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The intriguing question, why the present scale of the universe is free from any perceptible footprints of
rank-2 antisymmetric tensor fields (generally known as Kalb-Ramond fields), is addressed. A quite natural
explanation of this issue is given from the angle of higher-curvature gravity, both in four- and in five-
dimensional spacetime. The results here obtained reveal that the amplitude of the Kalb-Ramond field may
be actually large and play a significant role during the early universe, while the presence of higher-order
gravity suppresses this field during the cosmological evolution, so that it eventually becomes negligible in
the current universe. Besides the suppression of the Kalb-Ramond field, the extra degree of freedom in
FðRÞ gravity, usually known as scalaron, also turns out to be responsible for inflation. Such FðRÞ gravity
with Kalb-Ramond fields may govern the early universe to undergo an inflationary stage at early times
(with the subsequent graceful exit) for a wider range of FðRÞ gravity than without antisymmetric fields.
Furthermore, the models—in four- and five-dimensional spacetimes—are linked to observational
constraints, with the conclusion that the corresponding values of the spectral index and tensor-to-scalar
ratio closely match the values provided by the Planck survey 2018 data.
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I. INTRODUCTION

A surprising feature of the present universe is that it
carries no noticeable footprints of higher rank (rank two or
higher) antisymmetric tensor fields. Apart from being the
massless (1,1) representation of the Lorentz group, such
fields also arise naturally as closed string modes [1] and,
consequently, are of considerable interest in string theory.

In this context, the second rank antisymmetric tensor fields,
generally known as Kalb-Ramond (KR) fields [2], have
drawn considerable attention and have been extensively
studied. However, dimensional analysis demands that the
coupling strength of the KR field to other matter fields
should go as 1=Mp (Mp being the four-dimensional Planck
mass), i.e., share the same dimensional coupling as the
graviton. In spite of this, the large scale behavior of the
present universe appears to be governed solely by gravity
and there is no experimental evidence of any second-
rank antisymmetric Kalb-Ramond field being present.
Therefore, if the KR field exists at all, it clearly must be
severely suppressed at the present scale of our universe.

*elizalde@ieec.uab.es
†odintsov@ieec.uab.es
‡pul.tnmy9@gmail.com
§diego.saez@ehu.eus

PHYSICAL REVIEW D 99, 063506 (2019)

2470-0010=2019=99(6)=063506(27) 063506-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.063506&domain=pdf&date_stamp=2019-03-11
https://doi.org/10.1103/PhysRevD.99.063506
https://doi.org/10.1103/PhysRevD.99.063506
https://doi.org/10.1103/PhysRevD.99.063506
https://doi.org/10.1103/PhysRevD.99.063506


This raises a natural question: why are the effects of the KR
field less perceptible than the force of gravitation? Some
attempts have been made to solve this puzzle both in four-
dimensional as well as in higher dimensional braneworld
models [3–7]. In the context of higher dimensional models,
the warping geometrical nature of extra dimensions causes
a huge suppression of the amplitude of the bulk for the KR
field on our visible 3-brane.
However, the suppression of the KR field still awaits a

proper understanding in the context of cosmology. On the
other hand, it has been shown that the energy density
associated with the KR field is large and might play a
relevant role in the early universe. This fact, along with
present day observations, have inspired us to study the
cosmological evolution of the KR field from the very early
universe, where it is also crucial to investigate whether the
universe goes through an inflationary stage or not. In
particular, we are interested in analyzing the possible
evolution of the Kalb-Ramond field from the very early
stages of the universe, and whether a suppression of this
field can be achieved, in order to satisfy the observational
constraints that we have at present. In addition, we also
intend here to study whether inflation can still be realised in
the presence of the KR field, including its compulsory
graceful exit. The values of the spectral index, ns, and the
tensor-to-scalar ratio, r, are obtained and compared to the
most recent Planck data available [8]. The present paper is a
serious attempt to provide a natural explanation of the
questions above in the framework of FðRÞ gravity, both in
four- and in five-dimensional spacetimes.
It is well known that the Einstein-Hilbert term can be

generalized to include higher order curvature terms in the
gravitational action, which naturally arise from the diffeo-
morphism property of the action. Such higher order curva-
ture terms may have their origin in string theory, such that
they naturally arise in the gravitational action [9]. FðRÞ
gravity [10–25], Gauss-Bonnet (GB) [26–29] or more
generally Lanczos-Lovelock gravity [30,31] are some of
the well known higher order curvature gravitational theories.
While GB or Lanczos-Lovelock gravity have nontrivial
consequences besides in higher dimensions, FðRÞ gravity
survives even in the four-dimensional spacetime model. For
some choices of FðRÞ [for which F0ðRÞ > 0], the corre-
sponding model becomes free of ghosts.
On the other hand, over the past two decades, models

with extra spatial dimensions [32–38] have been increas-
ingly playing a central role in physics beyond the standard
model of particle physics [39] and cosmology [40–44]. In
all such models our visible universe is identified with a
3-brane embedded within a higher dimensional spacetime.
Among all, the so-called Randall-Sundrum (RS) model
[34] has gained special attention as it solves the gauge
hierarchy problem without introducing any intermediate
scale (between Planck and TeV) in the theory. The RS
scenario assumes one extra spatial dimension (in addition
to the usual three spatial dimensions) with S1=Z2

orbifolding where the orbifolded fixed points are identified
with two 3-branes. The intermediate region between the
branes is fixed as a bulk which has a curvature of Planck
order. In such higher order curvature regime, FðRÞ gravity
is supposed to play a relevant role. However all the higher
dimensional braneworld scenarios demand a certain mecha-
nism for stabilization of interbrane separation, also known
as modulus or radion [45–48]. Here, we show that higher
order curvature degree(s) of freedom (d.o.f.) can generate a
potential term for the radion field and fulfill the purpose of
modulus stabilization. Keeping this in mind, here we try to
address the cosmological evolution of the antisymmetric
Kalb-Ramond field in FðRÞ gravity by analyzing two
frameworks: the KR field in four dimensions and in a
higher dimensional bulk spacetime.
The paper is organized as follows: in Sec. II we briefly

describe the equivalence between the FðRÞ model and
scalar-tensor (ST) theory in D dimensions. Sections III
and IV are devoted to the analysis of the cosmological
evolution of the KR field in four- and five-dimensional
spacetime in FðRÞ gravity, respectively. The paper ends
with some conclusive remarks and discussions in Sec. V.

