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The dynamics of string junctions and their influence on the evolution of cosmic superstring networks are
studied in full detail. We review kinematic constraints for colliding strings in a Friedmann-Lemaître-
Robertson-Walker background and obtain the average distribution of possible string configurations after
string collisions. The study of small-scale structure enables us to investigate the average growth/reduction
rate of string junctions for a given cosmic string network. Incorporating the averaged junction dynamics
into the velocity-dependent one-scale model for multitension string networks, we improve the semianalytic
description and quantitative understanding of cosmic superstring network evolution.
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I. INTRODUCTION

A possible outcome of brane inflation is the production
of a network of cosmic superstrings [1–7]. This particle
physics relic offers an exciting observational opportunity to
shed light on high energy physics processes that may have
taken place in the earliest phases of the evolution of our
universe. In order to have an accurate prediction for the
observational signals from cosmic superstrings, the cosmo-
logical evolution of their networks must be studied rigo-
rously. Cosmic superstrings can in general have rather
complicated properties compared to conventional cosmic
strings (for reviews of ordinary cosmic strings see [8,9]). It
is then anticipated that these additional features bring about
important changes to the network evolution and should be
carefully taken into account.
Cosmic superstring collisions give rise to string junctions,

and the correspondingmultitension string networks are very
challenging tomodel numerically. Generically, the networks
will not be Brownian, but will be made up of a series of
segments with different tensions and lengths, connected at
junctions. Tensions of cosmic superstrings are related by the
Bogomolny-Prasad-Sommerfeld conditions [6,10,11]

μpq ¼ μF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2=g2s

q
; ð1Þ

where p and q are integers that represent the bound state
of p F-strings and q D-strings (the Ramond-Ramond scalar

is set to zero C0 ¼ 0). Thus the network will contain a
hierarchy of string tensions, and the dynamical equations
describing the density and characteristic length and velocity
of each type will all be coupled to each other.
Lattice simulations for such networks are prohibitively

time consuming, so that network evolution cannot be
reproduced with both high resolution and sufficiently large
dynamical ranges. Furthermore, superstring network evo-
lution can only be modeled effectively from numerical
simulations: not all properties of cosmic superstring net-
works can be captured by a field theory [12–16]. Given
these computational challenges, a more fruitful approach to
this problem is through semianalytic methods—a general-
ized velocity-dependent one scale (VOS) model [17–19].
To model the cosmological evolution of cosmic super-

string networks one needs to include the important features
characterizing their complex interactions. In particular, the
quantum description of string interactions [20–24], and the
kinematic constraints on junction production [25–29] have
been included in a VOS description. Exploration of these
analytic models indicates that these complex networks
can still achieve scaling behavior [30–33], although the
corresponding scaling densities and velocities may be
different from those of ordinary strings. Here we obtain
the generalization of the relevant kinematic conditions on
junction production for the case of a Friedmann-Lemaître-
Robertson-Walker (FLRW) metric [34]. This generalization
is probed through an example of collisions of straight
strings in an FLRW background, which provides a time-
dependent “angle-velocity” diagram for junction produc-
tion processes (similar to the one obtained for Minkowski
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space in [26]). We further model, for the first time, the
average evolution of string junctions within the network.
In order to model the evolution of junctions in the string

network we first review the description of small-scale
structure found in [35,36]. This model—which we extend
in the present work—provides a useful tool for describing
the average growth/reduction of junctions in a cosmic
superstring network. The derived average change of string
lengths due to junction evolution leads to a generalization
of the VOSmodel describing superstring network evolution
with dynamical junctions (Sec. IV). This work directly
builds on previous extensions of the VOS model [17,18] for
describing superstring networks, which can be found in
[30,31,33]. We briefly discuss some of the solutions of our
extended model and compare them with earlier results.

II. JUNCTION DYNAMICS

Let us start our consideration of junction dynamics from
the action for three connected strings, which can be written
as [37,38]

S ¼ −
X
i

μi

Z
ΘðsiðτÞ − σiÞ ffiffiffiffiffiffiffi

−γi
p

dσidτ

þ
X
i

Z
fiμðxμi ðsiðτÞ; τÞ − XμÞdτ; ð2Þ

where the index i ¼ 1, 2, 3 specifies one of the three string
segments (there is no summation over these repeated
indices—summation happens only if the symbol

P
is

written explicitly), μi are the string tensions, σi and τ are the
spacelike and timelike coordinates on the string world
sheet(s), γiab are the world sheet metrics with determinants
γi, fiμ are Lagrange multipliers, Θ is the Heaviside step
function, Xμ is the spacetime position of the vertex (where
all three strings are connected), and si is the parametrization
value of σi at the vertex Xμ.
For each of the strings, we use the following world sheet

parametrization (dropping the index i for simplicity):

σ0 ¼ τ; σ1 ¼ σ; gμν _xνx0μ ¼ 0; ð3Þ

where gμν is the background spacetime metric and τ is the
(conformal) background time coordinate. The dot and
prime denote differentiation with respect to τ and σ,
respectively. We are working in a flat FLRW metric

ds2 ¼ aðτÞ2ðτ2 − dl2Þ; ð4Þ

where a is a scale factor and dl2 is the line element of flat
spatial sections. The conformal time τ is related to physical
time t by adτ ¼ dt. We shall now study the equations of
motion describing the dynamics of this three-string system
in FLRW geometry.

By variation of the action (2) with respect to xi, one can
obtain the standard string equations of motion

_εþ 2ε
_a
a
_x2 ¼ 0;

ẍþ 2
_a
a
_xð1 − _x2Þ ¼ 1

ε

�
x0

ε

�0
; ð5Þ

where x is the three-dimensional spatial vector, _x≡ ∂x
∂τ,

x0 ≡ ∂x
∂σ, and ε2 ¼ x02

1− _x2.
An additional equation from the xi variation appears due

to the boundary term in the action (2) and has the form [39]

μi

�
x0
i

εi
þ εi _si _xi

�
¼ fi; ð6Þ

on the string junction; i.e., all functions in (6) are evaluated
at ðsðτÞ; τÞ. Further, from the variation with respect to Xμ it
follows that the Lagrange multipliers satisfy the condition

X
i

fi ¼ 0; ð7Þ

again evaluated on the junction.
Finally, from the variation of the Lagrange multipliers fi

we obtain the previously mentioned conditions that σ ¼ s
at the vertex,

xiðsiðτÞ; τÞ ¼ XðτÞ; ð8Þ

where X is the spatial part of Xμ.
In the case of Minkowski space, which corresponds to

