
results for the root PGTþ theory and the small subset of
critical cases that have been studied previously in the
literature. We also list those critical cases of the torsionless
and teleparallel PGTþ theories (see Figs. 1 and 2) that have
been considered previously in the literature. Overall, we find
that our results are indeed consistent with those reported by
other authors, apart froma fewminor differences that aremost
likely the result of typographical errors in earlier papers.
Some of the cases listed in Table I are worthy of further

discussion, as follows:
(i) Case 1: This is the “root” PGTþ theory, in which no

critical condition holds. We find the massless no-
ghost condition λ > 0, which agrees with [6]. In the
massive case, we find the no-tachyon condition in
each spin-parity sector to be:

0−∶ −
t2
r2

> 0

0þ∶
t3λ

2ðr1 − r3 þ 2r4Þðt3 − λÞ > 0

1−∶ −
3t1t3

2ðr1 þ r4 þ r5Þðt1 þ t3Þ
> 0

1þ∶ −
3t1t2

2ð2r3 þ r5Þðt1 þ t2Þ
> 0

2−∶ −
t1
2r1

> 0

2þ∶ −
t1λ

2ð2r1 − 2r3 þ r4Þðt1 þ λÞ > 0; ð58Þ

and the no-ghost condition in each sector is

0−∶ −
1

r2
> 0

0þ∶
−r1t3 þ r3t3 − 2r4t3 − t3λþ λ2

2ðr1 − r3 þ 2r4Þλð−t3 þ λÞ > 0

1−∶ −
3ðt21 þ 2t23Þ

2ðr1 þ r4 þ r5Þðt1 þ t3Þ2
> 0

1þ∶
3ðt21 þ 2t22Þ

2ð2r3 þ r5Þðt1 þ t2Þ2
> 0

2−∶ −
1

r1
> 0

2þ∶
−2r1t1 þ 2r3t1 − r4t1 þ t1λþ λ2

ð2r1 − 2r3 þ r4Þλðt1 þ λÞ > 0: ð59Þ

These conditions are again equivalent to those in [6],
as expected, and cannot be satisfied simultaneously.

FIG. 2. The critical cases of zero-curvature (teleparallel) PGTþ,
for which the Lagrangian has the form (57). See text for details.
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Hence, the theory contains a massive ghost, as is
well known.

(ii) Case 3: This is Einstein–Cartan theory, and our
results are consistent with the literature.

(iii) Case 5: Our conditions λ > 0; r1 < 0; r1 þ r5 <
0; t1 > 0; t3ðt1 þ t3Þ > 0 differ from the conditions
λ > 0; r1 > 0; r1 þ r5 > 0; t1 > 0; t3ðt1 þ t3Þ > 0
found in [6] in that two of the inequalities have the
opposite sign. We believe these are typos in [6].

(iv) Case 6: This torsionless theory corresponds to that in
node 4 of row 2 in Fig. 1. We obtain the condition
λ > 0, with only 2 massless d.o.f., but [6] also set
2t3 − t1 ¼ 3λ; r5 ¼ 0. These additional conditions
neither cause the theory to become a critical case nor
contradict the other conditions, so adding them has
no effect on the particle content. [6] finds that the

action reduces to the Einstein action, which is
consistent with our result.

(v) Case 12: We find that the critical cases that contain
three coefficient equations and only type C critical
conditions are precisely the 12 cases listed in Table I
of [18], and we obtained the same particle content
for each theory.

(vi) Case 13: Our no-ghost conditions and massless
particle content are different from those found in
[18]. However, [19] studied the same theory and
obtained the same conditions and particle content as
ours. Moreover, our result that there is no massless
propagating tordion in this theory is also found in
[24]. We notice that, compared to our analysis, some
terms in Eq. (8) in [18] have different signs, which
we believe to be typos.

TABLE I. Conditions for no ghosts or tachyons for the PGTþ root theory and a subset of critical cases analyzed previously in the
literature. “Massless/massive” denotes the particle content found in the literature, and the parentheses contain the number of d.o.f. of
particles in the massless sector. “Dip. G” means the massless sector contains a dipole ghost. Where our results differ from those in the
literature, ours are put in squared brackets. Cells marked with “*” are discussed further in the text, and “� � �”means the particle content is
not mentioned in the cited paper.

