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We investigate whether inflation requires finely tuned initial conditions in order to explain the degree of
flatness and homogeneity observed in the Universe. We achieve this by using the Eisenhart lift, which can
be used to write any scalar field theory in a purely geometric manner. Using this formalism, we construct a
manifold whose points represent all possible initial conditions for an inflationary theory. After equipping
this manifold with a natural metric, we show that the total volume of this manifold is finite for a wide class
of inflationary potentials. Hence, we identify a natural measure that enables us to distinguish between
generic and finely tuned sets of initial conditions without the need for a regulator, in contrast to previous
work in the literature. Using this measure, we find that the initial conditions that allow for sufficient
inflation are indeed finely tuned. The degree of fine-tuning also depends crucially on the value of the
cosmological constant at the time of inflation. Examining some concrete examples, we find that we require
percent-level fine tuning if we allow the cosmological constant during inflation to be much larger than it is
today. However, if we fix the cosmological constant to its presently observed value, the degree of fine
tuning required is of order 10−54.
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I. INTRODUCTION

The hot big bang (HBB) model is one of the most
successful models in the field of cosmology. It explains
many of the features that we observe today, including the
Hubble–Lemaître expansion law [1], the cosmic microwave
background (CMB) [2], as well as nucleosynthesis [3] and
large-scale structure formation [4]. Nonetheless, the HBB
model is not without its problems. Amongst other issues, it
requires extremely finely tuned initial conditions in order to
explain the large degree of homogeneity and flatness
observed in the Universe today. These problems, known
as the horizon and flatness problems respectively, plagued
cosmology until the formulation of the theory of inflation
[5–7]. Inflation purports to solve these classic puzzles by a
period of accelerated expansion that generically homoge-
nises and flattens the observable Universe.
It is worth emphasizing that the horizon and flatness

problems are fundamentally problems of fine tuning. There
is nothing in the HBBmodel to prevent a homogeneous and
flat Universe, but this would require very specific initial
conditions. Therefore, inflation can only be a real solution to
the flatness and horizon problems if it requires less fine
tuning than simply setting these initial conditions “by hand.”
Several arguments have been put forward to suggest that
inflation does not require finely tuned initial conditions but
instead happens generically. These arguments generally rest
on two distinct principles: the volumeweighting of different
patches and the universality of the inflationary attractor.

The volume weighting argument follows from the fact
that patches of the Universe that inflate grow to be
exponentially larger than those that do not [8]. Therefore,
one might argue that even if only a tiny fraction of patches
inflate, eventuallymost of theUniversewill be dominated by
an inflationary patch. However, this argument breaks down
when we consider a universe with infinite volume. In this
case both the inflationary and noninflationary patches of the
Universe are generically both infinite in volume [9–11],
making their ratio ambiguous. In addition, this type of
argument is plagued by the so-called youngness paradox
[10,12]. In an eternally expanding Universe, patches that
stop inflating later than our patch by even one second
outnumber it by a factor of e10

37

. It is therefore difficult to
understand why our patch is so old in this paradigm.
An alternative argument for why inflation should be

generic stems from its attractor nature [13,14]. It has been
shown that for a scalar field in a flat Friedman–Lemaître–
Robertson–Walker (FLRW)background, the slow-roll infla-
tionary solution is an attractor in phase space [15,16]. One
might therefore argue that no matter what region of phase
space the Universe begins in, it will eventually reach the
slow-roll solution and inflation will ensue. However, even in
the presence of the attractor, there are still some regions of
the phase space that do not lead to observationally accept-
able inflation. For example, the Universe may reach the
attractor too late for sufficient inflation to occur (N ≳ 60
e-foldings). In addition, for curved universes, the attractor is
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not universal, and so there are some regions of phase space
where inflation never occurs at all. In order to argue that
inflation is still generic, onemust argue that these regions are
small. However, the space of initial conditions is infinite
in extent. It is therefore unclear how we should define a
“small” region. This difficulty is known as the measure
problem [17–23].
There have been many attempts to quantify the fraction

of phase space that leads to sufficient inflation for various
models [24–35]. Most of these attempts implicitly rely on
some method of regularizing the infinite phase space that
naturally arises when considering the totality of all possible
initial conditions.1 For example, Gibbons, Hawking and
Stewart (GHS) [24] consider a cutoff in the Hubble
parameter H ¼ _a=a, showing that the resulting fraction
is well-behaved in the limit where this cutoff is sent to
infinity. Meanwhile, Gibbons and Turok (GT) [31] choose
to take a cutoff in the curvature k=a2 instead, again showing
that their result is insensitive to the choice of cutoff value.
However, as pointed out by Hawking and Page [37], the
fraction of the phase space that leads to inflation is
fundamentally ambiguous, as expected when taking the
ratio of infinite quantities. As a result, it is possible to arrive
at any desired limit by choosing different regularization
schemes. Indeed, the two sets of authors have contradictory
conclusions: GHS find that inflation is almost guaranteed,
while GT find inflation to be exponentially unlikely.
Clearly, a new outlook on the problem is required. In this

paper, we will examine the Eisenhart lift [38–41] as a
possible approach to the measure problem. The Eisenhart-
lift formalism allows any scalar field theory to be trans-
formed (“lifted”) into a purely geometric system without
altering its classical dynamics. Applying this formalism to
Einstein gravity with a minimally coupled scalar field, we
may construct a manifold whose geodesics exactly recreate
all possible trajectories of the Universe, inflationary or
otherwise. The problem of choosing initial conditions in
the phase space is then reduced to that of choosing a point on
the tangent bundle of this manifold. The tangent bundle
comeswith a naturalmetric [42], which can be used to define
a natural measure on the space of initial conditions. This
measure can in turn be used to rigorously define the volume
of different regions of phase space. As we shall see, for a
wide class of inflationary potentials, the total volume of the
tangent bundle is finite. Thus, in this approach, the fraction of
phase space that leads to sufficient inflation is well-defined
from the start without the need to resort to regularization.
This paper is laid out as follows: we begin in Sec. II

with a brief review of the Eisenhart-lift formalism, which
may be used to construct a field-space manifold whose
geodesics completely recover the classical dynamics of any
homogeneous scalar field theory. In Sec. III, we extend this

idea by constructing a manifold for the full phase space of
the theory. We use the natural metric on the phase space in
Sec. IV in order to place a measure on the allowed initial
conditions. In Sec. V, we calculate this measure for the case
of a single scalar field in an FLRW background, and we
show that the total measure is generically finite for a large
class of inflationary potentials. We give a concrete example
in Sec. VI by explicitly calculating the measure for a
potential of the form VðφÞ ¼ λφ4 þ Λ and m2φ2 þ Λ,
quantifying the fraction of phase space that leads to
sufficient inflation in both cases. Finally, we present our
conclusions and discuss possible directions for further
research in Sec. VII.
Throughout this paper, we work in Planck units for

which ℏ ¼ c ¼ MP ¼ 1.

