
 

Dibaryons cannot be the dark matter
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The hypothetical SUð3Þ flavor-singlet dibaryon state S with strangeness −2 has been discussed as a
dark-matter candidate capable of explaining the curious 5-to-1 ratio of the mass density of dark matter to
that of baryons. We study the early-universe production of dibaryons and find that irrespective of the
hadron abundances produced by the QCD quark/hadron transition, rapid particle reactions thermalized the
S abundance, and it tracked equilibrium until it “froze out” at a tiny value. For the plausible range of
dibaryon masses (1860–1890 MeV) and generous assumptions about its interaction cross sections, S’s
account for at most 10−11 of the baryon number and, thus, cannot be the dark matter. Although it is not the
dark matter, if the S exists, it might be an interesting relic.
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I. INTRODUCTION

The most striking thing we know about dark matter is
that it is nonbaryonic,1 and thus a new kind of matter. This
links the fields of cosmology and particle physics and,
today, the nature of dark matter is one of the most pressing
problems in each field. The evidence for this comes from
the primordial abundance of deuterium and the CMB
angular power spectrum. In particular, there is a 50σ dis-
crepancy between the baryon density, ΩBh2 ¼ 0.0222�
0.0002, and the total matter density, ΩMh2 ¼ 0.142�
0.0013, inferred from BBN and the CMB; see e.g., Ref. [1].
This fact also leads to a puzzle: the unchanging ratio

between the dark-matter density and the density of baryons
is about 5-to-1, order unity, rather than being very small or
very large [2]. The two leading candidates for dark matter,
WIMPs and axions, may be compelling from the particle
physics point of view but do not address the 5-to-1 ratio in a
compelling way. One dark-matter candidate that did
address this issue was quark nuggets [3], where the dark
matter was supposed to exist in the form of macroscopic,
stable quark states with very large baryon number, which
formed in a first-order QCD phase transition. In this
scenario, the order unity ratio of dark matter (quark
nuggets) to baryons can arise naturally.

Our understanding of QCD and the quark-hadron tran-
sition now strongly disfavors this idea (however, see
Ref. [4]). Nonetheless, Farrar [5,6] has revived a variant
of this idea with a stable (or very long-lived) dibaryon: she
argues that the S dibaryon, a compact six-quark configu-
ration of 2 up-quarks, 2 down-quarks, and 2 strange-quarks,
an SUð3Þ flavor-singlet with baryon number 2, strangeness
−2, and spin zero could explain the ratio of dark matter to
baryons.
The dibaryon has a long history that, for clarity, we

briefly summarize here. More than 40 years ago, Jaffe [7]
proposed the possible existence of a long-lived dibaryon
comprising two u quarks, two d quarks, and two s squarks.
Within the bag model, he estimated its mass to be about
2150 MeV. In essence, Jaffe’s dibaryon is a bound state of
two Λ’s, which would decay through the weak interactions.
To date, there is no experimental evidence for a dibaryon of
the kind proposed by Jaffe. Moreover, there are very
significant constraints from lattice QCD simulations,
hypernuclei, the ALICE experiment at the LHC, and
unsuccessful searches [8–11]. In fact, these constraints
appear to us to rule out Jaffe’s initial proposal, a weakly
bound state of two Λ’s. Nonetheless, the existence and
properties of a six-quark state remain a topic of continuing
discussion in the QCD community.
In particular, the focus has shifted to a tightly bound state

that is significantly smaller in size than an ordinary hadron
and with a mass that would make it the most tightly bound
baryon (or at least very nearly so). Farrar [5,12] argues that
such a particle—dubbed the S for sexaquark—escapes the
usual constraints and searches by virtue of its small size (of
order 0.2 fm or several times smaller than a nucleon). Farrar
argues that the compact size of the S would significantly
reduce its interactions with other hadrons by reducing the
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1To be precise, by “nonbaryonic,”we mean that the dark matter
was not in form of atoms, nuclei, or nucleons after the time of big
bang nucleosynthesis (t ≥ 1 sec).
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wave-function overlap with the ordinary baryonic states as
well as making it difficult to “discover” in lattice QCD
simulations. Further, as mentioned earlier, she has champ-
ioned it as a dark matter candidate.
In our paper, we focus on the viability of the S dibaryon

