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The gravitational-wave event GW170817, together with the electromagnetic counterpart, shows that the
speed of tensor perturbations cT on the cosmological background is very close to that of light c for the
redshift z < 0.009. In generalized Proca theories, the Lagrangians compatible with the condition cT ¼ c
are constrained to be derivative interactions up to cubic order, besides those corresponding to intrinsic
vector modes. We place observational constraints on a dark energy model in cubic-order generalized Proca
theories with intrinsic vector modes by running the Markov chain Monte Carlo (MCMC) code. We use the
cross-correlation data of the integrated Sachs-Wolfe (ISW) signal and galaxy distributions in addition to the
data sets of cosmic microwave background, baryon acoustic oscillations, type Ia supernovae, local
measurements of the Hubble expansion rate, and redshift-space distortions. We show that, unlike cubic-
order scalar-tensor theories, the existence of intrinsic vector modes allows the possibility for evading
the ISW-galaxy anticorrelation incompatible with the current observational data. As a result, we find that
the dark energy model in cubic-order generalized Proca theories exhibits a better fit to the data than the
cosmological constant, even by including the ISW-galaxy correlation data in the MCMC analysis.
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I. INTRODUCTION

The late-time cosmic acceleration has been probed by
several different observations such as the supernovae type
Ia (SN Ia) [1–3], the cosmic microwave background (CMB)
[4–8], and baryon acoustic oscillations (BAOs) [9–14]. The
simplest theoretical candidate for the source of this phe-
nomenon is the cosmological constant Λ [15,16], but it is
generally difficult to explain the tiny observed dark energy
scale from the vacuum energy arising in particle physics.
From the observational viewpoint, there have been tensions
for today’s Hubble parameter H0 constrained from the
CMB [6,8] and its direct measurements at low redshifts
[17]. It is worth pursuing alternative theoretical candidates
for dark energy and studying whether they are a better fit to
the data over the cosmological constant (see Refs. [18–23]
for reviews).
There are dark energy models based on a scalar field φ

with a potential (quintessence [24–30]) or with a nonlinear
kinetic term (k-essence [31–33]). As long as the ghost is
absent, these models lead to the dark energy equation of
state wDE larger than −1. In the presence of nonlinear scalar
self-interactions and nonminimal/derivative couplings to
gravity, Horndeski theories [34] are the most general scalar-
tensor theories with second-order equations of motion
[35–37]. The subclass of Horndeski theories consists of
Brans-Dicke theory [38–41], fðRÞ gravity [42–45], kinetic

braidings [46], Galileons [47,48] and so on, in which case it
is possible to realize wDE < −1 with neither ghost nor
Laplacian instabilities [39,42,45,49]. Dark energy models
in Horndeski theories can be distinguished from each other
by the different evolution of wDE as well as the different
cosmic growth history [50–54].
A massive vector field with a broken Uð1Þ gauge

symmetry can also be the source for dark energy. The
Uð1Þ-broken vector-tensor theories with second-order
equations of motion, which are known as generalized
Proca (GP) theories [55–60], contain vector nonlinear
self-interactions and derivative couplings to gravity. At
the background level, the existence of a temporal vector
component A0 gives rise to a self-accelerating de Sitter
attractor (wDE ¼ −1) [61]. The evolution of wDE before
approaching the attractor is different depending on the
forms of derivative interactions. There exist dark energy
models in which wDE is less than −1 during radiation and
matter eras without theoretical inconsistencies. The pres-
ence of intrinsic vector modes provides an interesting
possibility for realizing the gravitational interaction smaller
than that in general relativity (GR) on scales relevant to the
growth of large-scale structures [62]. In the solar system,
the nonlinear cubic and quartic interactions can suppress
the propagation of fifth forces under the operation of the
Vainshtein mechanism [63,64].
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The recent detection of the gravitational-wave event
GW170817 [65] from a neutron star merger, together with
the gamma-ray burst GRB170817A [66], constrains the
speed of gravity cT to be very close to that of light c [67]. If
we strictly demand that cT ¼ c in Horndeski theories, the
quartic derivative and quintic interactions are not allowed
[68–73]. As for GP theories with a vector field Aμ, the
Lagrangian is restricted to be of the form L ¼ G2ðXÞ þ
G3ðXÞ∇μAμ þ ðM2

pl=2ÞR with intrinsic vector modes,
where G2, G3 are functions of X ¼ −AμAμ=2, ∇μ is the
covariant derivative operator, Mpl is the reduced Planck
mass, and R is the Ricci scalar. Even with this restriction,
the dark energy model proposed in Ref. [61] is still
cosmologically viable in that there exists a theoretically
consistent parameter space with neither ghost nor Laplacian
instabilities.
In Ref. [74], the MCMC likelihood analysis was per-

formed for the dark energy model in full GP theories
proposed in Refs. [61,62] by exploiting the observational
data of SNIa, CMB, BAOs, the Hubble expansion rate
HðzÞ, and redshift-space distortions (RSDs). In this model,
the dark energy equation of state during the matter era
can be expressed as wDE ¼ −1 − s, where s is a positive
constant. From the MCMC analysis, the parameter s is
constrained to be in the range s ¼ 0.16þ0.08

−0.08 (95% CL), so
the model with s > 0 is favored over the Λ-cold-dark-
matter (ΛCDM) model (s ¼ 0). This is mostly attributed to
the fact that the existence of the additional parameter s can
reduce the tension ofH0 between the measurements at high
and low redshifts.
Since the dark energy dynamics is quantified by the

single parameter s, the background cosmology in cubic-
order GP theories is the same as that in full GP theories for
a given value of s. However, the evolution of cosmological
perturbations is affected by the quartic and quintic deriva-
tive couplings, so the cubic-order GP theories predict
different cosmic growth histories from those in full GP
theories. In cubic-order GP theories, the gravitational
interaction for linear perturbations is always enhanced
compared to that in GR [75], while this is not generally
the case in full GP theories [62]. Moreover, the number of
free parameters associated with evolution of perturbations
is reduced by the absence of quartic and quintic derivative
couplings. Then, at the level of perturbations, the MCMC
analysis can lead to different constraints on cubic-order GP
theories relative to those found in Ref. [74].
The cross-correlation between the ISW signal in

CMB and galaxy distributions is another distinguished
observable for probing the modification of gravity at
large distances [76–82]. In dark energy models within
the framework of GR, the ISW-galaxy cross-correlation is
positive at any redshift. On the other hand, the cross-
correlation can be negative for modified gravitational
theories in which the normalized effective gravitational

coupling Σ associated with the light bending rapidly
increases at low redshifts. Indeed, this negative cross-
correlation can arise for cubic-order Horndeski theories
like Galileons and their extensions [83,84]. The models in
which scalar derivative cubic couplings play the dominant
role in the dark energy dynamics can be ruled out from the
ISW-galaxy cross-correlation data [85].
Taking the scalar limit Aμ → ∇μφ for the coupling

G3ðXÞ∇μAμ in GP theories, it recovers the shift-symmetric
cubic Lagrangian in Horndeski theories. Then, one may
wonder if the tendency of negative ISW-galaxy cross-
correlations in cubic-order Horndeski theories also persists
in cubic-order GP theories. In GP theories, however, there
exist intrinsic vector modes besides the longitudinal scalar
mode. The former affects the evolution of scalar perturba-
tions through the quantity qV relevant to the no-ghost
condition of vector perturbations. Then, the observational
predictions of cosmic growth rates and ISW-galaxy cross-
correlations are generally different from those in cubic-
order Horndeski theories.
In this paper, we place observational constraints on

a dark energy model in cubic-order GP theories with
intrinsic vector modes satisfying the condition cT ¼ c.
In addition to the observational data of SNIa, CMB, BAOs,
HðzÞ, and RSDs, we take into account the ISW-galaxy
cross-correlation data in the MCMC analysis and study
whether the model is subject to a tighter constraint than that
derived previously. We show that, even with the ISW-
galaxy cross-correlation data, the models with s > 0 are
still favored over the ΛCDM model due to the existence of
intrinsic modes.
This paper is organized as follows. In Sec. II, we briefly

review the background cosmological dynamics and the
evolution of perturbations for dark energy models in
cubic-order GP theories. In Sec. III, we discuss general
conditions for generating the anticorrelated ISW-galaxy
spectrum and study the cases in which the negative ISW-
galaxy correlation arises in GP theories. In Sec. IV, we
perform the MCMC analysis by using the data mentioned
above and put observational constraints on the model
parameters. Section V is devoted to conclusions. In what
follows, we use the units where the speed of light c and the
reduced Planck constant ℏ are equivalent to 1.