No. Paper Critical conditions No-ghost-and-tachyon conditions Massless Massive

1 [6] × Ghost (massive) 2þ (2) 0−,0þ,1−, 1þ,2−,2þ
2 [6] t1 ¼ t2 ¼ t3 ¼ r1 ¼ r2 ¼ r3 ¼ r4 ¼ r5 ¼ 0 λ > 0 2þ (2) ×
3 [6] t1 ¼ −t2 ¼ −t3 ¼ −λ, λ > 0 2þ (2) ×

r1 ¼ r2 ¼ r3 ¼ r4 ¼ r5 ¼ 0
4 [6] t1 ¼ −t2 ¼ −t3 ¼ −λ, λ > 0, r2 < 0 2þ (2) 0−

r1 ¼ r3 ¼ r4 ¼ r5 ¼ 0
5 [6] t1 ¼ −t2; r1 ¼ r3, r4 ¼ r2 ¼ 0 λ > 0; r1 > 0½< 0�, r1 þ r5 > 0½< 0�, 2þ (2) 1−, 2−

t1 > 0; t3ðt1 þ t3Þ > 0
6 [6] t1 ¼ −t2; r1 ¼ r3, r4 ¼ r2 ¼ 0, torsionless λ > 0 2þ (2) ×
7 [6] t1 ¼ −t3 ¼ −λ; r1 ¼ 0, r4 ¼ −r5 t2 > λ > 0; r2 < 0, 2r3 þ r5 > 0 2þ (2) 0−, 1þ
8 [6] t1 ¼ −t3 ¼ −λ; r1 ¼ 0, 2r3 þ r5 > 0; λ > 0, t2ðt2 − λÞ > 0 2þ (2) 1þ

r4 ¼ −r5; r2 ¼ 0
9 [6] t1 ¼ −t3 ¼ −λ; r1 ¼ 0, Ghost � � � � � �

r4 ¼ −r5; r2 ¼ 0, torsionless
10 [6] r1 ¼ 0; 2r3 ¼ r4 ¼ −r5 λ > 0; r2 < 0; r3 > 0; t2 > 0, 2þ (2) 0−, 0þ

t3ðλ − t3Þ < 0
11 [6,17] r1 ¼ 0; 2r3 ¼ r4 ¼ −r5, torsionless λ > 0; r3 > 0 - [(2)] - ½0þ�
12 [18] (1)-(12)* *

2þ (2) *

13 [18] t1 ¼ t2 ¼ t3 ¼ 0; r1 ¼ r3, λ > 0; r1 > 0 2þ,1−� ×
r4 ¼ 0; 2r3 þ r5 ¼ 0 ½λ > 0�� (4) [(2)]

14 [19] t1 ¼ t2 ¼ t3 ¼ 0; r1 ¼ r3, λ > 0� 2þ (2) ×
r4 ¼ 0; 2r3 þ r5 ¼ 0

15 [19] t1 ¼ −t3, teleparallel t1 þ t2 > 0; t1 þ λ > 0� 2þ,0þ (3) ×
16 [20] t1 ¼ −t3, teleparallel t1 þ λ > 0 2þ (2) ×

[(3)]
17 [21] r4 ¼ −ðr1=2Þ þ r3=2; t3 ¼ 0 r1 þ r3 þ 2r5 < 0, λ > 0 (massless) 2þ,1 (4) � � �
18 [21] r2 ¼ 0, t2 ¼ 0 2r3 þ r5 > 0; λ > 0 (massless) 2þ,1 (4) � � �
19 [21] t2 ¼ t3 ¼ r1 − r3 þ 2r4 ¼ r2 ¼ 0 2r3 þ r5 > 0, r1 þ r3 þ 2r5 < 0, 2þ,1,1 (6) � � �

λ > 0 (massless)
20 [17] Torsionless Ghost (massive 2þ) 2þ (2) 0þ,2þ
21 [17,22] r1 − r3 þ 2r4 ¼ 0, torsionless Ghost (massive 2þ) 2þ (2) 2þ
22 [23] r1 − r3 þ 2r4 ¼ λ ¼ 0, torsionless Ghost (massless) 2þ,1,2þ ×

(dip. G)*
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(vii) Case 14 and 15: We find that there is an overall sign
difference between our linearized Lagrangian and
that in [19], so the conditions also have an overall
sign difference. We assume that this is a minor error
either in their calculation or our conversion of it to
our notation. We have thus added an overall minus
sign to their conditions.

(viii) Case 15: This theory was also studied in [20] (along
with Case 16), who found only a spin-2 massless
mode with the condition t1 þ λ > 0. However, they
studied only the spin-2 particles, so our results are
consistent.

