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Models are developed to estimate properties of relic cosmic perturbations with “spooky” nonlocal
correlations on the inflationary horizon, analogous to those previously posited for information on black
hole event horizons. Scalar curvature perturbations are estimated to emerge with a dimensionless power
spectral density Δ2

S ≈HtP, the product of inflationary expansion rate H with Planck time tP, larger than
standard inflaton fluctuations. Current measurements of the spectrum are used to derive constraints on
parameters of the effective potential in a slow-roll background. It is shown that spooky nonlocality can
create statistically homogeneous and isotropic primordial curvature perturbations that are initially
directionally antisymmetric. New statistical estimators are developed to study unique signatures in cosmic
microwave background anisotropy and large-scale galaxy surveys.
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I. INTRODUCTION

Cosmic perturbations on the largest scales are widely
thought to come from microscopic quantum fluctuations on
the horizon scale during inflation. This hypothesis is
supported by a unique and precisely measured experimen-
tal signature, a power spectrum of primordial curvature
perturbations on very large scales that is almost but not
exactly scale free [1–6].
To account for these data, slow-roll inflation [7–9]

posits a classical background universe that expands nearly
exponentially according to classical general relativity,
driven by the free energy density VðϕÞ of a nearly uniform
scalar field with a slowly time-varying classical expect-
ation value, ϕ. In this setting, the quantum model that
leads to perturbations is adapted from high-energy particle
physics: curvature perturbations are produced by the
gravitation of quantum field fluctuations when they freeze
out on the inflationary horizon scale. Standard inflation
models assume that quantum geometrical degrees of
freedom (d.o.f.) behave like those of quantum fields
and that classical properties of space and time are well
defined and determinate on all scales.
A new hypothesis about the primordial quantum system is

exploredhere: the entire inflationary horizon is assumed to be
single quantumobject. Even properties of space and time that
are universal to all classical metrics, such as a local inertial
frame, are allowed to be nonlocal and indeterminate, so
perturbations can emerge with new kinds of “spooky”
nonlocal correlations that are classically impossible. The
standard model of inflation and linear perturbation mode
evolution is still assumed on all scales after they exit the
inflationary horizon.

Similar nonlocal quantum coherence of horizon states
has been invoked to resolve information paradoxes in
evaporating particle states that create backreaction on black
hole event horizons [10–12].
In this model, the origin of cosmic perturbations is not

separate from the emergence of locality and of space-time
itself from a quantum system. Classical space-time, along
with its local inertial frame and the local cosmic standard of
rest, emerge together as a holistic process. On the infla-
tionary horizon, geometrical quantum states are nonlocal
and include new kinds of entanglement among all direc-
tions. The emergent perturbations of classical invariant
curvature display previously neglected, nonlocally corre-
lated noise. Their nonlocal, multidirectional correlations
can have measurable physical effects on the phases of relic
perturbations.
Specific properties of spooky correlations are estimated

here by adapting covariant models of locality, emergence,
and entanglement previously developed to design and
interpret laboratory experiments [13–15], based on Planck-
scale quantum states with nonlocal correlations that extend
everywhere on light cones or spacelike causal diamond
surfaces. The relic curvature perturbations are estimated to
exceed the standard, inflaton-generated perturbations by a
significant factor. The estimated emergent perturbation
spectrum agrees with current measurements. The model
has fewer parameters than standard inflation models, since
perturbations arise from a quantum-geometrical effect that is
not sensitive to properties of the matter fields.
Some still-untested predictions differ nontrivially from

standard inflation. Signatures of spooky primordial
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correlations can survive in cosmic density perturbations
today, in particular, a new kind of scale-free directional
antisymmetry that violates locality at inflation. Specific
model-independent statistical tests can distinguish spooky
correlations from standard perturbations on scales still in
the linear regime. It is suggested below that they might
already be detected in cosmic microwave background
(CMB) anistropy and, if so, that it may be possible to
detect them with new kinds of measurements in large-
scale galaxy surveys.

II. SPOOKY INFLATION

A. Homogeneous classical inflation

A standard inflation model [7–9] is assumed throughout
this paper for the classical background cosmology. The
model of mass energy is a spatially uniform classical (that
is, unquantized) inflaton field, with dimension of mass
and a vacuum expectation value ϕðtÞ, where t is a standard
Friemann-Lemaitre-Robertson-Walker time coordinate. In
standard notation in which ℏ ¼ c ¼ 1, the expansion rate
H and cosmic scale factor a evolve according to classical
general relativity and thermodynamics,

H2ðtÞ≡ ð _a=aÞ2 ¼ ð8πG=3ÞðVðϕÞ þ _ϕ2=2Þ; ð1Þ

where the evolution of the inflaton depends on the
potential VðϕÞ via

ϕ̈þ 3H _ϕþ V 0 ¼ 0; ð2Þ

and V 0 ≡ dV=dϕ. During slow-roll inflation, the evolution
of ϕ approximately obeys

3H _ϕ ≈ −V 0; ð3Þ

which produces a nearly exponential expansion. About 60
e-foldings in a after the currently observable volume of
the Universe matches the scale c=H of the inflationary
horizon, inflation ends and subsequently “reheats” with
the conversion of ϕ to other forms of matter.
Quantum fluctuations of the inflaton, although they are

presumably still present for a physical inflaton field, are
neglected here; as shown below, their gravitational effect
is smaller than the spooky geometrical perturbations. As
usual, perturbations of wave number k freeze in at the
cosmic scale factor aðkÞ when k ¼ aðkÞHðkÞ=c.
The background evolution at late times is assumed to be

the standard concordance ΛCDM model. This standard
background solution provides the global definition of
surfaces of unperturbed cosmic time on comoving world
lines, corresponding to surfaces where ϕ is constant.

B. Spooky correlations in emergent gravity

At the most basic level, quantum mechanics is a theory
of correlations that does not assume any particular projec-
tion onto space and time. It is possible, as envisioned in
relational (or “emergent”) quantum gravity, that locality—
the relationship that differentiates space-time positions or
events—emerges as an approximate observable in a quantum
system [16–18]. In general, relational quantum gravitational
d.o.f. and correlations differ from those of fields. They can
produce quantum fluctuations associated with nonlocal
correlations of positional relationships on all scales.

1. Precedents for nonlocal correlations
of quantum geometry

Theoretical studies, especially of systems with horizons,
have long hinted that space-time relationships are encoded
in entanglement information, analogous to spooky macro-
scopic correlations of entangled particle states. If space
and time emerge from a quantum system, a new kind of
nonlocal correlation on all scales is needed to account for
finite and holographic gravitational information in black
holes [19–21], its generalization to a “holographic princi-
ple” in any space-time [22–24], consistent evolution of
matter fields and information flow in the presence of black
hole horizons [10–12] without information paradoxes [25],
the absence of field states more massive than black holes in
a volume of any size [26], and holographic correlations in
anti-de Sitter space [27–30].
These results suggest that information in quantum

geometrical d.o.f. is less localized, and more universally
entangled, than that in particles and fields, even though it is
governed by a much smaller dimensional scale, the Planck

time tP ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c5

p
¼ 5.4 × 10−44 sec. It is even possible

to derive general relativity thermodynamically, as a stat-
istical theory or equation of state [31–34], in which the
basic elements are invariant null surfaces, such as horizons,
light cones, and causal diamonds [22–24]. As elegantly
prefigured by Wheeler [35], “… in the gravitational theory
we should be able in principle to dispense with the concepts
of space and time and take as the basis of our description of
nature the elementary concepts of world line and light cone.”

2. Physical effects of exotic correlations

The previous considerations are all of a general, abstract
nature. No consensus about concrete physical effects of
exotic holographic geometrical correlations on large scales
exists, and no experimental departure from classical space-
time has been convincingly demonstrated. Even so, there
are theoretical and experimental constraints on the specific
form exotic correlations can take.
In standard quantum mechanics, “spooky action at a

distance” refers to nonlocal quantum correlations of
entangled particle states that extend indefinitely in the future
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of an event in which a state is prepared [36,37]. For example,
in positron emission tomography, the space-time position
of an annihilation event can be reconstructed, in principle,
with diffraction-limited fidelity, from a macroscopic corre-
lation in arrival times and positions of a pair of entangled
photons traveling in opposite directions anywhere on its
future light cone.
Entangled particle pairs act as sources for superposi-

tions of gravitational states, so geometry itself must also
have spooky nonlocal correlations on light cones. Unlike
the particle example, geometrical states are universal; they
must entangle with all forms of matter and energy on a
light cone in all directions, not just a single pair of
particles. Their correlations describe the relationship of
the local inertial frame of a world line to the rest of the
universe [13–15].
Exotic correlations of geometry must exist in flat

space-time as well as black holes, so they should affect
states of light in the laboratory. They could have escaped
experimental detection because the estimated correlation
scale is very small—comparable not to the Planck length
but to the diffraction width of a Planck bandwidth wave
function [38]. Even so, they might be measurable with
new kinds of experiments [39–42]. Indeed, experimental
constraints on symmetries of Planck-scale tensorlike
holographic correlations [43,44] are used below to con-
strain predictions of tensor modes in spooky primordial
perturbations.