ε ¼ 1, there is an exact solution of the equations of motion
(5). This solution allows one to pick out right/left moving
modes on each string and, from those, obtain the dynamics
of the junction [25]. For the expanding FLRW metric there
is no general solution of the string equations (5). However,
it is possible to build a convenient analogue of right/left
moving modes (this approach for the FLRW metric was
used in [34] for the analysis of loops with junctions):

q ¼ x0=εþ _x; p ¼ x0=ε − _x: ð9Þ

In the case of monotonic expansion of the scale factor in
the FLRW metric, it is reasonable to assume that ingoing
and outgoing waves are distinguishable and will not be
mixed during the evolution. That is why we can assume that
vectors q and p are outgoing and ingoing waves, respec-
tively, for the vertex X in an expanding universe.
Taking into account the fact that jqj2 ¼ 1, jpj2 ¼ 1, and

using Eqs. (5)–(8) one can carry out an analysis which
generalizes the one done for Minkowski space in [25].
This leads to the following equations for the three-string
junction in an expanding universe:
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X
i

μiððqi þ piÞ þ εi _siðqi − piÞÞ ¼ 0; ð10Þ

_X ¼ −
1

μ

X
i

μið1 − εi _siÞpi; ð11Þ

ð1 − εi _siÞμi
μ

¼ Mið1 − ciÞ
M

; ð12Þ

where we have defined

ci ¼
1

2

X
jk

jϵijkjpj · pk;

Mi ¼ μ2i −
1

2

X
jk

ðϵijkðμj − μkÞÞ2;

M ¼
X
i

Mið1 − ciÞ; μ ¼
X
i

μi; ð13Þ

and ϵijk is the Levi-Cività symbol.
One then observes that the equations describing string

junctions in an expanding universe can be obtained from
those in Minkowski space by just changing _si to εi _si and
the definitions of outgoing and ingoing modes to the
generalized quantities (9). The new set of equations (12)
tell us how growth/reduction of string length proceeds in an
expanding FLRW universe. An important issue that stems
from the above treatment is to understand under which
conditions junction production can successfully take place.
The condition for junction formation just requires _s3 > 0
and will be considered for straight strings below.

A. Solution for a straight string in
a FLRW background

It is always possible to choose a sufficiently small
region, near the collision point, where strings can be
considered straight. Hence, to understand the conditions
under which the collision of strings leads to junction
production, it suffices to consider straight string collisions.
For this purpose we first need to construct a proper straight
string solution in a FLRW metric. Let us consider the
following straight string ansatz, similar to the case of
Minkowski space:

x ¼ fC1σ cos α;C1σ sin α;FðτÞg; ð14Þ

where C1 is a constant that will be defined later and the
function FðτÞ is to be determined by the dynamics.
The ansatz (14) describes a straight string located on the

XY plane and moving along the Z axis. The angle α defines
the orientation of the string in the XY plane with respect to
the X axis.
It should be noted that while the dependence of

this FLRW string solution on the spacelike world sheet

coordinate σ is the same as in Minkowski space, the
physical meaning of σ in these two cases is not identical.
Any interval of string in Minkowski space has a fixed
length, which does not depend on time, while in a FLRW
metric the length of a chosen string interval is stretching as
time evolves, which implies a continuous “effective”
reparametrization of the string ansatz (14). Meanwhile,
the time component τ is substituted by the function FðτÞ,
due to the absence of time translational invariance.
Using the form (14) we can obtain the following useful

quantities:

x0 ¼ fC1 cos α;C1 sin α; 0g; ð15aÞ

_x ¼ f0; 0; _FðτÞg; ð15bÞ

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x02

1 − _x2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1

1 − _F2

s
; ð15cÞ

_ε ¼ jC1j
_F F̈

ð1 − _F2Þ3=2 : ð15dÞ

Using the expressions (15a)–(15d), one can show that the
equations of motion (5) are reduced to a single equation for
the function FðτÞ,

F̈ þ 2
_a
a
_Fð1 − _F2Þ ¼ 0: ð16Þ

When the scale factor is a ∝ τn, Eq. (16) has an exact
solution,

Fðτ; vÞ ¼ �τ2F1

�
1

2
;
1

4n
;
1þ 4n
4n

;−
�
τ2n

γvv

�
2
�
; ð17Þ

where 2F1 is the Gauss hypergeometric function, γv ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor, and we introduced the

factor ðγvvÞ−2 to recover the Minkowski solution for
n → 0.
The solution (17) is monotonic in the argument τ for all

positive n, which is anticipated from the physical inter-
pretation of (17). The string has initial velocity ð0; 0; vÞ and
initial position Z ¼ 0 at t ¼ 0; cf. (14). The final vector
solution of a straight string in the FLRW metric can be
written as

x ¼ fσ cos α; σ sin α;Fðτ; vÞg; ð18Þ

where C1 was chosen to be 1.
It is seen that the limit n → 0 does not reproduce ε ¼ 1,

which was chosen by parametrization in [25]. The use of
the vectors (9) allows us to employ any other world sheet
parametrization for σ (with ε ≠ 1) without affecting the
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final result. We have thus chosen the parametrization (18)
for convenience.

B. Collision of straight strings
in expanding universe

In the above we outlined our approach for the description
of connected strings in the FLRW metric and constructed
one simple straight string solution. Consequently, we can
consider the collision of straight strings in a FLRW back-
ground and investigate under which conditions a junction
can be produced. We are going to consider only the
situation when the scale factor behaves as a ∝ τn.
Let us model the situation when two strings x1;2 are

moving toward each other along the Z axis, oriented at
angles ð�αÞ to the X axis on the XY plane, and having
equal initial speeds υ. The third string x3 is created in the
XY plane, with initial velocity u and orientation defined by
an angle θ to the X axis,

x1;2 ¼ f−σ cos α;∓σ sin α;�Fðτ; vÞg;
x3 ¼ fσ cos θ; σ sin θ;Fðτ; uÞg: ð19Þ

In order to have a simple analytic comparison for the
expanding FLRW metric and Minkowski space, let us
consider the case when the tension of the first string is the
same as the tension of the second, μ1 ¼ μ2. This implies
u ¼ 0 and θ ¼ 0. Using the equality (12), one can show
that the solution for _s3 is

_s3 ¼
2μ1γ̃ðυ; τÞ cos α − μ3
2μ1 − μ3γ̃ðυ; τÞ cos α

; ð20Þ

where γ̃ðυ; τÞ ¼ γ−1υffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þυ2ðτ−4n−1Þ

p .