(ix) Case 19: We believe that the condition α − γ3 ¼ 0
quoted in [21] contains a typo and should instead
read α − γ3 ≠ 0, which is equivalent to t1 ¼ 0 →
t1 ≠ 0 in our notation, thus yielding our result.

(x) Case 22: This is conformal gravity. [23] showed it
has a normal spin-2, a normal spin-1, and a ghost
spin-2 mode, all massless. We find there is no
massive mode, and there must be dipole ghost(s)
in the massless sector. Our method can determine the
existence of ghosts, but not the d.o.f. in the massless
sector if there are dipole ghost(s). Nonetheless, the
results are consistent.

E. Source constraints

As mentioned previously, if the parameters in the PGTþ
Lagrangian (49) satisfy some specific conditions (type A
critical cases), then the resulting theory may possess extra
gauge invariances beyond the Poincaré symmetry assumed

in its construction. For example, for Case 13 in Table I, it is
noted in [18,19] that the theory is additionally invariant
under the gauge transformation

δAABC ¼ ∂AΛBC − ∂BΛAC þ ∂CθAB; ð60Þ

where ∂BΛAB ¼ 0, θAB ¼ ∂AVB − ∂BVA, ∂AVA ¼ 0 and Λ
and V are arbitrary (see also [24]), and has the additional
source constraints

∂BτABC ¼ 0; ∂CτABC ¼ 0; ð61Þ

beyond the standard ones ∂BσAB ¼ 0 and σ½AB� þ
∂CτABC ¼ 0 arising from the Poincaré symmetry. Here,
σAB and τABC are the source currents of the fAB (graviton)
and AABC (tordion) gravitational fields, respectively.
Our approach also found the same source constraints for

this theory, although not directly as tensor equations, but
instead in component form for k aligned with the z-
direction. Indeed, we found there are 310 different sets
of source constraints among the root PGTþ theory and its
1918 critical cases. We are not able to convert all of them
automatically into their corresponding tensor equations, but
it is possible to make such a conversion in some cases. This
is performed by first suggesting possible tensor equations
from the patterns present in the component equations, then
converting the possible tensor equations into component
forms, and finally comparing whether they are equivalent.
In Table II, we present the results for all the sets of sources
constraints that we were able to convert into tensor form.

TABLE II. Source constraints for the root PGTþ theory and those critical cases for which the constraints could be found in tensor
form. Note that there may be more than one critical case sharing the same source constraints, so we list only the case having the simplest
critical conditions. The numbering of cases is not related to that used in Table I.

No. Critical conditions Source constraints

1 × kBσAB ¼ σAB − σBA þ 2ikCτABC ¼ 0
2 r1 − r3 ¼ r4 ¼ λ ¼ 0 iσAB þ iσBA − 2kCτCAB − 2kCτCBA ¼ iσAB − iσBA − 2kCτABC ¼ 0
3 r1=2 − r3=2þ r4 ¼ r1=2þ r3=2þ r5 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA þ 2ikCτABC ¼ gBCτACB ¼ 0
4 r1=2 − r3=2þ r4 ¼ r1=2þ r3=2þ r5 ¼ t1 ¼

t3 ¼ 0
kBσAB ¼ σAB − σBA þ 2ikCτABC ¼ kBσBA ¼ gBCτACB ¼ 0

5 r1 ¼ r3 ¼ r4 ¼ r5 ¼ t1 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA − 2ikCτCBA ¼ τACB þ τBCA ¼ 0
6 r1 ¼ r3 ¼ r4 ¼ r5 ¼ t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ kCτCBA ¼ τACB þ τBCA ¼ 0
7 r1 ¼ r3 ¼ r4 ¼ r5 ¼ t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB ¼ kCτCBA ¼ τACB þ τBCA ¼ 0
8 r1 ¼ r2 ¼ r3 ¼ r4 ¼ r5 ¼ t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ τBCA ¼ 0
9 r1 ¼ r3 ¼ r4 ¼ r5 ¼ t1 ¼ t3 ¼ λ ¼ 0 σAB − ikCτCBA ¼ τACB þ τBCA ¼ 0
10 r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼ t1 ¼

t3 ¼ 0
kBσAB ¼ σAB − σBA þ ikCτCAB − ikCτCBA ¼ gBCτACB ¼ 2kCτABC −
kCτCAB þ kCτCBA ¼ 0