dark-matter hypothesis, remaining agnostic to the existence
of the S itself. (Wewill use the nameS to refer to the compact
dibaryon that plausibly evades the stringent constraints
on the larger, heavier dibaryon and is proposed as the
dark-matter candidate.) We believe that what we know with
certainty about the putative S, summarized below, is
sufficient to determine its cosmological production:
(1) Its mass must be greater than mp þmn −me −

2BE ≃ 1860 MeV (BE ∼ 8 MeV is the binding
energy of a nucleon in a nucleus) to guarantee
nuclear stability [6].2

(2) If its mass is greater than 2mpþ2me≃1878MeV, it
can decay to two nucleons; for mS < 2055 MeV ¼
mp þme þmΛ, this is a doubly weak process with a
decay width Γ > G4

Fδm
9 (δm ¼ mS − 1878 MeV);

for mS < 1890 MeV the lifetime of the S is greater
than the age of the Universe.

(3) For an S mass between 2055 and 2232 MeV
(2232 MeV ¼ 2mΛ), the dibaryon can decay via a
singly weak process into a nucleon and a Λ with a
lifetime short compared to the age of the Universe
(Γ > G2

Fδm
5), and for mS > 2232 MeV the di-

baryon can decay into two Λ’s via the strong
interaction with a very short lifetime.

(4) In general, the nonstrangeness changing interactions
of the S, e.g., Λþ Λ ↔ π þ π þ S, should be
strong, although they might be suppressed by factors
arising from the wave functions of the states in-
volved [12,15,16]. In particular, Farrar [12] has
argued for hadronic cross-sections of the order of
10−30 cm2 or so.

These facts point to the mass range 1860 to 1890 MeV,
where the dibaryon is stable or long-lived and can plausibly
escape the very stringent constraints on a much heavier
dibaryon. For two reasons, we will not consider S masses
larger than this. First, when the baryonic binding energy of
the S is negative (mS > 1878 MeV), the cosmological
production falls to even smaller values because the S is

not the lowest energy baryonic state, and second, the lifetime
of the S is not expected to be greater than the age of the
Universe. Either reason alone precludes S’s from being the
dark matter.
The starting point for our analysis is the early-universe

QCD transition from the quark/gluon plasma into hadrons.
Lattice calculations imply that the QCD transition is a
“crossover” transition at temperature TC ¼ 155 MeV.
Using nucleons, lambdas, and S’s as the baryonic degrees
of freedom, we show that baryon statistical equilibrium
(BSE)3 is very rapidly established after the QCD transition
and is maintained only down to a temperature T ∼ 10 MeV,
long before a significant fraction of the baryon number is in
dibaryons. In particular, our calculations show that the
freeze-out abundance of the S’s, which determines the
present-day relic abundance, is at most 10−11 that of
nucleons, largely independent of the dibaryon mass and
the strength of its interactions.

II. BARYON STATISTICAL EQUILIBRIUM

We consider the thermodynamic system of nucleons,
lambdas, and dibaryons at temperatures T < TC. Because
other baryons are significantly more massive, only these
particles are needed to track the dibaryon abundance.
(Later, we will explicitly show that the only other processes
of any importance, those that involve Σ and Ξ baryons, can
be ignored at temperatures around freeze-out of the
dibaryon abundance.) Further, we need not differentiate
between neutrons and protons, for which we assume a
common mass of 939 MeV, and mΛ ¼ 1116 MeV. For the
only unknown in the BSE calculation, we consider the
range discussed above, 1860 MeV < mS < 1890 MeV,
where the S is stable or long-lived.
During the radiation-dominated era, the age of the