II. DARK ENERGY IN GP THEORIES

We begin with the cubic-order GP theories given by the
action [55,56]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
G2ðX;F; YÞ þ G3ðXÞ∇μAμ þM2

pl

2
R

�
þ SM; ð2:1Þ

where g is the determinant of the metric tensor gμν, G2 is a
function of X ¼ −AμAμ=2, and
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F ¼ −
1

4
FμνFμν; Y ¼ AμAνFμ

αFνα; ð2:2Þ

with Fμν ¼ ∇μAν −∇νAμ. The cubic coupling G3 is a
function of X alone. For the matter action SM, we consider
perfect fluids minimally coupled to gravity. The quartic and
quintic couplings in GP theories generally lead to c2T
different from unity [61], so we do not consider such
contributions. The quintic intrinsic vector mode and the
sixth-order nonminimal coupling [59] can be added to the
action (2.1) without modifying the value of c2T , at least
on the Friedmann-Lemaître-Robertson-Walker (FLRW)
background [62]. However, the intrinsic vector mode is
already present as the F and Y dependence in G2, so we do
not take them into account.

A. Background equations and stability conditions

We briefly review the equations of motion and stability
conditions on the flat FLRW background described by
the line element ds2 ¼ −dt2 þ a2ðtÞδijdxidxj, where
aðtÞ is the time-dependent scale factor. The vector field
profile compatible with this background is given by
Aμ ¼ ðϕðtÞ; 0; 0; 0Þ. For the matter sector, we take into
account nonrelativistic matter (density ρm with vanishing
pressure) and radiation (density ρr and pressure Pr¼ρr=3).
They obey the continuity equations _ρm þ 3Hρm ¼ 0 and
_ρr þ 4Hρr ¼ 0, respectively, where a dot represents a
derivative with respect to t and H ¼ _a=a is the Hubble
expansion rate. The background equations of motion
are [61]

3M2
plH

2 ¼ ρDE þ ρm þ ρr; ð2:3Þ

M2
plð2 _H þ 3H2Þ ¼ −PDE −

1

3
ρr; ð2:4Þ

ϕðG2;X þ 3G3;XHϕÞ ¼ 0; ð2:5Þ

where ρDE and PDE are the density and pressure of the
“dark” component defined, respectively, by

ρDE ¼ −G2; PDE ¼ G2 −G3;X
_ϕϕ2: ð2:6Þ

Here and in the following, we use the notation Gi;X ≡
∂Gi=∂X with i ¼ 2, 3. The dark energy equation of state is
defined as

wDE ≡ PDE

ρDE
¼ −1þ G3;X

_ϕϕ2

G2

: ð2:7Þ

The quantities F and Y vanish on the flat FLRW spacetime,
so they do not contribute to the background equations of
motion.
From Eq. (2.5), there is a branch of nonvanishing ϕ

satisfying G2;X þ 3G3;XHϕ ¼ 0. In this case, the temporal

vector component ϕ, which is an auxiliary field, depends
on H alone. This gives rise to the existence of a de Sitter
solution characterized by constant ϕ and H. If the vector
field contributes to the late-time dark energy dynamics,
the temporal component ϕ increases toward the de Sitter
solution ( _ϕ > 0 for the branch ϕ > 0). From Eq. (2.7), the
cubic coupling G3ðXÞ leads to the deviation of wDE from
−1. For the positive dark energy density ρDE ¼ −G2 > 0

with _ϕ > 0 and ϕ > 0, wDE is in the range wDE < −1 for
the coupling G3;X > 0 before reaching the de Sitter
solution.
In GP theories given by the action (2.1), there are two

polarized states of tensor perturbations, whose propaga-
tion speeds cT are both equivalent to 1 on the flat FLRW
background without ghosts [61]. In the small-scale limit,
the conditions for the absence of ghosts and Laplacian
instabilities of vector perturbations (characterized by two
transverse modes) are given, respectively, by [62]

qV ¼ G2;F þ 2G2;Yϕ
2 > 0; ð2:8Þ

c2V ¼ 1 −
2G2;Yϕ

2

qV
> 0: ð2:9Þ

For scalar perturbations, there is a longitudinal scalar
mode besides the perturbations arising from nonrelativistic
matter and radiation. In the small-scale limit, the ghost and
Laplacian instabilities of the longitudinal scalar are absent
under the conditions

QS ¼
H2M2

pl

ð2HM2
pl − G3;Xϕ

3Þ2 qS > 0; ð2:10Þ

c2S ¼
2M2

pl

qS
½ð2G3;X þ G3;XXϕ

2Þ _ϕþ G3;XHϕ�

þ
�
2M2

pl

qVϕ2
− 1

�
G2

3;Xϕ
4

qS
> 0; ð2:11Þ

where

qS ¼ 3G3;Xϕ
2

�
G3;Xϕ

2 −
2M2

pl
_H

_ϕ

�
: ð2:12Þ

To avoid the strong coupling problem, we also require that
QS does not approach 0 in any cosmological epoch. For the
matter sector, there are no Laplacian instabilities for c2m > 0

and c2r > 0, where cm and cr are the propagation speeds of
nonrelativistic matter and radiation, respectively.

B. Concrete dark energy model

In this paper, we focus on the dark energy model
proposed in Ref. [61], i.e.,

CONSTRAINTS ON MASSIVE VECTOR DARK ENERGY MODELS … PHYS. REV. D 99, 063533 (2019)

063533-3



G2 ¼ b2Xp2 þ F; G3 ¼ b3Xp3 ; ð2:13Þ

where b2, b3, p2, p3 are constants. The intrinsic vector
mode is encoded as the Lagrangian F in G2, so we do not
take into account the Y dependence in G2. In this case, we
have

qV ¼ 1; c2V ¼ 1; ð2:14Þ
and hence there are neither ghosts nor Laplacian instabil-
ities of vector perturbations. From Eq. (2.5), the non-
vanishing temporal vector component ϕ obeys

ϕpH ¼ −
2p3−p2b2p2

3b3p3

¼ constant; ð2:15Þ

where

p≡ 1 − 2p2 þ 2p3: ð2:16Þ
In the following, we focus on the branch ϕ > 0, with the
power p satisfying

p > 0: ð2:17Þ

In this case, ϕ increases with the decrease of H.
The Hamiltonian constraint (2.3) can be expressed in the

form

Ωm ¼ 1 − Ωr −ΩDE; ð2:18Þ

where

Ωr ≡ ρr
3M2

plH
2
; ΩDE ≡ ρDE

3M2
plH

2
¼ 2−p2m2u2p2

3H2
: ð2:19Þ

Here we introduce

b2 ≡ −m2M2ð1−p2Þ
pl ; u≡ ϕ

Mpl
; ð2:20Þ

withm being a constant which has a dimension of mass. We
require that m2 > 0, i.e., b2 < 0, to have a positive dark
energy density. On using Eqs. (2.4) and (2.15), the density
parameters ΩDE and Ωr obey

Ω0
DE ¼ ð1þ sÞΩDEð3þ Ωr − 3ΩDEÞ

1þ sΩDE
; ð2:21Þ

Ω0
r ¼ −

Ωr½1 − Ωr þ ð3þ 4sÞΩDE�
1þ sΩDE

; ð2:22Þ

where a prime represents a derivative with respect to
N ¼ ln a, and

s≡ p2

p
¼ p2

1 − 2p2 þ 2p3

: ð2:23Þ

To avoid the possible divergences of ΩDE and Ωr arising
from the denominators in Eqs. (2.21) and (2.22), we require
the condition s > −1 for 0 < ΩDE ≤ 1. The dark energy
equation of state (2.7) is expressed as

wDE ¼ −
3ð1þ sÞ þ sΩr

3ð1þ sΩDEÞ
; ð2:24Þ

and hence wDE ¼ −1 − s during the matter dominance
(ΩDE ¼ 0 and Ωr ¼ 0). The ratio s ¼ p2=p, which quan-
tifies the deviation of wDE from −1, plays a key role in
determining the dark energy dynamics before reaching the
de Sitter solution characterized by ΩDE ¼ 1 and Ωr ¼ 0.
The no-ghost condition (2.10) of scalar perturbations

yields

QS ¼
m2p2s

ð1 − psΩDEÞ2
λ
2ðps−1Þ
pð1þsÞ2−

sð1þpÞ
1þs 3

ps−1
pð1þsÞ

× ð1þ sΩDEÞðΩDEÞ
ps−1
pð1þsÞ > 0; ð2:25Þ

where

λ≡
�

ϕ

Mpl

�
p H
m

¼ up
H
m
: ð2:26Þ

From Eq. (2.15), the variable λ is constant. The scalar ghost
is absent for

s > 0; ð2:27Þ

under which the dark energy equation of state (2.24) during
the radiation and matter eras is in the range wDE < −1. In
order to avoid the approach of QS to 0 in the asymptotic
past (ΩDE → 0), we require that ðps − 1Þ=½pð1þ sÞ� ≤ 0.
Under the conditions (2.17) and (2.27), this translates to