11 r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼ t1 ¼
t2 ¼ t3 ¼ 0

kBσAB ¼ σAB − σBA ¼ gBCτACB ¼ kCτCAB − kCτCBA ¼ kCτABC ¼ 0

12 r2 ¼ r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼
t1 ¼ t2 ¼ t3 ¼ 0

kBσAB ¼ σAB − σBA ¼ gBCτACB ¼ kCτCAB − kCτCBA ¼ τABC −
τACB þ τBCA ¼ 0

13 r2 ¼ r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼
t1 ¼ t2 ¼ t3 ¼ λ ¼ 0

σAB ¼ gBCτACB ¼ kCτCAB − kCτCBA ¼ τABC − τACB þ τBCA ¼ 0

(Table continued)
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TABLE II. (Continued)

No. Critical conditions Source constraints

14 r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼ t1 ¼
t2 ¼ t3 ¼ λ ¼ 0

σAB ¼ gBCτACB ¼ kCτCAB − kCτCBA ¼ kCτABC ¼ 0

15 r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼ t1 ¼
t3 ¼ λ ¼ 0

σAB þ ikCτABC ¼ gBCτACB ¼ 2iσAB − kCτCAB þ kCτCBA ¼ 0

16 r1 − r3 ¼ r4 ¼ r1 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB ¼ gBCτACB ¼ kCτCAB þ kCτCBA ¼ kCτABC ¼ 0
17 r1 − r3 ¼ r4 ¼ r1 þ r5 ¼ t1 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA þ 2ikCτABC ¼ gBCτACB ¼ kCτCAB þ kCτCBA ¼ 0
18 r1 − r3 ¼ r4 ¼ r1 þ r5 ¼ t1 ¼ t3 ¼ λ ¼ 0 σAB þ ikCτABC ¼ gBCτACB ¼ kCτCAB þ kCτCBA ¼ 0
19 r1 − r3 ¼ r4 ¼ r1 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ gBCτACB ¼ kCτCAB þ kCτCBA ¼ kCτABC ¼ 0
20 r1=2 − r3=2þ r4 ¼ r1=2þ r3=2þ r5 ¼ t1 ¼

t2 ¼ t3 ¼ 0
kBσAB ¼ σAB − σBA ¼ gBCτACB ¼ kCτABC ¼ 0

21 r2 ¼ r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼
λ ¼ 0

σAB ¼ kCτCBA ¼ τABC − τACB þ τBCA ¼ 0

22 r1=2 − r3=2þ r4 ¼ r1=2þ r3=2þ r5 ¼ t1 ¼
t2 ¼ t3 ¼ λ ¼ 0

σAB ¼ gBCτACB ¼ kCτABC ¼ 0

23 r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼
λ ¼ 0

σAB ¼ kCτCBA ¼ kCτABC ¼ 0

24 r1=2 − r3=2þ r4 ¼ r1=2þ r3=2þ r5 ¼ t1 ¼
t3 ¼ λ ¼ 0

kBσAB ¼ gBCτACB ¼ iσAB − kCτABC ¼ 0

25 r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t1 ¼ t3 ¼ λ ¼ 0 σAB − ikCτCBA ¼ 2σAB þ ikCτABC þ ikCτCAB ¼ 0
26 r1 − r3 ¼ r4 ¼ r1 þ r5 ¼ t3 ¼ λ ¼ 0 gBCτACB ¼ iσAB þ iσBA − 2kCτCAB − 2kCτCBA ¼ iσAB − iσBA −

2kCτABC ¼ 0
27 r1 − r3 ¼ r4 ¼ t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB ¼ kCτCAB þ kCτCBA ¼ kCτABC ¼ 0
28 r1 ¼ r3 ¼ r4 ¼ r5 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB þ 2ikCτCBA ¼ σAB þ 2ikCτABC þ 2ikCτCAB ¼ gBCτACB ¼ 0
29 r1 − r3 ¼ r4 ¼ t1 ¼ t3 ¼ λ ¼ 0 kCτCAB þ kCτCBA ¼ iσAB − kCτABC ¼ 0
30 r1 ¼ r2 ¼ r3 ¼ r4 ¼ r5 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB þ 2ikCτCBA ¼ gBCτACB ¼ τABC − τACB þ τBCA ¼ 0
31 r2 ¼ r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t2 ¼ λ ¼ 0 σAB þ 2ikCτCBA ¼ τABC − τACB þ τBCA ¼ 0
32 r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t2 ¼ λ ¼ 0 σAB þ 2ikCτCBA ¼ σAB þ 2ikCτABC þ 2ikCτCAB ¼ 0
33 r2 ¼ r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼

t2 ¼ t3 ¼ 0
kBσAB ¼ σAB − σBA − 2ikCτCAB þ 2ikCτCBA ¼ gBCτACB ¼
τABC − τACB þ τBCA ¼ 0

