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We analyze the semiclassical and quantum dynamics of the isotropic universe in the framework of the
polymer quantum mechanics in order to implement a cutoff physics on the initial singularity. We first
identify in the Universe cubed scale factor (i.e., the spatial volume) the suitable configuration variable,
providing a constant critical energy density, such that the bounce arises as intrinsic geometric feature. We
then investigate the obtained semiclassical bounce dynamics for the primordial Universe, and we outline its
impact on the resolution of cosmological paradoxes, as soon as the semi-classical evolution is extended (in
the spirit of the Ehrenfest theorem) to the collapsing prebounce Universe. Finally, we validate the use of the
semiclassical effective dynamics by investigating the behaviour of the expectation values of a proper
semiclassical states. The present analysis has the merit to enforce the equivalence between the polymer
quantization paradigm in the minisuperspace and the loop quantum cosmology approach. In fact, our study
allows to define a precise correspondence between the polymer cutoff scale and the discrete geometric
structure of LQG.
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I. INTRODUCTION

The theory of loop quantum gravity (LQG) [1] demon-
strated that is possible to recover a notion of discrete
space (discrete spectra for the kinematic areas and volumes
operators [2]), even starting from a continuous Hamiltonian
representation. In this regard, the main achievement of this
formulation is the elimination of the singularity in the
Friedmann-Lemaître-Robertson-Walker (FLRW) Universe.
In particular, as outlined in [3–5], the emergence of a
minimum value for cosmic scale factor is responsible for
the appearing of a bounce scenario.
Despite a more general implementation of the symmetry

prescriptions (homogeneity and isotropy) within the
SUð2Þ gauge structure of the spacetime is to be defined,
see [6–10], the big-bounce paradigm opens a new per-
spective in primordial cosmology [11].
Polymer quantum mechanics has been introduced in

[12,13] by close analogy with the formulation of loop
quantum cosmology (LQC), since the former reproduces
some key features of the latter, like the Hilbert space
structure and the semiclassical dynamics.

However, as discussed in [14,15] the polymer formu-
lation of the minisuperspace dynamics is also an indepen-
dent quantization procedure, able to describe cutoff physics
effects in the cosmological setting. Therefore, in view of a
comparison in the semiclassical limit with the loop pre-
dictions, it can be instructive to wonder which are the most
suitable configuration variables for quantization. In fact,
standard canonical variable do not provide equivalent
quantum systems when the polymer prescription for the
polymer momentum operator is implemented. This is due
to the violation of one of the hypotheses of the Stone–Von
Neumann theorem [16], namely weak continuity, which
makes nonunitarily equivalent those quantum descriptions
based on different choices of the configuration variables.
Thus, while LQC finds in the Ashtekar-Barbero-Immirzi
variables its natural implementation, the polymer prescrip-
tion contains a nontrivial degree of ambiguity.
In particular, by requiring that the revised Friedmann

equation retain the same form of the semiclassical effective
LQC equation, with the energy density cutoff depending
only on the polymer parameter, the cubed scale factor is
selected as the proper dynamical variable. Clearly, LQC
effective equations can be found also for a generic choice of
the minisuperspace variable (in this sense it naturally
contains the polymer formulation), but at the price to deal
with a polymer parameter depending on the Universe scale
factor. In this sense, the analysis below demonstrates that a
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change of variable in polymer quantum cosmology corre-
sponds to a redefinition of the discretization parameter as a
given function of that variable. Nonetheless, the idea of a
constant cutoff scale seems to be a privileged choice
because fixes the energy density cutoff as an intrinsic
property of the theory and establishes a direct link with the
Immirzi parameter of LQG.
We first consider the scale factor as the most natural

variable, showing that it provides a representation of the
Universe dynamics, characterized by a bounce scenario
only for supra-radiation equation of state, i.e., p > ρ=3, p
and ρ being the Universe pressure and energy density,
respectively. Furthermore, we outline that, also for the case
of a flat spatial geometry, a turning point in the future
appears, strictly related to the value of the polymer
parameter associated to the lattice step.
These two unpleasant features lead us to search for a

suitable configuration variable, such that polymer quanti-
zation predicts a bounce, whose features are independent of
the matter filling the space and it can be interpreted as an
intrinsic geometrodynamical property of the considered
quantum gravity approach.
We identify such a variable in the cubed scale factor,

which characterizes the geometrical volume of the Universe
and, therefore, seems to have a privileged dynamical role.
Then, we analyze in detail the features of the obtained
bounce cosmology, demonstrating the validity of the usual
conservation law for the energy density and the divergence
of the cosmological horizon, as soon as the prebounce
evolution is taken into account.
We also discuss the status of the horizon and flatness

paradoxes in polymer cosmology with the adopted set of
variables. We outline that the former is naturally solved,
since during the bouncing era those regions which are now
causally disconnected were in causal contact. Concerning
the latter, we trace the evolution of the curvature parameter,
which remains finite across the bounce and in the pre-
bouncing phase it follows the classical trajectory for a
contracting Universe. The issue of initial conditions is thus
moved from the initial singularity to the prebounce
classical phase, reducing the required amount of fine-tuning
on the curvature parameter. Finally, we provide a pure
quantum implementation of the considered scenario for an
inflationary paradigm, i.e., including in the Universe
dynamics the energy density of a scalar field (the inflaton
kinetic energy) and a positive cosmological constant
(representing the false vacuum energy in the slow-rolling
phase [11,17]). This analysis has the main purpose to
validate, in the sense of the Ehrenfest theorem, the semi-
classical equations used in the previous studies in a relevant
cosmological context (they are legitimated by the predic-
tions of loop quantum cosmology (LQC) too [18,19]).
The same model has been considered in a slightly

different framework by [20,21], where the problem of
the non-self-adjointness of the Hamiltonian is addressed.

