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The gravitational-wave event GW 170817, together with the electromagnetic counterpart, shows that the
speed of tensor perturbations ¢ on the cosmological background is very close to that of light ¢ for the
redshift z < 0.009. In generalized Proca theories, the Lagrangians compatible with the condition ¢ = ¢
are constrained to be derivative interactions up to cubic order, besides those corresponding to intrinsic
vector modes. We place observational constraints on a dark energy model in cubic-order generalized Proca
theories with intrinsic vector modes by running the Markov chain Monte Carlo (MCMC) code. We use the
cross-correlation data of the integrated Sachs-Wolfe (ISW) signal and galaxy distributions in addition to the
data sets of cosmic microwave background, baryon acoustic oscillations, type Ia supernovae, local
measurements of the Hubble expansion rate, and redshift-space distortions. We show that, unlike cubic-
order scalar-tensor theories, the existence of intrinsic vector modes allows the possibility for evading
the ISW-galaxy anticorrelation incompatible with the current observational data. As a result, we find that
the dark energy model in cubic-order generalized Proca theories exhibits a better fit to the data than the

cosmological constant, even by including the ISW-galaxy correlation data in the MCMC analysis.
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I. INTRODUCTION

The late-time cosmic acceleration has been probed by
several different observations such as the supernovae type
Ia (SN Ia) [1-3], the cosmic microwave background (CMB)
[4-8], and baryon acoustic oscillations (BAOs) [9-14]. The
simplest theoretical candidate for the source of this phe-
nomenon is the cosmological constant A [15,16], but it is
generally difficult to explain the tiny observed dark energy
scale from the vacuum energy arising in particle physics.
From the observational viewpoint, there have been tensions
for today’s Hubble parameter H, constrained from the
CMB [6,8] and its direct measurements at low redshifts
[17]. It is worth pursuing alternative theoretical candidates
for dark energy and studying whether they are a better fit to
the data over the cosmological constant (see Refs. [18-23]
for reviews).

There are dark energy models based on a scalar field ¢
with a potential (quintessence [24-30]) or with a nonlinear
kinetic term (k-essence [31-33]). As long as the ghost is
absent, these models lead to the dark energy equation of
state wpg larger than —1. In the presence of nonlinear scalar
self-interactions and nonminimal/derivative couplings to
gravity, Horndeski theories [34] are the most general scalar-
tensor theories with second-order equations of motion
[35-37]. The subclass of Horndeski theories consists of
Brans-Dicke theory [38-41], f(R) gravity [42-45], kinetic
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braidings [46], Galileons [47,48] and so on, in which case it
is possible to realize wpg < —1 with neither ghost nor
Laplacian instabilities [39,42,45,49]. Dark energy models
in Horndeski theories can be distinguished from each other
by the different evolution of wpg as well as the different
cosmic growth history [50-54].

A massive vector field with a broken U(1) gauge
symmetry can also be the source for dark energy. The
U(1)-broken vector-tensor theories with second-order
equations of motion, which are known as generalized
Proca (GP) theories [55-60], contain vector nonlinear
self-interactions and derivative couplings to gravity. At
the background level, the existence of a temporal vector
component A° gives rise to a self-accelerating de Sitter
attractor (wpg = —1) [61]. The evolution of wpg before
approaching the attractor is different depending on the
forms of derivative interactions. There exist dark energy
models in which wpg is less than —1 during radiation and
matter eras without theoretical inconsistencies. The pres-
ence of intrinsic vector modes provides an interesting
possibility for realizing the gravitational interaction smaller
than that in general relativity (GR) on scales relevant to the
growth of large-scale structures [62]. In the solar system,
the nonlinear cubic and quartic interactions can suppress
the propagation of fifth forces under the operation of the
Vainshtein mechanism [63,64].
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The recent detection of the gravitational-wave event
GW170817 [65] from a neutron star merger, together with
the gamma-ray burst GRB170817A [66], constrains the
speed of gravity ¢y to be very close to that of light ¢ [67]. If
we strictly demand that ¢; = ¢ in Horndeski theories, the
quartic derivative and quintic interactions are not allowed
[68-73]. As for GP theories with a vector field A#, the
Lagrangian is restricted to be of the form £ = G,(X) +
G3(X)V,A* + (M},/2)R with intrinsic vector modes,
where G,, G5 are functions of X = —A”A”/Z, V# is the
covariant derivative operator, My, is the reduced Planck
mass, and R is the Ricci scalar. Even with this restriction,
the dark energy model proposed in Ref. [61] is still
cosmologically viable in that there exists a theoretically
consistent parameter space with neither ghost nor Laplacian
instabilities.

In Ref. [74], the MCMC likelihood analysis was per-
formed for the dark energy model in full GP theories
proposed in Refs. [61,62] by exploiting the observational
data of SNIa, CMB, BAOs, the Hubble expansion rate
H(z), and redshift-space distortions (RSDs). In this model,
the dark energy equation of state during the matter era
can be expressed as wpg = —1 — 5, where s is a positive
constant. From the MCMC analysis, the parameter s is
constrained to be in the range s = 0.16700s (95% CL), so
the model with s > 0 is favored over the A-cold-dark-
matter (ACDM) model (s = 0). This is mostly attributed to
the fact that the existence of the additional parameter s can
reduce the tension of H( between the measurements at high
and low redshifts.

Since the dark energy dynamics is quantified by the
single parameter s, the background cosmology in cubic-
order GP theories is the same as that in full GP theories for
a given value of s. However, the evolution of cosmological
perturbations is affected by the quartic and quintic deriva-
tive couplings, so the cubic-order GP theories predict
different cosmic growth histories from those in full GP
theories. In cubic-order GP theories, the gravitational
interaction for linear perturbations is always enhanced
compared to that in GR [75], while this is not generally
the case in full GP theories [62]. Moreover, the number of
free parameters associated with evolution of perturbations
is reduced by the absence of quartic and quintic derivative
couplings. Then, at the level of perturbations, the MCMC
analysis can lead to different constraints on cubic-order GP
theories relative to those found in Ref. [74].

The cross-correlation between the ISW signal in
CMB and galaxy distributions is another distinguished
observable for probing the modification of gravity at
large distances [76—82]. In dark energy models within
the framework of GR, the ISW-galaxy cross-correlation is
positive at any redshift. On the other hand, the cross-
correlation can be negative for modified gravitational
theories in which the normalized effective gravitational

coupling X associated with the light bending rapidly
increases at low redshifts. Indeed, this negative cross-
correlation can arise for cubic-order Horndeski theories
like Galileons and their extensions [83,84]. The models in
which scalar derivative cubic couplings play the dominant
role in the dark energy dynamics can be ruled out from the
ISW-galaxy cross-correlation data [85].

Taking the scalar limit A¥ — V#¢ for the coupling
G5(X)V,A* in GP theories, it recovers the shift-symmetric
cubic Lagrangian in Horndeski theories. Then, one may
wonder if the tendency of negative ISW-galaxy cross-
correlations in cubic-order Horndeski theories also persists
in cubic-order GP theories. In GP theories, however, there
exist intrinsic vector modes besides the longitudinal scalar
mode. The former affects the evolution of scalar perturba-
tions through the quantity g, relevant to the no-ghost
condition of vector perturbations. Then, the observational
predictions of cosmic growth rates and ISW-galaxy cross-
correlations are generally different from those in cubic-
order Horndeski theories.

In this paper, we place observational constraints on
a dark energy model in cubic-order GP theories with
intrinsic vector modes satisfying the condition ¢y = c.
In addition to the observational data of SNIa, CMB, BAOs,
H(z), and RSDs, we take into account the ISW-galaxy
cross-correlation data in the MCMC analysis and study
whether the model is subject to a tighter constraint than that
derived previously. We show that, even with the ISW-
galaxy cross-correlation data, the models with s > O are
still favored over the ACDM model due to the existence of
intrinsic modes.