Universe and the expansion rate are related by t ¼ 1=2H ¼
0.301g−1=2� Mpl=T2 ≃ 0.8 ðT=MeVÞ−2 s, where g� ≃ 10–20
at the temperatures of interest counts the effective number of
degrees of freedom, which includes photons, electrons,
positrons, neutrinos, and smaller numbers of other hadrons.
Even just after the QCD transition, the age of the Universe is
much longer than a typical strong-interaction timescale
(10−23 s), and longer than the timescale for weak decays
of hadrons (e.g., the Λ lifetime is 2.6 × 10−10 s), and weak
interactions more generally (e.g., eþ þ e− ↔ νi þ ν̄i and
nþ eþ ↔ pþ ν̄e). The same of course holds for electro-
magnetic interactions. In sum, during the period of interest,
T ≃ 155 MeV to a fewMeV, the constituents of the radiation
soup are known and their reactions rapid, which makes
equilibrium thermodynamics appropriate.

2This constraint ensures that it is energetically impossible
for a nucleus to decay into a nucleus with one less proton and one
less neutron and an S. We believe there is a much stronger limit
based upon the stability of the deuteron. If mS < mp þmn−
me − 2.22 MeV ≃ 1875 MeV, the deuteron can decay via a
doubly weak process into an S, a positron and a neutrino, with
decay width Γ > G4

Fδm
9. The deuterons in the Universe today

were produced in the big bang 14 Gyr ago; stability of the
deuteron for the age of the Universe requires δm < 3 MeV or
mS > 1872 MeV. Stronger constraints likely follow from the
formation of neutron stars [13] and observed neutron-star
masses [14].

3Our discussion of baryon statistical equilibrium closely
follows the usual discussion of nuclear statistical equilibrium;
see e.g., Ref. [17].
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Recall that there are two types of equilibrium: kinetic
equilibrium and chemical equilibrium. If a species i is in
kinetic equilibrium its phase-space density is fðEÞ ¼
½exp ððE − μiÞ=TÞ � 1�−1 where μi is the chemical potential
of species i, and þ1 is used for fermions and −1 is used for
bosons. In the nonrelativistic (NR) limit the number density
of species i is

ni ¼ gi

�
miT
2π

�
3=2

e−mi=Teμi=T ; ð1Þ

independent of spin statistics (gi is the number of degrees of
freedom). As noted above, strong, electromagnetic, and
weak interaction rates are so rapid that kinetic equilibrium
is maintained throughout.
If a reaction aþ bþ � � � ↔ � � � þ yþ z is fast compared

to the dynamical timescale for expansion (the age of the
Universe), chemical equilibrium results, and the sum of
chemical potentials in the initial and final states are equal:
μa þ μb þ � � � ¼ � � � þ μy þ μz. Chemical equilibrium for
the process Λ ↔ N þ π þ π enforces μΛ ¼ μN since μπ¼0

(e.g., π0 ↔ γ þ γ), while chemical equilibrium for the
process Sþ π ↔ Λþ Λ (and other reactions) enforces
μS ¼ 2μΛ ¼ 2μN . Using gN ¼ 4 (counting neutrons and
protons), gΛ ¼ 2, and gS ¼ 1, and assuming all species are
NR, the BSE abundances of the fN;Λ; Hg system are

nEQN ðTÞ ¼ 4

�
mNT
2π

�
3=2

e−mN=TeμN=T; ð2aÞ

nEQΛ ðTÞ ¼ 2

�
mΛT
2π

�
3=2

e−mΛ=TeμN=T

¼ 1

2
nEQN ðTÞ

�
mΛ

mN

�
3=2

eBΛ=T; ð2bÞ

nEQS ðTÞ ¼
�
mST
2π

�
3=2

e−mS=Te2μN=T

¼ 1

16
½nEQN ðTÞ�2

�
mST
2π

�
3=2

�
2π

mNT

�
3

eBS=T; ð2cÞ

where BΛ ≡mN −mΛ ¼ −177 MeV and BS ≡ 2mN −
mS ¼ 1878 MeV −mS are the “baryonic binding ener-
gies.” Note that BΛ is negative (nucleons are a lower
baryon energy state), and BS, which is between 18 and
−12 MeV, is positive if S is stable or slightly negative if it
is only long-lived.
Baryon number conservation is expressed as the con-