0 < ps ≤ 1: ð2:28Þ

In other words, the power p2 in G2 is bounded
as 0 < p2 ≤ 1.
From Eq. (2.11), the Laplacian instability of scalar

perturbations is absent for

c2S ¼
6psþ 5p − 3þ ð2psþ p − 1ÞΩr þ ½3 − 3p − 2psð2þ pÞ�ΩDE − 2p2s2Ω2

DE

6p2ð1þ sΩDEÞ2
þ 2sΩDE

3ð1þ sΩDEÞu2qV
> 0; ð2:29Þ
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where qV ¼ 1 for the model (2.13). Since the norma-
lized temporal vector component can be expressed as
u ¼ ð2p23λ2ΩDEÞ1=½2pð1þsÞ�, the last term of Eq. (2.29) is
proportional to ðΩDEÞ½pð1þsÞ−1�=½pð1þsÞ�. To avoid the diver-
gence of c2S in the asymptotic past, we further impose
the condition

pð1þ sÞ ≥ 1: ð2:30Þ
During the radiation, matter, and de Sitter eras, Eq. (2.29)
reduces to

ðc2SÞrad →
4psþ 3p − 2

3p2
; ð2:31Þ

ðc2SÞmat →
6psþ 5p − 3

6p2
; ð2:32Þ

ðc2SÞdS →
1

3

�
1 − ps
pð1þ sÞ þ

�
2

31=pλ2=p

�
1=ð1þsÞ s

ð1þ sÞqV

�
;

ð2:33Þ

respectively. On using the conditions (2.8), (2.27), (2.28),
and (2.30), it follows that ðc2SÞrad, ðc2SÞmat, and ðc2SÞdS are all
positive.

III. COSMOLOGICAL PERTURBATIONS AND
ISW-GALAXY CROSS-CORRELATIONS

To confront the dark energy model in GP theories
with the observations of RSDs and ISW-galaxy cross-
correlations, we need to study the evolution of matter
density perturbations and gravitational potentials. For this
purpose, we consider a perfect fluid of nonrelativistic
matter with the sound speed squared c2m close to þ0.
We introduce the matter perturbation δρm and the velocity
potential v in terms of the Schutz-Sorkin action [86] along
the lines of Ref. [62]. The gauge-invariant matter density
contrast is defined by

δ≡ δρm
ρm

þ 3Hv: ð3:1Þ

For the gravity sector, we consider the linearly perturbed
line element in the flat gauge given by

ds2 ¼ −ð1þ 2αÞdt2 þ 2∇iBdtdxi þ a2ðtÞδijdxidxj;
ð3:2Þ

where α and B are scalar metric perturbations. We also
introduce the two Bardeen gravitational potentials [87]:

Ψ≡ αþ _B; Φ≡HB: ð3:3Þ
The gravitational potential associated with the bending of
light rays is defined by

ψ ISW ≡Ψ −Φ; ð3:4Þ

which plays a key role for the ISW effect in CMB
measurements.
In Fourier space with the comoving wave number

k ¼ jkj, we relate Ψ and Φ with the matter density contrast
δ, as

k2

a2
Ψ ¼ −4πGμρmδ; ð3:5Þ

k2

a2
ψ ISW ¼ −8πGΣρmδ; ð3:6Þ

where G is the Newton gravitational constant. The quan-
tities μ and Σ are dimensionless (positive) gravitational
couplings felt by matter and light, respectively [88–93]. We
can express Σ in the form

Σ ¼ μ

2
ð1þ ηÞ; ð3:7Þ

where η≡ −Φ=Ψ is the gravitational slip parameter.

A. Cubic-order GP theories

We first briefly review the gravitational couplings and
the evolution of matter perturbations in GP theories. In
Fourier space, the density contrast δ and the velocity
potential v obey

_δ − 3 _V ¼ −
k2

a2
ðBþ vÞ; ð3:8Þ

_v ¼ α; ð3:9Þ

where V ≡Hv. Taking the time derivative of Eq. (3.8) and
using Eq. (3.9), it follows that

δ̈þ 2H _δþ k2

a2
Ψ ¼ 3V̈ þ 6H _V: ð3:10Þ

For the theories in which the matter growth rate is not
significantly different from that in GR, _δ is at most of order
Hδ. Then, from Eq. (3.8), the velocity potential can be
estimated as jVj ≲ ðaH=kÞ2jδj. For the perturbations deep
inside the Hubble radius (k2 ≫ a2H2), the two terms on
the right-hand side of Eq. (3.10) can be neglected relative
to those on the left-hand side. In this case, Eq. (3.10)
reduces to

δ̈þ 2H _δ − 4πGμρmδ ≃ 0; ð3:11Þ

where we used Eq. (3.5).
The dimensionless gravitational coupling μ is known by

solving the other perturbation equations of motion derived
in Ref. [61]. For the modes deep inside the sound horizon
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ðc2Sk2=a2 ≫ H2Þ, we can resort to the so-called quasistatic
approximation under which the dominant terms in the
perturbation equations are those containing δρm and k2=a2

[50,94]. Under the quasistatic approximation, the analytic
expressions of μ and η were already derived in the literature
[see Eqs. (5.29) and (5.30) of Ref. [62]]. In cubic-order GP
theories given by the action (2.1), we have

μ ¼ Σ ¼ 1þ ðϕ2G3;XÞ2
qSc2S

; η ¼ 1; ð3:12Þ

and hence there is no gravitational slip. In this case, the
gravitational interactions felt by matter and light are
equivalent to each other. Under the absence of ghosts
and Laplacian instabilities of scalar perturbations, the
gravitational interactions are enhanced (μ ¼ Σ > 1) com-
pared to those in GR (μ ¼ Σ ¼ 1). Since μ and Σ do not
depend on k under the quasistatic approximation, the matter
density contrast δ evolves in a scale-independent way
according to Eq. (3.11) for the perturbations inside the
sound horizon.

B. ISW-galaxy cross-correlations

In this section, we derive the power spectrum of
ISW-galaxy cross-correlations in a general way without
specifying gravitational theories. During the matter era, the
gravitational potential ψ ISW does not typically change in
time, but the dominance of dark energy leads to the varia-
tion of ψ ISW at low redshifts. This leaves an imprint on
temperature anisotropies of CMB photons freely streaming
from the last scattering surface to today. The ISW contri-
butionΔTISW to the CMB temperature perturbation divided
by the average temperature T can be quantified by the
integral with respect to the redshift z ¼ 1=a − 1, such that

ΔTISWðn̂Þ
T

¼ −
Z

zr

0

dz
∂ψ ISW

∂z ; ð3:13Þ

where n̂ is a unit vector along the line of sight and zr is the
redshift at recombination.
The clustering of galaxies occurs by the growth of matter

density contrast δ. For the theories in which the dimension-
less gravitational coupling μ does not depend on the wave
number k, we can express the Fourier-space perturbation δ
at the redshift z in the form

δðz; kÞ ¼ DðzÞ
D0

δð0; kÞ; ð3:14Þ

where we introduce the growth factor DðzÞ with today’s
value D0 ≡Dðz ¼ 0Þ. The fluctuations in the angular
distribution of galaxies can be quantified as

ΔNGalaxyðn̂Þ
N

¼
Z

zr

0

dzbAsϕAðzÞδðz; n̂χðzÞÞ; ð3:15Þ

where bAs is a bias factor, ϕAðzÞ is a window function, and
χ ¼ R

z
0 H

−1ðz̃Þdz̃ is a comoving distance. The label A
stands for different galaxy catalogues. For the window
function, we choose the following form [80]:

ϕAðzÞ ¼ β

Γ½ðαþ 1Þ=β�
�
z
z0

�
α

exp

�
−
�
z
z0

�
β
�
; ð3:16Þ

where Γ½x� is the gamma function and α; β; z0 are positive
constants. The values of these constants are different depen-
ding on the galaxy surveys. The function (3.16), which is
positive, satisfies the normalization

R∞
0 dzϕAðzÞ ¼ 1, and it

has a peak around z ¼ z0. To confront our model with
the observational data, we select the two galaxy surveys:
the 2 Micron All-Sky Survey (2MASS) and SDSS, in
which case the window functions for galaxy bins are
considerably peaked at particular redshifts [80]. The
2MASS galaxy catalogue can be fitted by the window
function (3.16) with ðz0; α; βÞ ¼ ð0.072; 1.901; 1.752Þ.
For the SDSS catalogue, we choose the parameters
ðz0; α; βÞ ¼ ð0.113; 3.457; 1.197Þ.
In the following, we also assume that the bias bAs is scale

independent as well as time independent in the range of
redshift intervals allowed by ϕAðzÞ. This is a reasonable
assumption for galaxy catalogues with the peaked window
function mentioned above.
Let us consider a perturbation Xðz; χn̂Þ that depends on z

and the product of comoving distance χ and unit vector n̂.
Then, the perturbation Xðn̂Þ, which corresponds to the
integration of Xðz; χn̂Þ with respect to z from z ¼ 0 to
z ¼ ∞, can be expanded in terms of spherical harmonics
Ylmðn̂Þ, as