3. Quantum models of inflationary fluctuations

Calculations of perturbations in standard inflation use
a model quantum system based on local quantum field
theories originally developed for high-energy particle
interactions (e.g., Ref. [45]). The quantized system is
the amplitude of a field in space-time, often described as a
superposition of modes, each one of which approximates a
quantized harmonic oscillator. The standard model system
violates locality in a particular way: each mode has built-
in spacelike correlations, the classical spatial structure of
a plane wave with a certain wave number. In standard
calculations, this is often expressed mathematically by
writing the initial state as a field vacuum state in comoving
coordinates.
This model quantum system is not adequate to include

all the correlations that could occur among space-time
d.o.f. The background space-time is classical, meaning that
positional relationships are described by commuting quan-
tities. The same classical locality is assigned to quantum
fields and their gravitational effects; although the ampli-
tudes are quantized, the comoving field modes have a
determinate, globally defined spatial structure that is shared
by the relic metric perturbations.
The new hypothesis here is that during inflation locality

does not apply down to the Planck scale, only down to the
horizon scale. Before then, space-time is not constrained to

be a classical differentiable manifold. Primordial correla-
tions can violate locality in new ways: relative positions and
proper times of comoving world lines emerge with spatially
nonlocal correlations at reheating when they become
classical.
The new quantum-classical boundary (Fig. 1) is defined

by the classical causal structure around each observer.
The “outgoing” states are represented by world lines when
they pass through the horizon. In the inflationary context,
freezing of perturbations is the equivalent of collapse or
measurement in the laboratory, and outgoing states (i.e.,
the positions of world lines) are entangled with each other
everywhere on the horizon. In this respect, the nonlocal
entanglement of perturbations emerging from inflationary
horizon states resembles global entanglement of incoming
and outgoing particle states emerging from black hole
horizons, introduced to solve information paradoxes
[10–12]. An eternal black hole horizon (Fig. 2) creates
directionally antisymmetric correlations among particle
states from quantum backreaction; in spooky inflation,
the horizon creates directionally antisymmetric curvature
perturbations.
In standard inflation, the quantum-classical boundary

is the same for all observers: each plane wave mode of
fixed comoving size and direction “freezes” everywhere at
the same comoving time, with spatial relationships among
world lines determined by a determinate classical back-
ground. Here, the emergent space-time hypothesis implies
an observer-dependent boundary of the horizon and the
quantum region. For any two world lines, their classical
positions only freeze in much later, at a time specific to

quantum region

classical region

comoving 
world lines

reheating

(new quantum-classical 
boundary for geometry)

world line

light cone

constant-time 
hypersurface

Causal diamonds 

FIG. 1. Penrose diagram of the standard inflationary ΛCDM
universe. Constant time and space surfaces are shown in
comoving coordinates. In the spooky scenario, the quantum-
classical boundary for geometry lies on an observer’s inflationary
horizon, the null surface represented by the upper boundary of the
shaded region. Entanglement on the horizon creates new, delo-
calized spooky correlations of perturbations among different
locations and spatial directions at reheating.
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their locations and separation direction. This indetermi-
nacy allows a nonlocal spacelike entanglement among
different directions that cannot occur for standard field
modes.
The main goal of this paper is to show that it is possible

to incorporate these new features into a consistent model
for emergent classical perturbations. The models developed
here allow sharper predictions than previous generic
estimates of holographic discreteness effects on inflation
[46,47]. As shown below, spooky quantum fluctuations
project onto observable modes in a way that introduces
larger perturbations than usual and introduces previously
forbidden antisymmetric correlations.
Ultimately, a full theory will require a new quantum

model that can include interference in three directions and a
model of freezing that can account for the classical causal
structure and local inertial frame that emerges for each
world line. A model of quantum-geometrical states cannot
be based on a standard correspondence principle, since they
represent new unknown quantum d.o.f. of emergent space
and time. Here, simple models are developed based on
constraints from matching to classical symmetries—first
for causal diamonds in flat space-time and later for a
cosmological background. For the present purpose, it does
not matter that the d.o.f. of the models are not “funda-
mental” in the sense of relational quantum gravity [17]:
here, they simply serve to compute correlations among
measurements, in the same way as quantum models used to
interpret many laboratory systems (e.g., Refs. [36,37]).

C. Quantum-spin-algebra model

The following model is developed to provide a concretely
worked example of new quantum-geometrical correlations
on scales much larger than the Planck length. The goal is to
develop a quantum model for emergent proper time relation-
ships with a world line in flat space-time. More specifically,

we need a quantum model with operators that describe
the relationships between time on different world lines
in different space-time directions. Taking our cue from
Wheeler, the quantum states of the model should live
on light cones, meaning that causal relationships in all
directions define an exact symmetry.
Classical proper time is a scalar, but causal relationships

defined by a light cone are multidirectional. In the quantum
system, these requirements can be reconciled if states in
different spatial directions are entangled. All observables in
scalar proper classical time should emerge by contracting
nonlocal, orientated states in three spatial directions into a
scalar clock operator.
These properties motivate us to model quantum space-

time relationships using a spin algebra, instead of the
quantized harmonic oscillation of scalar amplitude usually
used for inflation. The spin model allows a quantitative
estimate of new spooky quantum geometrical relationships
that cannot occur in standard theory: nonlocal entangle-
ment among multidirectional temporal states, with the
correct (Planck-scale, holographic) number of d.o.f., for
a region of any size.
The standard quantum spin algebra is repurposed here as a

relational holographic quantum model of a causal diamond,
the region defined by future and past light cones from an
interval of time on any world line (Fig. 3). Fluctuations of
the quantum system are interpreted as geometrical fluctua-
tions of proper time on a world line relative to the two-
dimensional (2D) spacelike boundary where the light cones
intersect—spooky correlations among directions. The tem-
poral correlations on causal diamonds are extrapolated below
to scalar curvature on inflationary horizons and ultimately
to distinctive new exotic properties of the matching relic
classical perturbations.

III

III

IV

t=constant

r=constant

observable 
exterior region

future unobservable 
 interior

observable 
antipodal region

event horizon

FIG. 2. Maximally extended Penrose diagram of an eternal
Schwarzschild black hole, adapted from Ref. [10]. Surfaces of
constant time t and radius r are shown for Schwarzschild
coordinates that approach proper coordinates for a distant
external observer. Entanglement on the horizon creates globally
delocalized correlations between positions and momenta of
incoming and outgoing particle states, time antisymmetric
between antipodal regions I and II, as indicated by bold arrows.
In spooky inflation, similar antipodal time antisymmetry on the
inflationary horizon can lead to directionally antisymmetric
scalar curvature perturbations.

FIG. 3. Space-time diagram of a causal diamond associated
with an interval on a world line, shown here in the rest frame.
Operators of spin model quantum states correspond to three
noncommuting directional components of time, τ̂i, which com-
bine to form a commuting operator T̂, the total duration along the
interval in classical proper time. They describe positional
relationships between an observer and events on the 2D spacelike
boundary in different directions.
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The model is defined by quantum operators τ̂i with the
dimension of time. The indices i, j, and k take the values 1,
2, and 3, identified physically with classical directions in
3-space. The commutation of the operators obeys a
standard spin algebra in three dimensions,

½τ̂i; τ̂j� ¼ itPτ̂kϵijk; ð4Þ

where ϵijk denotes the Levi-Cività antisymmetric 3-tensor.
The operators are well known to obey the Jacobi identities

½τ̂i; ½τ̂j; τ̂k�� þ ½τ̂k; ½τ̂i; τ̂j�� þ ½τ̂j; ½τ̂k; τ̂i�� ¼ 0; ð5Þ

so the quantum theory is self-consistent.
The quantum operator notation τ̂i is introduced to high-

light our unconventional physical adaptation [48] of this
familiar system to describe the quantum entanglement
among nonlocal quantum d.o.f. that emerge as space and
time. Instead of angular momentum components, the con-
jugate variables are directional components of a quantum
operator that approximates time in a classical limit but has
noncommuting relationships among spatial directions. With
this physical interpretation, Eq. (4) describes a holographic
entanglement of geometrical d.o.f. over an entire 4-volume.
In Eq. (4), the Planck time tP takes the place of the

usual quantum of action, Planck’s constant ℏ, that governs
standard quantum-dynamical relationships associated
with displacement operators in a continuous space-time
background. As explained below, the coefficient tP is
chosen so that the number of d.o.f. agrees with what is
needed to produce holographic emergent gravity as a
statistical behavior [31–34].
The model posits that quantum space-time states for a

causal diamond much larger than the Planck time (T ≫ tP)
have the same discrete relationships as quantum states for
any high angular momentum system (jJj ≫ ℏ). The ampli-
tude, symmetries, and entanglement of fluctuations in
emergent time and direction are derived with only quantum
commutators; they do not depend on dynamical operators
or a Hamiltonian. In standard treatments of angular momen-
tum [49], the quantum conditions [Eq. (4)] are often derived
from a correspondence principle with classical Poisson
brackets; here, they are motivated just from their symmetry
and holographic information content.
The spin algebra combines operators associated with

three spatial directions into a rotationally invariant algebra.
In this interpretation, it describes a state in relation to a
chosen spatial location, the origin of coordinates, inter-
preted as a clock or observer at rest. Like an atomic model,
the properties of the quantum system are expressed using
classical coordinates. The interpretation is extended below
to model the emergence of global directions and cosmic time
and the projection of the quantum fluctuations onto classical
cosmological perturbations that arise during inflation.