This paper is organized as follows. In Sec. II, we briefly
review the background cosmological dynamics and the
evolution of perturbations for dark energy models in
cubic-order GP theories. In Sec. III, we discuss general
conditions for generating the anticorrelated ISW-galaxy
spectrum and study the cases in which the negative ISW-
galaxy correlation arises in GP theories. In Sec. IV, we
perform the MCMC analysis by using the data mentioned
above and put observational constraints on the model
parameters. Section V is devoted to conclusions. In what
follows, we use the units where the speed of light ¢ and the
reduced Planck constant # are equivalent to 1.

II. DARK ENERGY IN GP THEORIES

We begin with the cubic-order GP theories given by the
action [55,56]

MZ
S= / d*x\/=g [Gz(x, F.Y)+ G3(X)V, A" + Tle
+ Su (2.1)

where g is the determinant of the metric tensor g,,, G, is a
function of X = —A,A¥ /2, and
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1
F=—--F,/F",

2Fu Y = AFAYF,F,,,  (22)

with F,, =V,A, —V,A,. The cubic coupling G5 is a
function of X alone. For the matter action S,;, we consider
perfect fluids minimally coupled to gravity. The quartic and
quintic couplings in GP theories generally lead to c?
different from unity [61], so we do not consider such
contributions. The quintic intrinsic vector mode and the
sixth-order nonminimal coupling [59] can be added to the
action (2.1) without modifying the value of c%, at least
on the Friedmann-Lemaitre-Robertson-Walker (FLRW)
background [62]. However, the intrinsic vector mode is
already present as the F and Y dependence in G,, so we do
not take them into account.

A. Background equations and stability conditions

We briefly review the equations of motion and stability
conditions on the flat FLRW background described by
the line element ds* = —di* + a?(1)8;;dx'dx/, where
a(t) is the time-dependent scale factor. The vector field
profile compatible with this background is given by
A* = (¢(1),0,0,0). For the matter sector, we take into
account nonrelativistic matter (density p,, with vanishing
pressure) and radiation (density p, and pressure P, =p,/3).
They obey the continuity equations p,, + 3Hp,, = 0 and
p,+4Hp, =0, respectively, where a dot represents a
derivative with respect to ¢+ and H = a/a is the Hubble
expansion rate. The background equations of motion
are [61]

3M§1H2 = PDE T P+ Prs (23)

. 1
M} (2H + 3H?) = —Ppg — 3Pr (2.4)
$(Gox +3G3 xHep) =0, (25)

where ppg and Ppg are the density and pressure of the
“dark” component defined, respectively, by

ppe = =Gy, (2-6)

P = G, — Gs xpgp*.
Here and in the following, we use the notation G;y =
0G;/0X with i = 2, 3. The dark energy equation of state is
defined as
P Gsx?
wpe = L0 — _ 4 GuxdP

2.7
PDE G, ( )

The quantities F" and Y vanish on the flat FLRW spacetime,
so they do not contribute to the background equations of
motion.

From Eq. (2.5), there is a branch of nonvanishing ¢
satisfying G, x + 3G; xH¢ = 0. In this case, the temporal

vector component ¢, which is an auxiliary field, depends
on H alone. This gives rise to the existence of a de Sitter
solution characterized by constant ¢ and H. If the vector
field contributes to the late-time dark energy dynamics,
the temporal component ¢ increases toward the de Sitter

solution (g]) > ( for the branch ¢ > 0). From Eq. (2.7), the
cubic coupling G5(X) leads to the deviation of wpg from
—1. For the positive dark energy density ppg = -G, > 0
with ¢ > 0 and ¢ > 0, wpg is in the range wpg < —1 for
the coupling Gj;x > 0 before reaching the de Sitter
solution.

In GP theories given by the action (2.1), there are two
polarized states of tensor perturbations, whose propaga-
tion speeds cy are both equivalent to 1 on the flat FLRW
background without ghosts [61]. In the small-scale limit,
the conditions for the absence of ghosts and Laplacian
instabilities of vector perturbations (characterized by two
transverse modes) are given, respectively, by [62]

qy = Gy r +2G,yp* > 0, (2.8)
2G 2
RN 5L Y (2.9)
qdv

For scalar perturbations, there is a longitudinal scalar
mode besides the perturbations arising from nonrelativistic
matter and radiation. In the small-scale limit, the ghost and
Laplacian instabilities of the longitudinal scalar are absent
under the conditions

H2M?,
Qs = E gs > 0, (2.10)
S QHME - Gixg?)?
5 2M12)1 ~N
Cs = 7 [(2G3x + G3xx¢”)¢ + G3 xHp)
S
2M2 G ¢
+< p§—1> oy (2.11)
qve qs
where
2M2H
ds = 3G3,X¢2 G3,X¢2 - ¢ . (212)

To avoid the strong coupling problem, we also require that
Qg does not approach 0 in any cosmological epoch. For the
matter sector, there are no Laplacian instabilities for c2, > 0
and ¢2 > 0, where c,, and c, are the propagation speeds of
nonrelativistic matter and radiation, respectively.

B. Concrete dark energy model

In this paper, we focus on the dark energy model
proposed in Ref. [61], i.e.,

063533-3



NAKAMURA, DE FELICE, KASE, and TSUJIKAWA

PHYS. REV. D 99, 063533 (2019)

G2 - bszz +F, G3 - b3Xp3, (213)
where b,, b3, p,, p3 are constants. The intrinsic vector
mode is encoded as the Lagrangian F in G,, so we do not
take into account the Y dependence in G,. In this case, we
have

qv = 1, (2.14)

and hence there are neither ghosts nor Laplacian instabil-
ities of vector perturbations. From Eq. (2.5), the non-
vanishing temporal vector component ¢ obeys

2P3=P2 )
¢'H = Lk constant, (2.15)
3b3p3
where

In the following, we focus on the branch ¢ > 0, with the
power p satisfying

p>0. (2.17)

In this case, ¢ increases with the decrease of H.
The Hamiltonian constraint (2.3) can be expressed in the
form

Q,=1-Q,—Qp, (2.18)
where
Pr PDE 2 P2y
Q = , Qpp = = 2.19
"TAMAEY PR T 3MAH? 3H2 (2.19)
Here we introduce
b2 = _mZMil(l_pZ)’ u= i, (220)
My,

with m being a constant which has a dimension of mass. We
require that m? > 0, i.e., b, <0, to have a positive dark
energy density. On using Egs. (2.4) and (2.15), the density
parameters Qpg and €, obey

(14 5)Qpp((3 + Q, —3Qpg)
1 + SQDE

Q= . (221)

Qr[l — Qr + (3 + 4S)QDE]
1 + sQpg

Q = -

r

. (222)

6ps +5p =3+ (2ps +p = 1)Q, +[3 =3p = 2ps(2 + p)|Qpg — 2p°s° Qi

where a prime represents a derivative with respect to
N =1Ina, and

s=2o P2 (2.23)
P

1 =2p,+2p5°

To avoid the possible divergences of Qpg and Q, arising
from the denominators in Egs. (2.21) and (2.22), we require
the condition s > —1 for 0 < Qpg < 1. The dark energy
equation of state (2.7) is expressed as

w _3(14s) +5Q, (2.24)
DE ™ 3(1 + SQDE) ’ '

and hence wpg = —1 — s during the matter dominance
(Qpg = 0 and Q, = 0). The ratio s = p,/p, which quan-
tifies the deviation of wpg from —1, plays a key role in
determining the dark energy dynamics before reaching the
de Sitter solution characterized by Qpg = 1 and Q, = 0.