Xðn̂Þ ¼
Z

∞

0

dzXðz; χn̂Þ ¼
X
l;m

aXlmYlmðn̂Þ; ð3:17Þ

where aXlm ¼ R
dΩXðn̂ÞY�

lmðn̂Þ with the solid angle Ω. The
Fourier-series expansion of Xðz; χn̂Þ is given by

Xðz; χn̂Þ ¼
Z

d3k
ð2πÞ3 Xðz; kÞe

ik·χn̂: ð3:18Þ

On using the relation
R
dΩeik·rY�

lmðr̂Þ ¼ 4πiljlðkrÞY�
lmðk̂Þ,

where r̂ ¼ r=r, k̂ ¼ k=k, with the spherical Bessel function
jlðxÞ, the coefficient aXlm is expressed as

aXlm ¼ il

2π2

Z
dz

Z
d3kXðz; kÞjlðkχÞY�

lmðk̂Þ: ð3:19Þ

The coefficients aISWlm and aGalaxylm , which are associated
with the ISW signal and galaxy clusterings, respectively,
can be derived by substituting X → −∂ψ ISW=∂z and X →
bAsϕAðzÞðDðzÞ=D0Þδð0; kÞ into Eq. (3.19). In doing so, we
exploit the properties 1þ z ¼ e−N and dz=dN ¼ −e−N
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between the redshift z and the e-folding number N ¼ ln a.
Then, it follows that [95]

aISWlm ¼ −
il

2π2D0

Z
dN 1

Z
d3k1ZISWðN 1Þδð0; k1Þ

× jlðk1χ1ÞY�
lmðk̂1Þ; ð3:20Þ

aGalaxylm ¼ −
il

2π2D0

Z
dN 2e−N 2

Z
d3k2bAsϕAðN 2Þ

×DðN 2Þδð0; k2Þjlðk2χ2ÞY�
lmðk̂2Þ; ð3:21Þ

where ZISW is defined by

∂ψ ISW

∂N ¼ ZISWðN ; kÞ δð0; kÞ
D0

: ð3:22Þ

The cross-correlation between the ISW signal in CMB
and the galaxy fluctuations is quantified as

�
ΔTISWðn̂1Þ

T

ΔNGalaxyðn̂2Þ
N

�
¼

X∞
l¼0

2lþ 1

4π
CIG
l Plðcos θÞ;

ð3:23Þ

where Pl is the Legendre polynomial with the angle θ
between the unit vectors n̂1 and n̂2, and CIG

l is the ISW-
galaxy cross-correlation amplitude given by

CIG
l ¼ haISWlm ðaGalaxylm Þ�i: ð3:24Þ

Substituting Eqs. (3.20) and (3.21) into Eq. (3.24), we
obtain

CIG
l ¼ 2bAs

πD2
0

Z
kM

km

dkk2PδðkÞ

×
Z

0

N i

dN 1ZISWðN 1; kÞjl½kχðN 1Þ�

×
Z

0

N i

dN 2e−N 2ϕAðN 2ÞDðN 2Þjl½kχðN 2Þ�; ð3:25Þ

where km and kM are minimum and maximum wave
numbers, respectively, N i is the initial value of N in
the deep matter era, and Pδ is the matter power spectrum
defined by

hδð0; k1Þδ�ð0; k2Þi ¼ ð2πÞ3δð3ÞD ðk1 − k2ÞPδðk1Þ: ð3:26Þ

Similarly, the galaxy-galaxy correlation amplitude can be
computed as

CGG
l ¼ haGalaxylm ðaGalaxylm Þ�i

¼ 2ðbAs Þ2
πD2

0

Z
kM

km

dkk2PδðkÞ

×

�Z
0

N i

dN e−NϕAðN ÞDðN Þjl½kχðN Þ�
�

2

: ð3:27Þ

On using the transfer function TmðkÞ from the deep
radiation era to the matter-dominated epoch, the matter
power spectrum can be expressed as

PδðkÞ ¼ 2π2δ2HT
2
mðkÞ

�
k
H0

�
ns
H−3

0 ; ð3:28Þ

where δH and ns are the amplitude and the spectral index of
primordial scalar perturbations, respectively. We employ
the transfer function TmðkÞ advocated by Eisenstein and Hu
[96,97]. Substituting Eq. (3.28) into Eqs. (3.25) and (3.27),
it follows that

CIG
l ¼ 4πbAs δ̄2H

Z
kM

km

dk
k

�
k
H0

�
nsþ3

T2
mðkÞ

×
Z

0

N i

dN 1ZISWðN 1; kÞjl½kχðN 1Þ�

×
Z

0

N i

dN 2e−N 2ϕAðN 2ÞDðN 2Þjl½kχðN 2Þ�; ð3:29Þ

CGG
l ¼ 4πðbAs Þ2δ̄2H

Z
kM

km

dk
k

�
k
H0

�
nsþ3

T2
mðkÞ

×

�Z
0

N i

dN e−NϕAðN ÞDðN Þjl½kχðN Þ�
�

2

; ð3:30Þ

where

δ̄H ≡ δH
D0

: ð3:31Þ

The quantity ZISW plays a key role for determining the
sign of CIG

l . We recall that the gravitational potential ψ ISW

is related to δ according to Eq. (3.6). The density ρm is
given by ρm ¼ 3M2

plH
2
0Ωm0ð1þ zÞ3, where Ωm0 is today’s

density parameter of nonrelativistic matter. Using the
relation (3.14), we can express ψ ISW in the form

ψ ISW ¼ −
3H2

0Ωm0

k2
e−NDΣ

δð0; kÞ
D0

: ð3:32Þ

Taking the N -derivative of Eq. (3.32) and comparing it
with Eq. (3.22), it follows that

ZISWðN ; kÞ ¼ 3H2
0Ωm0

k2
e−NDΣF ; ð3:33Þ
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where we introduced the following quantity:

F ≡ 1 −
D0

D
−
Σ0

Σ
¼ 1 − ðlnDΣÞ0: ð3:34Þ

Substituting Eq. (3.33) into Eq. (3.29), we obtain

CIG
l ¼ 12πbAs δ̄2HΩm0

Hnsþ1
0

Z
dkknsT2

mðkÞ

×
Z

0

N i

dN 1e−N 1DðN 1ÞΣðN 1ÞF ðN 1Þjlðkχ1Þ

×
Z

0

N i

dN 2e−N 2DðN 2ÞϕAðN 2Þjlðkχ2Þ; ð3:35Þ

where χi ≡ χðN iÞ with i ¼ 1, 2.
For the large wave number k, it is useful to employ

the following Limber approximation for an arbitrary k-
dependent function fðkÞ:
Z

dkk2fðkÞjlðkχ1Þjlðkχ2Þ ≃
π

2

δðχ1 − χ2Þ
χ21

f
�
l12
χ1

�
; ð3:36Þ

where l12 ≡ lþ 1=2. Applying the approximation (3.36)
to Eq. (3.35) and using Eq. (3.28) and the relation
dN =dχ ¼ −aH, we obtain

CIG
l ≃

6π2bAs δ̄2HΩm0

l212

Z
0

N i

dN e−N
H
H0

�
l12
χ̄

�
ns
T2
m

�
l12H0

χ̄

�

× ϕAD2ΣF ; ð3:37Þ

where χ̄ ≡H0χ.
The negative ISW-galaxy cross-correlation (CIG

l < 0)
can occur for the models in which F < 0 at low redshifts,
which translates to

ðlnDΣÞ0 > 1: ð3:38Þ

Since CIG
l is the integral with respect to N from the deep

matter era to today, the condition (3.38) is necessary but not
sufficient for realizingCIG

l < 0. As wewill see in Sec. III C,
even if F becomes negative at low redshifts, there are cases
in which CIG

l is positive.
Writing the factor D0=D in Eq. (3.34) in terms of the

matter density parameter Ωm and the growth index γ, as
D0=D ¼ ðΩmÞγ , it follows that F ¼ 1 − ðΩmÞγ − Σ0=Σ. In
the ΛCDM model, the growth index is well approximated
by γ ≃ 0.55 at low redshifts [98]. Since Σ ¼ 1 in this case,
we have F ¼ 1 − ðΩmÞγ > 0 and hence the ISW-galaxy
cross-correlation is positive in the ΛCDM model.
In modified gravity theories the growth index is gen-

erally different from 0.55. In fðRÞ gravity, for example, it is
in the range 0.40≲ γ ≲ 0.55 [99]. The observational data of
RSDs and the clustering of luminous red galaxies placed

the bound γ ¼ 0.56� 0.05 for constant γ [100], so the
quantity 1 − ðΩmÞγ is positive for the redshift z relevant to
the galaxy surveys (z≲ 2). To realize the negative ISW-
galaxy cross-correlation, it is at least necessary to satisfy
the condition