II. FðRÞ GRAVITY AND ITS SCALAR-TENSOR
COUNTERPART IN D-DIMENSIONS

In this section, we briefly describe FðRÞ gravity in
D-dimensions and its conformal picture in the Einstein
frame, which results in the Hilbert-Einstein action with the
presence of a scalar field. The FðRÞ action can be written as
follows:

S ¼
Z

dDx
ffiffiffiffiffiffiffi
−G

p �
FðRÞ
2κ2

�
; ð2:1Þ

where G is the determinant of D-dimensional metric GMN
(M, N runs from 0 to D − 1), R is the D-dimensional Ricci
scalar and 1

2κ2
¼ MD−2 withM is the D-dimensional Planck

mass. By introducing an auxiliary field AðxÞ, the action
(2.1) can be rewritten as

S ¼
Z

dDx
ffiffiffiffiffiffiffi
−G

p 1

2κ2
½F0ðAÞðR − AÞ þ FðAÞ�: ð2:2Þ

The variation of this action over the auxiliary field AðxÞ
leads to A ¼ R, which finally results in the original action
(2.1). Moreover, the action (2.2) can be mapped into the
Einstein frame by applying the following conformal trans-
formation on the metric GMNðxÞ:

GMNðxÞ → G̃MNðxÞ ¼ e
−
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
ðD−1ÞðD−2Þ

p
κξ

i
GMNðxÞ; ð2:3Þ

where ξðxÞ is the conformal factor which is related to the

auxiliary field as F0ðAÞ ¼ e−½
ffiffiffiffiffi
D−2
D−1

p
κξ�, while R and R̃ are the

Ricci scalars in terms of the metrics GMN and G̃MN
respectively, such that they are related by
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R¼e
−
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
ðD−1ÞðD−2Þ

p
κξ

i"
R̃−κ2G̃MN∂Mξ∂Nξþ2κ

ffiffiffiffiffiffiffiffiffiffiffi
D−1

D−2

r
□̃ξ

#
;

where □̃ represents the d’Alembertian operator formed by
G̃MN . Using the above expression along with the afore-
mentioned relation among ξðxÞ and F0ðAÞ, the following
scalar-tensor action is achieved:

S ¼
Z

dDx
ffiffiffiffiffiffiffi
−G̃

p �
R̃
2κ2

−
1

2
G̃MN∂μξ∂νξ

−
�
AF0ðAÞ − FðAÞ
2κ2F0ðAÞD=ðD−2Þ

��
: ð2:4Þ

Note that the field ξðxÞ acts as a scalar field with the

potential AF0ðAÞ−FðAÞ
2κ2F0ðAÞD=ðD−2Þ [¼ VðAðξÞÞ]. Thus, the higher order

curvature d.o.f. manifests itself as a scalar field d.o.f. ξðxÞ
with the potential VðξÞ, which actually depends on the form
of FðRÞ.

III. KALB-RAMOND FIELD IN FOUR
DIMENSIONS IN FðRÞ GRAVITY

Let us first consider a four-dimensional spacetime in
FðRÞ gravity. As mentioned earlier, here we are interested
in how the higher order terms affect the dynamical
evolution of a second rank antisymmetric tensor field,
generally known as the Kalb-Ramond field (Bμν).
Therefore the action of the model is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðRÞ
2κ2

−
1

12
HμνρHμνρ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
Rþ R2

m2

�
−

1

12
HμνρHμνρ

�
: ð3:1Þ

Here we are assuming a particular form for gravitational
sector, the so-called Starobinsky model [49], FðRÞ ¼
Rþ R2

m2, where m is a parameter having mass dimension
and 1

2κ2
¼ M2

ð4Þ (Mð4Þ being the four-dimensional Planck

mass). Moreover, Hμνα is the field strength tensor of the
Kalb-Ramond (KR) field, defined byHμνα ¼ ∂ ½μBνα�. As we
may notice, Hμνα is invariant under the KR gauge trans-
formation: Bμν → Bμν þ ∂ ½μων� and thereby the action turns
out also invariant under such a transformation.
Using the conformal transformation from Sec. II, the

action (3.1) can be expressed as a scalar-tensor theory:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−
1

2
g̃μν∂μξ∂νξ − VðξÞ

−
1

12
e−

ffiffi
2
3

p
κξHμνρHαβδg̃μαg̃νβg̃ρδ

�
; ð3:2Þ

where the scalar potential VðξÞ has the following
expression:

VðξÞ ¼ m2

8κ2
ð1 − e

ffiffi
2
3

p
κξÞ2: ð3:3Þ

The potential has a stable minima at hξi ¼ 0 and asymp-
totically reaches m2

8κ2
as ξ goes to −∞. Figure 9 depicts the

form of the potential VðξÞ. From Eq. (3.2), it is straightfor-
ward to show that the kinetic term of the KR field becomes
noncanonical because of the presence of the scalar field
ξðxÞ. In order to make the KR field canonical, we redefine
the field as follows:

Bμν → B̃μν ¼ e−
1
2

ffiffi
2
3

p
κξBμν: ð3:4Þ

Then, the final form of the scalar-tensor action can be
expressed as follows:

S¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−
1

2
g̃μν∂μξ∂νξ−VðξÞ− 1

12
H̃μνρH̃μνρ

�
;

ð3:5Þ
where we consider κB̃μν < 1 and VðξÞ is obtained from
Eq. (3.3). In the following, we determine the solutions of
the cosmological field equations for the scalar-tensor model
[see Eq. (3.5)], from which one can extract the correspond-
ing solutions for the original FðRÞ model (3.1) by taking
the inverse conformal transformation.

A. Cosmological field equations and solutions
in the scalar-tensor representation

In order to obtain the field equations of the scalar-tensor
(ST) action (3.5), first we have to obtain the energy-
momentum tensor for ξðxÞ and B̃μνðxÞ,

Tμν½ξ� ¼
2ffiffiffiffiffiffi
−g̃

p δ

δg̃μν

� ffiffiffiffiffiffi
−g̃

p �
1

2
g̃αβ∂αξ∂βξþ VðξÞ

��

¼ ∂μξ∂νξ − g̃μν

�
1

2
g̃αβ∂αξ∂βξþ VðξÞ

�
; ð3:6Þ

and

Tμν½B̃� ¼
2ffiffiffiffiffiffi
−g̃

p δ

δg̃μν

�
1

12

ffiffiffiffiffiffi
−g̃

p
g̃μαg̃νβg̃λγH̃μνλH̃αβγ

�

¼ 1

6

�
3g̃νρH̃αβμH̃αβρ −

1

2
g̃μνH̃αβγH̃αβγ

�
: ð3:7Þ

Here we are interested in the cosmological evolution of the
KR field. For that purpose, we assume the ansatz of a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

d̃s2 ¼ g̃μνðxÞdxμdxν
¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð3:8Þ
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where t and aðtÞ are the cosmic time and the scale factor
respectively. However before obtaining the field equations,
we would like to emphasize that H̃μνλ has four independent
components in four-dimensional spacetimes due to its
antisymmetric nature, such that they can be expressed as

H̃012 ¼ h1; H̃012 ¼ h1;

H̃013 ¼ h2; H̃013 ¼ h2;

H̃023 ¼ h3; H̃023 ¼ h3;

H̃123 ¼ h4; H̃123 ¼ h4: ð3:9Þ

As the KR field tensor H̃μνα owns four independent
components, it can be equivalently expressed as a vector
field (which has also four independent components in
four dimensions) [50], H̃μνα ¼ εμναβϒβ, with ϒβ being
the vector field.
Moreover, Eq. (3.9) together with the expressions for the

energy-momentum tensor and the FLRW metric lead to the
off-diagonal Friedmann equations as follows [23]:

h4h3¼ h4h2 ¼ h4h1¼ h2h3¼ h1h3 ¼ h1h2¼ 0; ð3:10Þ

where the fields are considered homogeneous. The above
set of equations has the following solution:

h1 ¼ h2 ¼ h3 ¼ 0; h4 ≠ 0: ð3:11Þ

Using this solution, one easily obtains the total energy
density and pressure for the matter fields (ξ, B̃μν), which
become ρT ¼ ½1