The no-ghost condition (2.10) of scalar perturbations
yields

m2p25 2Aps=l)  s(14p) __ps=l
= = Q7 ixs 3p(iE)
O = pstey” 2 7
ps—1
% (1+ $Qpg) Qo)1 > 0, (2.25)
where
PH H
= (L) H (2.26)
M,) m m

From Eq. (2.15), the variable 4 is constant. The scalar ghost
is absent for
s >0, (2.27)
under which the dark energy equation of state (2.24) during
the radiation and matter eras is in the range wpg < —1. In
order to avoid the approach of Qg to 0 in the asymptotic
past (Qpg — 0), we require that (ps —1)/[p(1 +5)] <0.
Under the conditions (2.17) and (2.27), this translates to
0<ps<l. (2.28)
In other words, the power p, in G, is bounded
as0< p, <1

From Eq. (2.11), the Laplacian instability of scalar
perturbations is absent for

ZSQDE

C2 =
S 6p2(1 + SQDE)Z

>0, (2.29)

3(1 + SQDE)MZqV
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where gy =1 for the model (2.13). Since the norma-
lized temporal vector component can be expressed as
u = (2723)2Qpg)"/1270+5)] the last term of Eq. (2.29) is
proportional to (Qpg )P +)=1/P0+9] To avoid the diver-
gence of c% in the asymptotic past, we further impose
the condition

p(l+s)>1. (2.30)

During the radiation, matter, and de Sitter eras, Eq. (2.29)
reduces to

4ps +3p -2
(C?Y)rad - 3—[)2’ (2'31)
6ps +5p -3
(€5)mat = BT (2.32)
1 1 — ps 2 1/(1+S) Ky
2
— + T . N |
(c5)as = 3 [p(l Ts) <31/p/12/17) (I+s)gy
(2.33)

respectively. On using the conditions (2.8), (2.27), (2.28),
and (2.30), it follows that (c%),,4 (€3)ma> and (c})ys are all
positive.

III. COSMOLOGICAL PERTURBATIONS AND
ISW-GALAXY CROSS-CORRELATIONS

To confront the dark energy model in GP theories
with the observations of RSDs and ISW-galaxy cross-
correlations, we need to study the evolution of matter
density perturbations and gravitational potentials. For this
purpose, we consider a perfect fluid of nonrelativistic
matter with the sound speed squared c2, close to +0.
We introduce the matter perturbation Jp,, and the velocity
potential v in terms of the Schutz-Sorkin action [86] along
the lines of Ref. [62]. The gauge-invariant matter density
contrast is defined by

OPm
,D m

o= + 3Hw.

(3.1)

For the gravity sector, we consider the linearly perturbed
line element in the flat gauge given by

ds* = —(1 + 2a)dr* + 2V,;Bdtdx' + a*(1)8;;dxdx/,
(3.2)

where @ and B are scalar metric perturbations. We also
introduce the two Bardeen gravitational potentials [87]:

¥=a+B, ® = HB. (3.3)
The gravitational potential associated with the bending of

light rays is defined by

yisw =¥ - O, (34)
which plays a key role for the ISW effect in CMB
measurements.

In Fourier space with the comoving wave number
k = |k|, we relate ¥ and @ with the matter density contrast
6, as

k2
— ¥ = —4zGup,,9, (3.3)
a

k2

?WISW = —SJTGmeﬁ, (36)

where G is the Newton gravitational constant. The quan-
tities 4 and X are dimensionless (positive) gravitational
couplings felt by matter and light, respectively [88-93]. We
can express X in the form

2 =

(1+n), (3.7)

NSNS

where 1 = —®/V¥ is the gravitational slip parameter.

A. Cubic-order GP theories

We first briefly review the gravitational couplings and
the evolution of matter perturbations in GP theories. In
Fourier space, the density contrast 6 and the velocity
potential v obey

k2
6-3V=-=(B+0). (3.8)
v =a, (3.9)

where V = Hv. Taking the time derivative of Eq. (3.8) and
using Eq. (3.9), it follows that

2

.. .k .. .
5+ 2H5+—¥ =3V + 6HV. (3.10)
a

For the theories in which the matter growth rate is not
significantly different from that in GR, & is at most of order
Ho. Then, from Eq. (3.8), the velocity potential can be
estimated as |V| < (aH/k)?|5|. For the perturbations deep
inside the Hubble radius (k> > a®>H?), the two terms on
the right-hand side of Eq. (3.10) can be neglected relative
to those on the left-hand side. In this case, Eq. (3.10)
reduces to
5+ 2HS — AnGup,,5 ~ 0, (3.11)
where we used Eq. (3.5).
The dimensionless gravitational coupling u is known by
solving the other perturbation equations of motion derived
in Ref. [61]. For the modes deep inside the sound horizon
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(c2k*/a® > H?), we can resort to the so-called quasistatic
approximation under which the dominant terms in the
perturbation equations are those containing 8p,, and k*/a®
[50,94]. Under the quasistatic approximation, the analytic
expressions of y and 5 were already derived in the literature
[see Egs. (5.29) and (5.30) of Ref. [62]]. In cubic-order GP
theories given by the action (2.1), we have

2G 2
qsCys

n=1,  (3.12)

and hence there is no gravitational slip. In this case, the
gravitational interactions felt by matter and light are
equivalent to each other. Under the absence of ghosts
and Laplacian instabilities of scalar perturbations, the
gravitational interactions are enhanced (4 = X > 1) com-
pared to those in GR (u = X = 1). Since y and X do not
depend on k under the quasistatic approximation, the matter
density contrast &6 evolves in a scale-independent way
according to Eq. (3.11) for the perturbations inside the
sound horizon.

B. ISW-galaxy cross-correlations

In this section, we derive the power spectrum of
ISW-galaxy cross-correlations in a general way without
specifying gravitational theories. During the matter era, the
gravitational potential yqw does not typically change in
time, but the dominance of dark energy leads to the varia-
tion of yigw at low redshifts. This leaves an imprint on
temperature anisotropies of CMB photons freely streaming
from the last scattering surface to today. The ISW contri-
bution ATgw to the CMB temperature perturbation divided
by the average temperature 7 can be quantified by the
integral with respect to the redshift z = 1/a — 1, such that

ATsw () _ _/ dz Myisw
T 0 81 '

(3.13)

where 7 is a unit vector along the line of sight and z,. is the
redshift at recombination.

The clustering of galaxies occurs by the growth of matter
density contrast é. For the theories in which the dimension-
less gravitational coupling ¢ does not depend on the wave
number k, we can express the Fourier-space perturbation &
at the redshift z in the form

D(z)

6(z.k) = Do

5(0.k), (3.14)

where we introduce the growth factor D(z) with today’s
value Dy = D(z =0). The fluctuations in the angular
distribution of galaxies can be quantified as

AN, alax Z & n
_j#iﬂ_/‘&w#&WLW@%

0

(3.15)

where b? is a bias factor, ¢!(z) is a window function, and
X = fo 7)dZz is a comoving distance. The label A
stands for dlfferent galaxy catalogues. For the window
function, we choose the following form [80]:

s )] o

where I'[x] is the gamma function and a, f3, z, are positive
constants. The values of these constants are different depen-
ding on the galaxy surveys. The function (3.16), which is
positive, satisfies the normalization [§° dz¢”(z) = 1, and it
has a peak around z = z;. To confront our model with
the observational data, we select the two galaxy surveys:
the 2 Micron All-Sky Survey (2MASS) and SDSS, in
which case the window functions for galaxy bins are
considerably peaked at particular redshifts [80]. The
2MASS galaxy catalogue can be fitted by the window
function (3.16) with (zg,a,p) = (0.072,1.901, 1.752).
For the SDSS catalogue, we choose the parameters
(29, a, B) = (0.113,3.457,1.197).

In the following, we also assume that the bias b% is scale
independent as well as time independent in the range of
redshift intervals allowed by ¢ (z). This is a reasonable
assumption for galaxy catalogues with the peaked window
function mentioned above.