Comparing Eq. (20) with the corresponding result for
Minkowski space in [25], it is seen that theLorentz factor γ−1υ
is substituted by the function γ̃, which approaches γ−1υ when
n → 0, or when τ ¼ 1. Let us build the region in velocity-
angle space, when the junction can be produced (_s3 > 0)—
see Fig. 1. The value τ ¼ 1 corresponds to the initial
conditions of the colliding strings, which also coincides
with the solution for Minkowski space. It is seen that as τ
grows, the region where _s3 > 0 is enlarged. This effect
appears due to the string velocity decreasing in the expand-
ing universe. Eventually the string speed approaches zero
and a junction can be formed for all possible collisions at
angles smaller than critical angle αcr ¼ arccos ðμ3=ð2μ1ÞÞ.
As a result, junction production for straight strings in an

FLRW universe is different from the Minkowski case only
by a change of the relative string velocity. This result
suggests that we can apply the approach developed in
[25,26] to the study of junction dynamics in the FLRW
metric.

III. AVERAGED JUNCTION EVOLUTION
AFTER STRING COLLISIONS

A. Angles between strings after collision

Let us revisit the result [27] that the tangent vectors x0 of
all string segments ending at a junction are coplanar in
Minkowski space. We will check that this result is valid not
only in Minkowski, but also in the FLRW background. The
junction itself is described by the vector XðτÞ of Eq. (8).
Hence we have _X2 ¼ _x2

i þ _s2i x
02
i , and together with the

definition of εi it is possible to obtain

_X2 ¼ 1 −
x02
i

ε2i
þ _s2i x

02
i

⇒

�
1

ε2i
− _s2i

�
x02
i ¼

�
1

ε2k
− _s2k

�
x02
k : ð21Þ

We now multiply Eq. (6) by the vector _X, sum over the
index “i,” and use the relation (7), to obtain

X
i

εi _siμi ¼ 0: ð22Þ

Equation (22) is just a generalized energy conservation law
for shrinking and growing junctions. Using Eqs. (6) and
(7), and the definition of _X together with the condition (22),
it is possible to obtain the following expression:

FIG. 1. Range of parameters: “initial velocity” υ and angle α,
which allow junction production (_s3 > 0) for the case when the
heaviest string has the tension μ3 ¼ 1.4μ1 ¼ 1.4μ2. The strings
are evolving in an expanding FLRW metric with a ∝ τn, and the
plot corresponds to the specific case n ¼ 1.0 (radiation era). The
first (blue) area corresponds to the moment τ ¼ 1.0; later
evolution is represented by the other colors, and the full area
(yellow), corresponding to αcr, is reached in the limit τ → ∞.
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X
i

εiμi

�
1

ε2i
− _s2i

�
x0
i ¼

�
1

ε2k
− _s2k

�
x02
k

X
i

εiμi
x0
i

x02
i
¼ 0

⇒
X
i

εiμi
x0
i

x02
i
¼ 0: ð23Þ

The last equation tells us that tangent vectors x0
i of

connected strings lie in one plane, which means that three
connected strings locally have to be coplanar.
To understand the string configuration right after the

collision, we use the method developed in [40]. Consider
the collision of two strings with an angle 2α between them
(see Fig. 2). If the kinematic condition _s3 > 0 is satisfied, a
pair of junctions, with a growing string segment in
between, should be produced at collision, and two kinks
start propagating on each of the collided strings, in opposite
directions, as shown in Fig. 2. As a result, there will be new
angles between the strings and the newly produced seg-
ment, which we denote as π − β1 and π − β2, with the angle
between the colliding strings at the junction being β1 þ β2.
As was discussed above, after the collision of strings

(lines JK1, JK2, and VJ) stay on the same plane. From
Fig. 2, following the work [40], we have that

cos β1 ¼
VK1 cosðα − θÞ − VJ

JK1

¼ cosðα − θÞ − _s3ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _s3ð0Þ½_s3ð0Þ − 2 cosðα − θÞ�p ;

cos β2 ¼
VK2 cosðαþ θÞ − VJ

JK2

¼ cosðαþ θÞ − _s3ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _s3ð0Þ½_s3ð0Þ − 2 cosðαþ θÞ�p : ð24Þ

Hence, we obtain

tan β1 ¼
sinðα − θÞ

cosðα − θÞ − _s3ð0Þ
;

tan β2 ¼
sinðαþ θÞ

cosðαþ θÞ − _s3ð0Þ
; ð25Þ

where _s3ð0Þ denotes the rate of junction growth at the
moment of the string collision.
It should be noticed that as it was shown in [40], when

υ → 0 we obtain β1;2 ¼ π=2 for α ¼ 0. At the same time,
when υ ≠ 0, for α ¼ 0 the angles β1;2 ¼ 0.
Using the equality (24), it is possible to obtain the angles

β1;2 for all possible collisions of strings, where the full
dependence on the tensions and relative velocities of the
colliding strings becomes apparent through Eq. (20). Since
we are interested in the average picture over a string
network, we wish to know how angles β1;2 depend on
the rms string velocity for fixed values of the string tensions
μ1, μ2, and μ3. In order to achieve this goal we need to
express the angle θ and junction growth rate _s3 as functions
of α, υ, and μi (i ¼ 1, 2, 3). For this purpose we use the
following equations for straight strings [25]:

½M_s3 þM3ð1− c3Þ�γ−1u cosθ

¼ ½M1ð1− c1Þ þM2ð1− c2Þ�γ−1υ cosα;

½M_s3 þM3ð1− c3Þ�γ−1u sinθ

¼ ½M1ð1− c1Þ−M2ð1− c2Þ�γ−1υ sinα;

½M−M3ð1− c3Þ�u¼ ½M1ð1− c1Þ−M2ð1− c2Þ�υ; ð26Þ

from which we can also obtain

θ ¼ arctan

�
u
υ
tan α

�
;

½μ23ð1 − υ2Þ þ μ2−ðυ2cos2α − sin2αÞ�u2
þ μ−sin2αu4 − μ2−υ

2cos2α ¼ 0: ð27Þ

Hence, we can numerically obtain the angles β1;2 as
functions of μi, υ, and α. Taking the integral over the angles
α from 0 to the maximal value of αcr (the maximum angle
at which a junction can be created), we average over all
possible collisions that lead to junction production (see
Sec. IV B and Ref. [33] for more details).
It should be noted that the velocity υ used up to now [see