stancy of baryon number to entropy ratio, nB=s ¼ 3.9×
10−9ΩBh2 ≃ 8.7 × 10−11, where the entropy density is s≡
2π2g�T3=45 and nB ≡ nN þ nΛ þ 2nS.
The BSE baryon fractions for the fN;Λ; Sg system as a

function of temperature assuming mS ¼ 1875 MeV are
shown in Fig. 1. There are several important points to note:
(1) The baryon number carried by Λ’s is always small and

decreases exponentially with temperature because of the
Λ’s negative binding energy. This is why the heavier
baryons can be neglected: their abundances would be
smaller and would decrease faster. (2) Assuming BS > 0,
the baryon fraction carried by S’s becomes of order unity at
a temperature T ∼ 0.1 MeV. While S’s are energetically
favored for positive BS, owing to the high entropy of the
Universe (η−1 ∼ 109) S’s are not thermodynamically
favored until a very low temperature, TS ∼ BS= ln η−1.

4

(3) In the case of negative BS, S’s are never thermody-
namically favored and the baryon fraction they carry
decreases exponentially in a manner similar to Λ’s.
(4) The most important result is that for the mass range
we consider, 1860 MeV < mS < 1890 MeV, and for tem-
peratures 10 MeV < T < TC, in BSE the baryon fraction
carried by S’s is between 10−11 and 10−13. This fact makes
our predictions for the final abundance of S’s insensitive to
the mass of the S and its precise cross sections.
Equilibrium thermodynamics is not the entire story and

next we discuss the freeze-out of S’s, which determines the
dibaryon abundance today.

III. FREEZE-OUT

Equilibrium among the three species in our system of
baryons, fN;Λ; Sg, only pertains so long as the key
reactions that maintain chemical equilibrium are occurring
rapidly on the expansion timescale: i.e., reaction rate
Γ > H. Those key reactions are: (1) Λ ↔ N þ π and
(2) Λþ Λ ↔ Sþ π þ π. The first reaction—a weak proc-
ess—regulates the number of Λ’s through decays and
inverse decays. Since the lifetime of the Λ is of the order
of 10−10 s—much shorter than the age of the Universe at
the times of relevance here—the first reaction ensures that
the abundance of Λ’s closely tracks its equilibrium value.

FIG. 1. The BSE baryon fractions for the fN;Λ; Sg system as a
function of temperature for mS ¼ 1875 MeV.

4For a similar reason, despite the 7 MeV per nucleon binding
energy of 4He, BBN does not commence until a temperature of
order 0.3 MeV.
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On the other hand, the second reaction, which regulates the
number of S’s, cannot keep pace with the expansion at low
temperature because of the exponentially decreasing num-
bers of Λ’s. This prevents the dibaryon abundance from
increasing and maintaining its BSE value and leads to the
small final abundance of S’s.
In principle, three rate equations are needed to follow the

evolution of the fN;Λ; Sg network. However, because
strong and weak interaction rates are so much faster than
the expansion rate, the nucleons andΛ’s will be in chemical
equilibrium, and we need only consider the Boltzmann
equation for the dibaryons. The equation governing the
S number density can be written as5

_nS þ 3HnS ¼ −nSΓS þ ðnEQΛ Þ2hσvMøliΛΛ→Sππ; ð3Þ

where hσvMøliΛΛ→Sππ is the thermal average of the cross
section times the Møller velocity for the processΛΛ → Sππ
(see e.g., Ref. [18] for the definition of the Møller
velocity vMøl):

hσvMøliΛΛ→Sππ

¼ g2Λ
ðnEQΛ Þ2

Z
σvMølf

EQ
Λ ðp1ÞfEQΛ ðp2Þ

d3p1

ð2πÞ3
d3p2

ð2πÞ3 : ð4Þ

InEq. (4), fEQΛ ðpÞ is the equilibriumphase-space distribution
for theΛ: fEQΛ ðpÞ ¼ eμΛ=Te−E=T . Absent precise information
for σðsÞ, we assume hσvMøliΛΛ→Sππ ≡ σ0.
Using detailed balance, Eq. (3) can be written as