II. THE EISENHART LIFT

The Eisenhart lift [38–40] is a formalism in classical
mechanics that may be used to write any system subject to a
conservative force as an equivalent free systemmoving on a
higher-dimensional curved manifold. This technique has
been recently extended to scalar field theories [41], and can
therefore be readily applied to the theory of inflation.
We begin our review of the Eisenhart lift by considering

a field theory of n homogeneous2 scalar fields φiðtÞ
(collectively denoted by φ), equipped with an arbitrary
quadratic kinetic term and potential VðφÞ. Such a theory is
described by the Lagrangian

L ¼ 1

2
kijðφÞ _φi _φj − VðφÞ; ð1Þ

where the overdot denotes differentiation with respect to
time t, the indices i and j run from 1 to n, and we use
Einstein summation notation, as we do throughout the rest
of this paper. The equations of motion (EoMs) for this
system may be found by varying (1) with respect to the
fields φi, and are

φ̈i þ Γi
jk _φ

j _φk ¼ −kijV;j; ð2Þ

where ; i indicates a derivative with respect to the field φi,
kij is the inverse of kij (satisfying kilklj ¼ δij), and we have
defined

Γi
jk ¼

1

2
kilðkjl;k þ kkl;j − kjk;lÞ: ð3Þ

We note that (2) bears a striking resemblance to a geodesic
equation with an additional force term. Indeed, we may
easily describe the evolution of the system in the language

1For an alternative method where a specific finite distribution
on the fully infinite space is considered instead, see [36].

2The Eisenhart lift can also be applied to nonhomogeneous
field theories [41]. However, this is unnecessary for the purpose
of this paper, as we focus on the inflationary background.
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of differential geometry. The fields φi now take on the role
of coordinates in some particular chart of a (possibly
curved) manifold known as the field space [43]. This
manifold comes equipped with a metric kij, which can be
used to construct the connection through the Christoffel
symbols Γi

jk. In this interpretation, the system at a given
moment in time is described by a point on this manifold and
its evolution is described by a trajectory.
The Eisenhart-lift formalism allows us to extend

this geometric interpretation by constructing a higher-
dimensional field space manifold whose geodesics exactly
reproduce (2) without an external force field. To this end,
we introduce a new fictitious field χ to our theory and
modify the Lagrangian as follows:

L ¼ 1

2
kijðφÞ _φi _φj þ 1

2

M4

VðφÞ _χ
2; ð4Þ

where M is an arbitrary mass scale, introduced to keep
the dimensions of the fields consistent. This “lifted”
Lagrangian (4) can be written concisely as

L ¼ 1

2
GAB

_ϕA _ϕB; ð5Þ

where ϕA ¼ fφi; χg (collectively denoted by ϕ), the
indices A and B take on the values 1 ≤ A;B ≤ nþ 1,
and GAB is given by

GAB ≡
� kij 0

0 M4

V

�
: ð6Þ

Crucially, the Lagrangian (5) is identical to that of a free
particle moving on a curved manifold equipped with metric
GAB. Thus, the trajectories of the system will be exactly
described by geodesics of this manifold.
We now show that the geodesics for the manifold

corresponding to the lifted system reduce to the EoMs
for the original system (2). We may find the geodesics by
varying (4) with respect to φi and χ, which yields the
following EoMs:

φ̈i þ Γi
jk _φ

j _φk ¼ −
1

2
kijV;j

M4 _χ2

V2
; ð7Þ

d
dt

�
_χ

VðφÞ
�

¼ 0: ð8Þ

Equation (8) has the following class of solutions:

_χ ¼ A
VðφÞ
M2

; ð9Þ

parametrized by a real constant A. When the fictitious field
χ satisfies (9), then the EoM (7) becomes

φ̈i þ Γi
jk _φ

j _φk ¼ −
A2

2
kijV;j: ð10Þ

We note that the EoMs (10) (which arise purely as a
consequence of the geometric structure of the field space)
are identical to the original EoMs (2), provided that A
satisfies the Eisenhart condition:

A2 ¼
�
_χM2

VðφÞ
�

2

¼ 2: ð11Þ

Thus we have achieved the desired result; classically, the
two systems described by the two Lagrangians (1) and (4)
are identical.
The Eisenhart condition (11) should not be thought of as

a condition on the fields or the initial conditions. In fact,
even if the Eisenhart condition is not satisfied, the trajectory
of the lifted system through the field space is still the same.
The only change is that the system will evolve faster
(A2 > 2) or slower (A2 < 2) than it would under the
original EoMs (2). However, the classical dynamics of
the lifted theory are invariant under affine time reparamet-
rizations. Therefore, we can always scale time in such a
way that (11) is satisfied. On the contrary, the system
described by the original Lagrangian (1) is not symmetric
under time rescalings, as we can see from its EoMs (2).
This means that the EoMs of the two systems can only
match for a specific parametrization. This parametrization
is the one in which the Eisenhart condition is satisfied.