Since we are interested in the bounce dynamics, the
conjugate momentum of the cubed scale factor is much
greater than the cosmological constant value. Therefore,
in the considered momentum representation (the only
viable in the polymer continuum limit), the Hamiltonian
approaches an Hermitian operator.
The behavior of the quantum packet is compared with the

analytical solution, obtained in the semiclassical limit for
lowmomentum valuewith respect the cutoff: In this respect,
our comparison betweenquantumand semiclassical features
is strictly valid for momentum values between the inverse of
the lattice step and the squared inverse of the cosmological
constant. In this region, as shown in [22], the wave packet
may deform, but effective semiclassical equations capture
the main features of the quantum dynamics. Hence, the
Ehrenfest theorem qualitatively holds, encouraging the idea
that the semiclassical dynamics concerns also the passage of
the Universe across the bounce configuration. This opens a
new point of view on the origin of the Universe thermal
history and on the solution of its paradoxes.
Eventually, we want to stress that the choice of the cubed

scale factor as dynamical variable, first reported in [23] as
“simplified LQC,” allows a direct comparison of the
obtained modified Friedman equation with the one proper
of LQC. In fact, the two equations retain exactly the same
form, which permits to fix a precise link between the
Immirzi parameter and the polymer cutoff value.
The manuscript is organized as follows. In Sec. II,

polymer quantization of the scale factor is performed
and the emergence of a matter-dependent critical energy
density is emphasized. Then, in Sec. III the suitable change
of variables is derived such that the critical energy density
becomes independent of the dynamics and the resulting
energy cutoff is related with the discretization scale and the
Immirzi parameter. In Sec. IV, the horizon and flatness
paradoxes are critically discussed, while in Sec V a
deparametrized model for the inflaton is considered and
the resulting dynamics for expectation values is numeri-
cally integrated. Finally, brief concluding remarks follow
in Sec. VI.

II. POLYMER COSMOLOGY: DISCRETIZATION
OF THE SCALE FACTOR

Let us consider the homogeneous and isotropic universe
described by the FRWL line element1

ds2 ¼ NðtÞ2dt2 − aðtÞ2
�

dr2

1− kr2
þ r2dθ2 þ r2 sinθ2dϕ2

�
;

ð1Þ

where k represents the curvature of the spatial hypersur-
face, NðtÞ the lapse function and aðtÞ the scale factor. We

1In the following, we set the speed of light c ¼ 1.
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note that the lapse function NðtÞ is a Lagrange multiplier
related to the choice of the time variable; therefore, aðtÞ can
be considered the only actual dynamical degree of freedom.
In the presence of a density ρ given by

ρðaÞ ¼ μ2

aðtÞ3ðwþ1Þ ; ð2Þ

with μ being a constant and w denoting the so-called
polytropic index relating pressure and density, i.e., p ¼ wρ,
the super-Hamiltonian of the model reads as

H ¼ −
2πGp2

a

3a
−

3ka
8πG

þ μ2

a3w
; ð3Þ

where pa is the conjugate momentum of aðtÞ.
In PQM, a fundamental discrete structure for the

configuration variable is implemented by the choice of
the Hilbert space, namely Hpoly ¼ L2ðRd; dμdÞ, where dμd
is the Haar measure and Rd denotes the real line endowed
with a discrete topology [24]. In particular, the polymer
framework is properly described by a dimension-full
parameter2 λ such that the standard Schrödinger represen-
tation is recovered in the continuum limit λ → 0
(see [25,26]).
Notably, if we assume that the scale factor aðtÞ is

discrete, with lattice length λ, it can be seen that the
associated momentum operator p̂a does not exist.
Therefore, with the aim of capturing the main semiclassical
effects, the momentum expression can be replaced by:

p →
ℏ
λ
sin

�
λp
ℏ

�
; ð4Þ

that can be demonstrated [5] to be a valid approximation in
the continuum limit.
By means of (4), an effective Hamiltonian can be

inferred from (3), namely,

Hpoly ¼ −
2πℏ2G
3λ2a

sin2
�
λpa

ℏ

�
−

3ka
8πG

þ μ2

a3w
; ð5Þ

which represents the starting point of our analysis.
Hence, properly combining the equations of motion

stemming from (5) in the synchronous reference, it is easy
to obtain a modified Friedman equation for k ¼ 0, that is,

�
a0ðτÞ
aðτÞ

�
2

¼ 8πQ
3

�
1 −

Q
Qc

�
; ð6Þ

where a prime denotes differentiation with respect the
argument and we defined the dimensionless quantities

τ ¼ t
tPl

; Q ¼ ρ

ρPl
; Qc ¼

ρc
ρPl

; ð7Þ

with tPl and ρPl the Planck time and the Planck density,
respectively.
In particular, we introduced the critical density ρc,

defined in terms of the scale factor aðτÞ and the polymer
parameter λ, namely,

ρc ¼
2πℏ2G
3λ2aðτÞ4 : ð8Þ

The main implication of the modified Friedmann equa-
tion (6) is the existence of bounce and turning points for the
scale factor evolution, occurring at a ¼ a�, with3

a� ¼
�
3λ2μ2

2πℏ2G

� 1
3w−1

: ð9Þ

In this framework, no bounce is predicted for a radiation-
dominated Universe, w ¼ 1