1. Eigenstates of emergent proper time duration

Emergent classical proper time duration is described by
an operator T̂, analogous to total angular momentum:

T̂2 ≡ τ̂�i τ̂i: ð6Þ
In the same way in which total angular momentum com-
mutes with all of its components,

½T̂2; τ̂i� ¼ 0; ð7Þ
the emergent proper time duration T, the observable
defined by eigenvalues of T̂, has no quantum uncertainty.
Causal structure is an exact symmetry by construction: the
radius of the 2D boundary (of the causal diamond) in the
observer rest frame is identified with cT. Thus, the spin
algebra in three-dimensional (3D) space actually describes
a quantum model of all states in a four-dimensional (4D)
causal diamond, including the embedded causal diamonds
that can nest within it.
Adapting conventional notation for angular momentum,

let quantum numbers l denote positive integers that label
discrete temporal eigenstates,

T̂2jli ¼ lðlþ 1Þt2Pjli; ð8Þ
corresponding to discrete eigenvalues of classical proper
time duration,

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
tP: ð9Þ

2. Uncertainty relation for orthogonal directions

The directional operators τ̂i are related by an uncertainty
relation: a variance hτ2⊥i ¼ TtP in orthogonal directions
that increases with size, in the same way in which a state
of definite angular momentum in one direction is a super-
position of states in the orthogonal directions.
To show this, consider projections of the operator τ̂i.

Let li denote its eigenvalues in direction i:

τ̂ijl; lii ¼ litPjl; lii: ð10Þ
In a state jli, the operator τ̂i can take discrete eigenvalues in
units of tP,

li ¼ l; l − 1;…;−l; ð11Þ
giving 2lþ 1 possible values.
Still following standard practice (i.e., Ref. [49]), define

raising and lowering operators for components in each
direction,

δ̂1� ≡ τ̂2 � iτ̂3; ð12Þ
with equivalent expressions for cyclic permutations of the
indices. The effect on a state is to raise or lower the
quantum number of the projection onto that component
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by one unit (that is, one Planck time), while leaving the
total T invariant. In our interpretation, these operators are
identified below as discrete, differential, directional pro-
jections on individual line cones (e.g., Fig. 5) and in the
Appendix as operators that relate proper time between
different world lines.
The duration operator T̂2 can be written in terms of any

single i as

T̂2 ¼ δ̂iþδ̂i− þ τ̂2i þ τ̂i ¼ δ̂i−δ̂iþ − τ̂2i þ τ̂i: ð13Þ
Direct calculation (e.g., Ref. [49]) then leads to the product
of amplitudes for measurements of either of the orthogonal
components τ̂j, with j ≠ i,

hlijτ̂jjli − 1ihli − 1jτ̂jjlii ¼ ðlþ liÞðl − li þ 1Þt2P=2; ð14Þ
again for any i.
Notice that the left side represents the expectation in an

eigenstate jlii of an orthogonal-variance operator,

jτ̂jjli − 1ihli − 1jτ̂jj: ð15Þ
Thus, Eq. (14) gives the expected variance hΔτ2⊥i in
orthogonal components τ̂j in an eigenstate jlii of definite
τ̂i. This leads to a directional uncertainty relation: from
Eqs. (9) and (14) in the limit of l ≈ li ≫ 1, orthogonal
temporal displacements have a variance about a mean value
T given by

hΔτ2⊥i ¼ hðτ⊥ − TÞ2i ¼ TtP: ð16Þ
This relation refers to time operators in any pair of
orthogonal directions, relative to the 2D causal-diamond
boundary of radius cT (Fig. 4).
Thus, time on the boundary, defined in relation to an

observer at the origin, is in a superposition of directionally
antisymmetric states. A causal diamond or horizon surface
is never exactly isotropic but has directionally correlated,
antisymmetric fluctuations.

3. Physical fluctuations in gravitational potential

To help clarify the physical interpretation of this strange
result, define operators for displacement,

Δτ̂i ≡ τ̂i − T̂; ð17Þ
and for dimensionless fractional displacement,

Δ̂i ≡ Δτ̂i=T: ð18Þ
The latter operator represents a difference in potential
associated with direction i at separation cT. Fractional
time distortions appear as differences in Δi along the three
spatial directions that are all correlated with each other.
As discussed in the Appendix, the identification of cT

with R means that virtual fluctuations in flat space-time are

“paid back” on the return light cones, for causal diamonds
of any size. Thus, potential fluctuations associated with
measurements on a single world line exactly cancel and are
not observable. The hypothesis of this paper is that during
inflation nonlocal relational correlations resembling those
of Δ̂i on different world lines correspond to differences in
comoving proper time, or perturbations in scalar curvature
in the emergent classical metric on the horizon. This
hypothesis has physical consequences.
One physical consequence is a change in the overall

amplitude of perturbations. During slow-roll inflation, the
relevant causal diamond radius is approximately the radius
of the horizon, so the fluctuation power of dimensionless
relic invariant curvature perturbations is approximately
given by

hΔ2i ¼ hΔτ2⊥i=T2 ¼ tP=T ¼ Htp: ð19Þ
The linear dependence on H is dramatically different from
standard nonholographic fieldlike perturbations, which
scale likeH2. The basic reason the geometrical fluctuations
are larger than usual is that there are fewer independent
d.o.f., a direct consequence of holography.
Another physical consequence is a new directional anti-

symmetry. In the spin-algebra model, it arises because τ̂i
and Δ̂i are odd under parity transformations. The statistical
properties of global directional antisymmetry in spooky
relic perturbations are derived below from invariance on
the classical side.

4. Number of eigenstates

The eigenvalues of the time operator T̂ are identified
with both classical emergent proper time and the radius of a
causal diamond or horizon of a space-time volume around

FIG. 4. Visualization of the quantum spin model fluctuations as
generalized rotations of a causal diamond. A measurement of
time along one axis on the surface of a causal diamond of
duration T and radius cT along any direction (here, out of the
page) leads to antisymmetric fluctuations of time on the boundary
in the orthogonal directions, of magnitude hΔτ2⊥i ¼ TtP
[Eq. (16)]. In the spooky model, antisymmetric fluctuations of
curvature [Eq. (19)] or proper time [Eq. (A2)] ultimately freeze in
as antisymmetric cosmological perturbations [Eq. (42)].
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an observer’s world line. This identification reduces the
number of independent dimensions by 1.
The number of eigenstates within a causal diamond of

radius cT can be counted precisely, as if they were discrete
angular momentum eigenstates. For each l, there are 2lþ 1
directional projection eigenstates, so the number of d.o.f.
N—interpreted here as the amount of information or
entropy in a causal diamond or horizon—scales holo-
graphically, as the surface area in Planck units,

N ¼
Xl

l0¼0

ð2l0 þ 1Þ ≈ 2ðT=tPÞ2; ð20Þ

where the approximation applies in the large l limit and we
have used Eq. (9). The total holographic information of a
causal diamond [Eq. (20)] counts all the combinations of
nested, entangled light cone states that can represent the
state of an interval on the world line. Up to factors of order
unity in the absolute normalization, this agrees with the
entropy of black hole horizons.

5. Semiclassical visualization as light cone fluctuations

In a semiclassical picture in which causal diamonds are
stitched together from discrete light cones, spooky fluctua-
tions correspond to Planck-scale differential displacements
on Planck-proper-time-separated light cones (Fig. 5 and
Refs. [13–15]). Projections of states are directionally
antisymmetric on each light cone, like the rotational raising
and lower operators δ̂i�, as discussed in the Appendix.
In an inflationary background (Figs. 6 and 7), each light

cone imprints a horizon-scale coherent fluctuation when
it “freezes” into a classical metric on the horizon. Over an
e-folding time, about ðHtPÞ−1 null surfaces pass through
the horizon. Each one has a displacement ≈tP, so the
accumulated displacement over a time 1=H has a variance
hδt2i ≈ tP=H. The curvature perturbation is the fractional
time dilation associated with the fluctuation on the horizon
scale over that time,

Δ2
S ¼ hδt2iH2 ¼ αHtP; ð21Þ

where α is a factor of order unity.
This semiclassical fluctuation picture does not fully

capture the weird antisymmetry, nonlocality, and entangle-
ment associated with the operators δ̂i� and τ̂i in the spin-
algebra model of relational emergent time. However, it does
lead to the same estimate as Eq. (19) for the amplitude;

FIG. 5. Foliation of flat space-time, adapted from Ref. [15].
Left side: a series of light cones separated by a Planck proper time
on an observer’s world line. Arrows indicate projections of a
raising or lowering operator δ̂i� along some axis [Eq. (12)]. Right
side: light cones at one time in the observer’s rest frame.

FIG. 6. Radial light trajectories in inflation, shown as proper
separation from the world line of an observer (dotted line).
During slow-roll inflation, the cylinder representing the apparent
inflationary horizon, defined by the outermost, incoming null
trajectories, lies at approximately constant proper separation from
an observer’s world line. It represents the new quantum-classical
boundary shown in Fig. 1; outgoing states of perturbations freeze
in with nonlocal correlations on this cylinder. Inbound light cones
of causal diamonds with a boundary near the horizon entangle
with outgoing light cones that emerge significantly later.

FIG. 7. In the same coordinates as in Fig. 6, proper spatial
separation of two comoving world lines (dotted) are shown with
their light cones. Right side: multiple time slices of future light
cones of two events are shown, one inside and one on the horizon
of the observer. In the observer frame, clocks appear to freeze on
the horizon.
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it depends linearly on the value of H at the time when a
fluctuation freezes on the horizon.