III. THE PHASE SPACE MANIFOLD

In the previous section, we demonstrated that any
homogeneous scalar field theory (such as inflation) can
be written in terms of geodesic motion on a lifted field
space manifold. We should be able to use the volume of this
manifold as a measure to distinguish between generic sets
of initial conditions from finely tuned ones. However, we
must take into account that the EoMs for the system are of
second order. Therefore, the initial conditions include not
only the initial value of the fields, but also the initial values
of their time derivatives. Thus, the initial conditions will
live in the phase spacemanifold. The topic of this section is
the geometric structure of this manifold.
The phase space manifold is the tangent bundle of the

field space. The natural metric on a tangent bundle is the
Sasaki metric [42]. This is the unique metric that satisfies
the following three properties:
(1) It reduces to the metric of the original manifold (in

our case, the field-space manifold) when restricted to
the origin of the tangent space.

(2) It leaves all tangent spaces flat.
(3) The line element it defines is reparametrization

invariant.
It is important to note that the quantity d _ϕA is not a field-

space vector and thus the quantity GABd _ϕ
Ad _ϕB (which we

may have naively used to build our line element) is not
reparametrization invariant. Instead, we employ the field-
space covariant variation
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D _ϕA ¼ d _ϕA þ ΓA
BC

_ϕBdϕC; ð12Þ

which is now a fully covariant field space vector. Here, ΓA
BC

are the Christoffel symbols for the field-space metric GAB.
Using this variation, we may write the Sasaki line element
for the phase space as3

ds2 ¼ GABdϕAdϕB þGABD _ϕAD _ϕB: ð13Þ

The explicit form of the phase space metric in the
Φα ¼ fϕ; _ϕg coordinate basis is

Gαβ ¼
�
GAB þ GCDΓC

AEΓD
BF

_ϕE _ϕF GCBΓC
AD

_ϕD

GACΓC
DB

_ϕD GAB

�
; ð14Þ

where α, β run from 1 to 2n.
It should be clear that the metric given in (14) satisfies all

the above requirements. First, it reduces toGAB at the origin
of the tangent space where _ϕ ¼ 0. Second, since GAB does
not depend on derivatives _ϕ, the Riemann curvature tensor
will vanish for the tangent space of any point in the field
space. Thus, all tangent spaces are flat, as prescribed.
Finally, by construction, the line element in (13) is
reparametrization invariant, since it is constructed from
the inner product of field-space vectors.

IV. A MEASURE ON INITIAL CONDITIONS

In the previous section, we arrived at a natural metric for
the phase space manifold. We are now equipped to use this
metric in order to write a measure, which we may use to
assign weights to different initial conditions. The phase
space metric (14) can be used to explicitly write the
invariant volume element for the phase space as

dΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGαβÞ

q
d2nΦ ¼ detðGABÞdn _ϕdnϕ: ð15Þ

Note that we get an additional factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGABÞ

p
compared to what we might expect from the field space
alone. We propose to use this volume element as a measure
on the phase space.
At this stage, we should compare the measure (15) to

another commonly used measure in the literature, the
Liouville measure [24,31], which is often used because
it is invariant under time evolution. In order to construct the
Liouville measure, we may take advantage of the sym-
plectic nature of the phase space. Any symplectic manifold

by definition comes equipped with a symplectic form,
which may be written as

ω ¼ dpA ∧ dqA: ð16Þ

Here, ∧ denotes the wedge product and qi and pi are the
generalized coordinates and canonical momenta respec-
tively. The Liouville volume element is then

dΩL ¼ ð−1Þnðn−1Þ=2
n!

ω∧n ¼ dnqdnp; ð17Þ

where ω∧n denotes the wedge product being taken n times.
Despite the fact that the Liouville measure given in (17)

and the lifted measure given in (15) appear to be different,
they are in fact identical for the system described by the
Lagrangian (5). For this system, the canonical variables qA

and pA ≡ ∂L=∂ _qA are

qA ¼ ϕA; pA ¼ GAB
_ϕB: ð18Þ

The symplectic form (17) is thus

ω ¼ GABd _ϕ
A ∧ dϕB þGAB;C

_ϕAdϕC ∧ dϕB: ð19Þ

When using (17) to construct the Liouville measure, it is
clear that the second term will not contribute, since all
terms that include it must involve a wedge product of at
least nþ 1 dϕ terms. Such terms will necessarily, by the
pigeonhole principle, include the wedge product of a
quantity with itself, and will thus vanish. The only non-
vanishing term is then

dΩL ¼G1A…GnZd _ϕ
A ∧…∧ d _ϕZ ∧ dϕ1…∧ dϕn: ð20Þ

Using the following identity:

d _ϕA… ∧ d _ϕZ ¼ ϵA…Zd _ϕ1… ∧ d _ϕn; ð21Þ

we can rewrite (20) as

dΩL ¼ ϵA…ZG1A…GnZdnϕdn _ϕ

¼ detGdnϕdn _ϕ ¼ dΩ: ð22Þ

We have therefore shown that the two measures are
equivalent.
Unfortunately,wecannot immediatelyuse themeasure (15)

over the entire phase space to weight the initial conditions for
a theory described by a diffeomorphism-invariant Lagrangian
with an Einstein-Hilbert term (such as the theory of inflation).
In such a theory, the variation of the action with respect to the
00 component of the spacetimemetric gμν (often known as the
lapse, NL) yields the Hamiltonian constraint. This is an
algebraic (not dynamical) constraint and must therefore be
satisfied by all physical configurations of the fields (which of

3Note that, by dimensionality, there must be a mass scale
multiplying the second term in (13), which we have chosen to set
to the Planck mass. This choice is arbitrary, since any other choice
can be rescaled by simply dilating our time coordinate appro-
priately. Since time dilation is a symmetry of the system, this
choice does not affect our results.
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course includes the initial conditions). Thus, the only physi-
cally relevant part of the phase space manifold is the 2n − 1
dimensional hypersurface on which the Hamiltonian con-
straint is satisfied.We call this theHamiltonian hypersurface.
The Hamiltonian hypersurface has a metric induced on it

by virtue of being embedded in the phase-space manifold.
This induced metric is given by

G̃ab ¼
∂Fα

∂Φ̃a

∂Fβ

∂Φ̃b Gαβ; ð23Þ

where Φ̃a with 1 ≤ a; b ≤ 2n − 1 (collectively Φ̃) are
coordinates on the Hamiltonian hypersurface. The func-
tions Fα encode the embedding through

Φα ¼ FαðΦ̃Þ; ð24Þ

where, as before, Φα ¼ fϕ; _ϕg. With the above definition
of the induced metric, it is then possible to write the volume
element of the Hamiltonian hypersurface as

dΩ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðG̃abÞ

q
d2n−1Φ̃: ð25Þ

The volume element (25) can be used as a measure
on the set of all possible initial conditions for the scalar
field theory described by the Lagrangian (5). In this paper,
we postulate that this measure can also be used for the
classically equivalent system described by Lagrangian (1).
In the following section, we will use it to distinguish
between generic and finely tuned sets of initial conditions
in such a theory.