_nS þ 3HnS ¼ −ΓSðnS − nEQS Þ: ð5Þ

Comparing Eqs. (3) and (5),

ΓS ¼
1

nEQS
ðnEQΛ Þ2hσvMøliΛΛ→Sππ

¼ 4σ0T3

�
mΛ

mS

�
3=2

�
mΛ

2πT

�
3=2

e−ð2mΛ−mSÞ=T: ð6Þ

The process ΛΛ → Sππ does not involve a strangeness-
changing interaction, so it should proceed via the strong
interaction. We take σ0 ¼ 1=m2

π ¼ 20 mb as the nominal
value, andvaryσ0 from1b to 1pb to illustrate the insensitivity
of our results to precise knowledge for this cross section. We
note that had we included other processes involving Σ’s and
Ξ’s that produce S’s, e.g.,ΞN → Sπ,ΛΣ → Sπ, orΣΣ → Sπ,
then hσvMøliΛΛ→Sππ would be replaced everywhere by the
sum

P
i;j;X½nEQi nEQj =ðnEQΛ Þ2�hσvMøliij→SX.

Shown in Fig. 2 is the ratio of ΓS to the expansion rate for
temperatures between 5 MeV and 155 MeV. Around

TC ¼ 155 MeV, when Λ’s are very abundant, the ratio
is greater than 1019, ensuring that regardless of its initial
abundance, the S’s will rapidly come into equilibrium. As
the temperature falls, Γ=H drops rapidly, because of the
exponentially decreasing numbers of Λ’s, and freezes out
(achieves a value of unity) around T ¼ 8 MeV.
Shown in the inset of Fig. 2, are the additional S

production rates involving Σ’s and Ξ’s (assuming the same
cross section normalization). While these processes can be
important around TC, increasing Γ=H by about a factor of
3, the final S abundance is determined by the freeze-out of
ΛΛ → Sππ, justifying our simple network of N ’s, Λ’s and
S’s. We note that σ0 would have to be less than about

FIG. 2. The ratio of the reaction rate ΓΛΛ→Sππ to the expansion
rate H. Shortly after the QCD transition, the ratio is extremely
high, ensuring BSE and a small value for S fraction, and around
8 MeV the ratio is unity and the S abundance freezes out. Shown
in the inset are the relative rates for S production through all
exothermic processes, i.e., ΛΛ, ΣΣ, ΣΞ, ΛΣ, ΛΞ and ΞN in the
initial state. At high temperature, when ΓS=H is extremely large,
all three processes are important, and, at freeze-out, the ΛΛ
process dominates.

FIG. 3. Results of integrating the fN;Λ; Sg network for the
baryon fraction carried by the S species; mS ¼ 1875 MeV and
σ0 ¼ 1=m2

π ≃ 20 mb. Note that freeze occurs at a temperature
consistent with Fig. 2.

5The final state Sπ is forbidden in strong interactions by
isospin conservation.
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2 × 10−46 cm2 (0.2 zeptobarns) for the reactions that
regulate S’s to be too slow to establish BSE immediately
after the QCD transition.
As previously mentioned, the BSE abundance is rela-

tively constant over the range of freeze-out temperatures, at
an S-abundance to nucleons in the range 10−11 to 10−13,
and so we expect the final abundance of S’s to be in this
range. Figure 3 shows the results of integrating Eq. (3) for
an Smass of 1875 MeV. As expected, freeze-out occurs at a
temperature of around 8 MeV and an S baryon fraction of
about 10−12. This freeze-out occurs well before BBN, and S
production and BBN should not interfere with one another.
Figure 4 shows the final abundance of S’s and its
insensitivity to mS and σ0.