34 r1=3 − r3 ¼ r1=3þ r4 ¼ 2r1=3þ r5 ¼ t2 ¼
t3 ¼ 0

kBσAB ¼ σAB − σBA − 2ikCτCAB þ 2ikCτCBA ¼ σAB − σBA þ
2ikCτABC ¼ gBCτACB ¼ 0

35 r1 − r3 ¼ r4 ¼ t1 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA þ 2ikCτABC ¼ kCτCAB þ kCτCBA ¼ 0
36 r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t1 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA − 2ikCτCBA ¼ σAB − σBA þ ikCτABC þ

ikCτCAB ¼ 0
37 r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ kCτCBA ¼ kCτABC ¼ 0
38 r2 ¼ r1 − r3 ¼ r4 ¼ 2r1 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼

0
kBσAB ¼ σAB − σBA ¼ kCτCBA ¼ τABC − τACB þ τBCA ¼ 0

39 r1 − r3 ¼ r4 ¼ t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ kCτCAB þ kCτCBA ¼ kCτABC ¼ 0
40 r2 ¼ 2r3 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB ¼ τABC − τACB þ τBCA ¼ kCτCAB − kCτCBA ¼ 0
41 t1 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA þ 2ikCτABC ¼ kBσBA ¼ 0
42 2r3 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB ¼ kCτCAB − kCτCBA ¼ kCτABC ¼ 0
43 r2 ¼ 2r3 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ τABC − τACB þ τBCA ¼ kCτCAB − kCτCBA ¼ 0
44 2r3 þ r5 ¼ t1 ¼ t3 ¼ λ ¼ 0 3iσAB − kCτABC − kCτCAB þ kCτCBA ¼ 2iσAB − kCτCAB

þkCτCBA ¼ 0
45 2r3 þ r5 ¼ t1 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA þ ikCτCAB − ikCτCBA ¼ σAB − σBA þ

2ikCτABC ¼ 0
46 2r3 þ r5 ¼ t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ kCτCAB − kCτCBA ¼ kCτABC ¼ 0
47 t1 ¼ t2 ¼ t3 ¼ 0 kBσAB ¼ σAB − σBA ¼ kCτABC ¼ 0
48 t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 σAB ¼ kCτABC ¼ 0
49 t1 ¼ t3 ¼ λ ¼ 0 kBσAB ¼ iσAB − kCτABC ¼ 0
50 r2 ¼ 2r3 þ r5 ¼ t2 ¼ 0 kBσAB ¼ σAB − σBA − 2ikCτCAB þ 2ikCτCBA ¼ τABC − τACB þ

τBCA ¼ 0
51 2r3 þ r5 ¼ t2 ¼ 0 kBσAB ¼ σAB − σBA − 2ikCτCAB þ 2ikCτCBA ¼ iσAB − iσBA −

2kCτABC ¼ 0
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We find that the same set of source constraints may hold for
more than one critical case, so in the table we list only the
case having the simplest critical conditions. It is worth
noting that the first case listed is the root PGTþ theory, for
which we recover the two well-known source constraints
arising from the Poincaré symmetry alone. We also note
that, aside from the root theory, the numbering of cases in
the table is not related to that used in Table I.

F. Power-counting renormalizability

In addition to possessing no ghosts or tachyons, a
healthy physical theory should also be renormalizable.
The first step in assessing whether this is possible is to
determine whether the theory is power-counting (PC)
renormalizable.
Even this condition can be quite difficult to establish in

the general case in which the propagator for the theory
contains terms that mix different fields, which is the case
for PGTþ. Nonetheless, in the decomposition of the

propagator using SPOs, there are some critical cases for
which the mixing terms in the b-matrices vanish. In these
cases, the physical meaning is much clearer. We therefore
focus only on the PGTþ critical cases that satisfy this
property.
In such cases, one can determine the behavior of the

saturated propagator of the f (graviton) and A (tordion)
fields when k2 → ∞ by studying the corresponding diago-
nal elements in the b-matrices. If one requires PC renor-
malizability, the propagator of the graviton should go as k−4

and that of the tordion should go as k−2 when k2 → ∞ [6].
We found 10 PC renormalizable critical cases without
ghosts and tachyons, of which four have only massless
propagating particles (see Table III) and the remaining six
have only a massive propagating mode (see Table IV).
It is possible to use different gauge fixing so that

sometimes a graviton mode is transformed to a tordion
mode and vice-versa. We find in these PGTþ cases,
however, gauge fixing does not affect renormalizability.