III. COMPARISON WITH CURRENT
MEASUREMENTS

A. Constraints from the perturbation spectrum

Constraints on the parameters of the inflationary back-
ground model follow from the result that the curvature
perturbation Δ2

S on any scale depends only, and linearly, on
the value of H when it crosses the horizon [Eqs. (19) and
(21)]. Let ϕ0 denote the value of ϕ when the measured
comoving scales, comparable to the current Hubble length,
cross the horizon. From Eqs. (1) and (21),

Δ2
S ¼ αð8πGt2P=3Þ1=2Vðϕ0Þ1=2: ð22Þ

The measured value [2,5] Δ2
S ¼ AS ¼ 2 × 10−9 implies an

energy density during inflation and an upper limit to
reheating temperature, characterized by an energy scale
E0 ¼ Vðϕ0Þ1=4 in Planck units,

E0 ¼ α−1=2ð3=8πÞ1=4ΔSmPc2 ≈ 3 × 1014 GeV; ð23Þ

where mP ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
. As usual, the actual reheating

temperature is generally much less, depending on details
of the matter sector.
As in standard inflation, the value of H is not constant

during inflation but varies slowly, according to Eqs. (1) and
(2). Each comoving wave number k passes through the
horizon at a different time, so the scalar perturbations vary
with scale, with a spectrum described by a spectral index
nS: Δ2

S ∝ knS−1. In the spooky scenario, this “tilt” in the
spectrum is given simply by

nS − 1≡ d lnΔ2
S

d ln k
¼ d lnH

d ln k
¼ −ϵ; ð24Þ

where ϵ denotes the standard slow-roll parameter,

ϵ≡ ðV 0=VÞ2ð16πGÞ−1: ð25Þ

Because Δ2
S ∝ H and not H2 (as is usual), the tilt differs by

a factor of 2 from the standard relation [6]. Thus,
constraints on the allowed potential shape also change;
potentials preferred in the spooky scenario are strongly
excluded for standard models and vice versa.
Equations (24) and (25) imply that the measured tilt

depends only on V 0=V at the epoch when the measured
range of scales passes through the horizon. The measured
value [4,5] 1 − nS ¼ 0.035� 0.004 constrains its logarith-
mic slope to be close to the inverse Planck mass:

�
V 0

V

�
ϕ0

¼
ffiffiffiffiffiffiffiffiffiffi
16πϵ

p

mP
¼ 1.32m−1

P

�
1 − nS
0.035

�
1=2

: ð26Þ

As usual, sufficient inflation to reach the current scale of
the Universe requires N ≈ 60 e-foldings since ϕ ¼ ϕ0,
depending on reheating and subsequent evolution. In the
slow-roll approximation,

j _ϕ=ϕjϕ0
≈Hðϕ0Þ=N: ð27Þ

Combination of Eqs. (1), (3), (26), and (27) leads to an
absolute estimate of ϕ0:

ϕ0 ≈
N
8π

�
V 0

V

�
ϕ0

m2
P ≈ 3.1mP

N
60

�
1 − nS
0.035

�
1=2

: ð28Þ

These results show that properties of the effective potential
V in the exotic scenario are in principle overdetermined
by measurements. The value and slope of the potential
determine, respectively, the amplitude and spectral tilt of
the relic perturbations. Given the tilt, the value of ϕ0

determines the number of e-foldings—that is, the size of
the currently observable Universe.
It is not trivial for a potential to satisfy these exper-

imental constraints on both N and nS. For example, a
potential of monomial form V ∝ ϕb satisfies Eqs. (26) and
(28) if and only if

b ¼ ϕ0ðV 0=VÞϕ0
¼ 2Nϵ ¼ 4.1

N
60

�
1 − nS
0.035

�
; ð29Þ

so cosmological measurements agree (to within measure-
ment errors) with b ¼ 4, but not with other integer values.
A potential of the form

V ¼ Vϕ4 ð30Þ

fits current measurements with N ¼ 59� 7, and a coef-
ficient V ≈ 10−20 in Planck units that depends on α, N, and
nS. A potential of this form [Eq. (30)] is now ruled out for
standard inflation [6]. The range of viable models will be
more constrained by improved measurements of the tilt.

B. Comparison with inflaton field fluctuations

In standard slow-roll inflation, scalar fluctuations ΔS;δϕ
from quantum fluctuations of the inflaton field (e.g.,
Refs. [7–9]) depend not only on H but also on ϵ:

Δ2
S;δϕ ¼ ðH2=2π _ϕÞ2 ¼ 1

8π2
H2t2Pϵ

−1: ð31Þ

These effective modes presumably still exist in the spooky
system, but they are subdominant. Comparing Eq. (31) to
Eq. (21), the exotic effect dominates for observationally
viable values of ϵ and H in the spooky scenario,
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Δ2
S=Δ2

S;δϕ ¼ 8π2αϵ=Hðϕ0ÞtP ≫ 1; ð32Þ

which validates the consistency of our approximation to
neglect the gravitational effect of virtual inflaton fluctua-
tions. The value of H is now so small that they are
unimportant except for very small values of ε.
Similarly, the exotic scalar spectral index tilt [Eq. (24)]—

like the standard prediction for tensor tilt—depends only on
ϵ, whereas the standard prediction, because it also depends
on the second derivative of V, allows a larger variety of
potentials that fit measurements. The running (change with
scale) of the spectral index is predicted to be very small, as
in many standard models.

C. Tensor perturbations

To agree with current Planck-sensitivity laboratory con-
straints [44], an exact symmetry is built into the models
here [for example, in Eq. (4)] such that spooky tensorlike
correlation modes vanish. Because of the directional anti-
symmetry, perturbation multipoles are only odd; the even
directional multipoles, including quadrupolar gravitational
waves, vanish. As a result, tensor perturbations from
spooky fluctuations are predicted to be small.
Of course, gravitational waves must still exist, but in

emergent theories of gravity, gravitational waves, like
curvature, are emergent rather than fundamental d.o.f.
[31–34]. The standard theory of a spin-2 graviton has a
similar status to the theory of phonons—they are physically
real but are not fundamental quanta. Their quantum
fluctuations should be described by the standard effective
theory, linearized general relativity.
In the context of inflation, the usual quantum theory of

tensor modes applies to these effective d.o.f. The metric can
be quantized in the standard way by linearized quantum
gravity, so tensor perturbations occur with the standard
value, Δ2

T ¼ H2t2P=2π
2. The exotic scenario thus predicts a

tensor-to-scalar ratio,

r ¼ Δ2
T=Δ2

S ¼ HtP=2π2α ¼ Δ2
S=2π

2α2; ð33Þ

which is far too small to measure. It is many orders of
magnitude below the current experimental upper bound
[3,4], r < 0.07, and much smaller than predictions of some
standard slow-roll inflation models (e.g., Refs. [45,50]) that
fit current data well [6] without spooky correlations.

D. Consistency of the effective potential

In standard inflation, a “super-Planckian” value of ϕ, as
in Eq. (28), often leads to inconsistency from divergences
in an effective field expansion [8,9]. However, in an
emergent space-time, this apparent difficulty could be an
artifact of inappropriately applied quantum field d.o.f.;
classical space and time are separable only in systems much
larger than the Planck length, and quantum field d.o.f. are
separable from space-time only well below the Planck

mass. In this context, it is consistent to adopt a classical
approximation for the unperturbed background geometry
on the scale H−1 ≫ tP with any classical expectation
value ϕ.
As in many inflation models, the exotic scenario does not

address the physical origins of VðϕÞ nor its connection with
known matter fields. The one small number in the model
[which can be taken as the coefficient V in Eq. (30)] is not
explained.

IV. SIGNATURES OF SPOOKY CORRELATIONS

The last section showed that the power spectrum of
perturbations in the spooky scenario agrees with standard
concordance cosmology and with current data. However,
covariances significantly depart from standard predictions
for some observables: unique spooky correlations among
relic mode phases, which produce measurable statistical
signatures in the distribution of matter and radiation at late
times, distinguish spooky models from standard infla-
tionary fluctuations or latter-day classical processes.
The following considerations do not rely on specific

features of the quantum models introduced above. As
before, space-time in the classical era—above reheating
in Fig. 1—is described by a standard Friemann-Lemaitre-
Robertson-Walker background metric with linear curvature
perturbations. The perturbations are required to obey the
usual constraints that apply to any space-time, such as
general covariance, as well as the standard global cosmo-
logical symmetries of homogeneity and isotropy. The new
feature added by spooky inflation is to relax the usual
constraints on locality of initial conditions. New kinds of
spooky spacelike correlations permit phase correlations,
among classical modes in different directions and on
different scales, that are not possible in the standard picture.
The new correlations are still highly constrained by
cosmological symmetries and must obey a new directional
antisymmetry that is potentially observable. As elaborated
further in the Appendix, in a fully relational model of
quantum gravity, this classical relic statistical signature
ultimately corresponds to an antisymmetry of relational
quantum states similar to those studied above.

A. Classical perturbations

As above, assume a standard unperturbed classical
background cosmology, including (unquantized) slow-
roll inflation and the standard late-universe concordance
model, ΛCDM. In linear perturbation theory [51], a gauge-
invariant curvature perturbation Δðx⃗Þ is constant with time
on a world line at fixed comoving coordinate x⃗. The
transform in comoving wave number space k⃗ is

Δ̃ðk⃗Þ ¼
Z

dx⃗Δðx⃗Þeik⃗·x⃗ ¼ jΔ̃ðk⃗Þjeiθðk⃗Þ: ð34Þ
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For linear perturbations with only pressureless cold
matter, both the modulus jΔ̃ðk⃗Þj and phase θðk⃗Þ of modes
are constant. Mean square curvature perturbations are
given by integrals over the power spectrum Δ̃2

S. As
discussed above, in the real universe, perturbations are
statistically isotropic and close to scale invariant:
Δ̃2

S ∝ jkjnS−1, where nS is close to 1.
On very large scales today, not only the power spectrum

but also the actual distributions Δðx⃗Þ and Δ̃ðk⃗Þ are almost
the same now as they were at the end of inflation. They are
modified by a modest factor by radiation-pressure-driven
movement of baryons before recombination, but even so,
until they become nonlinear at late times, the comoving
position of the bulk of the matter (that is, cold dark matter)
in a large-scale mode has moved only a small fraction of
a wavelength from where it originated. We can say that
primordial phases, still preserved in relic linear perturba-
tions of density on large scales, “remember” the detailed
pattern in comoving coordinates that was impressed by the
process that formed them during inflation.