2
_ξ2þVðξÞþ 1

2
h4h4� andpT ¼ ½1

2
_ξ2 − VðξÞ þ

1
2
h4h4� respectively (where the dot denotes d

dt). As a result,
the diagonal Friedmann equations turn out to be

H2 ¼ κ2

3

�
1

2
_ξ2 þ m2

8κ2

�
1 − e

ffiffi
2
3

p
κξ
�
2 þ 1

2
h4h4

�
; ð3:12Þ

and

2 _Hþ3H2þ κ2
�
1

2
_ξ2−

m2

8κ2

�
1−e

ffiffi
2
3

p
κξ
�
2þ1

2
h4h4

�
¼ 0;

ð3:13Þ

whereH ¼ _a
a is the Hubble parameter. In order to obtain the

above equations, we have used the explicit expression of
VðξÞ as shown in Eq. (3.3). Furthermore, the field equations
for the KR field (B̃μν) and the scalar field (ξ) are given by

∇̃μH̃μνλ ¼ 1

a3ðtÞ ∂μ½a3ðtÞH̃μνλ� ¼ 0; ð3:14Þ

and

̈ξþ 3H_ξ −
ffiffiffi
2

3

r
m2

4κ
e
ffiffi
2
3

p
κξð1 − e

ffiffi
2
3

p
κξÞ ¼ 0: ð3:15Þ

From Eq. (3.14), we know that the nonzero component of
H̃μνα (i.e., H̃123 ¼ h4) depends on t only (see Appendix A
for the derivation), which is also expected from the gravi-
tational field equations. Differentiating both sides (with
respect to t) of Eq. (3.12), one easily obtains

6H _H¼ κ2
�
_ξξ̈−

ffiffiffi
2

3

r
m2

4κ
e
ffiffi
2
3

p
κξ
�
1−e

ffiffi
2
3

p
κξ
�
_ξþ1

2

d
dt
ðh4h4Þ

�
:

Furthermore, Eqs. (3.12) and (3.13) lead to the expres-
sion 2 _H ¼ −κ2½_ξ2 þ h4h4�. Substituting this expression of
_H in the above equation and using the scalar field equation
of motion, we obtain the following cosmic evolution for
h4h4:

d
dt

ðh4h4Þ ¼ −6Hh4h4: ð3:16Þ

Solving (3.16), we get

h4h4 ¼
h0
a6

; ð3:17Þ

with h0 being an integration constant which must be
taken positive in order to ensure a real solution for
h4ðtÞ. Recall that the term 1

2
h4h4 represents the energy

density contribution from the Kalb-Ramond field.
Therefore, Eq. (3.17) clearly indicates that the KR field
energy density (ρ̃KR) is proportional to 1=a6 and as a result,
ρ̃KR gradually decreases with the expansion of the universe.
However, Eq. (3.17) also shows that KR energy density is
large and may play a significant role in the early universe
(when the scale factor is small in comparison to the present
one). Therefore, in order to address the dynamical suppres-
sion of theKR field,we should study the dynamics of theKR
field from the very early universewhen it is also important to
evaluate whether the early universe undergoes an accelerat-
ing stage or not, i.e., an inflationary phase. To check this
phenomena, we need to obtain the form of the scale factor at
early times.
From the solution h4h4 in terms of the scale factor, two

independent equations remained,

H2 ¼ κ2

3

�
1

2
_ξ2 þ m2

8κ2

�
1 − e

ffiffi
2
3

p
κξ
�
2 þ 1

2

h0
a6

�
; ð3:18Þ

and

ξ̈þ 3H_ξ −
ffiffiffi
2

3

r
m2

4κ
e
ffiffi
2
3

p
κξ
�
1 − e

ffiffi
2
3

p
κξ
�
¼ 0: ð3:19Þ

Here, we should mention that Eqs. (3.18) and (3.19) match
the field equations when H̃μνα is expressed in the vector
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representation, i.e., H̃μνα ¼ εμναβϒβ (see Appendix B for
the derivation of this equivalence). This confirms the
equivalence between the two representations at the level
of the equations of motion, which is also in agreement
with Ref. [50].
However, Eqs. (3.18) and (3.19) are sufficient to deter-

mine the evolution of two unknown functions: the scale
factor aðtÞ and the scalar field ξðtÞ. As mentioned above,
we are interested in solving the field equations during the
initial phase of the universe where the potential energy of
the scalar field is assumed to be greater than that of the
kinetic energy, known as the slow-roll approximation, i.e.,

VðξÞ ≫ 1

2
_ξ2: ð3:20Þ

Under such an approximation, Eqs. (3.18) and (3.19)
become

H2 ¼ κ2

3

�
m2

8κ2

�
1 − e

ffiffi
2
3

p
κξ
�
2 þ 1

2

h0
a6

�
; ð3:21Þ

and

3H_ξ −
ffiffiffi
2

3

r
m2

4κ
e
ffiffi
2
3

p
κξ
�
1 − e

ffiffi
2
3

p
κξ
�
¼ 0: ð3:22Þ

By considering κ2h0
m2 < 1 (which is also necessary in order to

relate themodelwith the observational constraints, as shown
below), Eqs. (3.21) and (3.22) can be written as follows:

H¼ m

2
ffiffiffi
6

p ð1−e
ffiffi
2
3

p
κξÞ
�
1þ2κ2h0

m2

1

a6ð1−e
ffiffi
2
3

p
κξÞ2
�
; ð3:23Þ

and

dξ
dt

¼ m
18κ

e
ffiffi
2
3

p
κξ

�
1 −

2κ2h0
m2

1

a6ð1 − e
ffiffi
2
3

p
κξÞ2
�
; ð3:24Þ

wherewe keep the terms up to the leading order in h0. Under

the condition κ2h0
m2 < 1, we can solve the above equations for

ξðtÞ and aðtÞ perturbatively where κ2h0
m2 is treated as a

perturbation parameter. The solutions are (for m0 ≠ 0)

ξðtÞ ¼
ffiffiffiffiffiffiffi
3

2κ2

r �
ln

�
9

−
ffiffiffi
6

p
mðt − t0Þ þ 9C

�
þ κ2h0

m2
PðtÞ

�
;

ð3:25Þ

and

aðtÞ ¼ D

�
1 −

2mðt − t0Þ
3
ffiffiffi
6

p
C

�
3=4
�
1þ κ2h0

m2
QðtÞ

�

× exp

�
mðt − t0Þ
2
ffiffiffi
6

p
�
: ð3:26Þ

Here PðtÞ and QðtÞ have the following expressions:

PðtÞ ¼ ð− ffiffiffi
6

p
mðt − t0Þ þ 9CÞ2

ð− ffiffiffi
6

p
mðt − t0Þ þ 9Cþ 9Þ3 ; ð3:27Þ

and

QðtÞ ¼
ð5þ 9Cð1þ 3CÞÞ

�
1 −

ffiffi
3
2

q
mðt − t0Þ

�
þ ffiffiffi

6
p ð1þ 6Cþ 81C2Þ

�
−mðt − t0Þ þ

ffiffi
3
2

q
m2ðt − t0Þ2

�
ð1 − 2mðt−t0Þ

3
ffiffi
6

p
C
Þ7=2

: ð3:28Þ

Furthermore, C and D are integration constants related to
the initial values of ξðtÞ and aðtÞ as follows:

ξðt0Þ ¼ ξ0 ¼
ffiffiffiffiffiffiffi
3

2κ2

r �
ln ð1=CÞ þ κ2h0

9m2

C2

ð1þ CÞ3
�
;

aðt0Þ ¼ D

�
1þ κ2h0

m2
ð5þ 9Cð1þ 3CÞÞ

�
: ð3:29Þ

Note that for h0 → 0, both solutions ξðtÞ as aðtÞ go towards
the well known Starobinsky solution. Furthermore,
Eq. (3.25) leads to the fact that the scalar field increases
with time and goes to infinity as t → 9Cffiffi

6
p

m
. Keeping this in

mind, here we consider the initial value of the scalar field
(i.e., ξ0) as negative. The negative initial value of the scalar
field is also consistent with the slow-roll condition, as may
be noticed from Fig. 1.