Eq. (22) describing two colliding straight string segments]
is the velocity in the frame where both strings move toward

FIG. 2. Collision of two straight strings, shown as blue and red lines. When the kinematic condition _s3 > 0 is satisfied, a pair of
junctions between colliding strings is produced with a growing string segment in between (shown by a green line). The left panel shows
the geometrical configuration of the strings just before the collision, while the right panel shows the configuration after the collision.
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each other with equal speeds υ. However, when we
consider the encounters of a typical string with other
strings in the network (integrating over all possible relative
angles and velocities), we need to transform our calcu-
lations to the rest frame of the string in which the collision
velocity vcl is related to v by

vcl ¼
2υ

1þ υ2
: ð28Þ

Further in the text, individual string velocities will be
defined in the string rest frame as collision velocities but
denoted simply as v. See Appendix for further clarification
of the different velocities used in this work.
For now the velocity distribution is taken in the form of a

delta function centered in the rms velocity value (but can be
generalized to a Gaussian centered at the rms string velocity
with a width introduced as an additional parameter).
Carrying out the numerical computation of the average

values of the angles β1;2, we build the plot of the angle
dependence on the rms velocity. In Fig. 3 we show
examples of the average value of β (for μ1 ¼ μ2) and β1,
β2 (for μ1 ≠ μ2) depending on the rms velocity υ of the
string network. The results for the average angles β1 and β2
will be used later as initial values for the study of the
subsequent dynamics of junctions in the string network.

B. Correlation functions of ingoing components
and small-scale structure

To understand junction growth in the string network, we
need to figure out the behavior of the averaged scalar
product that occurs from averaging Eqs. (12) and (13)

hi ¼ 1 − hcii; ð29Þ

where ci is defined in Eq. (13). In other words we need to
model how these scalar products evolve and study their
effect on junction growth through Eqs. (12),

hεi _siμiMi ¼ μiMh − μMihi; ð30Þ

where

h� � �i ¼
R � � � εdσR

εdσ
ð31Þ

denotes the average of the enclosed quantity over the string
network and

Mh ¼
R
ε1ε2ε3

P
jMjð1 − cjÞdσ1dσ2dσ3R

ε1dσ1
R
ε2dσ2

R
ε3dσ3

¼
X
j

Mjhj: ð32Þ

Here, the averages have been taken over corresponding
string types, and we assumed that ci depends only on σi
(correlation function changes with junction length growth;
see Sec. IVA for more details).
We should emphasize that the correlator h is defined

between different strings connected at the junction: h
includes the product of vectors pi that belong to different
strings. Below we will also use the correlator h defined on
one string, which includes the product of vectors pi that
belong to one string separated by some distance l.

FIG. 3. The collision parameters identified in Fig. 2 are shown here averaged over all possible angles of string collisions that give rise
to junctions [cf. expression (56)]; the velocity distribution function has been assumed to be a Dirac delta function, and we have also
chosen P ¼ 1 (Sec. IV B will provide more details about averaging). The left panel shows results for a case with two equal tensions,
μ1 ¼ μ2 ¼ 1, μ3 ¼ 1.4, specifically collisions of 1,2 (green line) and 2; 3 ¼ 1, 3 (purple line) pairs of strings. The right panel shows a
more generic example of unequal tensions μ1 ¼ 1, μ2 ¼ 1.2, and μ3 ¼ 1.4, specifically collisions of 1,2 (green line), 1,3 (blue line), and
2,3 (red line) pairs of strings. Solid lines show the average angle α of string collisions leading to junction production. The dashed lines
denote the average angles β1;2.
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To approach this problem, we can study the dependence
of the scalar product hpðx1Þi · pðx2Þii on the distance
l ¼ x2 − x1. This problem has been studied both numeri-
cally and analytically in a number of papers [35,36,41–46].
We revisit the main results of these studies and emphasize
the important points for further investigation.
Let us recall the definition of ε and notice that this

variable depends on the σ parametrization. Thus, if the
length of the string is reduced by a factor p ¼ σ=σ̃, we have
the following relation:

εðσ̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi∂ σ̃x2

1 − _x2

r
¼ ∂σ

∂σ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffi∂σx2

1 − _x2

r
¼ pεðσÞ: ð33Þ

We see that the equation of motion (5) is invariant under
the transformation (33) if the multiplier p is a constant.
However, if p is a time dependent function, there will be an
additional contribution in the form

_εi þ 2
_a
a
εi _x2

i þ
_p
p
εi ¼ 0: ð34Þ

To estimate the ratio _p=p we should remember that it is
proportional to the string energy; i.e., the larger p is, the
more energy the string has. Using the effective chopping
parameter describing the average probability for one string
to lose energy due to loop production, we can write

_p
p
¼ _ρ

ρ

����
loops

¼ cl
jυj
L
; ð35Þ

where in the last equality we used the standard contribution
to energy loss from the loop production mechanism, where
the length Lci is the comoving distance that the string
travels before a collision (average comoving distance
between strings). This is akin to the mean free path.
Note, however, that this is a small-scale-structure energy
loss mechanism that can be understood as reducing the
string energy per correlation length (without affecting
the string number density) rather than directly altering
the correlation length.
Using the relation (35), we can include the pheno-

menological energy loss term at the microscopic level.
Equation (34) can then be rewritten as

_εi þ 2
_a
a
εi _x2

i þ εijυij
cli
Lci

¼ 0: ð36Þ

It can be shown that using Eq. (36), one can rewrite the
equations of motion for a string in terms of vectors p and q
[47] as

_piþ
1

εi
p0
i ¼

_a
a
ðqi − ðpi ·qiÞpiÞþ

qi þpi

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðpi ·qiÞ

2

r
cli
Li

;

_qi −
1

εi
q0
i ¼

_a
a
ðpi − ðpi ·qiÞqiÞþ

qi þpi

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðpi ·qiÞ

2

r
cli
Li

:

ð37Þ

In the sameway as it was done in [35], we can choose the
characteristic variable sσðτÞ instead of σ, which is constant
for ingoing waves (∂sσp ¼ 0). Using this new variable
sσðτÞ, let us estimate how the orientation of the vector pi is
changing along the string (see Fig. 4). In particular, we are
interested in the average scalar product (correlation)
between two vectors pi as a function of their separation
and time, hiðl; tÞ,

hi ¼ 1 − hpi · p̃ii: ð38Þ

Note the roman font for this correlator (hi), indicating that
both vectors are on the same string segment. This is in
contrast to the correlator hi (italic font) encountered
previously [cf. (29)], in which the two vectors belong to
two different strings.
For this purpose we are going to choose the pi para-

metrizations for the two vectors as sσðτÞ and s0σðτÞ,
separated by the physical length l. It should be noticed
that the time dependence of parameter sσðτÞ does not
change Eqs. (37). In order to understand how the average
scalar product is evolving with time, and how it depends on
length, we write the averaged equation for the time
evolution of the scalar product [further we will write sσ
instead of sσðτÞ for compactness]:

h∂τðpi · p̃iÞi¼
hqi · p̃iþpi · p̃ii

2
jυij

cli
Li

þhq̃i ·piþpi · p̃ii
2

jυij
cli
Li

þ _a
a
hqi · p̃iþpi · q̃i−2pi · p̃iαii

þ
XNk

j

hδðs−sjÞpi · p̃iþδðs0−s0jÞp̃i ·pii; ð39Þ

FIG. 4. Schematic evolution of the vector p along the string.
Dashed lines show different possible realizations of the string
with corresponding faded vectors p. At the correlation length ξ
vectors p become, on average, completely independent hpð0Þ·
pðξÞi ¼ 0. Note that the correlation length ξ is a function of time,
which grows in an expanding universe.
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where αi ¼ hpi · qii ¼ 1−2υ2i with υ2i ¼ h _x2
i i, tilded and

untilded variables are calculated at s0 and s, respectively,
the sum appears due to the possible presence of kinks on
the length between s and s0, Nk is the number of kinks
between s and s0, δð� � �Þ is the Dirac delta function, and the
sign h� � �i means averaging over an ensemble of segments
and integrating over many Hubble times.
To treat Eq. (39) we are going to use the method

employed in [35]. Let us consider that sσ and s0σ are close
to each other, and we expand Eqs. (39) around sσ − s0σ and
drop all terms higher than first order in ½sσ − s0σ�. The
outgoing qðsσ; τÞ and ingoing p̃ðs0σ; τÞ modes meet each
other at the world sheet point ðsσ; τ − δÞ, where δ is
of the order of ½sσ − s0σ�. Hence, the product of outgoing
and ingoing modes can be approximated as hqiðsσ; τÞ ·
p̃iðs0σ; τÞi ¼ αi (for more details see [35]).
Moreover, the averaged contribution from the sum of

kinks is proportional to the linear density of kinks KðτÞ,
which also includes the average sharpness of kinks,
multiplied by the interval ðs − s0Þ. As a result, Eq. (39)
can be rewritten as

∂τhi ¼−hi
�
2
_a
a
αi−

jυijcli
Li

�

−
jυijcli
Li

ð1þαiÞþ2Kð1−hiÞþOð½sσ − s0σ�2Þ: ð40Þ

We emphasize that the quantitative difference between hi
(relevant here) and hi [cf. Eq. (29)] is that when the distance
l approaches zero, the former necessarily approaches zero
(since the correlator approaches unity), while the latter need
not do so since the value of the correlator near the junction
is determined by the string junction configuration described
in Sec. III A (note that the product of vectors pi that
belong to different strings at the junction does not have to
be unity).
Assuming that the scale factor evolves according to a

power law a ∝ τn, we anticipate that the characteristic
length Li ∝ ϵiτ and the kink density is KðtÞ ∝ kk

τ (the
parameter kk denotes the kink decay rate, which can be
caused by expansion, radiation [42] or backreaction—this
requires further study to understand how fast kinks can be
smoothed; recent results on this subject can be found in
[48,49]) where n, ϵi, and kk are constants. With these
assumptions we can solve (40) finding

hi ∝
giðs0σ − sσÞ

τ2ðnᾱiþkkÞ−jυijcli=ϵi ; ð41Þ

where giðs0σ − sσÞ is a function that depends only on the
distance along the string, defined by parameters s0σ − sσ.
At the same time, under our assumptions, we can

establish from Eq. (36) that

εi ∝ τ−2nυ
2
iþjυijcli=ϵi ; ð42Þ

and so the corresponding string length has the form

l ¼ a
Z

ϵdσ ∝ aðσ − σ0Þτ−2nυ2iþjυijcli=ϵi : ð43Þ

Assuming that the length l has a scaling behavior l ∝ x0t,
where x0 is a constant, we obtain the relation

σ0 − σ ¼ x0τ1þ2nυ2i−jυijcli=ϵi : ð44Þ

Using the property that σ − σ0 ¼ s − s0 and substituting
(44) in the solution (41) as the initial condition for a specific
constant value hi ¼ h0, we obtain that [35]

hi ¼ h0

�
σ − σ0

x0τ1þ2nυ2i−jυijcli=ϵi

�
2χi ¼ A

�
l
t

�
2χi
; ð45Þ

where χi ¼ nᾱiþkk−κi
1þ2nυ2i−2κi

with κi ¼ jυijc̃i
2ϵi

, and A is a constant.

Comparing (45) with the corresponding result from [35],
we see that due to including the loop production term and
kinks, we have additional terms in χi. These are essential
for describing the evolution of the correlation function (45)
in Minkowski space. We note that the result obtained in
[35] would not apply to the case of Minkowski space (for
which it would give the clearly incorrect χi ¼ 0) while our
result is also valid for that case.
Let us compare Eq. (45) with the results of Nambu-Goto

simulations [44]. To do so, we are going to use simulations
for string network evolution for all currently available
expansion rates: n ¼ 0 (Minkowski space), n ¼ 1 (radia-
tion domination epoch), and n ¼ 2 (matter domination
epoch). We fix the values of the chopping parameters cl for
each expansion rate by studying the corresponding scaling
regimes, in accordance with [17,18]. Taking fixed values of
cl we are left with only one additional free parameter kk in
Eq. (45). To obtain kk we are going to fit a dependence of
the form (45) to simulation measurements of the correlators
of the tangent vectors [35]