3
(Fig. 1) and the classic and the

polymer-modified trajectories overlap each other. In this
respect, it is worth stressing that the analysis in [27] shows
the existence in LQC of a bouncing scenario also in the case
of a radiation dominated Universe, in close analogy to what
originally discussed for the case of a massless scalar field
(stiff-matter case). Then again, for a stiff matter-dominated
Universe, i.e., w ¼ 1, a bouncing point appears (Fig. 2) and
the scale factor shows no initial singularity.
Therefore, by virtue of (8), the position of the bounce is

determined by the matter filling the Universe. Then, with
the aim of obtaining bounce and turning points related to
geometrical properties only, we look for a canonical

–2 –1 0 1 2
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FIG. 1. Comparison between the standard (continuous line)
trajectory and the polymer (dashed line) trajectory of aðtÞ for
λ ¼ 0.1, μ ¼ 1 and w ¼ 1

3
(with ℏ ¼ c ¼ 8πG ¼ 1). The initial

singularity is still present and the scale factor shrinks to
0 for t ¼ 0.

2In particular, the parameter λ has dimension of ½L�:3. 3Provided that w ≠ 1
3
.
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transformation which allows us to infer a critical density
independent from the scale factor. The same issue is solved
in LQC by the so-called μ̄ regularization scheme [3], in
which the holonomy correction is assumed to be metric-
dependent in order to derive a constant critical energy
density ρc. The analysis below achieves the same result
from the point of view of polymer quantization, fixing a
proper correspondence between PQM in minisuperspace
and the μ̄ regularization scheme in LQC. Alternatively, to
restore an isomorphism with LQC we can consider a
polymer parameter depending on the cosmic scale factor,
i.e., λ ¼ λðaÞ. This suggests that in PQM a change of
variables can be interpreted as a dynamical discretization
scale, even though PQM and LQC still remain independent
quantization techniques. Indeed, LQC is grounded upon
peculiar spin networks classes stemming from a classical
reduction of the degrees of freedom of the full theory of
LQG. Instead, the polymer approach represents an insight-
ful tool for implementing at the kinematic level cutoff
physics effects.

III. OPTIMIZED POLYMER COSMOLOGY
AND THE LINK WITH LQC

Let us introduce a new configuration variable AðτÞ
defined by

AðτÞ≡ fðaðτÞÞ; ð10Þ

where fðaÞ is a generic function of the scale factor and
whose conjugate momentum reads as

PA ¼ pa

f0ðaÞ : ð11Þ

Thus, inserting (11) in the standard Hamiltonian (3) and
performing the polymer approximation (4) yields

Hpoly ¼−
2πℏ2Gðf0ðaÞÞ2

3λ2a
sin2
�
λPA

ℏ

�
−
3ka
8πG

þ μ2

a3w
: ð12Þ

The analogous of (6) becomes

�
a0ðτÞ
aðτÞ

�
2

¼ 8πQ
3

�
1 −

Q

Q̃c

�
; ð13Þ

where we defined

Q̃c ≡ f0ðaÞ2Qc: ð14Þ

Now, if we require that the critical density is independent of
the scale factor, we get the condition

a4

f0ðaÞ2 ¼ C; ð15Þ

with C a constant, which admits the solution

fðaÞ ∼ a3 ≡ V: ð16Þ

Since the Einstein equations are modified by the polymer
assumption (4), we expect that also the relation ρ≡ ρðVÞ,
that is the continuity equation [which we implicitly used in
(2)] could be altered due to corrections of λ order. However,
solving the Hamilton constraint with respect to P and
manipulating the Hamilton and Friedman equations, the
continuity relation can be rearranged in the following way,

ρ0ðtÞ ¼ −
V 0ðtÞ
VðtÞ

�
ρ −

dðρVÞ
dV

�
; ð17Þ

which is identically satisfied by the standard expression

ρðVÞ ¼ μ2

Vwþ1
; ð18Þ

which rules out any corrections of λ-order for the energy
density ρ.
Hence, using fV; P≡ PAg as canonical variables, a

Friedman-like equation for the polymer case can be
inferred, that is,

�
V 0ðτÞ
VðτÞ

�
2

¼ 24πQ

�
1 −

Q

Q̃c

�
; ð19Þ

where Q̃c ¼ ρ̃c
ρPl

and

ρ̃c ¼
6πℏ2G
λ2

; ð20Þ

and from (19) it can be seen as the critical points are now
given by

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Comparison between the standard (continuous line)
trajectory and the polymer (dashed line) trajectory of aðtÞ for
λ ¼ 0.1, μ ¼ 1 and w ¼ 1 (with ℏ ¼ c ¼ 8πG ¼ 1).
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V� ¼
�

λ2μ2

6πℏ2G

� 1
wþ1

: ð21Þ

Now, for the radiation-dominated Universe, the critical
points (21) do not exhibit any ambiguities in w ¼ 1

3
, and a

bouncing solution can be obtained (Fig. 3). Lastly, regard-
ing the stiff matter-dominated Universe, the initial singu-
larity is still avoided (Fig. 4).
It is remarkable that (19) is in agreement with the result

obtained in LQC [5] (see also the seminal paper [28], in
which the robustness of this scenario is outlined in the
presence of a massless scalar field), where the critical
density is actually given by