8 6 4 2

0.5

1.0

1.5

FIG. 1. VðξÞ vs ξ.
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1. Beginning of inflation in scalar-tensor model

After obtaining the solution of the scale factor (3.26), we
can now analyze whether this form of the scale factor
corresponds to an accelerating stage during the early
universe (i.e., t≳ t0). For this purpose, we expand aðtÞ
in the form of Taylor series (about t ¼ t0) and keep those
terms up to linear order in t − t0:

aðt → t0Þ ¼ D

�
1 −

2mðt − t0Þ
3
ffiffiffi
6

p
C

�
3=4

exp

�
mðt − t0Þ
2
ffiffiffi
6

p
�

×

�
1þ κ2h0

m2

�
ð5þ 9Cð1þ 3CÞÞ

−
mffiffiffi
6

p ð11þ 45Cþ 513C2Þt
��

; ð3:30Þ

where we have used the expression of QðtÞ at t → t0 as
Qðt→ t0Þ ¼ ð5þ 9Cð1þ 3CÞÞ− mffiffi

6
p ð11þ 45Cþ 513C2Þt.

Differentiating (twice) both sides of Eq. (3.30) in the limit
t → t0, one finally gets the following expression for the
acceleration:

ä
a

				
t→t0

¼
�

m

2
ffiffiffi
6

p
�

2C−1

C

×

�
C−1

C
−4

κ2h0
m2

ð11þ45Cþ513C2Þ
�
: ð3:31Þ

By inverting Eq. (3.29), we obtain the explicit expression
for the integration constant C in terms of ξ0 (initial value
of the scalar field). For the zeroth order in h0, one gets

Cð0Þ ¼ e−
ffiffiffiffi
2κ2

3

p
ξ0 and up to first order in h0, C becomes

C ¼ e−
ffiffiffiffi
2κ2

3

p
ξ0 þ κ2h0

9m2

0
B@ e−3

ffiffiffiffi
2κ2

3

p
ξ0�

1þ e−
ffiffiffiffi
2κ2

3

p
ξ0
�
3

1
CA

¼ ejσ0j þ κ2h0
9m2

�
e3jσ0j

ð1þ ejσ0jÞ3
�
; ð3:32Þ

where σ0 ¼
ffiffiffiffiffiffiffiffiffiffi
2κ2

3
ξ0

q
and recall that the initial value of the

scalar field is considered to be negative. Then, by using
the above expression for C [see Eq. (3.32)], Eq. (3.31) turns
out as

ä
a

				
t→t0

¼
�

m

2
ffiffiffi
6

p
�

2

ð1 − e−jσ0jÞ
�
ð1 − e−jσ0jÞ − 4

κ2h0
m2

�
11þ 45ejσ0j þ 513e2jσ0j −

ejσ0j

18ð1þ ejσ0jÞ3
��

: ð3:33Þ

Note that under the condition

m2ð1 − e−jσ0jÞ
4ð11þ 45ejσ0j þ 513e2jσ0j − ejσ0 j

18ð1þejσ0 jÞ3Þ
> κ2h0; ð3:34Þ

the universe passes through an acceleration phase while it

does not when the condition m2ð1−e−jσ0 jÞ
4ð11þ45ejσ0 jþ513e2jσ0 j− ejσ0 j

18ð1þejσ0 jÞ3
Þ
<

κ2h0 holds.
Hence, the parameters m and h0 control the strength of

the scalar field and the KR field energy density respec-
tively. Therefore, the interplay among the scalar field and
the KR field fixes whether the early universe evolves
through an accelerating stage or not. In the next section,
we focus again on the cosmological solutions and their
possible consequences for the original FðRÞ model [see
Eq. (3.1)] by using the solutions of the corresponding
scalar-tensor theory.

B. Cosmological solutions and their possible
consequences in the FðRÞ gravity: Suppression

of the Kalb-Ramond field

Recall that the original higher order curvature FðRÞ
model is given by the action (3.1), solutions for the metric
can be obtained from the corresponding scalar-tensor

theory [see Eqs. (3.25) and (3.26)] with the help of the
inverse conformal transformation. Thus, the line element in
the FðRÞ model can be written as

ds2 ¼ e
ffiffi
2
3

p
κξðtÞ½−dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ�

¼ −dτ2 þ s2ðτÞðdx2 þ dy2 þ dz2Þ; ð3:35Þ

where τðtÞ, sðτÞ are the cosmic time and scale factor
respectively in Jordan frame, which are related to the
Einstein frame by the conformal transformation:

τðtÞ ¼
Z

dte½
1
2

ffiffi
2
3

p
κξðtÞ�; ð3:36Þ

and

sðτðtÞÞ ¼ e½
1
2

ffiffi
2
3

p
κξðtÞ�aðtÞ: ð3:37Þ

Equation (3.36) clearly indicates that τðtÞ is a monoton-
ically increasing function of t. However, by integrating
Eq. (3.36), one gets the explicit functional form of τðtÞ as
follows:
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τ − τ0 ¼
1

4m

ffiffiffi
3

2

r " 
8
ffiffiffiffiffiffi
9C

p
− 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9C −

ffiffiffi
6

p
mðt − t0Þ

q !
;

þ κ2h0
2m2

 ð27þ 45C − 5
ffiffiffi
6

p
mðt − t0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9C −

ffiffiffi
6

p
mðt − t0Þ

q
ð9þ 9C −

ffiffiffi
6

p
mðt − t0ÞÞ2

−
ð3þ 5CÞ ffiffiffiffi

C
p

3ð1þ CÞ2
!
;

þ κ2h0
2m2

 
tan−1

 
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9C −
ffiffiffi
6

p
mðt − t0Þ

p
!