IV. CONCLUSIONS

The production of dibaryons following the QCD
transition phase at a temperature of around 155 MeV
lends itself to an equilibrium thermodynamic treatment
because the crucial reaction rates are so rapid compared to
the expansion rate of the Universe (Γ=H ∼ 1020). In turn,
the attainment of equilibrium means that the final abun-
dances are insensitive to the details of how the quark/
gluon plasma transitions to hadronic matter. Using a
simple network of nucleons, lambdas, and dibaryons
and the key reactions that govern their abundances, we
find that the final baryon fraction carried by S’s is
determined by the BSE value when the reaction ΛΛ →
Sππ freezes out. For the relevant range of S masses (1860
to 1890 MeV) and a very wide range of cross sections for
this process (more than 12 orders of magnitude), freeze-
out occurs between T ∼ 6 MeV and 12 MeV, where the
BSE abundance of S’s is relatively constant, at a value no
larger than 10−11 that of nucleons.
As attractive as the idea of dibaryonic dark matter is, we

conclude that dibaryons can be but a tiny fraction of the
dark matter. There are two ways to avoid this conclusion;
but neither is a easy way out.

The first way out is if the S is light enough
(mS ≃ 1200 MeV) that the BSE abundance is large at
freeze-out. This is the conclusion of Gross et al. [19].
However, a mass this small is strongly excluded by the
arguments given in the Introduction.
The second way out is if S’s are copiously produced in

the QCD transition (e.g., by “entrainment” as proposed in
[6]) and their interactions thereafter are too weak to
establish the S in BSE. In our calculations we assumed
that the reactions that regulate the S abundance (ΛΛ, ΣΣ,
ΣΞ, ΛΣ, ΛΞ and ΞN ↔ Sþ X) are strong interactions,
with σ0 ¼ 20 mb. As seen from Fig. 2, avoiding BSE just
after the QCD transition would require a reduction of about
1020 over our assumed cross section. Farrar argues that
while the S has strong interactions with baryons, a very
large suppression in the effective S-baryon-baryon cou-
pling can arise due to wave-function mismatch [12]. The
suppression must be ten orders-of-magnitude to avoid
being ruled out by the experimental constraint arising from
doubly strange hypernuclei [12], and more than 20 orders
of magnitude to avoid BSE and our conclusion that
dibaryons are not abundant enough to be the dark matter.
This is a tall order: recall, Farrar estimated the hadronic
interactions of the S have cross sections of order 10−30 cm2

[12] and the hadronic cross sections needed to establish
BSE need only be greater than a few × 10−46 cm2. Further,
while for simplicity we assumed s-wave annihilation, the
cross section suppression for p-wave annihilation is only
6T=mΛ ∼ 0.8 at T ¼ TC, and thus kinematic factors will
not aid in suppressing the rate significantly.
Although we conclude that the dibaryon is unlikely to

be dark matter, if a stable or long-lived dibaryon does exist
they may be an interesting relic, even if the number left
over from the early universe is around 10−11 or so per
nucleon. Given that they are neutral and have strong
interactions, they should bind to nuclei (however, see
Ref. [20] for the argument that the S does not bind to
nuclei.) The relevant nuclei in the early universe are p’s
and 4He and the formation of S-nuclei should occur at a
temperature T ∼ BE= ln η−1 (BE is the binding energy of
an S to a nucleus), which is likely to be of order a fraction
of an MeV, i.e., around the time of BBN. (The tiny S
abundance ensures that this will not significantly affect
BBN.) Any S’s should today masquerade either as an odd,
stable form of tritium (3St) or an odd form of 6He (6SHe). By
odd, we mean slightly different mass and possibly differ-
ent nuclear energy levels. Absent knowledge of their
binding energies to p’s and 4He’s, we cannot estimate
the relative abundances of 3

St and
6
SHe. We do not consider

their detectability here.
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