TABLE III. PC renormalizable critical cases that are ghost and tachyon free and have only massless propagating modes. “Additional
condition” are the conditions that prevent the theory becoming a different critical case. The column “b sectors” describes the elements in
the b−1-matrix of each spin-parity sector in the sequence ð0−; 0þ; 1−; 1þ; 2−; 2þÞ. Here and in Table IV it is notated as φn

v or φn
l , where φ

is the field, −n is the power of k in the element in the b−1-matrix, v means massive mode, and l means massless mode.

No. Critical condition Additional condition No-ghost-and-tachyon condition Massless mode d.o.f. b sectors

1 r3 ¼ r1; r2 ¼ r4 ¼ r1 ≠ 0; r1 þ r5 ≠ 0, r1ðr1 þ r5Þð2r1 þ r5Þ < 0 2 ð×;×; A2
l ; A

2
l ; A

2
l ;×Þ

t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 2r1 þ r5 ≠ 0
2 r4 ¼ −2r1 þ 2r3; r2 ¼ r3 ≠ 0; 2r3 þ r5 ≠ 0, r1ðr1 − 2r3 − r5Þð2r3 þ r5Þ > 0 2 ð×; A2

l ; A
2
l ; A

2
l ; A

2
l ;×Þ

t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 r3 þ 2r5 ≠ 0; r2 ≠ 0
3 r4 ¼ r3=2; r1 ¼ r2 ¼ r3 ≠ 0; 2r3 þ r5 ≠ 0, r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0 2 ð×;×; A2

l ; A
2
l ;×; A

2
l Þ

t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 r3 þ 2r5 ≠ 0
4 r4 ¼ r3=2; r1 ¼ r3 ≠ 0; 2r3 þ r5 ≠ 0, r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0 2 ðA2

l ;×; A
2
l ; A

2
l ;×; A

2
l Þ

t1 ¼ t2 ¼ t3 ¼ λ ¼ 0 r3 þ 2r5 ≠ 0; r2 ≠ 0

TABLE IV. PC renormalizable critical cases that are ghost and tachyon free and have only massive propagating modes. The “j”
notation denotes the different form of the elements of the b−1-matrices in different choices of gauge fixing. The other columns are the
same as in Table III. Note that while there are some A0, s2l or a

2
l in the b

−1-matrices, the A0 terms are not propagating. The s2l or a
2
l terms

may lead to PC nonrenormalizability, but after applying the source constraints and summing all terms from all spin-parity sectors, none
of the theories below has a massless propagating mode. Hence, these terms do not affect PC renormalizability.

No. Critical condition Additional condition No-ghost-and-tachyon condition Massive mode b sectors

5 r1 ¼ r3 ¼ r4 ¼ r2 ≠ 0, t2 ≠ 0, t3 ≠ 0 t2 > 0; r2 < 0 0− ðA2
v;A0js2l ;A0js2l ja2l ;A0ja2l ,

r5 ¼ t1 ¼ λ ¼ 0 ×;×Þ
6 r1 ¼ r3 ¼ r4 ¼ r2 ≠ 0, t2 ≠ 0 t2 > 0; r2 < 0 0− ðA2

v;×;×; A0ja2l ;×;×Þ
r5 ¼ t1 ¼ t3 ¼ λ ¼ 0

7 r3 ¼ r1; r5 ¼ −2r1, r1 ≠ 0, r2 ≠ 0, t2 ≠ 0 t2 > 0; r2 < 0 0− ðA2
v; A0;×; A0ja2l ;×;×Þ

r4 ¼ t1 ¼ t3 ¼ λ ¼ 0
8 r4 ¼ 2r3; r5 ¼ −2r3, r2 ≠ 0, r3 ≠ 0, t2 ≠ 0 t2 > 0; r2 < 0 0− ðA2

v;×; A2
l ; A

0; A2
l ;×Þ

r1 ¼ t1 ¼ t3 ¼ λ ¼ 0
9 r4 ¼ r3=2; r5 ¼ −2r3, r2 ≠ 0, r3 ≠ 0, t2 ≠ 0 t2 > 0; r2 < 0 0− ðA2