ρc ¼
ffiffiffi
3

p

16π2ℏG2γ3
; ð22Þ

with γ the Immirzi parameter [29–31]. Nonetheless, we
underline that for a flat FRLW model the Immirzi para-
meter disappears from the classical phase space and it

enters the quantum dynamics only with the ad hoc
assumption that the minimal area gap of LQC must equal
that of full LQG (see, for instance, [32,33]). In particular, in
[32] it is shown how the classical symmetry changing the
value of the Immirzi parameter can be implemented on a
quantum level by adopting the Thiemann complexifier
technique. Furthermore, in [33] the LQC problem is
addressed by reconciling a minimal length scale with
fundamental spacetime symmetries. Our comparison
between the Immirzi parameter and the polymer discreti-
zation scale follows the original idea that the minimal area
gap in LQC and LQG must coincide. However, the
following analysis is independent of such relation and it
characterizes the Universe behavior in a consistent polymer
approach, able to ensure a bounce feature independently of
the matter equation of state. In particular, comparing (20)
and (22), the parameter λ can be related to γ, namely,

λ ¼ 4
ffiffiffi
2

p
πl3Pγ

3=2; ð23Þ

being lP the Planck length.
Such a result points out the consistency of picking VðτÞ

as the suitable dynamical variable, and it sheds new light on
a likely connection between the semiclassical descriptions
provided by both polymer and LQC theories, which
deserves further investigation.
In summary, we claim that the use of the canonical

variables ðP;VÞ provides the proper theoretical setting for
analyzing the dynamical properties of the Universe within
the polymer approach. Indeed, it allows us to extend the
range of applicability of the model to the radiation case and
to solve the issues related to the definition of the critical
density.

IV. ANALYSIS OF THE HORIZON
AND FLATNESS PARADOXES

It can be instructive to enlarge our analysis to include the
case k ≠ 0 as well, with the aim of study in detail the effect
of the spatial curvature on the Universe evolution.
Therefore, let us rewrite for the sake of convenience the
Hamiltonian constraint (3) in terms of the new couple of
canonical variables fP;Vg, i.e.,

H ¼ −6πGVP2 −
3

8πG
kV1=3 þ ρV: ð24Þ

Then, taking into account (4) for the conjugate momentum
P, with a bit of algebra from (24) a modified Friedman
equation can be easily obtained, namely,

H2 ¼
�
8πG
3

ρ −
k

V2=3

��
1 −

3

8πGρ̃c

�
8πG
3

ρ −
k

V2=3

��
;

ð25ÞFIG. 4. Comparison between the standard (continuous line)
trajectory and the polymer (dashed line) trajectory of VðτÞ.

FIG. 3. Comparison between the standard (continuous line)
trajectory and the polymer (dashed line) trajectory of VðτÞ.
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where the critical density ρ̃c is defined like (20) and
H ≡ _V=3V. In this respect, it is worth noting that the
bounce now corresponds to

ρ ¼ ρ̃c þ
3

8πG
k

V2=3 : ð26Þ

Furthermore, by the inspection of (25) is also clear that for
positive curvature a turning point is predicted for

ρ ¼ 3

8πG
k

V2=3 ; ð27Þ

where we expect the Universe to reach its maximal
extension, before recontracting. Then, since the relation
(17) is still valid, the dependence of ρ on the variable V is
given again by (18). Hence, once fixed w, the relations (26)
and (27) determine the critical points V� similarly to (21),
even though an analytical solution is not always attainable
for (26).
Now, by close analogy with (19), it is useful to recast

(25) in the form

H̄2 ¼
�
8πQ
3

−
k̄

V2=3

��
1 −

3

8πQ̃c

�
8πQ
3

−
k̄

V2=3

��
; ð28Þ

where we introduced the dimensionless spatial curvature
k̄≡ l2Plk and Friedman parameter H̄ ¼ t2PlH, respectively.
Thus, by numerical integration of (28) we can see that for
k̄ < 0 the evolution of VðτÞ is quite similar to the flat case
(Fig. 5), except for the minimal value of the “volume”
where the bounce occurs. In fact, as it can be seen from
(26), in the presence of negative curvature, the density at
the big bounce is lower than the flat case and the minimal
volume is bigger.

Instead, for k̄ > 0, we deal with a cyclic dynamics
characterized by the alternation of expanding and
contracting phases (Fig. 6), bounded by the density
values (26), (27).
In the presence of the initial singularity, the horizon

paradox is a well-known shortcoming of the standard
cosmological model (SCM) [17,34]. This paradox can be
solved for a bouncing cosmology by the fact that dis-
connected causal regions in the expanding phase were
causally connected during the prebounce contracting phase.
Certainly, we note that such an idea relies on the
assumption that the semiclassical solution can be extended
across the bounce, where quantum geometry effects were
not negligible.
Thus, in order to understand if the region causally

connected today was in the same particle horizon in the
past, we have to analyze the particle horizon in comparison
with the scale of physical length (∼V1=3), namely,

dhðτÞ
VðτÞ1=3 ¼

Z
τ

τ0

dτ0

Vðτ0Þ1=3 ; ð29Þ

where τ0 is a fiducial time, that in the classical case can be
identified with the initial singularity.
Classically, when τ → τ0 ¼ 0þ, the quantity (29)

vanishes identically. Instead, when a bounce appears in
τ0 ¼ 0 (Fig. 7), we are able to extend the integration
boundary from any negative times up to a positive τ ¼ T
after the bounce. Therefore, in the limit of τ → −∞, the
quantity (29) diverges and we can say that those regions
that now are causally disconnected were actually in causal
contact during the contracting phase of the Universe.