− tan−1ð1=
ffiffiffiffi
C

p
Þ
!#

; ð3:38Þ

where the integration constant [that appeared while integrating Eq. (3.36)] is fixed by the condition τðt0Þ ¼ τ0. Moreover,
with the solutions of ξðtÞ and aðtÞ, Eq. (3.37) immediately leads to the form of sðτÞ [in terms of t, where τðtÞ is given by the
above expression] as

sðτðtÞÞ ¼ D

�
1 −

2mðt − t0Þ
3
ffiffiffi
6

p
C

�
3=4
�
1þ κ2h0

m2

�
QðtÞ þ 1

2
PðtÞ

��
; exp

�
mðt − t0Þ
2
ffiffiffi
6

p þ ln

�
9

−
ffiffiffi
6

p
mðt − t0Þ þ 9C

��
; ð3:39Þ

where PðtÞ and QðtÞ are given by Eqs. (3.27) and (3.28)
respectively. However, by using Eq. (3.38), we obtain τðtÞ
at t → t0,

τðt → t0Þ ¼ τ0 þ
ffiffiffiffi
1

C

r �
1þ κ2h0

9m2

�
C2

ð1þ CÞ3
��

ðt − t0Þ:

ð3:40Þ

1. Beginning of inflation in FðRÞ gravity
In this section, we investigate whether the solution of the

scale factor [sðτÞ, see Eq. (3.39)] corresponds to an infla-
tionary stage of the early universe. In order to analyze this

matter, we expand sðτÞ in the form of a Taylor series (about
τ ¼ τ0) and keep the terms up to linear order in τ − τ0. For
this purpose, we need the expression of τðtÞ at t → t0,
which can be obtained from Eq. (3.38) as

τðt → t0Þ ¼ τ0 þ
ffiffiffiffi
1

C

r �
1þ κ2h0

9m2

�
C2

ð1þ CÞ3
��

ðt − t0Þ:

ð3:41Þ

Recall that τ goes to τ0 as t → t0, which is also evident from
the above expression. Equations (3.39) and (3.41) lead to
the expression of the scale factor at τ → τ0,

sðτ → τ0Þ ¼
Dffiffiffiffi
C

p
�
1 −

2mβðτ − τ0Þ
3
ffiffiffi
6

p
C

�
3=4

exp

�
mβðτ − τ0Þ

2
ffiffiffi
6

p
��

1þ κ2h0
m2

�
½5þ 9Cð1þ 3CÞ�;

þ C2

9ð1þ CÞ3 −
mβffiffiffi
6

p
�
11þ 1219

27
Cþ 13849

27
C2

�
ðτ − τ0Þ

��
; ð3:42Þ

with β given by

1=β ¼
ffiffiffiffi
1

C

r �
1þ κ2h0

9m2

�
C2

ð1þ CÞ3
��

;

Differentiating twice both sides with respect to τ, Eq. (3.42) becomes

1

s
d2s
dτ2

				
τ→τ0

¼ β2
�

m

2
ffiffiffi
6

p
�

2

ð1 − e−jσ0jÞ
�
ð1 − e−jσ0jÞ − 4

κ2h0
m2

�
11þ 1219

27
ejσ0j þ 13849

27
e2jσ0j

��
; ð3:43Þ

where C ¼ ejσ0j þ κ2h0
9m2 ð e3jσ0 j

ð1þejσ0 jÞ3Þ is used. Therefore, it is clear that for

m2ð1 − e−jσ0jÞ
4ð11þ 1219

27
ejσ0j þ 13849

27
e2jσ0j − ejσ0 j

18ð1þejσ0 jÞ3Þ
> κ2h0; ð3:44Þ
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the early universe undergoes through an inflationary
stage (with τ0 as the onset of inflation), while for

m2ð1−e−jσ0 jÞ
4ð11þ1219

27
ejσ0 jþ13849

27
e2jσ0 j− ejσ0 j

18ð1þejσ0 jÞ3
Þ
< κ2h0, d2s

dτ2 jτ→τ0
becomes

negative.
Comparison of Eqs. (3.34) and (3.44) makes it clear that

the conditions for an early time acceleration in scalar-tensor
theory and FðRÞ gravity are different. However, note that
similarly as in scalar-tensor theory, the interplay among the
parameters m and h0 fixes whether the universe evolves
through an inflationary stage during the early universe.
Furthermore, in order to solve the flatness and horizon
problems, the universe must pass through an accelerating
stage at early epoch [in the original FðRÞ model] and from
this requirement, here we assume the condition shown
in Eq. (3.44).

2. End of inflation in FðRÞ gravity
In the previous section, we have shown that the very

early universe expands with acceleration, a phase generally
known as the inflationary epoch. At this stage, it is
important to check whether the inflationary era has an
end in a finite time. We may define the end of inflation by
the condition

d2s
dτ2

¼ 0: ð3:45Þ

Recall sðτÞ ¼ e½
ffiffiffiffiffiffiffiffi
1
6
κξðtÞ

p
�aðtÞ is the scale factor in the FðRÞ

model, from which one obtains

d2s
dτ2

¼ e½−
1
2

ffiffiffiffiffiffiffiffi
2
3
κξðtÞ

p
�aðtÞ

�
_H þH2 þ κffiffiffi

6
p H_ξ

�
; ð3:46Þ

where H is the Hubble parameter in the scalar-tensor
picture and the dot represents d

dt. Equations (3.45) and
(3.46) clearly indicate that the end of the inflationary epoch
in the FðRÞ model can be expressed by the following
equation:

_H þH2 þ κffiffiffi
6

p H_ξ ¼ 0: ð3:47Þ

Now we analyze whether this condition is consistent with
the field equations. Differentiating (with respect to t) both
sides of Eq. (3.21), we get

_H ¼ −
m2

18
e2

ffiffi
2
3

p
κξðtÞ þ 1

12H
d
dt

�
κ2h0
a6ðtÞ

�
: ð3:48Þ

Here we have used the scalar field equation. At the end of

inflation, the term proportional to κ2h0
a6

becomes small
enough so that we can apply the method of iteration (with
respect to that term) to determine _H. Up to zeroth order of

iteration, _H ¼ − m2

18
e½2

ffiffi
2
3

p
κξðtÞ�. Consequently, one deter-

mines _H up to first order of iteration as follows:

_H ¼ −
m2

18
e2

ffiffi
2
3

p
κξðtÞ þ

�
2m2

81

�
e4

ffiffi
2
3

p
κξðtÞ�

1 −
ffiffi
2
3

q
κξðtÞ

�
2
: ð3:49Þ

By this expression together with the field equations of
motion, Eq. (3.49) leads to the following condition on the
scalar field:

1

4
−
2

3
e½
ffiffi
2
3

p
κξðtfÞ� þ 1

9
e½2

ffiffi
2
3

p
κξðtfÞ� þ 8

81
e½4

ffiffi
2
3

p
κξðtfÞ� ¼ 0;

where tf − t0 denotes the duration of inflation in the FðRÞ
model (in terms of t). Solving the above algebraic equation
[for ξðtfÞ], we obtain

ξf ≃
ffiffiffiffiffiffiffi
3

2κ2

r
ln

�
3

5

�
: ð3:50Þ

Equation (3.50) clearly indicates that the inflationary era of
the universe continues as long as the value of the scalar field

remains greater than ξfð¼
ffiffiffiffiffi
3
2κ2

q
lnð3

5
Þ<0Þ. Correspondingly,

the duration of inflation can be calculated from the solution
of the scalar field [see Eq. (3.25)] as follows:

tf − t0 ¼
9ffiffiffi
6

p
m

�
ejσ0j − ejσf j

�
1þ κ2h0

9m2
e−jσ0j

��
; ð3:51Þ

where σ0 ¼
ffiffiffiffiffi
2κ2

3

q
ξ0 and σf ¼

ffiffiffiffiffi
2κ2

3

q
ξf. Therefore in terms of

the cosmic time τ, the duration of inflation becomes

τf− τ0 ¼
1

4m

ffiffiffi
3

2

r �
ð8

ffiffiffiffiffiffi
9C

p
−8

ffiffiffi
d

p
Þ

þ κ2h0
2m2

�ð27þ5dÞ ffiffiffi
d

p

ð9þdÞ2 −
ð3þ5CÞ ffiffiffiffi

C
p

3ð1þCÞ2
�
;