Let us consider a perturbation X(z, y#) that depends on z
and the product of comoving distance y and unit vector 7.
Then, the perturbation X(7), which corresponds to the
integration of X(z,y#) with respect to z from z =10 to
z = oo, can be expanded in terms of spherical harmonics
Y lm( ) as

P (2)

X(n) = dzX(z,yn) ap,Y (it 3.17
= X i) = Dl v). G19

where af, = [ dQX (7)Y, (7) with the solid angle Q. The
Fourier-series expansion of X(z, y71) is given by

3

On using the relation [ dQe*"Y} (7) = 4xilj(kr)Y;, (k),
where # = r/r, k = k/k, with the spherical Bessel function
Jji(x), the coefficient ay, is expressed as

X(z,k)e*x, (3.18)

@t = 2/dz/d3kX LK) Vi (B).  (3.19)

ISW Galaxy

The coefficients a;}" and a,;,, °, which are associated
with the ISW 51gnal and galaxy clusterings, respectively,
can be derived by substituting X — —0ygw/0z and X —
by (2)(D(z)/Dy)5(0,k) into Eq. (3.19). In doing so, we
exploit the properties 1 +z = ¢~V and dz/dN = —e™N
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between the redshift z and the e-folding number N' = In a.
Then, it follows that [95]

l'l
a}fnw 27z2Do/dN1 /dSklZISW(Nl)é(O’kI)

x Ji(kyn) Y, (1), (3.20)
i1
Galax l -
o == [N [ @bt
X D(N2)8(0,ky) jy(kox2) Y (k2). (3.21)
where Zgw is defined by
Misw 5(0, k)
=Z k 22
P =z WSS (62)

The cross-correlation between the ISW signal in CMB
and the galaxy fluctuations is quantified as

<ATISW(n1>ANGalaxy iy > iZl—kl

T e CISP,(cos ),

=0
(3.23)

where P, is the Legendre polynomial with the angle
between the unit vectors 7, and #,, and CIY is the ISW-
galaxy cross-correlation amplitude given by

Gal
Cl° = (ap (a, ™))

(3.24)

Substituting Eqgs. (3.20) and (3.21) into Eq. (3.24), we
obtain

264 [ku
16— 2 Y k2P (k
l I D% . 5( )

xﬁlezISW(Nl,k)jz[kx(Nl)]

x /N AN e A N )DW D) jilkr ()], (3.25)

where k,, and k), are minimum and maximum wave
numbers, respectively, A/; is the initial value of N in
the deep matter era, and P is the matter power spectrum
defined by

(3(0.k1)5*(0.k»)) = (27)38 (ki — k) Ps(ky).  (3.26)

Similarly, the galaxy-galaxy correlation amplitude can be
computed as

€5 = (a2 )

2 A2 ky
_ 26 / kiP5 (K)
zDg  Jk,

«( [ NN PWDN ) - (32)

On using the transfer function T, (k) from the deep
radiation era to the matter-dominated epoch, the matter
power spectrum can be expressed as

k

Ps(k) = 22283 T2 (k) <Ho> H,  (3.28)

where 6y and n; are the amplitude and the spectral index of
primordial scalar perturbations, respectively. We employ
the transfer function 7', (k) advocated by Eisenstein and Hu
[96,97]. Substituting Eq. (3.28) into Egs. (3.25) and (3.27),
it follows that

_ ky dk [ k \ 713
IG _ A2 sl 2
C —47rb35HAm ? <H0) 15 (k)
0
X /N dNIZISW(Nlak)jl[kZ(Nl)]

x /N AN e N2 (N ) D) jilkr ()], (3.29)

_ kv dk k ng+3
cr = antotys [ ()"
ko 0

<[ averprwnpuidan) . 630

i

where
(3.31)

The quantity Zisw plays a key role for determining the
sign of C)S. We recall that the gravitational potential ysy
is related to 6 according to Eq. (3.6). The density p,, is
given by p,, = 3M3HiQ,0(1 + 2)°, where Q, is today’s
density parameter of nonrelativistic matter. Using the
relation (3.14), we can express ysw in the form

5(0.k)

0

Npr =~ (3.32)

3H3Qm0
Yisw = —T

Taking the N -derivative of Eq. (3.32) and comparing it
with Eq. (3.22), it follows that
e NDXF,

3H3Q,0
2

Zisw(N k) = (3.33)
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where we introduced the following quantity:

D ¥
F=1-Z-Z=1-

/
5”3 (InDX)'.

(3.34)

Substituting Eq. (3.33) into Eq. (3.29), we obtain

12764549,
ng+1
Hy

. /N AN e N DN SN D) FN ) julkzy)

Cl6 = / dkk" T2, (k)

. /0 AN e N2D(NL) A (N 2) ji(kyra). (3.35)

i

where y; = y(NV;) with i = 1, 2.

For the large wave number k, it is useful to employ
the following Limber approximation for an arbitrary k-
dependent function f(k):

/ kK2 (K)o Vi) = fwf(“—z

, (3.36
2 )(% )(1) ( )
where [, =1+ 1/2. Applying the approximation (3.36)
to Eq. (3.35) and using Eq. (3.28) and the relation
dN /dy = —aH, we obtain

6ﬂ'2bA62 mo _ H 112 llZHO
cpr =ttt [Laver 2 (2) ()
12 X
X ¢AD22.7-", (3.37)
where y = Hy.

The negative ISW-galaxy cross-correlation (C)° < 0)
can occur for the models in which F < 0 at low redshifts,
which translates to

(InDX)" > 1. (3.38)
Since C}G is the integral with respect to A/ from the deep
matter era to today, the condition (3.38) is necessary but not
sufficient for realizing CI¢ < 0. As we will see in Sec. 111 C,
even if F becomes negative at low redshifts, there are cases
in which CIS is positive.

Writing the factor D'/D in Eq. (3.34) in terms of the
matter density parameter ,, and the growth index y, as
D'/D = (Q,,), it follows that F =1 — (Q,,)" —X//Z. In
the ACDM model, the growth index is well approximated
by y ~0.55 at low redshifts [98]. Since £ = 1 in this case,
we have F =1-(Q,,)" > 0 and hence the ISW-galaxy
cross-correlation is positive in the ACDM model.

In modified gravity theories the growth index is gen-
erally different from 0.55. In f(R) gravity, for example, it is
in the range 0.40 < y < 0.55 [99]. The observational data of
RSDs and the clustering of luminous red galaxies placed

the bound y = 0.56 = 0.05 for constant y [100], so the
quantity 1 — (Q,,)7 is positive for the redshift z relevant to
the galaxy surveys (z < 2). To realize the negative ISW-
galaxy cross-correlation, it is at least necessary to satisfy
the condition

¥>0 (3.39)
at low redshifts.

Before closing this subsection, we explain how to
compute the quantities 6, and b2 in the expression of
Eq. (3.37). The k-integrals in Eqs. (3.29) and (3.30) contain
terms that depend on the window function. To extract such
contributions, we introduce the following quantity:

1= [ () Tt P, (G40

m

where wry is the top-hat function defined by

3[sin(kr) — krcos(kr)]

(kr)?

The quantity (3.40) is evaluated at the scale r = 82~' Mpc,
where h is the normalized Hubble constant given by
H, =100 hkms~! Mpc~!. For the scalar spectral index
ng, we choose the best-fit value n, = 0.9649 constrained
from the Planck 2018 data [8].

We define today’s amplitude of overdensity at the scale
8h~! Mpc, as

wry(r, k) = (3.41)

05(0) = 8,V/1.