1. Correlations of standard inflationary
perturbations

Cosmic perturbations in the standard picture arise from
the gravitational effect of quantum fluctuations of the
inflaton field around its expectation value, frozen in when
they cross the horizon during inflation. In simple models
based on Gaussian fluctuations of a free quantum field, the
phases and amplitudes of each mode are independent
random variables set by an initial vacuum state. In this
case, Δ̃2

SðjkjÞ contains all the information that remains of
the primordial process.
In a broad class of widely studied non-Gaussian models of

locally interacting fields during inflation, the jΔ̃ðk⃗Þj’s can be
correlated with each other. The usual measure of correlations
among modes is the bispectrum (e.g., Ref. [52]),

Bðk⃗aÞ ¼ hΔ̃ðk⃗1ÞΔ̃ðk⃗2ÞΔ̃ðk⃗3Þi; ð35Þ

defined as an average of transforms Δ̃ðk⃗Þ for triplets of wave
vectors k⃗a that contribute to the distribution. It is well known
that for correlations from local field interactions, including
non-Gaussian correlations of fields, the bispectrum is non-

zero only for a closed triangle of wave vectors,
P

a k⃗a ¼ 0.
This property is associated with local momentum conserva-
tion for interactions. This broad class of non-Gaussian
models has been tested using recent data [53].
We will now show that spooky correlations have dis-

tinctive properties that are cleanly distinguishable from any
of these models. They have a Gaussian distribution of
amplitudes but also spooky nonlocal and multidirectional
phase correlations that cannot be produced by any local
field theory on a classical background.

B. Spooky perturbations

In the spooky model, the emergence from a quantum
system of a classical geometry—an expanding universe
with a local cosmic standard of rest—is inseparable from
the formation of perturbations. Fluctuations in the process
of emergence are the source of the perturbations.
Nonlocal collapse of the wave function—the projection

of the quantum state onto an emergent observer’s comoving
frame—ensures that the states of nested causal diamonds
are consistent. They entangle with each other to approxi-
mate a classical local inertial frame everywhere consistent
with the global emergent metric.
The spooky correlations violate locality and local

momentum conservation in a particular and highly con-
strained way. The physical process must still be generally
covariant—it can only depend on quantities that do not
depend on coordinates or a particular classical solution.
Perturbations must also respect cosmological symmetries
on all scales during the classical era after they leave the
inflationary horizon—they must be statistically homo-
geneous and isotropic.
On the other hand, space and time are now slightly

indeterminate on preemergent scales, so local momentum
conservation is no longer imposed by a classical metric
(and a local inertial frame) on perturbations. Physically, this
means that momentum and emergent time can be virtually
“borrowed” and “paid back,” on the scale of the horizon. It
is not necessary for all correlations among noncoplanar
modes to vanish, only that appropriately invariant averages
do. The statistical properties of emergent spooky perturba-
tions must depend only on covariant combinations of wave
vectors.

1. General covariance, statistical isotropy,
and antisymmetry

Consider first the requirement of general covariance. Let
uνϕ denote the 4-vector field defined by the timelike inflaton

field gradient, and let kκ1; k
λ
2; k

μ
3 denote a triplet of pertur-

bation mode wave vectors in 3þ 1 dimensions. Using the
antisymmetric Levi-Cività 4-tensor ϵκλμν, define a covariant
scalar projection,

E4D ∝ ϵκλμνkκ1k
λ
2k

μ
3u

ν
ϕ: ð36Þ

This expression is manifestly invariant under coordinate
transformations for any triplet of wave vectors.
Now, consider the spatial projection onto standard

expanding comoving coordinates in three dimensions.
As usual, the homogeneous background, encoded here in
uνϕ, breaks boost invariance. In the cosmic comoving
coordinate frame, uνϕ ∝ ð1; 0; 0; 0Þ, so Eq. (36) projects
onto surfaces of constant comoving proper time as a scalar
triple product for each triplet of 3D k⃗’s:
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Eðk⃗1; k⃗2; k⃗3Þ≡ ϵijkki1k
j
2k

k
3=k

3
0: ð37Þ

Geometrically, this dimensionless triple product represents
the oriented volume of the parallelepiped defined by the
k⃗’s. It vanishes when the k⃗a’s lie in the same plane, so any
closed triangle maps onto E ¼ 0. Up to a choice of
normalization scale k0, E represents a unique invariant
number derived from a 3D comoving wave vector triplet.
It is odd under spatial reflections, k⃗ → −k⃗.
This projection shows that it is possible to produce a

scalar distribution in comoving space that is generally
covariant, statistically isotropic, and directionally antisym-
metric. For this to happen, is necessary to abandon the
constraint of local momentum conservation that requires
coplanar momenta.
The directional antisymmetry can be traced to how

locality arises in an emergent system, in which positions
in relation to an observer arise from directional quantum
operators, rather than a fixed background. In this kind of
system, the odd parity of 3D spatial projections of direc-
tional relationships onto comoving 3-space by the infla-
tionary horizon is a generic behavior that largely follows
from classical covariance. Since a three-dimensional space
is spanned by three basis vectors, and the scalar product of
three noncoplanar vectors is antisymmetric, an emergent
scalar with zero mean, such as a spooky curvature pertur-
bation, is naturally odd under reflections and vanishes at the
origin,

Δðx⃗Þ ¼ −Δð−x⃗Þ and Δ̃ðk⃗Þ ¼ −Δ̃ð−k⃗Þ: ð38Þ

Physically, the antisymmetry arises from a simultaneous
antisymmetric “collapse” of the wave function at horizon
antipodes, as the classical comoving frame forms on the
inflationary horizon. The same projection properties are
familiar in angular momentum, such as those in the
quantum spin algebra discussed previously.

2. Measures of scale-invariant antisymmetry

Antisymmetric projections can be used to define global
statistical measures of spooky nonlocal multidirectional
correlations that emerge in classical perturbations. For
spooky inflation, the most useful projections are scale
invariant; the normalization k0 for each triplet has a value
such that E only depends on the shape of the parallelepiped,
not on its absolute scale.
The simplest covariant, scale-invariant normalization

choice for E is k30 ¼ jϵijkki1kj2kk3j:

E0ðk⃗1; k⃗2; k⃗3Þ≡ ϵijkki1k
j
2k

k
3=jϵijkki1kj2kk3j: ð39Þ

With this choice, E0 ¼ �1 for all noncoplanar triplets; it
just measures their parity.

The parity projection [Eq. (39)] does not differentiate
correlations among modes of different scales. Other scale-
invariant normalizations that allow spatial filtering are
possible. They offer several advantages: measurements
over limited ranges of jk⃗j, measurement of correlations
among scales that freeze out at different times, and explicit
tests of scale invariance.
One such projection is motivated by a simplified

physical picture, shown in Fig. 8. During inflation, the
initial conditions for classical mode correlations are
determined physically as entangled states in three spatial
directions freeze on the horizon. In this view, the state of
each mode when it freezes is drawn from a distribution
determined by the states of already-frozen modes with
smaller jkj in all directions. The ongoing entanglement of
the quantum system ends when the smallest comoving
scale freezes in, when the apparent horizon disappears at
the end of inflation—the end of the null quantum region
boundary in Fig. 1. Over the measured astronomical range
of scales, this process is approximately scale free, and the
same should be true of frozen correlations among modes.
A physically natural scale-invariant normalization for the

projection E is thus the magnitude of the last mode of each
triplet to freeze out,

Eðk⃗1; k⃗2; k⃗3Þ ¼ ϵijkki1k
j
2k

k
3=k

3
max; ð40Þ

where

kmax ≡max½jk⃗1j; jk⃗2j; jk⃗3j�; ð41Þ
as illustrated in Fig. 8. In this case, E takes the value −1 or
1 when the k⃗’s are orthogonal with equal lengths and
lies between these values if any of the jkjj’s differ.
This normalization distinguishes the shape as well as

FIG. 8. Freezing of entangled mode states in comoving k⃗ space.
A triplet of comoving wave vectors is shown at a time when the
largest of them, the last of the triplet to freeze out, matches the
inflationary horizon, that is at jk⃗j ¼ aH=c. Smaller values of k
will have frozen earlier into classical perturbations. In the spooky
scenario, wave vectors with jk⃗j > aH=c are still indeterminate,
with entangled spatial directions.
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parity of the oriented parellepiped defined by the vector
triplet, so it allows scale-free statistical measures of
the entanglement between different scales as well as
different directions. The discussion below assumes a
scale-invariant definition of E, of which Eq. (40) is one
example. The normalization in Eq. (40) also allows spatial
filtering with just a single scale, which will be used below
for practical spookiness estimators.
In the place of Eq. (35), a new kind of antisymmetric

bispectrum can be defined using the invariant antisym-
metric projection Eðk⃗1; k⃗2; k⃗3Þ:

B ¼ hEðk⃗1; k⃗2; k⃗3ÞΔ̃ðk⃗1ÞΔ̃ðk⃗2ÞΔ̃ðk⃗3Þi: ð42Þ
It measures correlations of Δ that are odd under reflections.
It is only nonzero for noncoplanar triplets of wave vectors,
so it vanishes in standard theories; it is the simplest
example of a measure of “spookiness” in the distribution.