V. APPLICATION TO INFLATION

We are now ready to apply the technology developed in
the previous sections to the theory of inflation. We consider
a universe described by Einstein gravity and dominated by
a single minimally coupled scalar field φ. We thus take the
action to be

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
R
2
þ 1

2
ð∂μφÞð∂μφÞ − VðφÞ

�
; ð26Þ

where R is the Ricci scalar, VðφÞ is the inflationary
potential, and Lorentz indices are raised and lowered with
the help of the spacetime metric gμν with determinant g.
In this paper, we shall work in the minisuperspace

approximation, which posits that the Universe is described
by an FLRW Universe, with metric

ds2 ¼N2
LðτÞdτ2

− a2ðτÞ
�

1

1− kr2
dr2þ r2dθ2 þ r2sin2θdϕ2

�
; ð27Þ

where τ is the time coordinate in this chart, NLðτÞ is the
lapse function, aðτÞ is the scale factor, and k is the extrinsic
curvature of the spatial part of the metric. Moreover, we
assume the inflaton to be homogeneous (a valid approxi-
mation for a small patch). Of course, the reader may accuse
us of cheating somewhat by assuming homogeneity from
the outset, since homogeneity is precisely what we wish to
achieve through inflation. However, inflation requires only
a small patch of the Universe to be homogeneous in order to
begin [44–47]. Therefore, this assumption is much weaker
than the one made in the HBB model. Estimating the
likelihood of such a patch arising is an interesting question
in its own right, but is beyond the scope of this paper.4 We
note that adding inhomogeneities makes inflation harder to
achieve, since we must produce a homogeneous patch in
addition to sufficient inflation of that patch.
In addition, we make the simplifying assumption that

k ¼ 0. Although this assumption restricts the range of
validity of our calculations, we note that the inflationary
attractor is most effective for flat universes. Indeed, with
k ¼ 0, all trajectories approach the attractor as t → ∞,
something which is not guaranteed for k ≠ 0. As such, we
expect that this approximation will further favor inflation.
Therefore, the results of the following sections should be
thought of as upper bounds on the fraction of phase space
that allows inflation.
Under these assumptions, the Lagrangian for this

system is

L ¼ −3
a
NL

�
da
dτ

�
2

þ a3

2NL

�
dφ
dτ

�
2

− NLa3VðφÞ: ð28Þ

We can now apply the Eisenhart lift described in Sec. II in
order to obtain a purely kinetic Lagrangian that will yield the
same classical dynamics as (28). The lifted Lagrangian is

L¼ 1

NL

�
−3a

�
da
dτ

�
2

þa3

2

�
dφ
dτ

�
2

þ 1

2a3V

�
dχ
dτ

�
2
�
; ð29Þ

where we have chosen the arbitrary mass scale labeledM in
Sec. II to beM ¼ 1 in Planck units. No observable quantities
can dependon this choice, since scalingM simply amounts to
rescaling the fictitious field χ.
We can simplify (29) by changing coordinates such that

dt ¼ ffiffiffiffiffiffiffi
NL

p
dτ. In these coordinates, the lifted Lagrangian

becomes

L ¼ −3a _a2 þ 1

2
a3 _φ2 þ 1

2

1

a3VðφÞ _χ
2; ð30Þ

where as before, the overdot denotes differentiation with
respect to t. Even though we have eliminated the

4For discussions of this topic and how inflation fares in an
inhomogeneous Universe, see [36,48–51].
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dependence on NL, we must remember that varying the
action with respect to it leads to the following algebraic
equation of motion:

−3a _a2 þ 1

2
a3 _φ2 þ 1

2

1

a3VðφÞ _χ
2 ¼ 0: ð31Þ

This is the Hamiltonian constraint referred to in Sec. IV.
Only initial conditions that satisfy (31) are physically
allowed.
As explained in Sec. II, the evolution of this system can

be described as a geodesic in a three-dimensional field
space parametrized by coordinates ϕA ¼ fa;φ; χg, and
equipped with a field-space metric given by

GAB ¼

0
BB@

−6a 0 0

0 a3 0

0 0 1
a3VðφÞ

1
CCA: ð32Þ

Let us derive explicit forms for these geodesics. The
equation of motion for the fictitious field χ is

d
dt

�
_χ

a3VðφÞ
�

¼ 0: ð33Þ

We thus find that the field χ satisfies

_χ

a3VðφÞ ¼ A; ð34Þ

where A is a constant. As described in Sec. II, we require
that A2 ¼ 2 in order to satisfy the Eisenhart condition (11).
This is crucial in order for the rest of the EoMs to reproduce
those arising from (28). As mentioned earlier, we can
always satisfy this condition by choosing an affine para-
metrization for time.
With the Eisenhart condition satisfied, the EoMs for φ

and a become

φ̈þ 3H _φþ V 0ðφÞ ¼ 0; ð35Þ

H2 þ 2
ä
a
¼ 1

2
_φ2 þ VðφÞ; ð36Þ

where H ≡ _a
a is the Hubble parameter and the Hamiltonian

constraint (31) becomes

−3H2 þ 1

2
_φ2 þ VðφÞ ¼ 0: ð37Þ

As expected, these are simply the Friedmann equations.
Following the process outlined in Sec. III, we may now

construct a six-dimensional phase space manifold with
coordinates Φα ¼ fa;φ; χ; _a; _φ; _χg. The metric of this
phase space can be calculated from (14), and is shown