From Eq. (3.14) the value of oy at the initial redshift z; in
the deep matter era is related to og(0), as og(z;) =
03(0)D(z;)/Dy. Then, the perturbation 6y = &5/D, is
expressed as

(3.42)

(3.43)

Provided that the evolution of perturbations in the deep
matter era is close to that in the ACDM model, the initial
growth factor can be chosen as D(z;) = a; = ¢"i. Today’s
growth factor D, is known by solving Eq. (3.11) for 6.
Since the scalar-field contribution to the dynamics of
perturbations tends to be negligible at higher redshifts
in our model, we choose the same early-time initial
conditions as those in the ACDM model. In particular,
we consider initial conditions for og(z;), such that
o3(z;) = 03(z;,)"®M, and find o0y(z;)"®™ by using
Gg(Z )ACDM ( )ACDM /\//D(/)\CDM. For Gg(O)ACDM
we choose the Planck best-fit value og(0)A“PM = 0.811
[8]. Since the initial condition for og(z;) is now fixed, the
value of & is known from Eq. (3.43).
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For the bias factor b%, we normalize it by using the
observed best-fit galaxy-galaxy correlation spectrum CFS.
The analysis of Ref. [101] using the galaxy spectrum data
of 2MASS surveys combined with the WMAP data showed
that the best-fit value of bias is 5?MASS = 1.4. For the SDSS
survey, the galaxy spectrum is consistent with the WMAP
best-fit ACDM cosmology with the bias factor h3P5S = 1
[80]. Then, for each galaxy survey, we can compute the
galaxy power spectrum C,(fgst by using the best-fit bias and
best-fit cosmological parameters constrained from WMAP.
We write the power spectrum (3.30) in the form C$6 =
47(b2)28%, Y994 and define the y? estimator:

150
— S GG,A72
)(%ias,A = Z [C?t()?:st - 4”(b<‘)26;—1 Yl ] .
=2

(3.44)

The bias can be fixed by minimizing %, ,. Solving
M ias /Ot = 0 for b, it follows that

GG.,A
bA _ Zlcﬁgst Yl
TV amg s, Sy

(3.45)

Computing b7 from Eq. (3.45) for dark energy models in
GP theories, we have confirmed that the bias depends only
mildly on the model parameters (typically within a few
percent difference). This means that, as in the minimal
theory of massive gravity [95], using the power spectrum
CSC  derived for the best-fit ACDM cosmology is a

I, best
reasonable prescription for the bias estimation.

C. ISW-galaxy cross-correlations in GP theories

Let us consider the dark energy model in GP theories
characterized by the functions (2.13). From Eq. (3.12), the
quantities ¢ and X are expressed as

s Qpg

g +3(1 + 5 Qpg)cs

(3.46)

During the radiation and matter eras, the scalar propagation
speed squares are given, respectively, by Egs. (2.31) and
(2.32).Since Qpg < 1inthese epochs, y and Z are closeto 1.

On using Eq. (2.33) at the de Sitter solution (Qpg = 1), it
follows that

1—ps 2\ I/(+s) 171
==+ |—+ (7 —| ., (347
Has =2qs =1+ { s + <31/,,> T (3.47)

where
Ay = 2+l g — 32/[p(+s)], (3.48)

In the last equality, we used the fact that the model (2.13)
satisfies gy = 1 (under which there is no issue of the strong

coupling problem). The intrinsic vector mode affects pyg
and T4 through the quantity A, = A%[P(1+9)] Since 1 > 0
and p(1 4+ s) > 1, both pyg and Xy are larger than 1. In the
limit Ay — oo, Eq. (3.47) reduces to puyg = g5 — 1/
(1 — ps), which corresponds to the values in cubic-order
Horndeski (scalar-tensor) theories. In another limit 1, — 0,
we have pgg =235 — 1 and hence the evolution of
perturbations is similar to that in GR.

In the left panel of Fig. 1, we show the evolution of
%(= u) for four different values of A, with gy = 1. The
other model parameters are chosentobe s = 0.2 and p =3
with today’s matter density parameter €, (z = 0) = 0.32.
In the ACDM model, the quantity X is equivalent to 1
throughout the cosmological evolution. This case can be
regarded as the limit 1, — 0 in Eq. (3.47). As estimated
from Eq. (3.46), X is close to 1 in the deep matter era for
any value of Ay under consideration. The deviation of =
from 1 starts to occur at low redshifts. For larger 1y, the
deviation of X from 1 tends to be more significant. This
reflects the fact that, for increasing Ay, the de Sitter value
XZ4s 1n Eq. (3.47) gets larger, e.g., X35 = 1.07 for 4y = 0.1
and Z4q = 2.25 for Ay = 10 in the numerical simulation
of Fig. 1.

In the right panel of Fig. 1, we also plot the evolution of
the quantity F defined by Eq. (3.34) for the same model
parameters as those used in the left panel. In all the cases
the quantity F starts to evolve from the value close to +0
and finally approaches the asymptotic value 1, but the
intermediate evolution of F is different depending on the
parameter Ay. In the ACDM model we have F >0
throughout the cosmological evolution, so the ISW-galaxy
cross-correlation is positive. In GP theories, the growth of £
occurs at low redshifts, in which case F can be negative.
With the model parameters used in Fig. 1, the perturbation
temporally enters the region F <0 for Ay 2 1. When
Ay > 1 the minimum value of F is largely negative, so
it is expected that the strong negative ISW-galaxy cross-
correlation occurs.

The observable associated with the ISW-galaxy cross-
correlation is given by

221+ 1
WA(Q) = TCMB Z ? CiG’AP/(COS 9), (349)
=0

where Tcyp = 2.7255 K and 6 is the angle characterizing
the deviation from the center of galaxy data sets. For the
calculation of CI6, we employ the formula (3.37) derived
under the Limber approximation. In Fig. 2, we plot w?MASS
versus @ corresponding to 2MASS galaxy surveys for the
same model parameters as those adopted in Fig. 1 with
ny = 0.9649, 64(0) = 0.811, and & = 0.696. In Fig. 2, the
data points from the 2MASS survey are also shown with
error bars. We note that the bias factor has been computed
according to the formula (3.45) for the window function
(3.16) fitted to the 2MASS survey. The numerical values of

063533-9



NAKAMURA, DE FELICE, KASE, and TSUJIKAWA

PHYS. REV. D 99, 063533 (2019)

2.4 ‘
________ ——— ACDM
29| = N _— (a) 7\,V:OO1 1
o (b) Ay=0.1
20 L
vo--o- (=10
1.8} ‘ |
[ 16 [ “\ |
141 NG 1
1.2} \ |
jo b et
0.8 ‘ ‘ ‘
1072 10" 10° 10' 10°
1+z

FIG. 1.
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Evolution of X (left) and F (right) versus 1+ z for s = 0.2, p =3, and Qo = 0.32 with four different values of Ay:

(a) 4y = 0.01, (b) 4y = 0.1, (c) 4y = 1, and (d) 4, = 10. The solid line corresponds to the evolution of ¥ and F in the ACDM model.
For Ay 2 1, the perturbation enters the region F < 0 at low redshifts.

bMASS for 1, = 0.01, 0.1, 1, 10 are 1.497, 1.487, 1.475,
1.471, respectively, so the bias depends weakly on the
model parameters.

For the models with 4, < (0(0.1) and the ACDM model,
we have w?MASS(9) > 0 for any angle 6, so they can be
compatible with the 2MASS data. As we see in Fig. 2, the

1.0
0.8 T ]
0.6
0.4] —
0.2|
0.0}
0.2f
0.4
06}
0.8}
1.0b ‘ ‘ ‘ ‘ ‘ ‘
6 [deg]

MASS
w2MASS U]

FIG. 2. The ISW-galaxy cross-correlation observable w?MASS

versus the angle 6 (representing the deviation from the center of
galaxy data sets) for the same model parameters as those used in
Fig. 1 with n, = 0.9649, 65(0) = 0.811, and 7 = 0.696. We also
show the data points of 2MASS measurements with error bars
[80] (derived by the jackknife error estimation method).

model with 4y, =1 has a marginal positive ISW-galaxy
cross-correlation. In this case the perturbation temporally
enters the region F < 0, but the positive contribution to
CIGIMASS at high redshifts leads to w?MASS(9) > 0. For
Ay = 10, the minimum value of F is largely negative and
hence w?MAS8(9) < 0 for any angle €. In Fig. 2, we observe
that the models with 4y, > 1 are in tension with the 2MASS
data. Thus, we have shown that the models with the large
increase of X at low redshifts [such as cases (c) and (d) in
Fig. 1] can be strongly constrained from the ISW-galaxy
cross-correlation data.