3. Spooky realizations

Odd-parity distributions can clearly be realized math-
ematically by construction. Instead of a general decom-
position into independent plane waves [Eq. (34)], an odd
distribution can be written as a sum of odd-parity 3D triplet
modes that depend jointly on entangled states in three
spatial directions:

Δðx⃗Þ ¼
X

k⃗1;k⃗2;k⃗3

αðk⃗1; k⃗2; k⃗3Þ sinðk⃗1 · x⃗Þ sinðk⃗2 · x⃗Þ sinðk⃗3 · x⃗Þ

þ βðk⃗1; k⃗2; k⃗3Þ sinðk⃗1 · x⃗Þ cosðk⃗2 · x⃗Þ cosðk⃗3 · x⃗Þ:
ð43Þ

The second row terms are odd under reflection through the
origin but even on reflection in the plane determined by k⃗2
and k⃗3. They single out a direction on each scale, but the
overall distribution is statistically isotropic when averaged
over all scales.
The spatial layouts of maxima and minima for odd 3D

rectilinear triplet modes are shown in Fig. 9. In general, an
odd 3D triplet mode can have different values of wave
numbers along the three directions. A spooky odd-parity
cosmological distribution is in general composed of a
superposition of such 3D triplet modes, allowing different
orientations on different scales. The previous analysis
shows that the overall distribution can be statistically
isotropic, homogeneous, and scale invariant, if the distri-
butions of α and β are functions only of the combina-
tion Eðk⃗1; k⃗2; k⃗3Þ.
A particular triplet decomposition [Eq. (43)] is not

invariant but is unique to a particular observer, the origin
of coordinates (although any given triplet will apply to
a discrete set of periodically spaced observers). Since the
spatial distribution always vanishes at the origin of coor-
dinates, it should be interpreted physically as a realization

of time distortion or curvature relative to a freely falling
geodesic at the origin, not relative to a globally defined,
unperturbed classical background. This assignment of a
relational observable quantity is in keeping with the emer-
gent character of the whole metric. In our setup in which a
horizon is a quantum object, there is no universal, determi-
nate “true” background metric, only one defined in relation
to a particular observer and its particular inflationary
horizon. The odd parity is a remnant of primordial nonlocal
correlations that freeze in at spacelike separation from any
observer, on its horizon.
Here, then, is frozen quantum weirdness on the largest

scales: every observer ends inflation with zero total local
perturbation. Every observer has a different horizon, so the
zero point of the potential is observer dependent; on the
other hand, all observers agree on measurable quantities,
such as differences in Δðx⃗Þ between world lines in a
realized classical distribution over a region where they can
compare measurements. There is no inconsistency between
observers because there is no way to tell “who is right”
about an absolute cosmic background frame. Different
observers look at different but entangled quantum mechani-
cal subsystems that have collapsed into the same classical
state where they overlap.

4. Generic signature of spooky inflation

Of course, the interesting physical question of whether
such weird correlations are actually produced during infla-
tion remains. Fortunately, this question may be answered
by measurement. If spooky perturbations are the dominant
source of primordial perturbations, the exotic antisymmetric
correlation power is a substantial fraction of the total
perturbation, so primordial curvature perturbations are
expected to show a large effect,

hB2i ≈ hΔ2i3: ð44Þ
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FIG. 9. Exploded view in 3-space of cells showing maxima,
minima, and zeros of the two types of rectilinear antisymmetric
triplet eigenmodes [Eq. (43)], for an observer at the center. Some
spatial planes of zeros are shown as dotted lines.
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For standard field-mode perturbations, the opposite is true:
correlations between modes can only exist for coplanar wave
vectors, for which E ¼ 0, so the antisymmetric phase power
is predicted to identically vanish:

B ¼ 0: ð45Þ

Thus, a detection of B ≠ 0 can in principle provide a
model-independent signature of spooky primordial phase
correlations.

5. Antisymmetric spookiness estimators

We now turn to practical measures of spookiness
detectable in cosmic structure. In the projection of the
quantum state vector onto the outgoing space, the choice
of observer defines the measurement. The triplet mode
decomposition in Eq. (43) displays exact antisymmetry in
all modes around only one point, the observer. On the other
hand, there is a statistical tendency everywhere toward odd
correlations, which becomes conspicuous by convolving
the distribution with an antisymmetric kernel. This property
should allow the spookiness of relic correlations in the
actual universe to be estimated from cosmic surveys.
A realistic estimator of correlations can be designed with

a response that optimizes the power of a measurement in a
particular situation. One approach is to use antisymmetric
wavelets WL that probe spooky correlations mainly on
scale L, with transforms shaped to have relatively little
response to kmax ≫ 1=L. To search for the spooky effect,
and to differentiate it from standard perturbations, it is not
necessary for the wavelets to match the exact pattern of
primordial correlation; it is sufficient that a suitable con-
volution of WL with Δ responds to significant fluctuation
power with B ≠ 0.
The convolution is most easily written as a product in

transform space. The normalized spookiness S of a dis-
tribution Δðx⃗Þ on scale L can be defined via a normalized
wavelet-dependent functional similar to B,

S½WL�≡ hW̃LðEÞΔ̃ðk⃗1ÞΔ̃ðk⃗2ÞΔ̃ðk⃗3ÞihΔ̃2
Li−3=2; ð46Þ

where W̃LðEÞ is an odd function of the scale-invariant
combination Eðk⃗1; k⃗2; k⃗3Þ, with a filtering scale L imposed
via a UV cutoff for each triplet at about kmax ≈ 1=L. Again,
for standard perturbations, the spookiness vanishes, because
the Δ̃ðk⃗Þ’s are symmetric.
A simple choice in transform space W̃L would be a

filtered antisymmetric spectrum linear in E,

W̃L ¼ E; kmax < 1=L;

¼ 0; kmax > 1=L; ð47Þ

with some suitable scale-invariant normalization for E, such
as Eq. (40). In configuration space, antisymmetric wavelets

can be constructed from normalized sums of odd triplet
modes as in Eq. (43),

WL ¼
Xk<kmaxðLÞ

k⃗1;k⃗2;k⃗3

αWðEÞ sinðk⃗1 · x⃗Þ sinðk⃗2 · x⃗Þ sinðk⃗3 · x⃗Þ

þ βWðEÞ sinðk⃗1 · x⃗Þ cosðk⃗2 · x⃗Þ cosðk⃗3 · x⃗Þ: ð48Þ

For example, a simple two-parameter wavelet can be
designed by choosing αW ∝ E and βW ∝ E.
The value of S depends on how well the structure of the

wavelet matches that of Δ̃ðx⃗Þ. If spooky perturbations
dominate the spectrum, a normalized antisymmetric wave-
letWL well matched to the primordial structure yields S of
order unity.
By not averaging over one of the wave vectors, one can

define a measure of the overall asymmetry of the filtered
distribution, associated with a specific direction and scale
defined by a wave vector k⃗D:

DLðk⃗DÞ ¼ hW̃Lðk⃗D; k⃗2; k⃗3ÞΔ̃ðk⃗DÞΔ̃ðk⃗2ÞΔ̃ðk⃗3Þik⃗2;k⃗3 : ð49Þ

On any given scale jk⃗Dj, the directional mapDLðk⃗DÞ has an
angular distribution given by a sum of only odd-parity
spherical harmonics, l ¼ 1; 3; 5…. Its dipole (l ¼ 1) mode
defines a preferred axis and direction, frozen in at the time
when that scale froze out, aH=c ≈ jk⃗Dj.
A particular realization breaks directional and transla-

tional symmetry on each scale. On any smoothing scale L,
there is a dipole component with a principal axis on any
larger length scale, defined from Eq. (49), with an origin-
dependent spatial phase. However, the mean dipole of the
distribution vanishes when averaged over all of space
because its direction changes sign from place to place,
and the system as a whole is statistically isotropic because
the principal correlation axis varies with scale. The radial
and angular correlations among odd directional multipoles,
and correlations between principal correlation axes at
different places, depend on how freezing on the inflationary
horizon correlates structures over a range of time. Principal
axes for nearby world lines (closer than ≈1=jk⃗Dj) tend to be
aligned, and multipole components around each world line
are correlated with each other.

V. MEASUREMENT IN COSMIC SURVEYS

A. Cosmic microwave background anomalies

The pattern of CMB temperature anisotropy on large
angular scales has long been known to display several
surprising “anomalies” [54,55] that are often dismissed as
insignificant flukes. We now suggest that some of them can
instead be naturally attributed to spooky inflationary
correlations, even though the perturbation power spectrum
is the same as standard ΛCDM cosmology. The large-angle
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anisotropy approximates a particularly simple projection
that preserves the antisymmetry of primordial perturba-
tions, so general arguments can demonstrate specifically
how new spooky covariances modify standard predictions.
As shown above [Eq. (38)], spooky inflation predicts

directional antisymmetry of Δðx⃗Þ around any observer.
The CMB temperature perturbation δT=T smoothed on
large angular scales is approximately proportional to the
primordial distribution Δðx⃗Þ on a sphere, the cosmic
last scattering surface. Thus, to a first approximation,
the spherical-harmonic decomposition of temperature
anisotropy at low angular wave numbers l should be
mostly directionally antisymmetric. The fluctuation band
power (TT) should have approximately twice the noise
power usually expected in odd spherical harmonics
l ¼ 1; 3;…, and a small fraction of the usual power in
even harmonics l ¼ 2; 4… [This odd/even anomaly is not
expected to appear in temperature-polarization (TE)
correlation since polarization is generated physically by
an even-parity quadrupole, so it starts spatially out of
phase with T and Δ.] Although the intrinsic dipole (l ¼ 1)
is predicted to be larger than usually expected, it is not
measured because it cannot be separated from the much-
larger-still local kinematic dipole. Since the quadrupole
(l ¼ 2) amplitude is predicted to be small compared with
its usually expected value, the octopole (l ¼ 3) modes are
the lowest harmonics predicted to contribute appreciable
observable anisotropy.
This simple prediction appears to be confirmed; a