explicitly in the Appendix. We note that each point on this
manifold corresponds to a different possible initial con-
figuration of the Universe, but only points satisfying the
Hamiltonian constraint (31) correspond to physically
allowed initial conditions. However, there is a redundancy
in our description of the system due to its symmetries,
which we now turn our attention to.
The first symmetry, which is present in both the original

and the lifted system is a spatial dilation symmetry. We note
that for a flat homogeneous universe, there is no character-
istic scale. Thus, the transformation r → cr must corre-
spond to a symmetry. In terms of the coordinates of phase
space, this is equivalent to the following transformations:

a → ca; χ → c3χ; _a → c _a; _χ → c3 _χ; ð38Þ

where the χ transformation follows from the Eisenhart
condition (34). Notice that the Lagrangian (30) is not left
unchanged by these transformations—it transforms as
L → c3L. However, any constant factor in front of L will
drop out of the Euler–Lagrange equations. Therefore, the
EoMs will be unaffected by this transformation [52].
The lifted system (30) features two additional

symmetries. There is a shift symmetry in the fictitious
field χ. Indeed, the Lagrangian (30) is invariant under the
transformation

χ → χ þ c: ð39Þ

Furthermore, we have the time dilation symmetry which we
briefly alluded to earlier. Scaling our time coordinate by a
constant factor (t → ct) will cause the coordinates in phase
space to transform as

_a →
1

c
_a; _φ →

1

c
_φ; _χ →

1

c
_χ: ð40Þ

These transformations cause the Langrangian (30) to scale
by L → 1

c2 L, leaving the EoMs invariant.
The time-dilation symmetry may be understood more

intuitively as follows. In the Eisenhart-lifted theory, the
classical evolution of the Universe is described by a
geodesic on the field-space manifold. Speeding up or
slowing down time will not alter this geodesic, but only
change how fast the system evolves along it. However, an
observer within a universe described by such a theory has
no way to tell how fast a particular trajectory evolves. Any
clocks or time-keeping devices will be constructed out of
the fields, and will thus be sped up or slowed down in
exactly the same way as everything else. Indeed, if every-
thing in the Universe, including your watch, suddenly
started moving twice as fast would you notice?
The above three symmetries tell us that there are redun-

dancies in our choice of initial conditions. Only three
combinations of the initial values a0, φ0, χ0, _a0, _φ0 and
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_χ0 are relevant to the resulting evolution of theUniverse. The
other three are irrelevant thanks to the symmetries described
above and are akin to gauge parameters.We further note that
of the three relevant combinations, one must be fixed by
(31). Thus, we expect the physically distinct initial con-
ditions to be parametrized by two parameters.
Having identified the symmetries of the system, we may

change to a coordinate system that manifestly distinguishes
between physically relevant and irrelevant degrees of
freedom. We start by isolating the transformations (38)
and (39) with the help of a system of coordinates
ðλ; H; χ̃; HχÞ defined as

λ≡ ln a; _λ ¼ _a
a
≡H;

χ̃ ≡ χ

a3
; Hχ ≡ _χ

a3
: ð41Þ

Of these coordinates, λ is the only one affected by the
transformation (38) and χ̃ is the only one affected by the
transformation (39). Thus, the initial values of these two
parameters are irrelevant. Proceeding in a similar manner,
we may also define the following coordinate system in
order to isolate the effect of the transformation (40):

H ≡ ρffiffiffi
6

p cos α; ð42Þ

_φ≡ ρffiffiffiffi
V

p sin α cos β; ð43Þ

Hχ ≡ ρ sin α sin β: ð44Þ

Now only the coordinate ρ is affected by this transformation.
In the coordinate chart Φα ¼ fλ;φ; χ̃; ρ; α; βg, the

Hamiltonian constraint (31) is simply

tan2α ¼ VðφÞ: ð45Þ

We must restrict ourselves to the five-dimensional hyper-
surface on which (45) is satisfied. This Hamiltonian hyper-
surface can be parametrized by Φ̃a ¼ fλ;φ; χ̃; ρ; βg, and has
an induced metric given by

G̃ab ¼ JαaGαβJ
β
b ð46Þ

in accordance with (23), where Gαβ is expressed in the
coordinates Φα ¼ fλ;φ; χ̃; ρ; α; βg and

Jαa ¼

0
BBBBBB@

1 0 0 0 0 0

0 1 0 0
V 0ðφÞ

2
ffiffiffiffiffiffiffi
VðφÞ

p
½VðφÞþ1� 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

1
CCCCCCA

ð47Þ

is the Jacobian. We will not explicitly write the full form of
G̃ab here as it is too cumbersome. We emphasize again that
only the initial values ofφ and β are relevant to the evolution.
The initial values of χ̃, λ and ρ have no observable effect and
can be changed arbitrarily by the symmetry transformations
(38), (39), and (40) respectively.
As described in Sec. IV, we can distinguish generic sets

of initial conditions from finely tuned ones by the volume
they take up on this hypersurface. This is can be calculated
using the volume element (25), which is given by

dΩ̃ ¼ e
15
2
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðφ; βÞρ2 þ gðφ; βÞρ4

q
dχ̃dλdρdφdβ ð48Þ

with

fðφ; βÞ≡ 30

VðφÞ½VðφÞ þ 1�2 ð49Þ

and

gðφ; βÞ≡ −
9

16VðφÞ3ðVðφÞ þ 1Þ3
n
−4sin2ð2βÞ

� ffiffiffiffiffiffiffiffiffiffiffi
VðφÞ

p
− 1

�
2
V 0ðφÞ2 − 80sin2ðβÞ cosðβÞ

� ffiffiffiffiffiffiffiffiffiffiffi
VðφÞ

p
− 1

�
VðφÞV 0ðφÞ

þ VðφÞ2
h
3 cosð4βÞ

� ffiffiffiffiffiffiffiffiffiffiffi
VðφÞ

p
− 1

�
2 þ 10 cosð2βÞðVðφÞ − 1Þ þ 7VðφÞ þ 6

ffiffiffiffiffiffiffiffiffiffiffi
VðφÞ

p
− 113

io
: ð50Þ

Note that if VðφÞ=φ2
3 approaches infinity as φ → ∞

and there is a nonzero cosmological constant such that
VðφÞ is strictly positive,5 the following integrals are finite:

Nf ≡
Z

φ¼∞

φ¼−∞

Z
β¼2π

β¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðφ; βÞ

p
dβdφ; ð51Þ

Ng ≡
Z

φ¼∞

φ¼−∞

Z
β¼2π

β¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðφ; βÞ

p
dβdφ: ð52Þ

The total volume of the phase space manifold is infinite,
potentially ruining our ability to compare the size of

5This is true for the simplest inflationary potentials, e.g., m2φ2

and λφ4 but may not be true for potentials with infinite plateaus.
For such potentials, the measure may still require regulating, for
instance by adding a wall at the end of the plateau.
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regions in an unambiguous way. However, the manifold is
infinite only in the directions of χ̃, λ and ρ, which are
precisely the three physically meaningless coordinates. We
can thus integrate out these directions to recover the
following well-defined distribution for the initial values
of the physically relevant coordinates φ and β on the
manifold:

Pðφ1;φ2; β1; β2Þ

¼ lim
Λλ;Λχ̃Λρ→∞

R χ̃¼Λχ̃

χ̃¼−Λχ̃

R λ¼Λλ
λ¼−Λλ

R ρ¼Λρ

ρ¼0

R
φ¼φ2
φ¼φ1

R β¼β2
β¼β1

dΩ̃R χ̃¼Λχ̃

χ̃¼−Λχ̃

R λ¼Λλ
λ¼−Λλ

R ρ¼Λρ

ρ¼0

R
φ¼∞
φ¼−∞

R β¼2π
β¼0 dΩ̃

¼ 1

Ng

Z
φ¼φ2

φ¼φ1

Z
β¼β2

β¼β1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðφ; βÞ

p
dβdφ; ð53Þ

where Pðφ1;φ2; β1; β2Þ is the fraction of phase space for
which φ1 < φ < φ2 and β1 < β < β2.
The initial value of β can be translated back into the more

conventional coordinates of _φ and H with the help of the
Eisenhart condition (34), the Hamiltonian constraint (45)
and the definitions (42) and (43). These combine to give

H ¼ 1

sin β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
VðφÞ

r
; ð54Þ

_φ ¼ 1

tan β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðφÞ

p
: ð55Þ

Notice that, by construction, (37) is automatically satisfied
with these definitions.

VI. EXAMPLE: MONOMIAL INFLATION

As a concrete example, we turn our attention to a
particular set of models of inflation with a monomial

potential V ∝ φn. We begin by analyzing the common
chaotic inflationary potential with n ¼ 4,

VðφÞ ¼ λφ4 þ Λ: ð56Þ

The cosmological constant (which we take to be strictly
positive) is usually ignored during inflation, but here we
find that it is required for the volume of the phase-space
manifold to be finite. Although φ4 inflation is disfavored at
the 2σ level by the nonobservation of tensor modes in the
CMB, it is still worth analyzing as the simplest inflationary
potential that is still viable. The value of the quartic
coupling λ is set by the amplitude of scalar perturbations
in the CMB [53] and has a value of λ ≈ 5 × 10−14.
Note that we do not constrain the value of Λ. Even

though today the cosmological constant is measured to be
Λ ¼ 2.846 × 10−122 [54] in Planck units, we allow for the
possibility that it was larger at early times in order to study
its effect on the required degree of fine tuning. However, we
cannot have an arbitrarily large cosmological constant. If Λ
is too large, then the slow roll parameter

ϵ ¼ 1

2

�
V 0ðφÞ
VðφÞ

�
2

¼ 8λ2φ6

λ2φ8 þ 2λΛφ4 þ Λ2
ð57Þ

can never surpass ϵ ¼ 1 and thus inflation can never end.
This condition forces us to consider Λ < 27

4
λ.

We can now calculate the distribution of φ and β on the
phase-space manifold by using the general expression for
the distribution given in (53). This is shown in Fig. 1, where
β is expressed in the more physically understandable
coordinate _φ using (55). Note that the distribution is
peaked close to φ ¼ 0 and tails off very quickly for large
φ. This is to be expected, since the measure goes like φ−6

for large φ.

FIG. 1. Distribution of the values of φ and _φ on the phase-space manifold for the potential VðφÞ ¼ λφ4 þ Λ as defined in (53). We
have λ ¼ 5 × 10−14 for both plots as fixed by the amplitude of scalar perturbations in the CMB, and Λ ¼ 10−15 and Λ ¼ 10−16 for the
left and right plots respectively. Notice how reducing Λ causes the distribution to become more sharply peaked and more tightly
clustered around φ ¼ 0. Darker areas correspond to a higher value of P as given in (53).
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Note also that reducing the cosmological constant
sharpens the peak of the distribution. We argue that this
prediction is generic and not specific to our choice of
potential. For any potential with a global minimum, as the
value of that minimum (i.e., Λ) tends to zero, the fraction of
phase space where the field is found at the minimum tends
to one. This can be seen from the form of gðφ; βÞ in (50),
which diverges as VðφÞ → 0.
We now wish to calculate the fraction of phase space that

allows for N > 60 e-foldings of inflation to occur, which is
required to solve the flatness and horizon problems. As
mentioned in the Introduction, regardless of the initial
conditions, the Universe will very rapidly evolve into the
slow-roll attractor solution. From then on, we can analyti-
cally solve the Friedmann equations (35)–(37) and obtain
the number of e-foldings using the well-known expression