FIG. 5. Comparison between the polymer solutions for k̄ ¼ 0

and k̄ < 0, in the presence of radiation (w ¼ 1=3) and stiff matter
(w ¼ 1). In particular, the different cases are depicted by: solid
line (k̄ ¼ 0; w ¼ 1=3), dot-dashed line (k̄ ¼ 0; w ¼ 1), dotted line
(k̄ < 0; w ¼ 1=3), dashed line (k̄ < 0; w ¼ 1).

FIG. 6. Comparison between the polymer solutions for k̄ ¼ 0

and k̄ > 0, in the presence of radiation (w ¼ 1=3) and stiff matter
(w ¼ 1). In particular, the different cases are depicted by: solid
line (k̄ ¼ 0; w ¼ 1=3), dot-dashed line (k̄ ¼ 0; w ¼ 1), dotted line
(k̄ > 0; w ¼ 1=3), dashed line (k̄ > 0; w ¼ 1). The cyclical
behavior for positive curvature is highlighted by the maximal
and minimal volumes.
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It is worth remarking that such considerations are
unaffected by the presence of the curvature, since also
for a curved space (Fig. 8), the quantity (29) can be
evaluated for τ0 → −∞. Thus, we see that in the present
dynamical framework, we solve naturally the horizon
paradox [11,17]. Indeed, if the considered dynamics
remains valid across the bounce (in the sense of the
Ehrenfest theorem), the preexisting collapsing Universe
plays a role in fixing the spectrum of perturbations in the
expanding one, and the inflationary paradigm could be
revised (see also [35,36]). The issue of fine-tuning the
initial conditions of the Universe, is mitigated but not
completely solved in the present scenario. In order to see
that, let us rearrange (28) into the form

H̄2 ¼ 8π

3
Qk

�
1 −

Qk

Q̃c

�
; ð30Þ

where we introduced the quantity

Qk ≡ 3

8π

�
8π

3
Q −

k̄

V2=3

�
; ð31Þ

that for k̄ ¼ 0 simply reduces to the ordinary density Q.
Now, since for a classical Friedman Universe the density
parameter Ω is simply given by

Ω ¼ 8πQ
3H̄2

; ð32Þ

it is natural, by virtue of (30), to adopt for the polymer case
the straightforward generalization of (32), that is

Ω ¼ 8π

3H̄2
Qk¼0

�
1 −

Qk¼0

Q̃c

�
: ð33Þ

However, it can be verified that such a definition is actually
misguided. In particular, it is easy to see that for the case
k̄ > 0, the relation (33) leads to the conflicting condition
Ω < 0. Indeed, if we denote with VMIN the volume at the
bounce, in the presence of positive curvature the maximal
density is given by [see (26)]

FIG. 7. Comparison between the classical (solid line) and the

polymer (dashed line) behavior of dhðτÞ
VðτÞ1=3, respectively, for k ¼ 0

in the presence of radiation w ¼ 1=3 (top) and stiff matter w ¼ 1
(bottom).

FIG. 8. Comparison between the classical and the polymer

behaviors of dhðτÞ
VðτÞ1=3 for k̄ < 0 (top) and k̄ > 0 (bottom). In

particular, the different cases are depicted by: solid line
(w ¼ 1=3, classic), dashed line (w ¼ 1, classic), dot-dashed line
(w ¼ 1=3, polymer), dotted line (w ¼ 1, polymer). For the sake
of clarity k̄ is chosen much greater than its actual size, in order to
outline properly the effects of the curvature.
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QMAX ¼ Q̃c þ
3k̄

8πV2=3
MIN

> Q̃c; ð34Þ

and there exists a range of values forQwhere (33) turns out
to be negative. Thus, it is reasonable to modify (33) into

Ω ¼ 8π

3H̄2
Qk¼0

�
1 −

Qk¼0

Q̃MAX

�
: ð35Þ

The numerical integration of (35) shows that, for small
values of VðτÞ, the behavior of the density parameter
in PQM slightly departs from the classical prediction
(Fig. 9–10), and in correspondence of VMIN the condition
Ω ∼ 1 still holds. Therefore, when the bounce is properly
taken into account, the problem of fine-tuning the initial
conditions is replaced by the demand for explaining why Ω
is very close to 1 today, even in the bouncing scenario.
However, we stress that in [37] it is suggested that the
flatness paradox could be understood in a bouncing
cosmology as a dynamical effect due to the modified

evolution of the scale factor, even if it undoubtedly deserves
further investigations.

V. EFFECTIVE COSMOLOGICAL DYNAMICS
FOR PHYSICAL STATES

The Hamiltonian for General Relativity is weakly
vanishing [38], and on a quantum level this implies the
impossibility of defining an evolutionary operator, and
quantum states do not seem to evolve.
On the other hand, it has been demonstrated that, bymeans

of matter fields [39–41], a notion of relational time can be
restored and a Schrödinger-like equation written down.
Thus, in order to mimic the inflationary paradigm,

let us introduce into the model the scalar field ϕ and
the cosmological constant Λ > 0. By means of V, the
Hamiltonian in (3) can be rewritten as (ℏ ¼ c ¼ 8πG ¼ 1)

H ¼ −
3

4
VP2 þ VΛþ p2

ϕ

4V
¼ 0; ð36Þ

with pϕ being the conjugate momentum of ϕ. In order to
use ϕ as internal time, we fix the time gauge

FIG. 9. The classical (solid line) and polymer (dashed line)
behavior ofΩ for k̄ < 0, when w ¼ 1=3 (top) and w ¼ 1 (bottom)
cases are considered. For the sake of clarity k̄ is chosen much
greater than its actual size, in order to outline properly the effects
of the curvature. The minimal value for the volume is also shown.