IV. OBSERVATIONAL CONSTRAINTS

In this section, we place observational constraints on the
model given by the functions (2.13) by employing the ISW-
galaxy cross-correlation data from the 2MASS and SDSS
surveys [80] as well as other observational data from CMB,
BAO, SN Ia, H(z), and RSDs. The latter data sets were also
used in the likelihood analysis of Ref. [74] to constrain the
dark energy model in full GP theories, so we first briefly
overview such a statistical method and then explore
whether our dark energy model with ¢Z =1 can be
compatible with all the data including the ISW-galaxy
cross-correlation.

A. Priors on the model parameters

The present dark energy model has the following five
free parameters:

Qmo, h, s, p, /1\/. (41)
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At the background level, there are three free parameters,
Q,0,h,s, so we have only one additional quantity s
compared to the ACDM model. Atthe level of perturbations,
there are seven free parameters in full GP theories studied in
Ref. [74]. Now, we consider the cubic-order GP theories
with ¢ = 1, so this reduces the number of free parameters to
six. Moreover, we consider the model with gy, = 1, sowe are
left with the five parameters given by Eq. (4.1). We have
chosen the parameter 4y, instead of 4, as the former is directly
related to the effect of intrinsic vector modes on y and X.
As we mentioned in Sec. III B, we set today’s amplitude
of overdensity og(0) to the Planck best-fit value. In the
MCMC simulation, we also carried out the analysis by
varying the initial value og(z;) at N' = —6 in the 20 range
constrained by the Planck data in the ACDM model [8].
The use of initial conditions og(z;) that are the same
as those in the ACDM model is plausible in that the
evolution of perturbations in our model is very similar to
that in the ACDM model during the deep matter era. We
find that the resulting observational constraint on o3(0) is
similar to its 2o Planck bound in the ACDM model.
Moreover, the observational constraints on five parameters
Q,.0, 1, s, p, Ay are hardly affected by adding the parameter
o5(z;) in the likelihood analysis.
In the MCMC simulation, we set the following priors on
the parameter space of five model parameters.
(i) Today’s density parameter of nonrelativistic matter:
0.1<9Q,,<0.5.
(i) The normalized Hubble constant: 0.6 < & < 0.8.
(iii) The deviation parameter from the ACDM model:
0<s<l1.
(iv) The power p in Eq. (2.15): 0 < p < 25.
(v) The parameter A,: 10713 < 4, < 15.
In addition, we need to take into account the conditions for
the absence of ghosts and Laplacian instabilities of scalar
perturbations. They are given by
(1) Q¢>0 and c§ >0 in the whole cosmological
epoch.
(i) 0 < ps <1 to avoid the strong coupling at early
times [see Eq. (2.28)].
(iii) p(1+s) > 1 for avoiding the divergence of % at
early times [see Eq. (2.30)].
The other model parameters are known from the five
parameters in Eq. (4.1), say, p, = sp and p; = [p(1+
2s) —1]/2.

B. Observational data

We briefly explain the likelihood method and observa-
tional data used in our MCMC analysis. For more details,
we refer the readers to Ref. [74].

1. CMB

To constrain the model from the CMB data, we resort to
the following two CMB shift parameters:

la = 7:')(((;*)) ' R= v QMOHOX(Z*)ﬂ (42)
where x(2) = [§ H™'(2)dZ is the comoving distance, and

f;"c H™'(z )dz is the comoving sound horizon
WIth Cs = [3{1 + 3pb0/(4/)y0)(1 + Z)_l}]_l/z (/)bO and /)yO
are today’s densities of baryons and photons, respectively).
In the following, we fix today’s baryon density para-
meter Q0 = pyo/(3MHp) to the Planck best-fit value
Q0 = 0.02226 [7]. For the decoupling redshift z,, we
employ the fitting formula of Hu and Sugiyama [102].
The mean values of CMB shift parameters constrained
from the Planck 2015 data are (l,) = 301.77 and (R) =
1.4782 with the deviations o(/,) =0.090 and ¢(R) =
0.0048, respectively [7,103]. The )(2 statistics for these
parameters is defined by

Yems =V'C'V

where V7 = (1, (1,))/a(l,). (R~ (R))/o(R)). and C-!
is the inverse of the normalized covariance matrix C.
The components of C are given by C;; = C,, =1 and
C12 = C12 = 03996

(4.3)

2. BAO

The observable associated with the BAO measurements
is the ratio rgao(z;) = r5(24)/Dy(z;) between the sound
horizon ry(z,) at the redshift z, where baryons are released
from the Compton drag of photons and the dilation scale
Dy (z;) at the observed redshifts z;. For the drag redshift z,
we use the fitting formula of Eisenstein and Hu [96]. The
dilation scale is defined by

Dy(z) = [z(1 + 2)*D3(2)H' (2)]'/3,
where Dy (z) = ~! ¢ H™'(2)dz is the angular diam-
eter distance. For glven N data of rgao(z;) with the error
o(z;), the y* estimator in BAO measurements is given by

(4.4)

rBAO(Z])>]2

o*(z;)

) u [rBa0( Z]
ABAO z ’ (4.5)

where (rgao(z;)) is the mean observed value of each data.
We exploit the BAO data extracted from the surveys of
6dFGS [10], SDSS-MGS [11], BOSS [12], BOSS CMASS
[13], and Wiggle Z [14].

3. SN Ia

The SN Ia has a nearly constant absolute magnitude
M ~ —19 at the peak of brightness. The observed apparent
magnitude m of SN Ia is different from its absolute
magnitude M, whose difference is quantified as
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dy(z
u(z) = m(z) — M = 5logyg [ I(L)(pj : (4.6)
where d; (z) = (1 +z) [§ H'(2)dzZ is the luminosity dis-

tance from the observer to the source at redshift z. The y?
estimator in SN Ia measurements is defined by

2
)(sma Z[ﬂ 2€l;bq ij ’

(4.7)

where N is the number of data sets, and (ups(z;)) is the
mean observed value of y(z;) with the error o(z;). We use
the Union 2.1 data sets [3] for the computation of y3yy,.

4. Local measurements of the Hubble expansion rate

The direct measurement of the Hubble constant from the
observations of Cepheids places the bound 4 = 0.7324 +
0.0174 [17]. In addition, the Hubble expansion rate H(z) at
redshift z can be constrained from the measurement of the
ratio ry(z) = ry(z4)/H '(z) in BAO measurements. We
define the y? statistics associated with the local measure-
ments of H, as

,  (h—07324)
KH =0 01742

Sl AP

+ b
j=1 (Zj)

where (ry(z;)) is the mean observed value of ry(z;) at
redshift z; with the error o(z;). We exploit the three data
provided by the BOSS measurement [12].

5. RSDs

The RSD measurement can constrain the following
quantity:

¥(z) = f(2)o3(2),

where f(z) = §&'/6 is the linear growth rate of the matter
density contrast. To compute y(z) in our model, we resort to
Eq. (3.11) derived under the quasistatic approximation for
perturbations deep inside the sound horizon. This equation
can be expressed as

1 + (3+4S)QDE 3

& —2u(1
2(1 + sQpg) 2H

(4.9)

5// + - QDE)é = 0, (410)

where p is given by Eq. (3.46) with the scalar propagation
speed squared (2.29). In the deep matter era (Qpg < 1), we
have p ~ 1, so the evolution of ¢ is similar to that in the
ACDM model. We express 6 in Fourier space as Eq. (3.14)
and choose the initial conditions D' =D =¢Vi at
N;=—6. Since the growth rate D(z) is known after
solving Eq. (4.10), we obtain og(z) = 03(0)D(z)/Dy
and y(z) by adopting the Planck best-fit value o3(0) =
0.811 [8].