highly suppressed quadrupole and prominent octopole
modes are well-established features in the TT band-power
spectrum [54,55]. The same effect manifests as another
well-established anomaly, a remarkably small two-point
correlation function of δT=T at large angular separation
[55,56]. In the spooky scenario, the dipole subtraction is
predicted to remove most of the fluctuation power
on angular scales larger than the octopole.
The odd/even effect is found to extend well beyond the

lowest multipoles; it has been estimated [54,55] that a
statistically anomalous excess fluctuation power in odd
multipoles extends up to about l ≈ 30. This also agrees
with a simple estimate of the expectation from primordial
antisymmetry: at about this angular scale, the temperature
anisotropy is significantly modified from its primordial
antisymmetric pattern by waves in the recombination plasma.
The observed CMB temperature perturbation comes

from perturbations in both radiation temperature and
gravitational redshift. On scales much larger than the
horizon at recombination, both effects preserve their
primordial phase, and they tend to cancel each other.
On smaller scales, propagating acoustic waves of baryon/
photon plasma change the phase of the radiation temper-
ature relative to the dark matter–dominated potential.
On scales in which the effects reinforce each other, they
form the well-known baryon acoustic oscillation peaks

in the angular band-power spectrum, the first of which
peaks at l ≈ 200. The symmetric baryon-photon waves
should erase primordial antisymmetry above the scale
where the red wing of this first acoustic peak matches the
average large-angle temperature anisotropy band power.
This occurs at about l ≈ 30, the scale in which parity
asymmetry is indeed found to diminish [55].
As seen above, the multipole directions in spooky

inflation are not independent. Spooky directional correla-
tions could also naturally produce octopolar planarity and
alignments among normally uncorrelated multipole com-
ponents, as observed [55].
More rigorous comparisons with measurements are

possible, by using standard linear theory for the post-
inflation evolution including baryon and radiation transport
and customizing statistical tests to spooky predictions.
The relatively small number of independent modes on
large scales limits the statistical power of large-angle TT
anisotropy to test models—the p values of the anomalies
just described are typically at the percent level and in the
best cases about ten times smaller [55]—but more powerful
tests of this interpretation might be possible as data improve
on large-angle polarization [57,58].

B. Spooky correlations in galaxy surveys

1. Advantages of 3D surveys

Large-angle CMB anomalies hint that spooky primordial
correlations may indeed have an antisymmetric structure.
If so, the idea can in principle be tested with 3D surveys
of cosmic structure, which have more information and
statistical power than CMB surveys. They contain many
more modes since they can measure linear primordial
correlations in a large 3D volume, on scales much smaller
than the horizon.
In addition, 3D density structure preserves primordial

phase information over a wider range of scales than CMB
temperature does. As noted above, primordial perturba-
tions even in the linear regime are modified by an early
nongravitational effect: the acoustic propagation of
baryon-photon waves before recombination shifts the
phase of baryon density modes and symmetrically ran-
domizes their phases on scales up to approximately the
horizon scale at recombination, effectively erasing TT
antisymmetry. Since the baryons constitute only about a
fifth of the total matter density, the baryonic oscillations
have a relatively small effect on the primordial spatial
distribution of the potential. They are neglected in the
rough estimate given here of survey sensitivity.

2. Spookiness estimators based on linear
density contrast

A survey of galaxies or gas provides an estimate of mass
density ρðx⃗Þ when convolved over some kernel with a
smoothing scale L. In the linear regime, the density contrast
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δρðx⃗Þ≡ ρðx⃗Þ − hρi is proportional to Δðx⃗Þ with the same
kernel, with a linear coefficient that depends on L,

ðδρðx⃗Þ=hρiÞL ≈ −ΔLðx⃗ÞðLH=LÞ2; ð50Þ

where LH denotes the Hubble scale, about equal to
4000 Mpc in the present Universe.
In the linear regime, the perturbation in potential is

approximately constant with time on each scale. While the
density contrast is not constant, the primordial pattern in
comoving space is approximately preserved, until the
density perturbation becomes nonlinear. A 3D galaxy
survey thus allows a spookiness estimator similar to
Eq. (46), based on density contrast:

SL ¼ hW̃LðEÞδ̃ρðk⃗1Þδ̃ρðk⃗2Þδ̃ρðk⃗3Þihδ̃ρ2Li−3=2: ð51Þ

Because all standard models predict directional symmetry,
a directionally antisymmetric wavelet W̃L, filtered at
kmax ≈ 1=L for any smoothing scale L, provides a model-
independent spookiness test. If the wavelet is well matched
to the structure of dominant spooky correlations,
SL ¼ Oð1Þ; for standard perturbations, SL ¼ 0.

3. Estimate of survey requirements

The next question is whether imperfect measurements of
the linear density field can in principle show evidence of
SL ≠ 0, and hence signify B ≠ 0 in primordial fluctuations.
The intrinsic limit of sensitivity for many finite-volume
realizations with the same correlations can be written as an
estimation noise error,

δS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðSestimated − StrueÞ2irealizations

q
; ð52Þ

where Strue refers to the spookiness of the true primordial
comoving linear density field. For a wavelet optimally
matched to the spooky structure, δS−1 gives an estimate of
the best possible significance of a detection.
Even with an optimal sampling wavelet, there are

unavoidable noise sources that contribute to δS: nonlinear
physical effects associated with galaxy formation that
change the mapping of Δðx⃗Þ to galaxy density on small
scales and

ffiffiffiffi
N

p
noise in measurements of density from a

limited sample. We will use order-of-magnitude estimates
of these noise sources as a rough guide to estimate
maximum survey sensitivity.
On small length scales in which clustering is nonlinear,

movement of matter smears out the one-to-one mapping
between primordial potential perturbation and matter dis-
tribution: the antisymmetry of the primordial pattern gets
mixed away on a gravitational timescale by nonlinear
dynamics of orbital motions. As a result, most of the
cleanly recoverable primordial phase information comes
from a scale somewhat but not too much larger than the

scale in which density perturbations become nonlinear—
roughly the scale of visible structures of the cosmic web,
such as voids, pancakes, and filaments.
Let L� denote the smallest scale in which the primordial

pattern of curvature perturbations is mostly intact. Density
contrast has unit variance in ≈20 Mpc diameter spheres, so
for rough estimation, we adopt a scale about twice as large,
L� ≈ 40 Mpc or L�=LH ≈ 10−2.
Nonlinear variations on scale L� add noise to measure-

ments on larger scales. White-noise density variance in a
volume of size L > L� scales roughly like ðL�=LÞ3, so the
spookiness measurement noise on scale L,

δSL ≈ ðL�=LÞ3=2hðδρ=ρÞ2i−1=2L ≈ ðL=L�Þ1=2; ð53Þ

is always greater than unity in a single L-size volume. The
primordial pattern in this sense is fundamentally buried
in noise.
Even so, in principle, a coherent spookiness signal can

be still be extracted from a large survey volume L3
S with

about ðLS=LÞ3 samples on scale L; the maximum signal to
noise ratio scales like

½δS−1�≈ ðLS=LÞ3=2ðL�=LÞ1=2≈ ðL�=LÞ2ðLS=L�Þ3=2: ð54Þ

This estimate accounts only for the purely “geometrical
noise”—the information limit imposed by nonlinear struc-
ture. It errs on the optimistic side; it is the best one could
hope for, if the primordial signal is maximally conspicuous
and minimally contaminated.
One straightforward conclusion is that the mean square

sensitivity is at most the number of effective voxels in the
survey volume: ½δS−2�max < ðLS=L�Þ3. Thus, the survey
should have the largest volume possible, LS ≈ LH.
The steep dependence ∝ L−2 in Eq. (54) shows that most

of the signal comes from the smallest measured structures
in which the primordial phase survives—both because there
are more structures (or modes) and because the measured
quantity, density contrast, is larger on small scales. For
optimal sensitivity, the map of density structure should
resolve the nonlinear clustering scale L�. Expressed in
terms of redshift δz≡ δLH=c, ideally the resolution in all
three dimensions should be better than δz ≈ L�=LH ≈ 10−2.
The maximum possible signal-to-noise ratio degrades
quickly if the resolution is poor:

½δS−1�max ≈ 1000ð102δzÞ−2: ð55Þ

In addition to the survey volume and resolution require-
ments, there must be enough galaxies so that the sampling-
noise contribution to the measurement error δS is less than
the geometrical noise. Resolving the phase relationships
of perturbations in three dimensions requires at least an
order of magnitude more galaxies than simply measuring
the direction-averaged power spectrum, which has been
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the design goal of most surveys to date. Guessing that
measurement of a dipolar density wavelet fit in three
dimensions requires at least a few galaxies along each
direction in each L� volume, or perhaps 102 galaxies, the
total number of galaxies N in a Hubble-volume survey
must be more than about

N ≈ 102ðLH=L�Þ3 ≈ 108: ð56Þ

With more galaxies, finer details of the primordial corre-
lations can be resolved. Galaxy-sampling noise scales with
L in the same way as the geometrical noise, so this
requirement is approximately independent of L.
The optimal sensitivity estimate [Eq. (55)] is promising

enough to warrant more study with simulated realizations of
surveys and estimators. A comparison between realizations
with random initial phases, and realizations with spooky
initial perturbations, can model and bound effects such as
nonlinear clustering, numerical artifacts, survey geometry,
sample selection, and nonuniform radial resolution.