FIG. 10. The classical (solid line) and polymer (dashed line)
behavior ofΩ for k̄ > 0, when w ¼ 1=3 (top) and w ¼ 1 (bottom)
cases are considered. For the sake of clarity k̄ is chosen much
greater than its actual size, in order to outline properly the effects
of the curvature. The minimal value for the volume is also shown.
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_ϕ ¼ 1 ⇒ N ¼ 2V
pϕ

; ð37Þ

and solving (36) with respect to pϕ, we get the reduced
Hamiltonian

pϕ ¼ −hrid ¼ �V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3P2 − 4Λ

p
: ð38Þ

Setting pϕ > 0, the solutions in the relational time ϕ for the
equations of motion derived from (38) read as

PðϕÞ ¼
ffiffiffiffiffiffi
4Λ
3

r
sgnðϕ − ϕ0Þ coshð

ffiffiffi
3

p
ðϕ − ϕ0ÞÞ;

VðϕÞ ¼
ffiffiffiffiffiffi
3C
4Λ

r
1

j sinhð ffiffiffi
3

p ðϕ − ϕ0ÞÞj
; ð39Þ

with ϕ0 and C integration constants.
Within the polymer scheme (4), if we perform an

expansion up to the second order in λp, the analogous
of (38) is given by

pϕ ¼ −hpolyrid ¼ �V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3P2 − λ2P4 − 4Λ

p
: ð40Þ

Although the equations of motion derived by (40) do not
admit analytical solutions, the junction point of the expand-
ing and contracting branches for fP; Vg can be inferred,
namely,

Vb ¼
λpϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 4λ2Λ
p Pb ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 16λ2Λ

p
þ 3

2λ2

s
; ð41Þ

and in the limit λ → 0 one can see that Vb vanishes and the
continuum picture is restored.
Our analysis concerns the region of the momentum space

where the non-self-adjoint character of the Hamiltonian is
mitigated, but some effects of the cosmological constant are
still present. Therefore, with the aim of examining the
evolution of the Universe at the Plank era, we study
whether Dirac observables preserve a semiclassical
evolution, i.e., if the Ehrenfest theorem is violated. In
particular, we have to compare the evolution of P as
predicted by (40) with the expected value of the corre-
sponding operator P̂.
Hence, assuming for pϕ and V the standard representa-

tion the following Schrödinger equation is obtained

∂
∂ϕψðP;ϕÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3P2 − λ2P4 − 4Λ

p � ∂
∂PψðP;ϕÞ; ð42Þ

where ψ is the wave function of the Universe, that can be
put in the form

ψðP;ϕÞ ¼ χðPÞe−iωϕ: ð43Þ

A solution for (43) is given by

χðPÞ ¼ c1 exp

0
B@−

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2−3

2
ÞP2

4Λ þ 1

q
ffiffiffiffiffiffi
λ2

fðλÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Λþ 2λ2P4 − 6P2
p F

 
i sinh−1

 
iPλ

ffiffiffiffiffiffiffiffiffi
2

fðλÞ

s !���� 3fðλÞ8λ2Λ
− 1

!1CA; ð44Þ

c1 being an integration constant, Fð·Þ denotes the hyper-
geometric function and fðλÞ is defined as

fðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 16λ2Λ

p
þ 3: ð45Þ

Semiclassical states can be constructed as wave packets
associated to the wave function (43), peaked around
classical values pϕ ¼ ω� > 0 at a fixed time ϕ ¼ ϕ0, i.e.,

ΨðP;ϕÞ ¼
Z

∞

0

dωffiffiffiffiffiffi
2ω

p χðPÞe
−ðω−ω�Þ2

2σ2 e−iωðϕ−ϕ0Þ: ð46Þ

As shown in Fig. 11, the comparison with the effective
semiclassical dynamics for ω� much smaller than the cutoff
shows a qualitative good agreement: the mean value
trajectory given by hPi is well approximated by the
polymer modified classical one. The good agreement
nearby the bounce region could be enhanced by a numeri-

cal analysis of the exact semiclassical equation, allowing
for arbitrary momentum values.

FIG. 11. Comparison between PðϕÞ (dashed line) and hPðϕÞi
(continuous line), numerically integrated for λ¼10−6, Λ¼0.001,
σ ¼ 0.22, ω� ¼ 200 and ϕ0 ¼ 12.
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Nonetheless, based on the results in [22], in which higher
moments are included, we can firmly claim that the
Ehrenfest theorem is reliably valid near the bounce.
Therefore, we can extend the effective semiclassical for-
mulation across the bounce and investigate the implications
of the prebounce dynamics on the subsequent phases of the
Universe, even though we have to justify the use of peaked
wave packets in such extreme regime. We stress that the
analysis in [22] is coherent with the present one, because
the both consider minisuperspace models in the presence of
a cosmological constant. In particular, it numerically
demonstrates that, even if the form of a Gaussian packet
can be significantly altered, the probability distribution
singles out a precise hierarchy in higher order moments,
allowing a truncation procedure. Thus, the study of the
(finite) mean square root of the considered trajectories and
the analysis in [22] permit us to justify the use of semi-
classical equations for the predictions of the averaged
quantum dynamics.