If there are N data sets with the mean observed value
(Yobs(z;)) and the error o(z;), the y* estimator for RSD
measurements is defined as

N ¥z;) -
)(Rs :Z

We use the observational data given in Refs. [104—112] for
the computation of yZgp.

yobs ZJ)>]2. (4.11)

6. ISW-galaxy cross-correlations

The observable quantity associated with the ISW-galaxy
cross-correlation is given by Eq. (3.49). Then, we define the
corresponding y* estimator, as

(4.12)

where N is the number of data sets, (w/((,)) is the mean
observed value of w*(6;) with the error ¢/} on the data, and
the subscript “A” stands for different galaxy surveys. To
calculate w*(6;) theoretically, we utilize the cross-corre-
lation power spectrum (3.37) with the Planck 2018 best-fit
values ny; = 0.9649 and 63(0) = 0.811. For each model
parameter, the quantities 65 and b? in Eq. (3.37) are
computed according to the formulas (3.43) and (3.45),
respectively. For the observational data of (w/((6;)) and
o’]‘-‘, we choose those of 2MASS and SDSS surveys given

in Ref. [80].

C. Likelihood results

We perform the MCMC sampling over the allowed five-
dimensional parameter space and compute the following y?
statistics:

X* = Xems + XBao  Xswa T xh T arsp FXiGe (4.13)
The best-fit model corresponds to the case in which y? is
minimized.

In Fig. 3, we show one-dimensional probability distri-
butions for each parameter and two-dimensional observa-
tional contours for the combination of the five parameters
(4.1). The middle dashed lines in one-dimensional prob-
ability distributions represent the best-fit parameters.
Considering the background expansion history alone with
the data of CMB, BAO, SN Ia, and H(z), there exists a
global minimum of y? corresponding to the best-fit values
of Q,0, 1, s. In the full MCMC analysis including the RSD
and ISW-galaxy cross-correlation data, the global mini-
mum of y? is not uniquely fixed. There are several different
sets of parameters giving similar lowest values of y?, by
reflecting the fact that the parameters p and Ay are not well
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FIG. 3.

logaoAv

Observational bounds on the five model parameters €, &, s, p, 1y derived by the joint data analysis of CMB, BAO, SN Ia,

H, RSDs, and the ISW-galaxy cross-correlation with the catalogues of 2MASS and SDSS. The vertical dashed lines represent the best
fit (central) and the 26 confidence limits (outside). The quantities 4, /2, and s are tightly constrained from the background expansion
history. The parameter p is bounded from above from the theoretical prior ps < 1. The quantity Ay is constrained to be 4, < 0.015 from

the RSD and ISW-galaxy cross-correlation data.

constrained from the data. In other words, the models with
some different sets of parameters lead to practically the
same cosmological dynamics. One of the examples for such
a set of model parameters is given by1

"The other examples of model parameters with x>, similar to
Eq. (4.15) are (0, h, s, p,Ay) = (0.3016,0.696,0.188,4.541,
3.010 x 107%) and (0.3012,0.696,0.192,3.602, 7.140 x 10~'2).
These values of p and Ay are quite different from those in
Eq. (4.14).

Q.0 = 0.301, h =0.697, s = 0.185,
p = 3.078, Ay =4.370 x 1078, (4.14)
with the minimal value
)(ﬁnn = 618.9. (4.15)

The 26 bounds corresponding to these parameters are
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Q0 = 0.30170508,

p = 3078557,

h = 0.697"55%¢,

Jyv <Ay < 0.015,

s = 0.1857 085,

(4.16)

where 1y is the lower limit of the assumed prior.

The observational bounds on €, /&, and s are similar
to those derived in Ref. [74] in full GP theories without
the ISW-galaxy cross-correlation data. This means that the
background expansion history mostly determines the obser-
vational constraints on these three parameters. The model
with s =0, i.e., the ACDM model, is outside the 2¢
likelihood contour, so it is disfavored over the best-fit
model with (4.15) in cubic-order GP theories.

We carry out the independent MCMC sampling for the
ACDM model by varying the two parameters €,,, and h.
We find that the best-fit ACDM model corresponds to
Q.0 = 0.299 and h = 0.687 with y3py = 642.7, whose
x* is larger than (4.15). In GP theories, the existence of the
additional parameter s to those in the ACDM model can
reduce the tensions of the parameters & and ,,; between
CMB and low-redshift measurements. In particular, the
normalized Hubble constant / shifts to the region between
the best-fit values of CMB (h~0.67) [8] and local
measurements of H, (h~0.73) [17].

The observational contour in the two-dimensional (p, s)
plane of Fig. 3 is bounded by the prior ps < 1 arising from
the absence of the strong coupling problem of scalar
perturbations in the asymptotic past. Compared to the 2¢
upper limit p < 22.6 derived in Ref. [74] without imposing

'09 T T T T T T T

-1.0

1.1

-1.2

WpE

1.3} ]

-1.4+ - == ACDM T
—— best-fit

_15 I I I I I I I
2 -1 0 1 2 3 4 5 6

log4o(1 +2)

FIG. 4.

the prior ps < 1, the upper bound on p is now reduced
to p<74.

As we see in the one-dimensional probability distribu-
tion of Ay in Fig. 3, the central value of Ay is not well
constrained from the data, but there exists the 26 upper
limit 4, < 0.015. In the limit that 1, — 0, we recover the
values py5 = X35 = 1 in GR. On using the best-fit param-
eters s = 0.185 and p = 3.078 with the bound 4, < 0.015,
we obtain the limit pyg = 245 < 1.011 from Eq. (3.47).
Thus, we have shown that the existence of the intrinsic
vector mode can give rise to the values of x4 and X close to
those in GR. This behavior does not occur in scalar-tensor
theories, as they correspond to the other limit 4, — 0.

We discuss the dynamics of background and perturba-
tions for the best-fit model given by the parameters (4.14).
As we see in the left panel of Fig. 4, the best-fit model has
the dark energy equation of state wpg = —1.185 during the
matter era, which is followed by the approach to the de
Sitter attractor (wpg = —1). This is in stark contrast to the
ACDM model in which wpg is always equivalent to —1.
On the other hand, in the right panel of Fig. 4, we find that
the evolution of the quantity F, which appears in the ISW-
galaxy cross-correlation spectrum C'C, is almost identical
to that in the ACDM model. Indeed, substituting the best-fit
values (4.14) into Eq. (3.47), we obtain pgg — 1 = Zyg —
1 = 3.3 x 1078 and hence both y and X are very close to 1
throughout the cosmic expansion history.

In Fig. 5, we plot the ISW-galaxy cross-correlation
observable w*(6) associated with two galaxy surveys for

1.2 . . .