corrx0 ¼
hx0ðσ; τÞ · x0ðσ0; τÞi
hx0ðσ; τÞ · x0ðσ; τÞi ≈ 1 −

A
2ð1 − υ2Þ

�
l
t

�
2χ

ð46Þ

and velocities along the string

corr _x ¼
h _xðσ; τÞ · _xðσ0; τÞi
h _xðσ; τÞ · _xðσ; τÞi ≈ 1 −

A
2υ2

�
l
t

�
2χ

: ð47Þ

The results of this analysis are depicted in Fig. 5, and the
values obtained for the fitted model parameters are listed in
Table I.
A similar scaling behavior for l=t has been observed in

numerical simulations of Abelian Higgs cosmic strings
[46]. The typical values of the parameters χi measured in
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Abelian-Higgs simulations are higher than in Nambu-Goto.
While the most parsimonious explanation for this differ-
ence stems from the fact that Abelian-Higgs simulations
have a much lower spatial resolution (making the meas-
urement of these correlators harder and less accurate), it
could also be explained by domination of another type of
energy loss mechanism or by a difference in the evolution
of kinks.
It is worthy of note that the parameter χ appears in a

number of relevant string network characteristics, notably
the fractal dimension and the loop distribution function: for
an approximate analytic description see [35,50,51], and for
numerical simulation results see [44,46,52,53]. As a result,
the understanding and accurate modeling of parameter
χ is important for quantifying observational outcomes of
cosmic string networks [54].
An important remark on Fig. 5 is that the correlation

function h reaches unity on the length l ≈ t. This fact
is explicitly seen for Nambu-Goto and Abelian-Higgs

simulations if the correlators are plotted against logðl=tÞ
instead of the ratio between l and characteristic length
scale L. Hereinafter, we will use this as our definition of the
correlation length ξ, i.e., the distance l at which the vectors
x0 and _x become uncorrelated. (Note that there are several
different definitions in the literature.) Thus, with our
definition, simulations show that ξ ≈ t.
We should remember that the treatment described above

is an approximation, valid within a specific range of scales.
If we consider the smallest scales, where loop production is
insignificant and only one kink is present, then, as was
shown in [36], the correlator hi has the following behavior:

hikink ∝
�
l
t

�
: ð48Þ

The relation (48) can be evolving slightly during network
evolution. However, we do not anticipate significant
corrections when the network reaches a scaling regime.
For scales larger than the correlation length, l=ξ > 1, the

function hi tends to unity (since the correlator itself
vanishes). We are interested in finding a function that
can mimic all ranges of l=t for the correlation function hi.
We denote this by hðl=tÞ, and we sketch its behavior in
Fig. 6.

IV. EXTENDED VOS MODEL WITH
DYNAMICAL JUNCTIONS

A. Junction increase/decrease rates for
a scaling string network

In the previous section we estimated the behavior of the
correlation function hðl=tÞ on a string. Now, using this

FIG. 5. The behavior of tangent and velocity correlators. The shaded dots represent data from simulations [44] for the correlation
functions (46) and (47), depending on the string length l and physical time t. To fit the analytic estimate for these correlation functions
we use the interval of l=t that has already reached scaling behavior (45). The data points used for the fits dots are shown by dots in bright
colors. Solid lines demonstrate the best fit of the correlation functions (46) and (47) for parameters A and χ. Different colors correspond
to different expansion rates: red, n ¼ 0; blue, n ¼ 1; and green, n ¼ 2.

TABLE I. Fitted parameters of the correlation function (45) for
different expansion rates (n ¼ 0, 1, 2), from independent mea-
surements of correlators corrx0 [Eq. (46)] and corr _x [Eq. (47)]
(with corresponded indices) obtained from Nambu-Goto
string simulations [44]. The loop chopping parameters are fitted
from the scaling regimes of the networks using the VOS
equations for L.

Ax0 A_x χx0 χ _x kkx0 kk_x cl

n ¼ 0 1.37 1.16 0.04 0.05 0.96 0.95 0.33
n ¼ 1 1.39 1.22 0.12 0.09 0.48 0.47 0.27
n ¼ 2 1.03 0.92 0.20 0.19 0.04 0.03 0.24
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result, we are ready to study junction evolution when the
string network reaches a scaling regime, i.e., when the
characteristic length and rms velocity behave as L ∝ ϵτ,
υ ¼ const. To do so, we use the average equation (30),
where the functions hi are approximated by the function hi
depicted in Fig. 6 (recall that the only difference between
the two is that in the limit of zero separation only the latter
needs to vanish).
We define the average rate of change of the string

conformal length as [compare with the definition (43)
for the string length]

Δ_lc ¼ hε_si: ð49Þ

In an averaged sense, we expect a decay of correlation
when the junction destroys or produces strings. The way
this happens should be (again, in a statistical sense) similar
to the way the correlation function decays along the string,
when we compare different segments of it. Since the new
strings (produced due to collisions) should initially grow
(_si > 0), it seems reasonable to connect the length of this
string growth with the decay of correspondent correlation.
We thus make the further simplifying but reasonable

assumption that the correlation function hi is determined by
the change of comoving length Δlcg of the growing string
(the one that is being created by string zipping process).
Using definitions (31) and (49), we can then average
Eqs. (30) to find

Δ_lðnÞci ¼ 1 −
μMihiðΔlðnÞcg =τÞ

μiM
; ð50Þ

where the indices n count the number of possible string
collisions and the subscript g indicates the newly created

string that is growing after junction formation while the
colliding strings are zipping along their length. To obtain
(50) we also assumed that hεi _sið1 − ciÞi ¼ Δ_lcihi.
We should keep in mind that we are interested in the

behavior of the correlation function in Fig. 6 near the point
where three string segments are connected on a Y-type
junction. This means that instead of focusing on the corre-
lation function on a single string, we deal with correlations
between vectors on different strings [which we denoted as
hiðΔlcg=τÞ—recall its definition in Eq. (29)]. Its value at zero
separation hΔl¼0 is defined by the junction configuration
(average angles between strings as in Fig. 2), which was
studied in Sec. III A, and it depends only on the relative
velocity of the colliding strings and their tensions.
Combining all results, we can calculate how the junction

will grow or shrink on average under the assumption that
the network has reached a scaling regime. It is useful to
rewrite Eq. (50) in the following way:

Δ_lðnÞci ¼ 1 −
μMi

μiM
h0i

�
η1Θðlck − ΔlðnÞck Þ

�
ΔlðnÞcg

τ

�

þ η2ΘðΔlðnÞcg − lkÞΘðξc − ΔlðnÞcg Þ
�
ΔlðnÞcg

τ

�2χi

þ ΘðΔlðnÞcg − ξcÞ
�
; ð51Þ

where η1;2 are constants that ensure the continuity of the
correlation function, while h0 ¼ hΔl¼0 is the initial value of
the correlation function (see Fig. 6 for a graphical illustration
of the meaning of lck and ξ). The initial values h0i are
calculated from the geometry of strings (see Fig. 2), taking
into account that the initial average angles are given by
integration of (24)—refer to the examples in Fig. 3.
Let us consider the situation where the tensions of the

strings are related by the Bogomolny-Prasad-Sommerfeld
conditions for cosmic superstrings (1). In the example we
will consider below, we will set μF ¼ 1 and the coupling
constant gs ¼ 0.3.
Each collision between strings of types 1 and 2 leads to

an increase of the length of string of type 3. To understand
how much this can grow overall in the string network, we
need to determine the average initial angle for such
collisions. For the string network we fix the macroscopic
network parameters according to a scaling regime in the
radiation domination period: we have chosen υ ¼ 0.64,
L ¼ 0.3τ, ξ ¼ τ (n ¼ 1). As a result, using the average
equations (51) with the ansatz (1) we can obtain the average
length growth/reduction for each type of string for all
possible collisions. The results are shown in Fig. 7. The thin
solid lines show the resulting length exchange for collisions
of 1≡ ð1; 0Þ and 2≡ ð0; 1Þ strings and the growth of the
3≡ ð1; 1Þ string. The blue, red, and green colors corre-
spond to strings of types 1, 2, and 3, respectively. We apply

FIG. 6. Behavior of the function hðl=tÞ. The plot shows how the
correlation between vectors decreases with distance l (logarith-
mic scale). On small sales the function should be linear h ∝ l=t,
but then it becomes a power law h ∝ ðl=tÞ2χ, with χ as described
in the text. Eventually the function h becomes constant 1 when
the distance l ∼ ξ, the correlation length.
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the same treatment for collisions between strings of
types 2 and 3 (dash-dotted lines in Fig. 7) and for collisions
between strings of types 1 and 3 (dashed lines in Fig. 7).
The sum of all length exchanges is shown by the thick lines
in Fig. 7.

B. VOS model for strings with dynamical junctions

Having done the relevant preparatory work (Secs. III A
and III B), we can return to the VOS model (for a detailed
description of it see [17–19]) and introduce the necessary
modifications. In particular, we are aiming to obtain a
model where the junction evolution is described by
averaged kinematic constraints. Specifically, in this section
we consider a string network with three types of strings,
with tensions given by Eq. (1) and with the same value of
the string coupling constant gs ¼ 0.3 as in the previous
section.
To model the network evolution we need to introduce

energy exchange terms that describe the averaged dynamics
of junctions. For this purpose we use the VOS type of
model developed in [31]. The probability of string inter-
actions and their effect were already studied in several
previous works [32,33,55]. Here our main advance is to
explicitly introduce the dynamics of junctions, through
average growth/decrease lengths.
Our model of multitensional string network evolution

with dynamical junctions evolving under the above
assumptions can be written in the following way, as an
extension of [31]:

_Lci ¼
_a
a
v2i Lci þ

1

2
civi −

X3
n;j;k

jϵnjkjdjk
vjkΔl

ðnÞ
ci

4L2
cjL

2
ck

L3
ci;

_vi ¼ ð1 − v2i Þ
�
kðviÞ
Lci

− 2vi
_a
a

�
;

Δ_lðnÞci ¼ 1 −
μMihiðΔlðnÞcg =τÞ

μiM
; ð52Þ

where

vjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2j þ v2k

q
;

kðυÞ ¼ 2
ffiffiffi
2

p

π
ð1 − υ2Þð1þ 2

ffiffiffi
2

p
υ3Þ 1 − 8υ6

1þ 8υ6
; ð53Þ

and the parameters ci, dðnÞ model the probabilities of string
interactions and will be defined below.
As mentioned in the Introduction, cosmic superstrings

can reconnect (interact) with probabilities that can be
computed/estimated by the study of fundamental string
scattering amplitudes [20–22] and effective field theory
on strings [24]. The probability of a fundamental string
ðp0 ¼ 1; q0 ¼ 0Þ to interact with a ðp; qÞ bound string state
is estimated as [22]

Pf ¼
q2v2 þ g2sðp − γ−1v cos θ μF

μpq
Þ2

8vγ−1v sin θ μF
μpq

; ð54Þ

where θ and v are the angle and velocity of collision.
The probability of a ðp; qÞ string to interact with

another ðp0; q0Þ string (where q; q0 ≥ 1) is given by
expression [22,24]

Pd ¼ min ½1; 1 − ð1 − PÞqq0 �; ð55Þ

where

P ¼
ffiffiffiffi
gs

p
e2

ffiffiffiffiffiffi
2=3

p
θ=v

2ðπθÞ3=4 exp

�
−
4

ffiffiffi
π

p
θ3=2

gs
e−4

ffiffiffiffiffiffi
2=3

p
θ=v

�
:

In order to apply probabilities (54) and (55) to the VOS
model we need to average them over the string network. For
this purpose we integrate expressions (54) and (55) over all
possible velocities and angles in the network, taking into
account the kinematic constraints arising from the Nambu-
Goto action for three strings joining at a junction [32,33]

P ¼ 1

N

Z
vcr

0

Z
αcr

0

Pf;de−ðv−ῡÞ
2=σ2vv2 sin θdθdv; ð56Þ

where ῡ is the rms relative velocity of strings and αcr and
vcr are the limits of integration in angles and velocities,
respectively, defining the region in angle-velocity space for

FIG. 7. Growth/decrease of length of junction segmentsΔli for
a scaling string network with υi ¼ 0.64, Li ¼ 0.3τ, ξ ¼ τ, and
tensions defined by (1) with gs ¼ 0.3. The solid thin lines
represent the change of the length after collisions of 1–2 strings,
the dash-dotted ones to collisions of 2–3 strings, and the
dashed ones to collisions of 1–3 strings. Thick solid lines show
the total length change from the sum of all collisions, while the
black line shows the sum of all μiΔlic. Blue lines represent
strings of type 1, red lines strings of type 2, and green lines strings
of type 3.
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which string collisions lead to junction formation [this
region is generally nontrivial so αcr ¼ αcrðvcrÞ�. Note
that a large variance is allowed, σv ¼ 0.5 [32]. Finally
the normalization factor N is defined as