Σ0 > 0 ð3:39Þ

at low redshifts.
Before closing this subsection, we explain how to

compute the quantities δ̄H and bAs in the expression of
Eq. (3.37). The k-integrals in Eqs. (3.29) and (3.30) contain
terms that depend on the window function. To extract such
contributions, we introduce the following quantity:

I ≡
Z

kM

km

dk
k

�
k
H0

�
nsþ3

½TmðkÞwTHð8h−1; kÞ�2; ð3:40Þ

where wTH is the top-hat function defined by

wTHðr; kÞ ¼
3½sinðkrÞ − kr cosðkrÞ�

ðkrÞ3 : ð3:41Þ

The quantity (3.40) is evaluated at the scale r ¼ 8h−1 Mpc,
where h is the normalized Hubble constant given by
H0 ¼ 100 h km s−1 Mpc−1. For the scalar spectral index
ns, we choose the best-fit value ns ¼ 0.9649 constrained
from the Planck 2018 data [8].
We define today’s amplitude of overdensity at the scale

8h−1 Mpc, as

σ8ð0Þ≡ δH
ffiffi
I

p
: ð3:42Þ

From Eq. (3.14) the value of σ8 at the initial redshift zi in
the deep matter era is related to σ8ð0Þ, as σ8ðziÞ ¼
σ8ð0ÞDðziÞ=D0. Then, the perturbation δ̄H ¼ δH=D0 is
expressed as

δ̄H ¼ σ8ðziÞ
DðziÞ

1ffiffi
I

p : ð3:43Þ

Provided that the evolution of perturbations in the deep
matter era is close to that in the ΛCDM model, the initial
growth factor can be chosen as DðziÞ ¼ ai ¼ eN i . Today’s
growth factor D0 is known by solving Eq. (3.11) for δ.
Since the scalar-field contribution to the dynamics of
perturbations tends to be negligible at higher redshifts
in our model, we choose the same early-time initial
conditions as those in the ΛCDM model. In particular,
we consider initial conditions for σ8ðziÞ, such that
σ8ðziÞ ¼ σ8ðziÞΛCDM, and find σ8ðziÞΛCDM by using
σ8ðziÞΛCDM ¼ σ8ð0ÞΛCDMeN i=DΛCDM

0 . For σ8ð0ÞΛCDM,
we choose the Planck best-fit value σ8ð0ÞΛCDM ¼ 0.811
[8]. Since the initial condition for σ8ðziÞ is now fixed, the
value of δ̄H is known from Eq. (3.43).
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For the bias factor bAs , we normalize it by using the
observed best-fit galaxy-galaxy correlation spectrum CGG

l .
The analysis of Ref. [101] using the galaxy spectrum data
of 2MASS surveys combined with the WMAP data showed
that the best-fit value of bias is b2MASS

s ¼ 1.4. For the SDSS
survey, the galaxy spectrum is consistent with the WMAP
best-fit ΛCDM cosmology with the bias factor bSDSSs ¼ 1
[80]. Then, for each galaxy survey, we can compute the
galaxy power spectrum CGG

l;best by using the best-fit bias and
best-fit cosmological parameters constrained from WMAP.
We write the power spectrum (3.30) in the form CGG

l ¼
4πðbAs Þ2δ̄2HYGG;A

l and define the χ2 estimator:

χ2bias;A ≡X150
l¼2

½CGG
l;best − 4πðbAs Þ2δ̄2HYGG;A

l �2: ð3:44Þ

The bias can be fixed by minimizing χ2bias;A. Solving
∂χ2bias;A=∂bAs ¼ 0 for bAs , it follows that

bAs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

lC
GG
l;bestY

GG;A
l

4πδ̄2H
P

lðYGG;A
l Þ2

s
: ð3:45Þ

Computing bAs from Eq. (3.45) for dark energy models in
GP theories, we have confirmed that the bias depends only
mildly on the model parameters (typically within a few
percent difference). This means that, as in the minimal
theory of massive gravity [95], using the power spectrum
CGG
l;best derived for the best-fit ΛCDM cosmology is a

reasonable prescription for the bias estimation.

C. ISW-galaxy cross-correlations in GP theories

Let us consider the dark energy model in GP theories
characterized by the functions (2.13). From Eq. (3.12), the
quantities μ and Σ are expressed as

μ ¼ Σ ¼ 1þ sΩDE

3ð1þ sΩDEÞc2S
: ð3:46Þ

During the radiation and matter eras, the scalar propagation
speed squares are given, respectively, by Eqs. (2.31) and
(2.32). SinceΩDE ≪ 1 in these epochs,μ andΣ are close to 1.
On using Eq. (2.33) at the de Sitter solution (ΩDE ¼ 1), it

follows that

μdS¼ΣdS¼1þ
�
1−ps
ps

þ
�

2

31=p

�
1=ð1þsÞ 1

λV

�−1
; ð3:47Þ

where

λV ≡ λ2=½pð1þsÞ�qV ¼ λ2=½pð1þsÞ�: ð3:48Þ

In the last equality, we used the fact that the model (2.13)
satisfies qV ¼ 1 (under which there is no issue of the strong

coupling problem). The intrinsic vector mode affects μdS
and ΣdS through the quantity λV ¼ λ2=½pð1þsÞ�. Since λ > 0
and pð1þ sÞ ≥ 1, both μdS and ΣdS are larger than 1. In the
limit λV → ∞, Eq. (3.47) reduces to μdS ¼ ΣdS → 1=
ð1 − psÞ, which corresponds to the values in cubic-order
Horndeski (scalar-tensor) theories. In another limit λV → 0,
we have μdS ¼ ΣdS → 1 and hence the evolution of
perturbations is similar to that in GR.
In the left panel of Fig. 1, we show the evolution of

Σð¼ μÞ for four different values of λV with qV ¼ 1. The
other model parameters are chosen to be s ¼ 0.2 and p ¼ 3
with today’s matter density parameter Ωmðz ¼ 0Þ ¼ 0.32.
In the ΛCDM model, the quantity Σ is equivalent to 1
throughout the cosmological evolution. This case can be
regarded as the limit λV → 0 in Eq. (3.47). As estimated
from Eq. (3.46), Σ is close to 1 in the deep matter era for
any value of λV under consideration. The deviation of Σ
from 1 starts to occur at low redshifts. For larger λV, the
deviation of Σ from 1 tends to be more significant. This
reflects the fact that, for increasing λV , the de Sitter value
ΣdS in Eq. (3.47) gets larger, e.g., ΣdS ¼ 1.07 for λV ¼ 0.1
and ΣdS ¼ 2.25 for λV ¼ 10 in the numerical simulation
of Fig. 1.
In the right panel of Fig. 1, we also plot the evolution of

the quantity F defined by Eq. (3.34) for the same model
parameters as those used in the left panel. In all the cases
the quantity F starts to evolve from the value close to þ0
and finally approaches the asymptotic value 1, but the
intermediate evolution of F is different depending on the
parameter λV. In the ΛCDM model we have F > 0
throughout the cosmological evolution, so the ISW-galaxy
cross-correlation is positive. In GP theories, the growth of Σ
occurs at low redshifts, in which case F can be negative.
With the model parameters used in Fig. 1, the perturbation
temporally enters the region F < 0 for λV ≳ 1. When
λV ≫ 1 the minimum value of F is largely negative, so
it is expected that the strong negative ISW-galaxy cross-
correlation occurs.
The observable associated with the ISW-galaxy cross-

correlation is given by

wAðθÞ≡ TCMB

X∞
l¼0

2lþ 1

4π
CIG;A
l Plðcos θÞ; ð3:49Þ

where TCMB ¼ 2.7255 K and θ is the angle characterizing
the deviation from the center of galaxy data sets. For the
calculation of CIG

l , we employ the formula (3.37) derived
under the Limber approximation. In Fig. 2, we plot w2MASS

versus θ corresponding to 2MASS galaxy surveys for the
same model parameters as those adopted in Fig. 1 with
ns ¼ 0.9649, σ8ð0Þ ¼ 0.811, and h ¼ 0.696. In Fig. 2, the
data points from the 2MASS survey are also shown with
error bars. We note that the bias factor has been computed
according to the formula (3.45) for the window function
(3.16) fitted to the 2MASS survey. The numerical values of
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b2MASS
s for λV ¼ 0.01, 0.1, 1, 10 are 1.497, 1.487, 1.475,

1.471, respectively, so the bias depends weakly on the
model parameters.
For the models with λV < Oð0.1Þ and the ΛCDMmodel,

we have w2MASSðθÞ > 0 for any angle θ, so they can be
compatible with the 2MASS data. As we see in Fig. 2, the

model with λV ¼ 1 has a marginal positive ISW-galaxy
cross-correlation. In this case the perturbation temporally
enters the region F < 0, but the positive contribution to
CIG;2MASS
l at high redshifts leads to w2MASSðθÞ > 0. For

λV ¼ 10, the minimum value of F is largely negative and
hence w2MASSðθÞ < 0 for any angle θ. In Fig. 2, we observe
that the models with λV ≳ 1 are in tension with the 2MASS
data. Thus, we have shown that the models with the large
increase of Σ at low redshifts [such as cases (c) and (d) in
Fig. 1] can be strongly constrained from the ISW-galaxy
cross-correlation data.