þ κ2h0
2m2

�
tan−1

�
3ffiffiffi
q

p
�
− tan−1ð1=

ffiffiffiffi
C

p
Þ
��

; ð3:52Þ

with d ¼ eσfð1þ κ2h0
9m2 e−jσ0jÞ. Moreover, in order to derive

the above expression, we have used Eq. (3.38). Note that

τf − τ0 depends on the parameters κ
2h0
m2 and σ0. Therefore, we

need the values of such parameters to estimate the duration
explicitly, which can be determined from the expression of
the spectral index and the tensor to scalar ratio as discussed
in the next section.
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3. Spectral index, tensor to scalar ratio and
number of e-foldings in the FðRÞ model

In order to test the broad inflationary paradigm as well as
particular models vs the observations, we need to calculate
the value of spectral index(ns) and tensor to scalar ratio (r)
and for this purpose, here we define a dimensionless
parameter (known as slow-roll parameter) as

ϵF ¼ −
1

H2
F

dHF

dτ
; ð3:53Þ

where HF is the Hubble parameter in the FðRÞ model,
defined asHF ¼ 1

sðτÞ
ds
dτ. By Eqs. (3.36) and (3.37),HF turns

out to be

HF ¼ e−
ffiffi
2

p
κ

2
ffiffi
3

p ξðtÞ
�
H þ

ffiffiffi
2

p
κ

2
ffiffiffi
3

p _ξ

�
: ð3:54Þ

Recall that H is the Hubble parameter in the corresponding
scalar-tensor frame. In order to find the explicit expression
of ϵF, we determine dHF

dτ by differentiating with respect to τ,
both sides of Eq. (3.54), leading to

dHF

dτ
¼ e−

ffiffi
2

p
κffiffi
3

p ξðtÞ
�
_H −

ffiffiffi
2

p
κ

2
ffiffiffi
3

p H_ξ

�
: ð3:55Þ

From the above expressions of HF and dHF
dτ along with the

slow-roll field equations, one finally gets the following
form of ϵF:

ϵF ¼ −
1

H2
F

dHF

dτ
;

¼
� 3κ2h0

2a6
þ m2

12
eσð1 − eσÞ

m2

8
ð1 − eσÞ2 þ κ2h0

2a6 þ m2

6
eσð1 − eσÞ

�
; ð3:56Þ

with σðτÞ ¼
ffiffiffiffiffi
2κ2

3

q
ξðtðτÞÞ.

As mentioned above, the second rank antisymmetric KR
field can be equivalently expressed as a vector field which
can be further recast as the derivative of a massless scalar
field (see Appendix B). As a consequence, the spectral
index and tensor to scalar ratio in the present context are
defined as follows [51–53]:

ns ¼ ½1 − 4ϵF − 2ϵ2 þ 2ϵ3 − 2ϵ4�jτ0 ; ð3:57Þ

and

r ¼ 8κ2
Θ

F0ðRÞ
				
τ0

: ð3:58Þ

Here the slow-roll parameters (ϵF, ϵ2, ϵ3, ϵ4) are defined by
the following expressions:

ϵF ¼ −
1

H2
F

dHF

dτ
; ϵ2 ¼

1

2ρKRHF

dρKR
dτ

;

ϵ3 ¼
1

2F0ðRÞHF

dF0ðRÞ
dτ

; ϵ4 ¼
1

2EHF

dE
dτ

; ð3:59Þ

where Θ and E are given by

Θ ¼ ρKR
F0ðRÞH2

F

�
F0ðRÞ þ 3

2κ2ρKR
ð d
dτ

F0ðRÞÞ2
�
; ð3:60Þ

and

E ¼ ΘF0ðRÞH2
F

ρKR
; ð3:61Þ

with ρKRð¼ H123H123Þ being the energy density of the KR
field in the FðRÞ model. However, by virtue of Eq. (3.86),

the variation of ρKR immediately leads to ρKR ¼ e−2
ffiffi
2
3

p
κξðtÞ h0

a6
.

Keeping this in mind, now we are going to determine the
explicit expressions of various terms appearing in the right-
hand side of Eqs. (3.57) and (3.58).

(i) ϵF: As obtained in Eq. (3.56), ϵF is given by

ϵF ¼
� 3κ2h0

2a6
þ m2

12
eσð1 − eσÞ

m2

8
ð1 − eσÞ2 þ κ2h0

2a6
þ m2

6
eσð1 − eσÞ

�
: ð3:62Þ

(ii) ϵ2: As defined above, ϵ2 is related to the variation of
the KR field energy density and thus to the field
equation of theKalb-Ramond field. However, theKR
field energy density in FðRÞ (ρKR) and in the
corresponding scalar-tensor theory (ρ̃KR) are con-

nected by ρKR¼e−2σρ̃KR (with σ¼
ffiffi
2
3

q
κξ). Differ-

entiating both sides of this expression (with respect to
τ), one gets

dρKR
dτ

¼ d
dt

½e−2σρ̃KR�
dt
dτ

¼ ρKRe−σ=2
�

1

ρ̃KR

dρ̃KR
dt

− 2
dσ
dt

�
; ð3:63Þ

where we have used the relation among τ and t as
shown in Eq. (3.36). Recall that the evolution of ρ̃KR
[see Eq. (3.16)] is given by

1

ρ̃KR

dρ̃KR
dt

þ 6H ¼ 0: ð3:64Þ

With the help of expression (3.63), the above equa-
tion can be written in terms of ρKR as follows:

ρ0KR
2ρKR

þ e−σ=2 _σ þ 3e−σ=2H ¼ 0; ð3:65Þ
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where prime and dot represent the derivative with
respect to τ and t respectively. Equation (3.65) along
with the expression ofHF [see Eq. (3.54)] leads to the
final form of ϵ2 as follows:

ϵ2 ¼
ρ0KR

2ρKRHF

¼ −3þ _σ

2HF
e−σ=2: ð3:66Þ

(iii) ϵ3: Using FðRÞ ¼ Rþ R2

m2 (as we consider in the
present context), ϵ3 can be simplified as

ϵ3 ¼
1

2F0ðRÞHF

dF0ðRÞ
dτ

¼ 1

2RHF

dR
dτ

; ð3:67Þ

where we consider 1þ 2R
m2 ≃ 2R

m2 near the beginning of
inflation (as ns and r are calculated at the onset of
inflation). Furthermore, for a flat FRW metric, the
Ricci scalar takes the formR ≃ 12H2