4. Implementation in real surveys

The current dataset that comes closest to satisfying the
above requirements is the Dark Energy Survey (DES) [59].
It includes more than 108 galaxies spread over about a
Hubble volume as required; however, as it is a broadband
photometric survey, it does not achieve δz� ¼ 10−2 in the
radial direction for the bulk of its galaxies [60]. Even
allowing for this and additional numerical factors that may
reduce overall significance by more than an order of
magnitude below the value in Eq. (55), it is plausible that
DES might achieve δS ≪ 1—that is, good enough for a
detection if jSj ¼ Oð1Þ. DES may be the first survey
capable of discovering spookiness at high significance.
Detailed studies of spookiness would place demands on

surveys beyond design goals of existing and planned
projects; the expanded scope could motivate extensions
and possibly new surveys. In the future, Large Synoptic
Survey Telescope [61] will improve on DES in all respects
but will still not achieve optimal 3D resolution and sampling.
An optimal survey would need good redshift precision,
δz < 10−2, in a Hubble-volume, densely sampled survey,
with N ≈ 109 galaxies. The largest volumes may some day
be mapped at sufficient resolution using line emission from
gas that is not resolved into galaxies.

VI. SUMMARY

Nonlocal, holographic, entangled states on the infla-
tionary horizon, similar to those invoked to resolve black
hole information paradoxes, can produce correlations in
relic perturbations observably different from standard
inflation models. Many of their properties are fixed by a
single scale, the inflation rate H in Planck units, and well-
known symmetries of the emergent classical background.

The simplest generic consequence of spooky inflation is
a nearly scale-free spectrum of curvature perturbations,
with an amplitude Δ2 ≈HtP significantly larger than those
associated with inflaton field fluctuations. Application of
standard inflation theory with current measurements then
yields direct constraints on the value of H and the slope of
the effective potential. The shape of the effective potential
is constrained to be close to VðϕÞ ∝ ϕ4 in the range of k
observed, with a definite inflaton value several times the
Planck mass. These parameters for the potential are ruled
out in standard inflation [6]. Primordial tensor perturba-
tions are predicted to be very small, based both on general
symmetry arguments and on existing Planck-sensitivity
laboratory constraints.
Another distinctive and robust new prediction, in the sense

of being insensitive to the details of specific spooky models,
is an exact directional antisymmetry of the primordial
distribution of curvature perturbations, traceable directly
to the nonlocality and directional anticorrelation of initial
conditions on the horizon, which is forbidden in standard
models. Although the Gaussian distribution and predicted
evolution of the linear power spectrum are unchanged from
the standard ΛCDM late-time cosmological model, primor-
dial antisymmetry will change covariances for some observ-
ables, modifying estimates of cosmological parameters and
tests of consistency.
Signatures of primordial antisymmetry already appear to

be measured in CMB anisotropy, and if they are indeed due
to nearly scale-invariant primordial spookiness, they should
also be observable in large-scale 3D galaxy surveys, possibly
even in existing data. Evidence for spooky correlations could
signify a dominant role for new Planck-scale quantum d.o.f.
in creating cosmic structure and lead to empirical studies of
emergent quantum gravity.
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APPENDIX

1. Correlations of emergent proper time between
separate world lines

The spooky inflation scenario is predicated on the idea
that space-time emerges from a quantum system. Basic
conceptual elements of classical space-time relationships,
such as localized events and local inertial frames, are
approximate, emergent properties of a quantum system
with new, exotic correlations. Although there is no accepted
theory of relational quantum gravity, some properties of the
spooky correlations can be guessed from known causal
symmetries of the classical space-time.
One model of quantum departure from classical behavior

used to illustrate spooky correlations is the spin-algebra
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model of Eq. (4), which describes a nonlocal spatial
antisymmetry of proper time displacement operators on
the surfaces of causal diamonds. A simple extension of the
model is sketched here to connect it with the relationship of
proper time between separate world lines, encoded in the
entanglement of their states. The relationship is encoded as
pure entanglement information, in the form of an imaginary
cross-spectrum of time displacements.
Consider cross-correlations between states of light

cones on two world lines, A and B, that are classically
at rest with respect to each other. Let δ̂�AB and δ̂�BA denote
operators analogous to the raising and lowering operators
δ̂i� [Eq. (12)]: single-quantum, Planck-scale projections,
in the A and B rest frames, along the AB and BA spatial
separation directions, respectively. In addition to the
spatial antisymmetry already established, they are also
odd on reflection in time, depending on the orientation
toward the past (−) or future (þ):

δ̂þAB ¼ −δ̂−AB: ðA1Þ

These operators can be used to make a model of emergence:
eigenvalues of δ̂�AB and δ̂�BA represent projections, on each
world line, of states on a discrete Planck time series of causal
diamonds, i.e., time intervals, on the other.
Let δABðtÞ and δBAðtÞ denote the time series of discrete

projections of these operators onto a common classical
emergent time variable t, again associated with the AB and
BA directions. They correspond physically to combinations
of noncommuting operators that measure in the orthogonal
directions, as discussed below. Each series represents a
realization of quantum noise with a Planck spectral density,
with one bit of information per Planck time. Since the states
of the two world lines are entangled, the time series are not
independent. As illustrated in Fig. 10 for a causal diamond
on an interval defined by two times on A in flat space,
realizations of the time series on the two world lines relate
to each other with a spooky nonlocal correlation,

2δBAðtÞ ¼ δABðt − R=cÞ − δABðtþ R=cÞ; ðA2Þ

where R is the separation. The same relation applies with
A and B reversed.
Equations (A1) and (A2) express the idea that virtual

time displacements of A relative to B represent Planck-scale
fluctuations of borrowed time that are paid back after a
round-trip light crossing time. It is the counterpart of the
antisymmetry of the nonlocal operators δ̂i� and δτ̂i,
assigned to causal diamonds for different observers in
the same space-time [Eqs. (12) and (17)].
This relationship between time series leads to a purely

imaginary cross-spectrum in the frequency domain,

δ̃BAðfÞ ¼ i sinð2πfR=cÞδ̃ABðfÞ: ðA3Þ

The cross-spectrum between the world lines is imaginary
because the cross-correlation represents pure entanglement
information—it is not visible in the autocorrelation of
either time series with itself, only when the two are
compared. The offset phase between them is always
90 deg, but the actual phase is determined by the state
preparation—in this case, environmental information asso-
ciated with the states of the spatial directions orthogonal
to A⃗B.
Time antisymmetry in antipodal directions is also found

in a consistent quantum model [10–12] of inbound and
outbound particle states of an eternal quantum black hole
event horizon (Fig. 2). That particular model does not
explicitly treat holographic directional correlations, as it
only quantizes the radial part of the backreaction of
quantized particle states on the metric. On the other hand,
directional quantization must exist in some form to be
consistent with black hole entropy. If the hypothesis of this
paper about the inflationary horizon is correct, the nonlocal
holographic information in quantized states of black hole
horizons should produce directional entanglement, corre-
lations, and fluctuations similar to those discussed above
[e.g., Eq. (16)].
A similar relation was used in Ref. [15] to model

experimental cross-spectra of interferometers. In that appli-
cation, the cross-spectrum of two signals is imaginary
Planck amplitude noise, filtered on a scale R determined
by a set of mirrors used to project directional states of
propagating light onto a data stream in the classical proper
time of a single laboratory rest frame. If spooky cosmo-
logical correlations are detected, it is likely that Planck-
scale correlations could be measured in suitably configured
experiments [39–42].

A B

FIG. 10. Causal relationship of entangled light cones for two
world lines A and B in flat space-time, adapted from Ref. [15].
Eigenvalues for these light cones of the relational antisymmetric
phase displacement operators [Eq. (A1)], δ̂�AB and δ̂�BA, are shown
schematically by arrows. The causal diamond state in A’s frame
describes exotically cancelling virtual past and future displace-
ments, associated with the AB direction, that appear as time-odd
displacements in B’s frame [Eq. (A2)]. The cross-correlation of
causal diamond states describes virtual quantum fluctuations in
the relationship of proper time between the world lines [13].
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In our extrapolation to inflation, classical cosmic time
is determined by the time component (ν ¼ 0) of the
classical timelike vector uνϕ defined for each world line
by the unperturbed inflationary metric, as discussed above
[Eq. (36)]. The antisymmetry in observable 3D spatial
perturbations follows from general covariance, by projec-
tion into 3D comoving transform space [Eqs. (36) and
(37)]. Our model is that the fluctuations become “frozen in
time” when an emergent perturbation crosses the horizon,
leaving an image on the frozen classical metric of anti-
symmetric Planck amplitude noise filtered at f ≈H.
The argument just given refers to a classical laboratory

time t, but a consistent theory must define relations between
concrete observables. It is useful to contrast our quantum-
time measurement with Einstein’s classical thought experi-
ment in which “light clocks” measure ticks of local proper
time by bouncing light between mirrors at fixed separation in

a rest frame. That experiment shows how relativistic time
dilation occurs: two observers in relative motion who
compare clocks both see the other’s clock ticking slowly
because light has to travel farther to accommodate apparent
position displacements in the moving frame. Here, the output
of a light clock corresponds to a directionally oriented time
operator, similar to δ̂i� or Δτ̂i; signals of light clocks in
different directions do not commute, and comparisons of
three directions obey a spinlike algebra like that studied
above, in which the operator T̂ represents classical proper
time. The time series δABðtÞ, δBAðtÞ can be operationally
defined as differences between clocks aligned orthogonally
to the AB spatial separation direction, near A and B world
lines, respectively. Thus, the exotic relative time fluctuation
is not always a dilation, but can have either positive or
negative sign, averages to zero for two observers at rest, and
is directionally antisymmetric in both space and time.
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