IV. OBSERVATIONAL CONSTRAINTS

In this section, we place observational constraints on the
model given by the functions (2.13) by employing the ISW-
galaxy cross-correlation data from the 2MASS and SDSS
surveys [80] as well as other observational data from CMB,
BAO, SN Ia,HðzÞ, and RSDs. The latter data sets were also
used in the likelihood analysis of Ref. [74] to constrain the
dark energy model in full GP theories, so we first briefly
overview such a statistical method and then explore
whether our dark energy model with c2T ¼ 1 can be
compatible with all the data including the ISW-galaxy
cross-correlation.

A. Priors on the model parameters

The present dark energy model has the following five
free parameters:

Ωm0; h; s; p; λV: ð4:1Þ

FIG. 1. Evolution of Σ (left) and F (right) versus 1þ z for s ¼ 0.2, p ¼ 3, and Ωm0 ¼ 0.32 with four different values of λV :
(a) λV ¼ 0.01, (b) λV ¼ 0.1, (c) λV ¼ 1, and (d) λV ¼ 10. The solid line corresponds to the evolution of Σ and F in the ΛCDM model.
For λV ≳ 1, the perturbation enters the region F < 0 at low redshifts.

FIG. 2. The ISW-galaxy cross-correlation observable w2MASS

versus the angle θ (representing the deviation from the center of
galaxy data sets) for the same model parameters as those used in
Fig. 1 with ns ¼ 0.9649, σ8ð0Þ ¼ 0.811, and h ¼ 0.696. We also
show the data points of 2MASS measurements with error bars
[80] (derived by the jackknife error estimation method).
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At the background level, there are three free parameters,
Ωm0; h; s, so we have only one additional quantity s
compared to theΛCDMmodel. At the level of perturbations,
there are seven free parameters in full GP theories studied in
Ref. [74]. Now, we consider the cubic-order GP theories
with c2T ¼ 1, so this reduces the number of free parameters to
six.Moreover,we consider themodelwithqV ¼ 1, sowe are
left with the five parameters given by Eq. (4.1). We have
chosen the parameter λV instead of λ, as the former is directly
related to the effect of intrinsic vector modes on μ and Σ.
As we mentioned in Sec. III B, we set today’s amplitude

of overdensity σ8ð0Þ to the Planck best-fit value. In the
MCMC simulation, we also carried out the analysis by
varying the initial value σ8ðziÞ at N ¼ −6 in the 2σ range
constrained by the Planck data in the ΛCDM model [8].
The use of initial conditions σ8ðziÞ that are the same
as those in the ΛCDM model is plausible in that the
evolution of perturbations in our model is very similar to
that in the ΛCDM model during the deep matter era. We
find that the resulting observational constraint on σ8ð0Þ is
similar to its 2σ Planck bound in the ΛCDM model.
Moreover, the observational constraints on five parameters
Ωm0; h; s; p; λV are hardly affected by adding the parameter
σ8ðziÞ in the likelihood analysis.
In the MCMC simulation, we set the following priors on

the parameter space of five model parameters.
(i) Today’s density parameter of nonrelativistic matter:

0.1 ≤ Ωm0 ≤ 0.5.
(ii) The normalized Hubble constant: 0.6 ≤ h ≤ 0.8.
(iii) The deviation parameter from the ΛCDM model:

0 < s ≤ 1.
(iv) The power p in Eq. (2.15): 0 < p ≤ 25.
(v) The parameter λV : 10−13 ≤ λV ≤ 15.

In addition, we need to take into account the conditions for
the absence of ghosts and Laplacian instabilities of scalar
perturbations. They are given by

(i) QS > 0 and c2S > 0 in the whole cosmological
epoch.

(ii) 0 < ps ≤ 1 to avoid the strong coupling at early
times [see Eq. (2.28)].

(iii) pð1þ sÞ ≥ 1 for avoiding the divergence of c2S at
early times [see Eq. (2.30)].

The other model parameters are known from the five
parameters in Eq. (4.1), say, p2 ¼ sp and p3 ¼ ½pð1þ
2sÞ − 1�=2.

B. Observational data

We briefly explain the likelihood method and observa-
tional data used in our MCMC analysis. For more details,
we refer the readers to Ref. [74].

1. CMB

To constrain the model from the CMB data, we resort to
the following two CMB shift parameters:

la ¼
πχðz�Þ
rsðz�Þ

; R ¼
ffiffiffiffiffiffiffiffiffi
Ωm0

p
H0χðz�Þ; ð4:2Þ

where χðzÞ ¼ R
z
0 H

−1ðz̃Þdz̃ is the comoving distance, and
rsðzÞ ¼

R
∞
z csH−1ðz̃Þdz̃ is the comoving sound horizon

with cs ¼ ½3f1þ 3ρb0=ð4ργ0Þð1þ zÞ−1g�−1=2 (ρb0 and ργ0
are today’s densities of baryons and photons, respectively).
In the following, we fix today’s baryon density para-
meter Ωb0 ¼ ρb0=ð3M2

plH
2
0Þ to the Planck best-fit value

Ωb0 ¼ 0.02226 [7]. For the decoupling redshift z�, we
employ the fitting formula of Hu and Sugiyama [102].
The mean values of CMB shift parameters constrained

from the Planck 2015 data are hlai ¼ 301.77 and hRi ¼
1.4782 with the deviations σðlaÞ ¼ 0.090 and σðRÞ ¼
0.0048, respectively [7,103]. The χ2 statistics for these
parameters is defined by

χ2CMB ¼ VTC−1V; ð4:3Þ

where VT≡ððla−hlaiÞ=σðlaÞ;ðR−hRiÞ=σðRÞÞ, and C−1

is the inverse of the normalized covariance matrix C.
The components of C are given by C11 ¼ C22 ¼ 1 and
C12 ¼ C12 ¼ 0.3996.

2. BAO

The observable associated with the BAO measurements
is the ratio rBAOðzjÞ≡ rsðzdÞ=DVðzjÞ between the sound
horizon rsðzdÞ at the redshift zd where baryons are released
from the Compton drag of photons and the dilation scale
DVðzjÞ at the observed redshifts zj. For the drag redshift zd,
we use the fitting formula of Eisenstein and Hu [96]. The
dilation scale is defined by

DVðzÞ ¼ ½zð1þ zÞ2D2
AðzÞH−1ðzÞ�1=3; ð4:4Þ

whereDAðzÞ ¼ ð1þ zÞ−1 R z
0 H

−1ðz̃Þdz̃ is the angular diam-
eter distance. For given N data of rBAOðzjÞ with the error
σðzjÞ, the χ2 estimator in BAO measurements is given by

χ2BAO ¼
XN
j¼1

½rBAOðzjÞ − hrBAOðzjÞi�2
σ2ðzjÞ

; ð4:5Þ

where hrBAOðzjÞi is the mean observed value of each data.
We exploit the BAO data extracted from the surveys of
6dFGS [10], SDSS-MGS [11], BOSS [12], BOSS CMASS
[13], and Wiggle Z [14].

3. SN Ia

The SN Ia has a nearly constant absolute magnitude
M ≃ −19 at the peak of brightness. The observed apparent
magnitude m of SN Ia is different from its absolute
magnitude M, whose difference is quantified as
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μðzÞ≡mðzÞ −M ¼ 5log10

�
dLðzÞ
10 pc

�
; ð4:6Þ

where dLðzÞ ¼ ð1þ zÞ R z
0 H

−1ðz̃Þdz̃ is the luminosity dis-
tance from the observer to the source at redshift z. The χ2

estimator in SN Ia measurements is defined by

χ2SNIa ¼
XN
j¼1

½μðzjÞ − hμobsðzjÞi�2
σ2ðzjÞ

; ð4:7Þ

where N is the number of data sets, and hμobsðzjÞi is the
mean observed value of μðzjÞ with the error σðzjÞ. We use
the Union 2.1 data sets [3] for the computation of χ2SNIa.