F, and we get the
final form of ϵ3 as

ϵ3 ¼
1

H2
F

dHF

dτ
¼−ϵF

¼−
� 3κ2h0

2a6
þm2

12
eσð1−eσÞ

m2

8
ð1−eσÞ2þ κ2h0

2a6
þm2

6
eσð1−eσÞ

�
: ð3:68Þ

(iv) ϵ4: As mentioned above, E is defined as

E ¼ ΘF0ðRÞH2
F

ρKR
. Differentiating this expression (with

respect to τ), one gets

E0

EHF
¼ Θ0

ΘHF
þ 1

F0ðRÞHF

dF0ðRÞ
dτ

þ 2
H0

F

H2
F
−

ρ0KR
ρKRHF

:

ð3:69Þ

The above expression can be further simplified with
the help of Eqs. (3.66) and (3.68),

E0

EHF
¼ Θ0

ΘHF
− 4ϵF þ 6 −

_σ

HF
e−σ=2: ð3:70Þ

At this stage, we should obtain Θ in order to get the
final expression for ϵ4 as well as for ns. By its
definition, Θ is given by

Θ ¼ ρKR
H2

F
þ 3

2κ2F0ðRÞH2
F

�
dF0ðRÞ
dτ

�
2

¼ ρKR
H2

F
þ 6ϵ2F

�
F0ðRÞ
κ2

�
: ð3:71Þ

In the second line of the above expression, we have
used Eq. (3.68). Differentiating both sides of
Eq. (3.71), the following expression yields

Θ0

ΘHF
¼ −2ϵF þ 2

ϵ0F
ϵFHF

þ κ2ρKR
6F0ðRÞϵ2FH3

F

×

�
−6HF þ e−σ=2 _σ −

H0
F

HF

�
; ð3:72Þ

where we have used Eqs. (3.66) and (3.68). How-
ever, the above expression together with Eq. (3.70)
lead to the final form of ϵ4 as

ϵ4¼−3ϵFþ
ϵ0F

ϵFHF
þ3−

_σ

2HF
e−σ=2

þ κ2ρKR
6F0ðRÞϵ2FH3

F

�
−6HFþe−σ=2 _σ−

H0
F

HF

�
: ð3:73Þ

Hence, we can now calculate the spectral index.
Introducing the above expressions of ϵi [i ¼ 1, 2, 3, 4,
see Eqs. (3.62), (3.66), (3.68) and (3.73)] into Eq. (3.57),
we finally obtain the following form of ns as

ns ¼ 1 − 2
ϵ0F

ϵFHF
þ κ2ρKR
6F0ðRÞϵ2FH3

F

�
−6HF þ e−σ=2 _σ −

H0
F

HF

�
:

ð3:74Þ

Note that in the absence of the Kalb-Ramond field (i.e.,

ρKR ¼ 0), ns turns out ns ¼ 1–2
ϵ0F

ϵFHF
, in agreement with the

expression of spectral index in a pure FðRÞ gravity model
[51]. However, due to the presence of the KR field, ns is
modified by the terms proportional to ρKR. Taking these
modifications into account, the final form of ns is given by

ns ¼ 1 − 2

2
64
− κ2h0

2m2 þ 1
9

�
e2σ0 ð1−eσ0 Þð1−2eσ0 Þ

ð1−eσ0 Þ2þ4κ2h0
m2

�
3κ2h0
2m2 þ 1

12
eσ0ð1 − eσ0Þ

3
75þ 2

2
64

− 3κ2h0
m2 − 1

9

�
e2σ0 ð1−e2σ0 Þ

ð1−eσ0 Þ2þ4κ2h0
m2

�
κ2h0
2m2 þ 1

8
ð1 − eσ0Þ2 þ 1

6
eσ0ð1 − eσ0Þ

3
75

þ 9

16

κ2h0=m2

½1
8
ð1 − eσ0Þ2 þ κ2h0

2m2 þ 1
6
eσ0ð1 − eσ0Þ�½3κ2h0

2m2 þ 1
12
eσ0ð1 − eσ0Þ�

−
3

8

κ2h0=m2

½3κ2h0
2m2 þ 1

12
eσ0ð1 − eσ0Þ�2

: ð3:75Þ
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Let us now calculate the tensor to scalar ratio (r) which is
defined as r ¼ 8κ2 Θ

F0ðRÞ. By using the explicit expression of
Θ, one gets

r¼ 8κ2
ρKR

H2
FF

0ðRÞþ48

�
1

2HFF0ðRÞ
dF0ðRÞ
dτ

�
2
				
τ0

: ð3:76Þ

We need the terms of the right-hand side of Eq. (3.76)
which can be obtained as follows:

(i) First term in the rhs of Eq. (3.76): With F0ðRÞ ¼
1þ 2R=m2 ≃ 24H2

F=m
2 along with the expression

HF ¼ e−σ=2½H þ _σ
2
� [see Eq. (3.54)], one gets

8κ2
ρKR

H2
FF

0ðRÞ
				
τ0

¼ κ2h0
3
m2 ½H2 þH _σ�2 : ð3:77Þ

By using the slow-roll field equations, the above
expression can be further simplified leading to the
following form:

8κ2
ρKR

H2
FF

0ðRÞ
				
τ0

¼ 3κ2h0=m2

½1
8
ð1−eσ0Þ2þκ2h0

2m2 þ1
6
eσ0ð1−eσ0Þ�2

:

ð3:78Þ
(ii) Second term in the rhs of Eq. (3.76): As obtained in

Eq. (3.68), the second term of the rhs of Eq. (3.76) is
equal to 48ϵ2F.

Hence, we obtain the tensor to scalar ratio:

r ¼ 3κ2h0=m2

½1
8
ð1 − eσ0Þ2 þ κ2h0

2m2 þ 1
6
eσ0ð1 − eσ0Þ�2

þ 48ϵ2F: ð3:79Þ

Note that from Eq. (3.79), whether ρKR ¼ 0 (or equiv-
alently h0 ¼ 0 i.e., without the KR field), r goes to 48ϵ2F—
the expression for tensor to scalar ratio in a pure FðRÞ
gravity model [51]. However taking the effect of the Kalb-
Ramond field into account and substituting the expression
of ϵF [obtained in Eq. (3.56)] in Eq. (3.79), we get the final
form of r as follows:

r ¼ 3 κ2h0
2m2 þ 48½3κ2h0

2m2 þ 1
12
eσ0ð1 − eσ0Þ�2

½1
8
ð1 − eσ0Þ2 þ κ2h0

2m2 þ 1
6
eσð1 − eσÞ�2

: ð3:80Þ

Thereby the final expressions of ns and r are shown in
Eqs. (3.75) and (3.80) respectively, from which it is evident

that both quantities depend on the parameters κ2h0
m2 and σ0.