N ¼
Z

φi

φf

VðφÞ
V 0ðφÞ dφ; ð58Þ

where φi is the value of φ when slow roll begins and φf is
its value when slow roll ends, determined by ϵðφfÞ ¼ 1.
Since φf is fixed by the potential, the number of e-foldings
is dependent only on φi, and thus for a given potential
there is some critical value of the field φc where
Nðφi ¼ φcÞ ¼ 60. The Universe must reach the slow-roll
attractor with φi > φc if we are to get sufficient inflation.
For the quartic potential (56), the critical value is
φc ¼ 22.09 in Planck units. This value is very insensitive
to both the cosmological constantΛ and the quartic coupling
λ. It is insensitive toΛ since inflation occurs at largevalues of
φ where the cosmological constant is negligible. Moreover,
whenΛ can be neglected, λ cancels in the calculation of ϵ as
well as in (58). Thus, φc is also insensitive to λ.
The inflationary attractor is so effective that a Universe

that starts with φ > φc will reach the attractor with φi > φc
for all but a very small range of initial value for _φ (or
equivalently initial value of β).6 Similarly a Universe that
starts with φ < φc can only to move to the region φ > φc
before slow-roll takes over if _φ is exponentially large (or β
is exponentially close to π) so as to overcome the Hubble
friction. We therefore make the simplifying assumption that
slow roll begins immediately and thus, the fraction of phase
space that allows more than 60 e-foldings of inflation is

PðN > 60Þ ¼ Pðφ > φcÞ: ð59Þ

Figure 2 shows the fraction of phase space that leads to
N > 60 e-foldings of inflation with an inflationary poten-
tial given by (56) as a function of the cosmological constant
Λ. As another illustrative example we also show the result
for the potential VðφÞ ¼ m2φ2 þ Λ on the same graph. The

value ofm2 is fixed by the amplitude of scalar perturbations
in the CMB to be m2 ¼ 10−12M2

P.
We see that universes withN > 60 e-foldings of inflation

are not generic for either potential and hence require fine-
tuning of the initial conditions. We observe that the amount
of fine tuning required depends on the value of the
cosmological constant. If one can construct a model in
which the cosmological constant is much larger in the past
than it is today, it is possible that the fine tuning may only
be percent level for λφ4 models, and can even approach
50% for m2φ2 models. However, for smaller values of the
cosmological constant, the fine-tuning becomes much more
pronounced.
We can extrapolate to small values of Λ with the

following approximation. When Λ is small, the volume
of phase space that allows for inflation is independent of Λ
because in the relevant region of phase space, its contri-
bution to the potential is negligible. This volume, given by
the numerator of (53), is then

Iφ>φc
¼ 2

Z
∞

φc

Z
2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðφ; βÞ

p
dβdφ: ð60Þ

The factor of 2 appears because we can have φ < −φc as
well. Meanwhile, the dominant contribution to the total
volume of phase space Ng comes from the region near the
origin of φ, where Λ dominates the potential. This region is
bounded by the two solutions of

VðφΛÞ ¼ 2Λ: ð61Þ

FIG. 2. Fraction of phase space that allows N > 60 e-foldings
of inflation as a function of the cosmological constant Λ, with
potentials VðφÞ ¼ λφ4 þ Λ (blue) and VðφÞ ¼ m2φ2 þ Λ (red).
The amplitude of scalar perturbations in the CMB has been used
to set λ ¼ 5 × 10−14 and m2 ¼ 10−12M2

P. The numerical inte-
gration becomes unreliable for Λ≲ 10−20, and so we use
the approximation (66). A vertical line is placed at Λ ¼
2.846 × 10−122M4

P corresponding to the observed value of the
cosmological constant today.

6Note that this statement is only well defined because we have
an unambiguous distribution of _φ.
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Between the two solutions, the following approximations
hold7:

VðφÞ ≈ Λ ≪ 1; ð62Þ

V 0ðφÞ ≫ VðφÞ: ð63Þ

Therefore, we have

gðφ; βÞ ≈ 9sin2ð2βÞV 0ðφÞ2
4Λ3

: ð64Þ

This leads to the following simple result:

Ng ≈
Z

φΛ

−φΛ

Z
2π

0

3j sinð2βÞV 0ðφÞj
2Λ3

2

dβdφ ¼ 12ffiffiffiffi
Λ

p : ð65Þ

Therefore, the approximate fraction of phase space that
allows sufficient inflation is

PðN > 60Þ ≈ Iφ>φc

6

ffiffiffiffi
Λ

p
: ð66Þ

This approximation has been used in Fig. 2. If we assume
the cosmological constant has not changed between the
early Universe and today, we must use (66) with
Λ ¼ 2.846 × 10−122. We then find that the fraction of phase
space that allows 60 e-foldings of inflation is 1.3 × 10−55 for
VðφÞ ¼ λφ4 þ Λ and 1.6 × 10−54 for VðφÞ ¼ m2φ2 þ Λ.
Is this fine tuning specific to these potentials or is it

generic? It is impossible to be certain without testing each
potential individually. However, it is not difficult to argue
that there will be at least some degree of fine tuning
required to achieve inflation for most simple potentials.
This is because sufficient inflation requires an initial field
value that is typically large in Planck units, whereas the
distribution we have derived prefers the initial value to be
close to the minimum due to the V−3

2 enhancement of the
volume element. This property is exacerbated for smaller
values of the cosmological constant as argued above.
It is important to note that all the probabilities calculated

so far are less than 50%, even with the most favorable
choice of parameters. This means that, generically, most
universes do not inflate as much as usually required to
explain the flatness and horizon problems. In light of this
result, we are faced with an uncomfortable truth: if we
cannot design a potential that avoids this issue, we must
work hard to explain why we find ourselves in one of the
minority of universes where there is enough inflation.
Otherwise, we will be forced to abandon inflation as a
solution to the problems of standard cosmology and seek

an alternative explanation for the horizon and flatness
problems.

VII. DISCUSSION

We have applied the Eisenhart-lift formalism to a theory
with gravity and a single scalar field in the minisuperspace
approximation. We have used the resulting theory to
construct a phase-space manifold, complete with a natural
metric whose points represent all possible initial conditions
for inflation. The total volume of this manifold is finite
when the physically irrelevant directions are integrated
over. We have used the natural measure on this manifold to
discriminate between finely tuned and generic sets of initial
conditions for an inflationary theory without the need for a
regulator. We have found that the regions of phase space
that allow for N > 60 e-foldings of inflation make up a tiny
fraction of the manifold.
We wish to emphasize three key elements of this paper:
(1) This is the first practical application of the Eisenhart

lift for field theories.
(2) To our knowledge, this is the first time that the

Sasaki metric has been applied to the phase-space
manifold and the first time (14) appears in the
literature.