4. Local measurements of the Hubble expansion rate

The direct measurement of the Hubble constant from the
observations of Cepheids places the bound h ¼ 0.7324�
0.0174 [17]. In addition, the Hubble expansion rateHðzÞ at
redshift z can be constrained from the measurement of the
ratio rHðzÞ≡ rsðzdÞ=H−1ðzÞ in BAO measurements. We
define the χ2 statistics associated with the local measure-
ments of H, as

χ2H ¼ ðh − 0.7324Þ2
0.01742

þ
X3
j¼1

½rHðzjÞ − hrHðzjÞi�2
σ2ðzjÞ

; ð4:8Þ

where hrHðzjÞi is the mean observed value of rHðzjÞ at
redshift zj with the error σðzjÞ. We exploit the three data
provided by the BOSS measurement [12].

5. RSDs

The RSD measurement can constrain the following
quantity:

yðzÞ≡ fðzÞσ8ðzÞ; ð4:9Þ
where fðzÞ≡ δ0=δ is the linear growth rate of the matter
density contrast. To compute yðzÞ in our model, we resort to
Eq. (3.11) derived under the quasistatic approximation for
perturbations deep inside the sound horizon. This equation
can be expressed as

δ00 þ 1þ ð3þ 4sÞΩDE

2ð1þ sΩDEÞ
δ0 −

3

2
μð1 − ΩDEÞδ ¼ 0; ð4:10Þ

where μ is given by Eq. (3.46) with the scalar propagation
speed squared (2.29). In the deep matter era (ΩDE ≪ 1), we
have μ ≃ 1, so the evolution of δ is similar to that in the
ΛCDM model. We express δ in Fourier space as Eq. (3.14)
and choose the initial conditions D0 ¼ D ¼ eN i at
N i ¼ −6. Since the growth rate DðzÞ is known after
solving Eq. (4.10), we obtain σ8ðzÞ ¼ σ8ð0ÞDðzÞ=D0

and yðzÞ by adopting the Planck best-fit value σ8ð0Þ ¼
0.811 [8].

If there are N data sets with the mean observed value
hyobsðzjÞi and the error σðzjÞ, the χ2 estimator for RSD
measurements is defined as

χ2RSD ¼
XN
j¼1

½yðzjÞ − hyobsðzjÞi�2
σ2ðzjÞ

: ð4:11Þ

We use the observational data given in Refs. [104–112] for
the computation of χ2RSD.

6. ISW-galaxy cross-correlations

The observable quantity associated with the ISW-galaxy
cross-correlation is given by Eq. (3.49). Then, we define the
corresponding χ2 estimator, as

χ2IG ¼
X
A

XN
j¼1

½wAðθjÞ − hwA
obsðθjÞi�2

ðσAj Þ2
; ð4:12Þ

where N is the number of data sets, hwA
obsðθjÞi is the mean

observed value of wAðθjÞ with the error σAj on the data, and
the subscript “A” stands for different galaxy surveys. To
calculate wAðθjÞ theoretically, we utilize the cross-corre-
lation power spectrum (3.37) with the Planck 2018 best-fit
values ns ¼ 0.9649 and σ8ð0Þ ¼ 0.811. For each model
parameter, the quantities δ̄H and bAs in Eq. (3.37) are
computed according to the formulas (3.43) and (3.45),
respectively. For the observational data of hwA

obsðθjÞi and
σAj , we choose those of 2MASS and SDSS surveys given
in Ref. [80].

C. Likelihood results

We perform the MCMC sampling over the allowed five-
dimensional parameter space and compute the following χ2

statistics:

χ2 ¼ χ2CMB þ χ2BAO þ χ2SNIa þ χ2H þ χ2RSD þ χ2IG: ð4:13Þ

The best-fit model corresponds to the case in which χ2 is
minimized.
In Fig. 3, we show one-dimensional probability distri-

butions for each parameter and two-dimensional observa-
tional contours for the combination of the five parameters
(4.1). The middle dashed lines in one-dimensional prob-
ability distributions represent the best-fit parameters.
Considering the background expansion history alone with
the data of CMB, BAO, SN Ia, and HðzÞ, there exists a
global minimum of χ2 corresponding to the best-fit values
of Ωm0; h; s. In the full MCMC analysis including the RSD
and ISW-galaxy cross-correlation data, the global mini-
mum of χ2 is not uniquely fixed. There are several different
sets of parameters giving similar lowest values of χ2, by
reflecting the fact that the parameters p and λV are not well
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constrained from the data. In other words, the models with
some different sets of parameters lead to practically the
same cosmological dynamics. One of the examples for such
a set of model parameters is given by1

Ωm0 ¼ 0.301; h ¼ 0.697; s ¼ 0.185;

p ¼ 3.078; λV ¼ 4.370 × 10−8; ð4:14Þ

with the minimal value

χ2min ¼ 618.9: ð4:15Þ

The 2σ bounds corresponding to these parameters are

FIG. 3. Observational bounds on the five model parameters Ωm0; h; s; p; λV derived by the joint data analysis of CMB, BAO, SN Ia,
H0, RSDs, and the ISW-galaxy cross-correlation with the catalogues of 2MASS and SDSS. The vertical dashed lines represent the best
fit (central) and the 2σ confidence limits (outside). The quantities Ωm0, h, and s are tightly constrained from the background expansion
history. The parameter p is bounded from above from the theoretical prior ps ≤ 1. The quantity λV is constrained to be λV < 0.015 from
the RSD and ISW-galaxy cross-correlation data.

1The other examples of model parameters with χ2min similar to
Eq. (4.15) are ðΩm0; h; s; p; λVÞ ¼ ð0.3016; 0.696; 0.188; 4.541;
3.010 × 10−3Þ and ð0.3012; 0.696; 0.192; 3.602; 7.140 × 10−12Þ.
These values of p and λV are quite different from those in
Eq. (4.14).
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Ωm0 ¼ 0.301þ0.006
−0.006 ; h ¼ 0.697þ0.006

−0.006 ; s ¼ 0.185þ0.100
−0.089 ;

p ¼ 3.078þ4.317
−2.119 ; λ̄V ≤ λV < 0.015; ð4:16Þ

where λ̄V is the lower limit of the assumed prior.
The observational bounds on Ωm0, h, and s are similar

to those derived in Ref. [74] in full GP theories without
the ISW-galaxy cross-correlation data. This means that the
background expansion history mostly determines the obser-
vational constraints on these three parameters. The model
with s ¼ 0, i.e., the ΛCDM model, is outside the 2σ
likelihood contour, so it is disfavored over the best-fit
model with (4.15) in cubic-order GP theories.
We carry out the independent MCMC sampling for the

ΛCDM model by varying the two parameters Ωm0 and h.
We find that the best-fit ΛCDM model corresponds to
Ωm0 ¼ 0.299 and h ¼ 0.687 with χ2ΛCDM ¼ 642.7, whose
χ2 is larger than (4.15). In GP theories, the existence of the
additional parameter s to those in the ΛCDM model can
reduce the tensions of the parameters h and Ωm0 between
CMB and low-redshift measurements. In particular, the
normalized Hubble constant h shifts to the region between
the best-fit values of CMB (h ≃ 0.67) [8] and local
measurements of H0 (h ≃ 0.73) [17].
The observational contour in the two-dimensional ðp; sÞ

plane of Fig. 3 is bounded by the prior ps ≤ 1 arising from
the absence of the strong coupling problem of scalar
perturbations in the asymptotic past. Compared to the 2σ
upper limit p < 22.6 derived in Ref. [74] without imposing

the prior ps ≤ 1, the upper bound on p is now reduced
to p < 7.4.
As we see in the one-dimensional probability distribu-

tion of λV in Fig. 3, the central value of λV is not well
constrained from the data, but there exists the 2σ upper
limit λV < 0.015. In the limit that λV → 0, we recover the
values μdS ¼ ΣdS ¼ 1 in GR. On using the best-fit param-
eters s ¼ 0.185 and p ¼ 3.078 with the bound λV < 0.015,
we obtain the limit μdS ¼ ΣdS < 1.011 from Eq. (3.47).
Thus, we have shown that the existence of the intrinsic
vector mode can give rise to the values of μ and Σ close to
those in GR. This behavior does not occur in scalar-tensor
theories, as they correspond to the other limit λV → ∞.
We discuss the dynamics of background and perturba-

tions for the best-fit model given by the parameters (4.14).
As we see in the left panel of Fig. 4, the best-fit model has
the dark energy equation of state wDE ¼ −1.185 during the
matter era, which is followed by the approach to the de
Sitter attractor (wDE ¼ −1). This is in stark contrast to the
ΛCDM model in which wDE is always equivalent to −1.
On the other hand, in the right panel of Fig. 4, we find that
the evolution of the quantity F, which appears in the ISW-
galaxy cross-correlation spectrum CIG

l , is almost identical
to that in the ΛCDMmodel. Indeed, substituting the best-fit
values (4.14) into Eq. (3.47), we obtain μdS − 1 ¼ ΣdS −
1 ¼ 3.3 × 10−8 and hence both μ and Σ are very close to 1
throughout the cosmic expansion history.
In Fig. 5, we plot the ISW-galaxy cross-correlation