N ¼
Z

1

0

Z
π=2

0

e−ðv−ῡÞ2=σ2vv2 sin θdθdv: ð57Þ

The values of the average probabilities as functions of
the rms velocity ῡ are shown in Fig. 8. To speed up the
computation of the VOS model scaling solutions, we
approximate the integral (56) by a table of precomputed
values. These are shown as thick lines in Fig. 8.
We define the self-interaction coefficients, taking into

account probabilities (56), in the form

ci ¼ ðPiiViiÞ1=3c; ð58Þ

where Vij is a volume factor (the influence of this factor
was studied in [33]), Pij is the probability (56) for the
corresponding string collision, and c is the standard
chopping parameter. The power 1=3 in Eq. (58) comes
from simulations of Nambu-Goto networks [55]. The
coefficient of string interactions djk can be written as

djk ¼ ðPjkVjkÞ1=3d; ð59Þ

where d is a constant. Here, we will study the case where all
volume factors are unity, Vjk ¼ 1. For a discussion of the
effect of these volume factors on network evolution
see [33].
Having the form of the parameters djk and ci we can

solve the VOS model (52) and look for scaling solutions.

Specifically, we will illustrate the model results with the
case of the radiation domination epoch (n ¼ 1) with
the following choice of parameters: gs ¼ 0.3, c ¼ 0.27,
d ¼ 0.1, and kk ¼ 0.48 (see Table I for justification of
some values). The result of these calculations is shown in
Fig. 9 by the solid lines. It is interesting to compare the
result obtained here with the previous approach in [31],
where the energy exchange term was assumed to be

ΔlðnÞc ¼ 1
2

P
ijjϵnijj LiLj

LiþLj
. These calculations are shown in

Fig. 9 by the dashed lines. It is worth pointing out that the
model developed in [31] predicts an identical evolution for
all types of strings if the probabilities of interactions are the
same. Meanwhile, the model developed in this work
differentiates the evolution of strings with different tensions
even if they have identical probabilities to interact.
Assuming the probability of interaction for all strings to
be unity, we demonstrate the last statement in Fig. 9 by
dash-dotted lines.

FIG. 8. Probabilities of ðp; qÞ string interactions depending on
the rms velocity ῡ. Blue lines represent the probability of (1,0)
string interaction with (1,0) (solid line), (0,1) (dashed line), and
(1,1) (dash-dotted line) strings. Red lines show the probability of
(0,1) string to interact with (0,1) (solid line) and (1,1) (dash-
dotted line) strings. Thick transparent lines present the numerical
approximation of these probabilities.

FIG. 9. Energies ρi ¼ μi
L2
i
and rms velocities of the multiten-

sional string network. Green lines correspond to the heaviest
strings, red lines to the middle ones, and blue lines to the lightest
strings. Dashed lines correspond to the standard VOS model from
[31], dash-dotted lines to the current model without contribution
of probabilities to interact, and solid lines represent the full model
(52) studied in this work. Calculations are performed for radiation
domination period (n ¼ 1) with c ¼ 0.27, d ¼ 0.1.
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V. CONCLUSIONS

In this work we revisited the description of junctions in
cosmic string networks, and of their impact in the overall
dynamics. We studied kinematic constraints and collision
between straight string segments in a generic FLRW
background metric. As anticipated, the approach developed
in [25–27] in Minkowski space can readily be generalized
to an expanding FLRW metric (as it was done for loops in
[34,56]). In particular, for straight string collisions we
studied the region in angle-velocity space for which
junction production is allowed in an FLRW metric. We
demonstrated that the change of the angle-velocity area is
caused only by the deceleration of straight strings in an
expanding universe.
We thus studied the averaged properties of string

collisions within a string network. We computed the
string configurations (in particular, the angles between
string segments; see Fig. 2) that should appear on average
immediately after string collisions. We argued why junc-
tions should eventually stop growing and also discussed
how we can track their dynamics on a macroscopic level.
To do so, we connected the equation for junction dynamics
with the correlation function along the string, which has
been directly measured in Goto-Nambu string simulations.
The initial conditions (in the limit of zero separation) for
the correlation functions have been obtained from average
string configurations just after the collision of strings.
Putting everything together, that is, combining the

averaged probabilities of string interactions, the correlation
functions, and the velocity dependent angle configurations,
we introduced modifications (which effectively correspond
to new energy loss/gain terms) to the VOS model describ-
ing the evolution of superstring networks. The resulting
VOS model thus includes the dynamics of string junctions.
We presented one example where scaling solutions were
found for a three-string toy model in the radiation era;
analogous solutions exist for the matter era. Our results on
string evolution and the methodology developed here will
be useful for further studies of cosmic strings and their
observational outcomes.
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APPENDIX: ON THE VARIOUS DEFINITIONS
OF VELOCITY

In this appendix we clarify the different velocities used in
this work. There are subtle differences among the velocities
appearing in our equations, owing to the use of different
reference frames in their derivation (both in our own work
here and in the already available literature). We have been
careful with using the correct velocities in our formulas, but
this is not always shown in the notation, which would have
otherwise been rather cumbersome.
The computation of the kinematic constraints in [25–27]

and in Sec. II of this work is performed in the frame where
both of the colliding strings are moving with equal speed
toward each other. In particular, the velocity in Sec. II and
in Fig. 1 should not be confused with the velocity of
collision that can be obtained by the transformation (28).
The results we use for the probabilities of string

interactions [22,24] are calculated in the string rest frame
in which one of the colliding strings is at rest. Note this is in
contrast to [20,21], where the computation is done in the
reference frame where the colliding strings have equal
speeds. Hence, when we apply the kinematic constraints
and intercommuting probabilities for the string network,
integrating over all possible angles and velocities [cf. (56)],
we should use the same reference frame.
Special attention should be given to the transition from

microscopic velocities of string segments to averaged
velocities for the string network. In this work we used
the approach of [32], where the integration was carried out
under the assumption that, in the string rest frame, the
velocity has a Gaussian distribution (56). Note, however,
that this distribution is not mathematically rigorous and
further study is required to demonstrate that it captures the
main characteristics of network velocities in string simu-
lations. In addition, in order to reach a more accurate
description of the VOS model for multitensional string
networks (52), it will be necessary to be able to distinguish
between rms velocity, mean velocity, and the average
velocity of string collisions.
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