v;×; A2
l ; A

0ja2l ;×; A2
l Þ

r1 ¼ t1 ¼ t3 ¼ λ ¼ 0
10 r4 ¼ 2r3 − 2r1; r5 ¼ −2r3, r1 ≠ 0, r2 ≠ 0, t2 > 0; r2 < 0 0− ðA2

v; A2
l ; A

2
l ; A

0ja2l ; A2
l ;×Þ

t1 ¼ t3 ¼ λ ¼ 0 r1 − r3 ≠ 0; t2 ≠ 0
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The four cases with only massless modes in Table III all
contain 2 massless d.o.f. There is no way to fix the gauge in
these cases without fixing all the graviton d.o.f., so they
contain only tordions. Nonetheless, we note that the inverse
b-matrices for cases 3 and 4 have elements in the 2þ sector,
and it might therefore be of interest to investigate their
phenomenology further. The six cases in Table IV all
propagate only a massive 0− tordion mode and no massless
mode, so they are of limited physical interest.
We also investigated the PGTþ theories with either zero

torsion or zero curvature, discussed in Secs. IVA and IV B
respectively, but found that no cases are both unitary and
PC renormalizable.

V. DISCUSSION AND CONCLUSIONS

We have presented a systematic method for obtaining the
no-ghost-and-tachyon conditions for all critical cases of a
parity-preserving gauge theory of gravity. We have imple-
mented the method as a computer program and examined
the critical cases of PGTþ, as well as of torsionless PGTþ
and teleparallel PGTþ. In comparing our results with the
literature for the (small) subset of critical cases that have
been analyzed previously, we find that they are consistent,
apart from a few minor differences that most probably arise
from typographical errors in previous works.
Our method does, however, have the shortcoming that it

does not yield the spins or parities of the massless particles,
but only their total number of d.o.f. (when there is no dipole
ghost). Moreover, in the presence of a dipole ghost, our
method can determine only that the dipole ghost exists, but
does not yield the number of d.o.f.
Although not a shortcoming of our method per se, it is

also difficult to classify the results obtained. In particular,
care must be taken since, for a given ghost and tachyon free
critical case, it is not guaranteed that all of its child critical
cases do not contain ghosts or tachyons. Furthermore, in
general, a theory has multiple child critical theories, and it
also has multiple parent theories, so it is difficult to divide
the theories into some categories without cutting lots of
relations between parent and child theories. Our interactive
interface available at http://www.mrao.cam.ac.uk/projects/
gtg/pgt/ is intended to assist in navigating this space of
theories.
An alternative method to that presented here is the

Hamiltonian approach, which has recently been used to
study the particle spectrum of parity-violating PGT by
Blagojević and Cvetković [10]. Their results can be
straightforwardly reduced to PGTþ by setting all the ā
and b̄ to zero in their paper. This will not cause any new
“critical parameters” to vanish. By comparing their “critical
parameters” with our “critical conditions,” we find that our
type C critical conditions are identical to their critical
parameters. These critical parameters are second class
constraints [25,26], so they do not lead to additional gauge
invariance, which is consistent with our definition of type C

critical cases. As for the type A critical conditions, we
believe that they correspond to first class if-constraints
because first class constraints represent additional gauge
invariance. In Blagojevic’s book [3], the critical parameters
for the most general teleparallel PGTþ are listed, and found
to be first class. Our method found 4 type A conditions
from the theory, which is the same as Blagojevic. This is
consistent with our supposition. As for the type B critical
cases, however, [10] does not mention its consequences
(massive particle becomes massless), but only requires the
mass squares to be positive. Blagojević and Vasilić [24]
studied what happens when massive modes becomes
massless. In particular, they claim that if any massive
tordion becomes massless, there will be extra gauge
invariance. However, in their analysis they always include
other critical condition(s) in addition to setting the mass to
zero to make the theory healthy, so they are not purely
applying type B conditions. It is possible that we combine
some type B conditions with some other conditions to get a
type A condition and extra gauge invariance appears, so
their conclusion does not conflict with ours.
In the context of PGTþ, it may be of interest to

investigate further the theories listed in Table III, which
are both unitary and power-counting renormalizable, and
possess only massless propagating particles. Although
these theories contain no graviton, only tordions, they
may provide some insights into the construction of a self-
consistent quantum theory of long-range gravitational
interactions. In particular, cases 3 and 4 might be of
interest, since they may possess particles in the 2þ sector.
Indeed, it is worth noting that in the absence of torsion the
action for both of these cases reduces to that of conformal
gravity, which is PC renormalizable but not unitary, as
discussed in Case 22 in Sec. IV D.
Finally, although we demonstrated our method only for