VI. CONCLUDING REMARKS

The possibility for a bouncing cosmology, both in
a canonical scheme [42,43] and in a polymer scenario
[44–47], provides a new cosmological point of view on the
birth of the Universe. Whereas the singularity is a peculiar
feature of the Einstein dynamics at which the theory is not
predictive, the bounce is just a turning point in the past of
our Universe. For sufficiently high cutoff energy density,
the bounce does not significantly alter the thermal history

of the Universe as described by the SCM. It can join the
current expanding dynamics with a contracting phase. The
nontrivial question is the implication that the prebounce
phase can have on the expanding branch and, in particular,
on the spectrum of metric perturbations.
The present letter has the merit to outline the existence, at

least for the isotropic Universe, of a privileged variable
linking the LQC approach to the polymer quantization
scheme. In particular, it allows a direct mapping between
the Immirzi parameter and the polymer lattice size.
Furthermore, we show that the horizon paradox can be

solved within a bouncing cosmology.
On the other hand,we have shown that the flatness paradox

is only weakened, since the issue concerning the fine-tuning
of initial conditions [at the Planck time in the SCM
Ω − 1 ∼Oð10−60Þ] is shifted to the collapsing classical phase
of theUniverse.However, the explanationof thepresent value
of Ω, which is very close to unity, still requires the
specification of a suitable initial conditions at a given time.
Clearly, a precise characterization of a bouncing cos-

mology requires the study of more general models in the
context of PQM, as in [48]. Actually, it is necessary to shed
light about the possibility of a semiclassical behavior across
the bounce also in the case of a general dynamics, e.g.,
having the generality of the mixmaster model. For instance,
in [49], it is shown that the original Misner idea on the
occurrence of physical states with high occupation num-
bers, even close to the initial singularity, is recovered also in
a polymerlike scenario.

[1] T. Thiemann, Modern Canonical Quantum General Rela-
tivity (Cambridge University Press, Cambridge, England,
2007), p. 819.

[2] C. Rovelli and L. Smolin, Nucl. Phys. B442, 593 (1995);
B456, 753 (1995).

[3] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 73,
124038 (2006).

[4] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. Lett.
96, 141301 (2006).

[5] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 74,
084003 (2006).

[6] F. Cianfrani and G. Montani, Phys. Rev. D 85, 024027
(2012).

[7] F. Cianfrani and G. Montani, Phys. Rev. D 82, 021501
(2010).

[8] F. Cianfrani, A. Marchini, and G. Montani, Europhys. Lett.
99, 10003 (2012).

[9] E. Alesci and F. Cianfrani, Phys. Rev. D 92, 084065
(2015).

[10] E. Alesci, G. Botta, F. Cianfrani, and S. Liberati, Phys.
Rev. D 96, 046008 (2017).

[11] G. Montani, M. V. Battisti, R. Benini, and G. Imponente,
Primordial Cosmology (World Scientific, Singapore,
2011).

[12] A. Ashtekar, Int. J. Mod. Phys. D 05, 629 (1996).
[13] A. Ashtekar, J. C. Baez, and K. Krasnov, Adv. Theor. Math.

Phys. 4, 1 (2000).
[14] A. Corichi, T. Vukasinac, and J. A. Zapata, Classical

Quantum Gravity 24, 1495 (2007).
[15] J. F. Barbero, G. T. Pawlowski, and E. J. S. Villasenor, Phys.

Rev. D 90, 067505 (2014).
[16] J. v. Neumann, Math. Ann. 104, 570 (1931).
[17] E.W. Kolb and M. S. Turner, The Early Universe (Addison

andWesley Program, Advanced Book Program, Menlo Park
California, USA, 1991).

[18] A. Ashtekar, Il Nuovo Cimento B 122, 135 (2007).
[19] A. Ashtekar and P. Singh, Classical Quantum Gravity 28,

213001 (2011).
[20] T. Pawlowski and A. Ashtekar, Phys. Rev. D 85, 064001

(2012).
[21] W. Kaminski and T. Pawlowski, Phys. Rev. D 81, 024014

(2010).

GIOVANNI MONTANI et al. PHYS. REV. D 99, 063534 (2019)

063534-10

https://doi.org/10.1016/0550-3213(95)00150-Q
https://doi.org/10.1016/0550-3213(95)00550-5
https://doi.org/10.1103/PhysRevD.73.124038
https://doi.org/10.1103/PhysRevD.73.124038
https://doi.org/10.1103/PhysRevLett.96.141301
https://doi.org/10.1103/PhysRevLett.96.141301
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.85.024027
https://doi.org/10.1103/PhysRevD.85.024027
https://doi.org/10.1103/PhysRevD.82.021501
https://doi.org/10.1103/PhysRevD.82.021501
https://doi.org/10.1209/0295-5075/99/10003
https://doi.org/10.1209/0295-5075/99/10003
https://doi.org/10.1103/PhysRevD.92.084065
https://doi.org/10.1103/PhysRevD.92.084065
https://doi.org/10.1103/PhysRevD.96.046008
https://doi.org/10.1103/PhysRevD.96.046008
https://doi.org/10.1142/S0218271896000400
https://doi.org/10.4310/ATMP.2000.v4.n1.a1
https://doi.org/10.4310/ATMP.2000.v4.n1.a1
https://doi.org/10.1088/0264-9381/24/6/008
https://doi.org/10.1088/0264-9381/24/6/008
https://doi.org/10.1103/PhysRevD.90.067505
https://doi.org/10.1103/PhysRevD.90.067505
https://doi.org/10.1007/BF01457956
https://doi.org/10.1393/ncb/i2007-10351-5
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1103/PhysRevD.85.064001
https://doi.org/10.1103/PhysRevD.85.064001
https://doi.org/10.1103/PhysRevD.81.024014
https://doi.org/10.1103/PhysRevD.81.024014


[22] M. Bojowald, D. Brizuela, H. H. Hernandez, M. J. Koop,
and H. A. Morales-Tecotl, Phys. Rev. D 84, 043514 (2011).