(3) The natural measure which we have constructed on
the space of initial conditions does not require
regularization, in contrast to previous treatments
in the literature.

This final point bears further elaboration. Previous
authors have placed a natural, finite measure on the set
of initial conditions with the help of a regulator. Although
their final results are independent of the value of their
regulator, they are not independent of the regulation
scheme [37]. That is because when the total measure of
the system is infinite, it is not clear how to use it to define
ratios in an unambiguous way. We therefore argue that any
measure used to distinguish between generic initial con-
ditions from finely tuned ones must be finite in total for
these comparisons to be rigorous. The measure presented in
(48) satisfies this requirement. Although it does contain
divergences, these are only in physically meaningless
directions which arise as a result of redundancies in our
description of the initial conditions. With these redundant
degrees of freedom integrated out, the distribution pre-
sented in (53) is well defined and finite.
We have been very careful to avoid the use of the term

“probability of inflation” up until this point, choosing
instead to speak of the “fraction of phase space leading
to inflation,” and for good reason. Identifying a measure as
a probability measure represents a conceptual step that
must be justified. We nowmake this step with the following
justification: at very early times, the Universe should be
described by more complete theory that must include
quantum gravity. At some point, general relativity becomes
a good approximation, and from then on, we are able to

7There is a region for which this approximation breaks down,
given by jφj < ½Λ=ðnλÞ�1=ðn−1Þ for VðφÞ ¼ λφn þ Λ. This region
is negligibly small for the small values of Λ for which we employ
this approximation.
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track the evolution of the Universe using known physics. It
is the value of the fields (and their derivatives) at the end of
this quantum gravity regime that sets our initial conditions.
If we had a theory of quantum gravity, it would

presumably be able to tell us what initial conditions we
should expect. However, we do not yet have such a theory,
and hence we choose to assume as little as possible about
the quantum gravity regime. This motivates us to use
Laplace’s principle of indifference [55], which states that
each possible outcome should be considered equally likely.
We can only make use of this principle because the volume
of the phase space manifold is finite thanks to our measure.
We can thus think of the quantum gravity regime as a blind
creator “throwing darts” at the phase space manifold in
order to choose the initial conditions. With this picture in
mind, the distribution (53) can then be viewed as a
probability distribution.
We note that the above follows a frequentist approach to

probability. Our distribution is interpreted as the probability
for the Universe to emerge from the quantum gravity
regime with a particular configuration. In this viewpoint,
the birth of the Universe is simply a probability trial. If we
were to perform multiple trials, sufficient inflation would
on average occur a number of times proportional to its
probability. Indeed, this may have already happened; if the
early Universe is made up of several causally disconnected
patches, each patch would represent a trial.
On the other hand, we can approach the notion of

probability from a Bayesian standpoint. In this interpre-
tation, the probability would parametrize our ignorance of
whether inflation occurred in our Universe. In order to
calculate the likelihood of inflation, we would use current
observations as a condition to update our priors. However,
the Bayesian approach has an additional subtlety: since no
observations can distinguish between sets of initial
conditions that evolve into each other under time evolu-
tion, we must count trajectories on the manifold, not
points. This may be achieved by defining a counting
surface through which each trajectory passes once
and only once, on which one may use the volume
element of this submanifold as a probability density
distribution [24,31].
We have chosen to adopt a frequentist approach8,

inspired by an argument by Schiffrin and Wald [56].9

We know that the EoMs of the Universe are symmetric
under time reversal. Thus, if we use Bayesian probability to
retrodict the past state of our Universe, we are guaranteed
to obtain the same result as when we use it to predict the
future. However, we must remember that our Universe is
governed by the second law of thermodynamics. Therefore,

while Bayesian probability will correctly predict that the
Universe will have higher entropy in the future, it will
falsely retrodict that the Universe had higher entropy in the
past. In fact, the “true” trajectory of the Universe, which
had lower entropy in the past, is sure to be assigned a very
low Bayesian probability because it is vastly outweighed by
trajectories that had high entropy in the past.
Within the frequentist interpretation, we can see that our

results show that the probability of sufficient inflation is
very small if we assume that quantum gravity leads to a
uniform distribution of initial conditions. Therefore, we
have to ask that any future theory of quantum gravity leads
to a distribution of initial conditions very different from
uniform on the phase space if inflation is to continue being
a viable theory. In particular, we must insist that the
distribution be strongly peaked in the small region of
phase space that leads to sufficient inflation. This is a strong
constraint that may well prove very challenging to satisfy.
Inflation may instead be rescued by carefully designing a

potential for which the acceptable region is no longer
small. A possible example would be a potential with
a very large, or even infinite, plateau. If the plateau is
long enough, it may be able to overcome the ∼ðΛ=VpÞ32
suppression coming from the determinant of the phase-
space metric and take up a significant portion of the
manifold. However, if the plateau is truly infinite, then
the total volume of the phase-space manifold will no longer
be finite. In this case, a new approach would be required to
determine if the theory requires finely tuned initial con-
ditions. This is a potentially interesting avenue for future
work on the subject.
These challenges, whilst not insurmountable, do place

doubts on inflation’s ability to solve the problems it was
designed for. If inflation is just swapping one set of fine
tuning for another, it behooves us to ask if it really does
fulfil its goal of resolving the fine-tuning problems of
standard cosmology. It may be time to reevaluate the
advantages of inflation and investigate whether there is
another theory that might better explain the classic cos-
mological puzzles of the hot big bang model.
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APPENDIX: PHASE SPACE METRIC
FOR INFLATION

In coordinates Φα ¼ fa;φ; χ; _a; _φ; _χg, the phase-space
metric is given by

8Note that we can use a frequentist approach only because the
total volume of the phase-space manifold is finite. Previous
analyses with an infinite phase space have necessarily adopted a
Bayesian approach with a finite trajectory-counting surface.

9See also [57] for further discussion.
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