1.0
0.8
0.6

K, 0.4
02

0.0

02}t --- ACDM |
—— best-fit
0.4 - - -
1072 10 10° 10" 10°
1+2z

(Left) Evolution of wpg versus 1 + z for the best-fit model parameters given by Eq. (4.14) (solid line) and for the ACDM

model (dashed line). (Right) Evolution of the quantity F defined by Eq. (3.34) for the two models corresponding to the left panel. The
background dynamics of the best-fit model in GP theories is different from that in the ACDM model, while the dynamics of

perturbations is similar to each other.
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The ISW-galaxy cross-correlation observable w# versus @ for the 2MASS (left) and SDSS (right) surveys for the best-fit model

with the parameters (4.14) (solid line) and for the best-fit ACDM model (dashed line). We also show the observational data with error
bars in each galaxy survey. The cross-correlations predicted by the two models are almost the same as each other.

the best-fit model parameters (4.14). Again, the theoretical
curve in this model, which has the positive cross-correla-
tion, is similar to that in the best-fit ACDM model. As we
see in the left panel of Fig. 5, the best-fit model can fit the
2MASS data quite well. In the SDSS case, the model does
not exhibit good fits to the data for 8 <7 degrees. To
increase the values of wSP55(6) for the compatibility with
the data, we require that the quantity X is smaller than 1.
However, this is not possible for cubic-order GP theories in
which X > 1 under the absence of ghosts and Laplacian
instabilities. Then, the MCMC likelihood analysis finds the
minimum value of y?> with T very close to 1. In Fig. 2, we
observe that the model with 4;, = 0.1 looks consistent with
the 2MASS ISW-galaxy cross-correlation data. However,
the fact that this model is outside the 2¢ limit 4, < 0.015
means that it is still in tension with the SDSS ISW-galaxy
cross-correlation data.

The RSD measurements provide constraints on the
dimensionless gravitational coupling y, which is the same
as X in cubic-order GP theories. The RSD data [104—112]
tend to favor the cosmic growth rate similar to that in GR or
even smaller. Hence the models with u close to 1 are also
favored from the RSD measurements. We performed the
MCMC simulation without using the ISW-galaxy cross-
correlation data and obtained the 20 limit 4, < 0.029.
Since this is weaker than the bound 1, < 0.015 derived by
the full likelihood analysis, the ISW-galaxy data provide a
more stringent bound on Ay than that constrained from the
RSD data.

For the best-fit model parameters, the powers in the
functions G, and Gj are given by p, = 0.4 and p; = 1.0.
In this case, the coupling G; = b3 X73 corresponds to that in

the cubic vector Galileon. In scalar-tensor theories, if the
cubic Galileon gives the dominant contribution to the dark
energy density, this leads to the negative ISW-galaxy cross-
correlation incompatible with the observational data
[83—85]. In GP theories, the existence of intrinsic vector
modes can make the cubic vector Galileon compatible with
the ISW-galaxy cross-correlation data by reducing X to a
value close to 1. Thus, the dark energy model in GP
theories can be observationally distinguished from the
corresponding counterpart in scalar-tensor theories.

While y2. = 618.9 is smaller than y3cpy = 642.7, our
model has more free parameters than those in the ACDM
model. To make comparison with these two models by
taking into account the number of degrees of freedom, we
resort to the Akaike information criterion (AIC) [113] and
Bayesian information criterion (BIC) [114]. They are
defined, respectively, by

AIC = y* + 2P, BIC =y + PIn(Ngya), (4.17)
where P is the number of model parameters, and Ny, is
the number of data points. For the best-fit model parameters
(4.14), we obtain AIC = 628.9 and BIC = 651.2. They are
smaller than their best-fit values in the ACDM model:
AIC = 646.7 and BIC = 655.6. Thus, even with the AIC
and BIC, our model is statistically favored over the
ACDM model.

V. CONCLUSION

In this paper, we placed observational constraints on a
class of dark energy models in the framework of GP

063533-15



NAKAMURA, DE FELICE, KASE, and TSUJIKAWA

PHYS. REV. D 99, 063533 (2019)

theories. From the GW170817 event, the speed of gravi-
tational waves ¢y needs to be very close to 1 at the redshift
7 < 0.009. Demanding that ¢y =1 in GP theories, the
allowed Lagrangians are up to cubic-order derivative
interactions plus intrinsic vector modes. Unlike the pre-
vious work [74], we focus on the dark energy model
satisfying the condition ¢y =1 and included the ISW-
galaxy cross-correlation data in the MCMC analysis to
constrain the model further.

In scalar-tensor theories with the derivative coupling
(including the Galileon), it is known that the dominance of
cubic derivative couplings in the late Universe typically
leads to the negative ISW-galaxy cross-correlation incom-
patible with observations. Since the same derivative cou-
pling arises by taking the scalar limit A, — V,¢ in GP
theories, one may anticipate that a similar property persists
in cubic-order GP theories. In GP theories, however, there
exist intrinsic vector modes associated with the transverse
vector propagating degrees of freedom. Since the evolution
of scalar perturbations on the FLRW background is affected
by intrinsic vector modes, the observational predictions in
GP theories are generally different from those in scalar-
tensor theories.

In cubic-order GP theories, the dimensionless gravita-
tional couplings u and Z, which are felt by matter and light,
respectively, are given by y =X = 1+ (¢>G;3.x)?/(gsc?)
under the quasistatic approximation. Provided that neither
ghosts nor Laplacian instabilities of scalar perturbations are
present (gg > 0 and ¢§ > 0), the gravitational interactions
are enhanced (4 = X > 1) compared to those in GR. The
effect of intrinsic vector modes on y and X arises through
the quantity 4 defined by Eq. (3.48), where g, = 1 for the
model (2.13). This allows the possibility for realizing the
values of y and X close to 1.

In Sec. III B, we provided a general formula for the
ISW-galaxy cross-correlation spectrum CI9 for the scale-
independent growth of linear perturbations. A key quantity
characterizing the sign of CI¢ is the factor F =
1 — (InDX) [see Eq. (3.37)]. The necessary condition
for the negative cross-correlation to occur is that the
perturbation enters the region F < 0 at low redshifts. In
Sec. III C, we studied the evolution of F for the concrete
dark energy model (2.13) and computed the ISW-galaxy
cross-correlation observable w” () corresponding to the
2MASS galaxy survey. As the quantity A, decreases, the
gravitational couplings (3.47) on the de Sitter solution
approach the values u35 = Z4g = 1, so the model exhibits a
better compatibility with the observational data (see Fig. 2).

In Sec. IV, we performed the MCMC analysis for the
dark energy model (2.13) in cubic-order GP theories by
using the ISW-galaxy cross-correlation data of the 2MASS

and SDSS surveys combined with the CMB, BAO, SN Ia,
H(z), and RSD data. The evolution of the dark energy
equation of state during the matter era is given by
wpe = —1 — s, where s is a positive constant. The param-
eter s is constrained to be s = 0.18570 1% at 95% CL, so the
model with s > 0 is favored over the ACDM model
(s = 0). At the background level, this property is attributed
to the fact that the presence of the additional parameter s to
H, and Q,,, can reduce the tensions of H, between CMB
and low-redshift measurements.

For the cosmic growth history, the model can be
compatible with both the ISW-galaxy cross-correlation
and RSD data thanks to the existence of intrinsic vector
modes. From the MCMC simulation, we derived the 2o
bound Ay < 0.015. The likelihood analysis without the
ISW-galaxy cross-correlation data placed the 2¢ constraint
Ay < 0.029. This means that inclusion of the ISW-galaxy
data, in particular, the SDSS data, provides a tighter
constraint on Ay, compared to that obtained from the
RSD data. The existence of intrinsic vector modes can
make the model compatible with both the ISW-galaxy
cross-correlation and RSD data by reducing ¢ and X close
to 1. As we see in Figs. 4 and 5, the evolution of wp in the
best-fit case is clearly different from that in the ACDM
model, while the evolution of perturbations is similar to
each other.

We have thus shown that the dark energy model in cubic-
order GP theories exhibits the interesting feature of fitting
the observational data better than the ACDM model. We
would like to stress that not only the best-fit »> but also the
AIC and BIC in our model are smaller than those in the
ACDM model. Since the scalar-tensor analogue of GP
theories corresponds to the limit A, — oo, this nice prop-
erty does not hold in Horndeski theories with the domi-
nance of cubic derivative couplings for the late-time
cosmological dynamics. It remains to be seen how the
future high-precision observational data constrain the dark
energy model in GP theories further.
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