[23] A. Ashtekar, A. Corichi, and P. Singh, Phys. Rev. D 77,
024046 (2008).

[24] A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv.
Theor. Math. Phys. 7, 233 (2003).

[25] A. Corichi, T. Vukasinac, and J. A. Zapata, Phys. Rev. D 76,
044016 (2007).

[26] A. Corichi, T. Vukasinac, and J. A. Zapata, AIP Conf. Proc.
977, 64 (2008).

[27] T. Pawlowski, R. Pierini, and E. Wilson-Ewing, Phys. Rev.
D 90, 123538 (2014).

[28] M. Bojowald, Phys. Rev. D 75, 081301 (2007).
[29] G. Immirzi, Classical Quantum Gravity 14, L177 (1997).
[30] G. Immirzi, Nucl. Phys. B, Proc. Suppl. 57, 65 (1997).
[31] C. Rovelli and T. Thiemann, Phys. Rev. D 57, 1009 (1998).
[32] J. B. Achour and E. R. Livine, Phys. Rev. D 96, 066025

(2017).
[33] J. B. Achour and E. R. Livine, arXiv:1806.09290.
[34] S. Weinberg, Cosmology (Oxford University Press, Oxford,

2008), p. 593.
[35] R. H. Brandenberger, Lect. Notes Phys. 863, 333 (2013).
[36] S. Alexander, S. Cormack, and M. Gleiser, Phys. Lett. B

757, 247 (2016).

[37] R. Brandenberger and P. Peter, Found. Phys. 47, 797 (2017).
[38] F. Cianfrani, O. M. Lecian, M. Lulli, and G. Montani,

Canonical Quantum Gravity (World Scientific, Singapore,
2014).

[39] F. Cianfrani, G. Montani, and S. Zonetti, arXiv:0904.0521.
[40] K. Giesel and T. Thiemann, Classical Quantum Gravity 32,

135015 (2015).
[41] W. F. Blyth and C. J. Isham, Phys. Rev. D 11, 768

(1975).
[42] F. Cianfrani, G. Montani, and F. Pittorino, Phys. Rev. D 90,

103503 (2014).
[43] R. Moriconi, G. Montani, and S. Capozziello, Phys. Rev. D

94, 023519 (2016).
[44] G. Montani, A. Marchi, and R. Moriconi, Phys. Lett. B 777,

191 (2018).
[45] O. M. Lecian, G. Montani, and R. Moriconi, Phys. Rev. D

88, 103511 (2013).
[46] R. Moriconi and G. Montani, Phys. Rev. D 95, 123533

(2017).
[47] A. Corichi and P. Singh, Phys. Rev. Lett. 100, 161302

(2008).
[48] S. Antonini and G. Montani, Phys. Lett. B 790, 475 (2019).
[49] C. Crin, G. Montani, and G. Pintaudi, Eur. Phys. J. C 78,

886 (2018).

SEMICLASSICAL AND QUANTUM ANALYSIS OF THE ISOTROPIC … PHYS. REV. D 99, 063534 (2019)

063534-11

https://doi.org/10.1103/PhysRevD.84.043514
https://doi.org/10.1103/PhysRevD.77.024046
https://doi.org/10.1103/PhysRevD.77.024046
https://doi.org/10.4310/ATMP.2003.v7.n2.a2
https://doi.org/10.4310/ATMP.2003.v7.n2.a2
https://doi.org/10.1103/PhysRevD.76.044016
https://doi.org/10.1103/PhysRevD.76.044016
https://doi.org/10.1063/1.2902799
https://doi.org/10.1063/1.2902799
https://doi.org/10.1103/PhysRevD.90.123538
https://doi.org/10.1103/PhysRevD.90.123538
https://doi.org/10.1103/PhysRevD.75.081301
https://doi.org/10.1088/0264-9381/14/10/002
https://doi.org/10.1016/S0920-5632(97)00354-X
https://doi.org/10.1103/PhysRevD.57.1009
https://doi.org/10.1103/PhysRevD.96.066025
https://doi.org/10.1103/PhysRevD.96.066025
http://arXiv.org/abs/1806.09290
https://doi.org/10.1007/978-3-642-33036-0
https://doi.org/10.1016/j.physletb.2016.03.082
https://doi.org/10.1016/j.physletb.2016.03.082
https://doi.org/10.1007/s10701-016-0057-0
http://arXiv.org/abs/0904.0521
https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1103/PhysRevD.11.768
https://doi.org/10.1103/PhysRevD.11.768
https://doi.org/10.1103/PhysRevD.90.103503
https://doi.org/10.1103/PhysRevD.90.103503
https://doi.org/10.1103/PhysRevD.94.023519
https://doi.org/10.1103/PhysRevD.94.023519
https://doi.org/10.1016/j.physletb.2017.12.016
https://doi.org/10.1016/j.physletb.2017.12.016
https://doi.org/10.1103/PhysRevD.88.103511
https://doi.org/10.1103/PhysRevD.88.103511
https://doi.org/10.1103/PhysRevD.95.123533
https://doi.org/10.1103/PhysRevD.95.123533
https://doi.org/10.1103/PhysRevLett.100.161302
https://doi.org/10.1103/PhysRevLett.100.161302
https://doi.org/10.1016/j.physletb.2019.01.050
https://doi.org/10.1140/epjc/s10052-018-6337-4
https://doi.org/10.1140/epjc/s10052-018-6337-4