PGTþ in this paper, it may be applied to more complex
theories such as Weyl gauge theory (WGT) [27] or
extended Weyl gauge theory (eWGT) [16]. It is also
applicable to conventional metric theories such as R2

theories. We plan to explore its application to such theories
in future work.
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APPENDIX: SPIN PROJECTION OPERATORS
FOR PGT+

The block matrices PðJPÞ containing the spin projection
operators for PGTþ used in this paper are as follows (see
Sec. II for details):
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Pð0−Þ ¼ A�
IJK

AABC	
2
3
ΘICΘJAΘKB þ 1

3
ΘIAΘJBΘKC


 ; ðA1Þ

Pð0þÞ ¼
A�
IJK

s�IJ
s�IJ

AABC sAB sAB0
BBBBB@

2
3
ΘCBΘKJΩIA

ffiffi
2

p
3
k̃JΘABΘKI

ffiffi
2
3

q
k̃JΘKIΩBAffiffi

2
p
3
k̃BΘCAΘIJ

1
3
ΘABΘIJ

1ffiffi
3

p ΘIJΩABffiffi
2
3

q
k̃BΘCAΩJI

1ffiffi
3

p ΘABΩIJ ΩABΩIJ

1
CCCCCA

; ðA2Þ

Pð1−Þ ¼

A�
IJK

A�
IJK

s�IJ
a�IJ

AABC AABC sAB aAB0
BBBBBB@

ΘCBΘIAΘKJ

ffiffiffi
2

p
ΘIAΘKJΩCB

ffiffiffi
2

p
k̃BΘIAΘKJ

ffiffiffi
2

p
k̃BΘIAΘKJffiffiffi

2
p

ΘAIΘCBΩKJ 2ΘIAΩCBΩKJ 2k̃JΘIAΩKB 2k̃JΘIAΩKBffiffiffi
2

p
k̃JΘAIΘCB 2k̃BΘAIΩCJ 2ΘIAΩJB 2ΘIAΩJBffiffiffi

2
p

k̃JΘAIΘCB 2k̃BΘIAΩCJ 2ΘIAΩJB 2ΘIAΩJB

1
CCCCCCA

; ðA3Þ

Pð1þÞ ¼
A�
IJK

A�
IJK

a�IJ

AABC AABC aAB0
BBB@

ΘICΘKBΩJA þ ΘIAΘKCΩJB −
ffiffiffi
2

p
ΘJAΘKBΩIC

ffiffiffi
2

p
k̃JΘIAΘKB

−
ffiffiffi
2

p
ΘBIΘCJΩAK ΘIAΘJBΩKC k̃KΘIAΘJBffiffiffi
2

p
k̃BΘAIΘCJ k̃CΘAIΘBJ ΘAIΘBJ

1
CCCA

; ðA4Þ

Pð2−Þ ¼ A�
IJK

AABC	
2
3
ΘICΘJBΘKA þ 2

3
ΘIAΘJBΘKC − ΘCBΘIAΘKJ


 ; ðA5Þ

Pð2þÞ ¼ A�
IJK

s�IJ

AABC sAB�− 2
3
ΘCBΘKJΩIA þ ΘICΘKAΩJB þ ΘIAΘKCΩJB

ffiffiffi
2

p
k̃JðΘIAΘKB − 1

3
ΘABΘKIÞffiffiffi

2
p

k̃BðΘCJΘIA − 1
3
ΘCAΘIJÞ − 1

3
ΘABΘIJ þ ΘIAΘJB

�
; ðA6Þ

where k̃A ¼ kA=
ffiffiffiffiffi
k2

p
, ΩAB ¼ kAkB=k2, and ΘAB ¼ ηAB − kAkB=k2. The operators are adapted from [9]. The fields

have some symmetry properties: the AABC field is antisymmetric in AB, the aAB field is antisymmetric in AB, and the sAB
field is symmetric in AB. Note that the spin projection operators satisfy the symmetry properties implicitly. For example,
although P33ð1−Þ ¼ PðssÞ

11 ð1−Þ is notated as 2ΘIAΩJB above, its correctly symmetrized form is ðΘIAΩJBþ
ΘIBΩJA þ ΘJAΩIB þ ΘJBΩIAÞ=2. We have verified that the above set of spin projection operators satisfies (7) and (8).
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Poincaré gauge theory of gravity without gauge fixing,
Phys. Rev. D 30, 2508 (1984).

[27] A. Bregman, Weyl transformations and Poincaré gauge
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