observable wAðθÞ associated with two galaxy surveys for

FIG. 4. (Left) Evolution of wDE versus 1þ z for the best-fit model parameters given by Eq. (4.14) (solid line) and for the ΛCDM
model (dashed line). (Right) Evolution of the quantity F defined by Eq. (3.34) for the two models corresponding to the left panel. The
background dynamics of the best-fit model in GP theories is different from that in the ΛCDM model, while the dynamics of
perturbations is similar to each other.
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the best-fit model parameters (4.14). Again, the theoretical
curve in this model, which has the positive cross-correla-
tion, is similar to that in the best-fit ΛCDM model. As we
see in the left panel of Fig. 5, the best-fit model can fit the
2MASS data quite well. In the SDSS case, the model does
not exhibit good fits to the data for θ < 7 degrees. To
increase the values of wSDSSðθÞ for the compatibility with
the data, we require that the quantity Σ is smaller than 1.
However, this is not possible for cubic-order GP theories in
which Σ > 1 under the absence of ghosts and Laplacian
instabilities. Then, the MCMC likelihood analysis finds the
minimum value of χ2 with Σ very close to 1. In Fig. 2, we
observe that the model with λV ¼ 0.1 looks consistent with
the 2MASS ISW-galaxy cross-correlation data. However,
the fact that this model is outside the 2σ limit λV < 0.015
means that it is still in tension with the SDSS ISW-galaxy
cross-correlation data.
The RSD measurements provide constraints on the

dimensionless gravitational coupling μ, which is the same
as Σ in cubic-order GP theories. The RSD data [104–112]
tend to favor the cosmic growth rate similar to that in GR or
even smaller. Hence the models with μ close to 1 are also
favored from the RSD measurements. We performed the
MCMC simulation without using the ISW-galaxy cross-
correlation data and obtained the 2σ limit λV < 0.029.
Since this is weaker than the bound λV < 0.015 derived by
the full likelihood analysis, the ISW-galaxy data provide a
more stringent bound on λV than that constrained from the
RSD data.
For the best-fit model parameters, the powers in the

functions G2 and G3 are given by p2 ¼ 0.4 and p3 ¼ 1.0.
In this case, the couplingG3 ¼ b3Xp3 corresponds to that in

the cubic vector Galileon. In scalar-tensor theories, if the
cubic Galileon gives the dominant contribution to the dark
energy density, this leads to the negative ISW-galaxy cross-
correlation incompatible with the observational data
[83–85]. In GP theories, the existence of intrinsic vector
modes can make the cubic vector Galileon compatible with
the ISW-galaxy cross-correlation data by reducing Σ to a
value close to 1. Thus, the dark energy model in GP
theories can be observationally distinguished from the
corresponding counterpart in scalar-tensor theories.
While χ2min ¼ 618.9 is smaller than χ2ΛCDM ¼ 642.7, our

model has more free parameters than those in the ΛCDM
model. To make comparison with these two models by
taking into account the number of degrees of freedom, we
resort to the Akaike information criterion (AIC) [113] and
Bayesian information criterion (BIC) [114]. They are
defined, respectively, by

AIC ¼ χ2 þ 2P; BIC ¼ χ2 þ P lnðNdataÞ; ð4:17Þ

where P is the number of model parameters, and Ndata is
the number of data points. For the best-fit model parameters
(4.14), we obtain AIC ¼ 628.9 and BIC ¼ 651.2. They are
smaller than their best-fit values in the ΛCDM model:
AIC ¼ 646.7 and BIC ¼ 655.6. Thus, even with the AIC
and BIC, our model is statistically favored over the
ΛCDM model.

V. CONCLUSION

In this paper, we placed observational constraints on a
class of dark energy models in the framework of GP

FIG. 5. The ISW-galaxy cross-correlation observable wA versus θ for the 2MASS (left) and SDSS (right) surveys for the best-fit model
with the parameters (4.14) (solid line) and for the best-fit ΛCDM model (dashed line). We also show the observational data with error
bars in each galaxy survey. The cross-correlations predicted by the two models are almost the same as each other.

CONSTRAINTS ON MASSIVE VECTOR DARK ENERGY MODELS … PHYS. REV. D 99, 063533 (2019)

063533-15



theories. From the GW170817 event, the speed of gravi-
tational waves cT needs to be very close to 1 at the redshift
z < 0.009. Demanding that cT ¼ 1 in GP theories, the
allowed Lagrangians are up to cubic-order derivative
interactions plus intrinsic vector modes. Unlike the pre-
vious work [74], we focus on the dark energy model
satisfying the condition cT ¼ 1 and included the ISW-
galaxy cross-correlation data in the MCMC analysis to
constrain the model further.
In scalar-tensor theories with the derivative coupling

(including the Galileon), it is known that the dominance of
cubic derivative couplings in the late Universe typically
leads to the negative ISW-galaxy cross-correlation incom-
patible with observations. Since the same derivative cou-
pling arises by taking the scalar limit Aμ → ∇μφ in GP
theories, one may anticipate that a similar property persists
in cubic-order GP theories. In GP theories, however, there
exist intrinsic vector modes associated with the transverse
vector propagating degrees of freedom. Since the evolution
of scalar perturbations on the FLRW background is affected
by intrinsic vector modes, the observational predictions in
GP theories are generally different from those in scalar-
tensor theories.
In cubic-order GP theories, the dimensionless gravita-

tional couplings μ and Σ, which are felt by matter and light,
respectively, are given by μ ¼ Σ ¼ 1þ ðϕ2G3;XÞ2=ðqSc2SÞ
under the quasistatic approximation. Provided that neither
ghosts nor Laplacian instabilities of scalar perturbations are
present (qS > 0 and c2S > 0), the gravitational interactions
are enhanced (μ ¼ Σ > 1) compared to those in GR. The
effect of intrinsic vector modes on μ and Σ arises through
the quantity λV defined by Eq. (3.48), where qV ¼ 1 for the
model (2.13). This allows the possibility for realizing the
values of μ and Σ close to 1.
In Sec. III B, we provided a general formula for the

ISW-galaxy cross-correlation spectrum CIG
l for the scale-

independent growth of linear perturbations. A key quantity
characterizing the sign of CIG

l is the factor F ¼
1 − ðlnDΣÞ0 [see Eq. (3.37)]. The necessary condition
for the negative cross-correlation to occur is that the
perturbation enters the region F < 0 at low redshifts. In
Sec. III C, we studied the evolution of F for the concrete
dark energy model (2.13) and computed the ISW-galaxy
cross-correlation observable wAðθÞ corresponding to the
2MASS galaxy survey. As the quantity λV decreases, the
gravitational couplings (3.47) on the de Sitter solution
approach the values μdS ¼ ΣdS ¼ 1, so the model exhibits a
better compatibility with the observational data (see Fig. 2).
In Sec. IV, we performed the MCMC analysis for the

dark energy model (2.13) in cubic-order GP theories by
using the ISW-galaxy cross-correlation data of the 2MASS

and SDSS surveys combined with the CMB, BAO, SN Ia,
HðzÞ, and RSD data. The evolution of the dark energy
equation of state during the matter era is given by
wDE ¼ −1 − s, where s is a positive constant. The param-
eter s is constrained to be s ¼ 0.185þ0.100

−0.089 at 95% CL, so the
model with s > 0 is favored over the ΛCDM model
(s ¼ 0). At the background level, this property is attributed
to the fact that the presence of the additional parameter s to
H0 and Ωm0 can reduce the tensions of H0 between CMB
and low-redshift measurements.
For the cosmic growth history, the model can be

compatible with both the ISW-galaxy cross-correlation
and RSD data thanks to the existence of intrinsic vector
modes. From the MCMC simulation, we derived the 2σ
bound λV < 0.015. The likelihood analysis without the
ISW-galaxy cross-correlation data placed the 2σ constraint
λV < 0.029. This means that inclusion of the ISW-galaxy
data, in particular, the SDSS data, provides a tighter
constraint on λV compared to that obtained from the
RSD data. The existence of intrinsic vector modes can
make the model compatible with both the ISW-galaxy
cross-correlation and RSD data by reducing μ and Σ close
to 1. As we see in Figs. 4 and 5, the evolution of wDE in the
best-fit case is clearly different from that in the ΛCDM
model, while the evolution of perturbations is similar to
each other.
We have thus shown that the dark energy model in cubic-

order GP theories exhibits the interesting feature of fitting
the observational data better than the ΛCDM model. We
would like to stress that not only the best-fit χ2 but also the
AIC and BIC in our model are smaller than those in the
ΛCDM model. Since the scalar-tensor analogue of GP
theories corresponds to the limit λV → ∞, this nice prop-
erty does not hold in Horndeski theories with the domi-
nance of cubic derivative couplings for the late-time
cosmological dynamics. It remains to be seen how the
future high-precision observational data constrain the dark
energy model in GP theories further.
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