Equations (3.75) and (3.80) lead to the parametric plot for

ns vs r (with respect to the parameters κ2h0
m2 and σ0), as

shown in Fig. 2.
However, observations based on Planck 2018 impose

a constraint on ns and r as ns ¼ 0.9650� 0.0066
and r < 0.07 (combining with BICEP2/Keck–Array)
respectively. Therefore, Fig. 2 clearly indicates that for

jσ0j > 10 and 0.003 < κ2h0
m2 < 0.004, the theoretical values

of ns, r (in the present context) match with the observa-
tional constraints. In addition, by the estimated values of
κ2h0
m2 and σ0 (≃ − 10), the duration of inflation [τf − τ0, see
Eq. (3.38)] becomes 10−12 ðGevÞ−1 if the mass parameter
(m) is separately taken as 10−5 (in Planckian units). We also
obtain the number of e-foldings, defined by N ¼ R ▵τ0 HFdτ
(▵τ ¼ τf − τ0, duration of inflation), numerically, leading
to N ≃ 56 (with σ0 ¼ −10). These results are summarized
in Table I.
Table I clearly indicates that the present model may well

explain the inflationary scenario of the universe in terms of
the observable quantities ns and r as based on the results of
Planck 2018.
Using the solutions of sðτÞ [see Eq. (3.39)] along with

the estimated values of the parameters (κ
2h0
m2 , σ0, m), we

depict the deceleration parameter q ¼ − 1
s
d2s
dτ2 vs a dimen-

sionless time variable τ̃ ¼ τ
τf
N in Fig. 3.

Figure 3 shows that the early universe starts from
an accelerating stage with a graceful exit at a finite time.
However, from Table I, the maximum value for the
parameter κ2h0

m2 is given by κ2h0
m2 ≃ 0.004, in order to

match the present model with the observations of Planck
2018. Taking m ¼ 10−5 (in Planckian unit), we obtain
hmax
0 ∼ 1063 ðGeVÞ4. Recall that the term h0e½−2σ0� [see

Eq. (3.4)] denotes the energy density for the KR field (ρKR)
during the early universe in the FðRÞ model. Therefore, the

ns

r

0.00 0.01 0.02 0.03 0.04 0.05

0.960

0.962

0.964

0.966

0.968

0.970

0.972

FIG. 2. ns vs r for 10 ≤ jσ0j ≤ 14 and 0.003 ≤ κ2h0
m2 ≤ 0.004.

TABLE I. Estimated values of various quantities for
κ2h0
m2 ¼ 0.0035, σ0 ¼ −10 and m ¼ 10−5 (in Planckian unit).

Parameters Estimated values

ns ≃0.9630
r ≃0.03
τf − τ0 10−12 ðGeVÞ−1
N 56
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present model along with the constraints of Planck 2018
give an upper bound on the KR field energy density during
the early universe as ðρKRÞmax ∼ 1070 ðGeVÞ4 (with
σ0 ¼ −10). In such a situation, it is important to examine
whether the energy density of the KR field [starting with
∼1070 ðGeVÞ4 from the early universe] gets suppressed and
leads to a negligible footprint during our present universe.
This matter is discussed in the next section.
However, let us discuss briefly the cosmological evolu-

tion and the corresponding observable parameters for the
cases: (1) quadratic curvature gravity in the absence of the
Kalb-Ramond field [i.e., for the pure FðRÞ ¼ Rþ R2=m2

model], (2) in the absence of higher order terms in the
gravitational action, i.e., for Einstein gravity with a KR
field, and (3) when considering cubic curvature gravity
with a KR field.
(1) Quadratic curvature gravity in the absence of the

KR field.—In this case, the action of the model
becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2κ2

�
Rþ R2

m2

�
: ð3:81Þ

Recall that 1
2κ2

¼ M2
p (where Mp is the four-

dimensional Planck mass). For this action, the
solution of the FRW scale factor can be obtained
by fixing h0 ¼ 0 in the expression obtained in
Eq. (3.39), yielding

sðτðtÞÞ¼D

�
1−

2mðt−t0Þ
3
ffiffiffi
6

p
C

�
3=4

×exp

�
mðt−t0Þ
2
ffiffiffi
6

p þln

�
9

−
ffiffiffi
6

p
mðt−t0Þþ9C

��
;

ð3:82Þ

where C ¼ e−σ0 , τ is the cosmic time related to t by
Eq. (3.38) with h0 ¼ 0. Equation (3.82) leads to the
acceleration of the early universe as

1

s
d2s
dτ2

				
τ→τ0

¼ C

�
m

2
ffiffiffi
6

p
�

2

ð1 − e−jσ0jÞ2; ð3:83Þ

which clearly indicates that the early universe under-
goes an inflationary stage, the well known Starobin-
sky inflation. Correspondingly, the observational
parameters as the spectral index and the tensor to
scalar ratio depend only on the parameter σ0 in the
absence of the KR field. By introducing h0 ¼ 0 into
the Eqs. (3.75) and (3.80), one obtains the variation of
ns and r in terms of the parameter σ0, as illustrated in
Fig. 4, which clearly shows that in the absence of the
Kalb-Ramond field, the spectral index and tensor to
scalar ratio liewithin the observational constraints for
the interval −5.0≲ σ0 ≲ −4.5. However, as men-
tioned above, even in the presence of the KR field, ns
and r also remain within the constraints but with a
bound given by ðρKRÞmax ∼ 1070 ðGeVÞ4 (with
σ0 ¼ −10). For clearness, below we illustrate the
comparison with/without the antisymmetric KR field
in Table II.

FIG. 4. ns vs σ0 (left panel), r vs σ0 (right panel).

20 40 60 80 100 120
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40

30

20

10

FIG. 3. qðτÞ vs τ̃ for κ2h0m2 ¼ 0.0035, σ0 ¼ −10 andm ¼ 10−5 (in
Planckian unit).
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(2) In the absence of higher order curvature gravity.—
Without higher order curvature d.o.f., the action
takes the following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

12
HμνρHμνρ

�
: ð3:84Þ

As mentioned above, for a flat FLRW metric, the
KR three tensor has only one nonzero component,
i.e., H123 symbolized by h4. With this nonzero
component, the pressure and energy density of the
KR field turn out to be same and equal to 1

2
h4h4. As

a consequence, the FLRW equation becomes _H ¼
−3H2 which can be solved and the scale factor
yields aðtÞ ¼ ðt − t0Þ1=3. The acceleration of the
scale factor turns out negative and inflation does
not occur. This result is in agreement with [54],
which states that a minimal model with an anti-
symmetric tensor field (in the Einstein frame) is not
consistent with inflation.
However, authors from [54] showed that a stable

de-Sitter solution can be achieved in the context of
antisymmetric tensor field by introducing a non-
minimal coupling between the Ricci scalar and the
tensor field. On the other hand, in the present paper,
we argue that the minimal prescription (in the
presence of an antisymmetric tensor field) can also
give rise to an inflationary era, but in the regime of
higher order curvature gravity.

(3) Cubic curvature gravity with the presence of the KR
field.—In this case, the action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
½Rþ βR3� − 1

12
HμνρHμνρ

�
:

ð3:85Þ

Here β is a free parameter with mass dimension
[−4]. It is well known that FðRÞ ¼ Rþ βR3 does
not give a good inflation, i.e., the theoretical
values of ns and r do not support the observable
constraints from Planck 2018. However, in the
presence of an antisymmetric Kalb-Ramond
field, model (3.85) is consistent with Planck
2018 constraints (i.e., ns ¼ 0.9650� 0.0066 and
r < 0.07, combining with BICEP2/Keck–Array).
Here we present the plot for simultaneous compat-
ibility of ns, r in Fig. 5:

In Fig. 5, e−σ0 ¼ 1þ 3βR2
0 (with R0 be the

spacetime curvature at the time of horizon crossing).
In addition, Fig. 5 clearly reveals that the observable
parameters fns; rg remain within the confident re-
gions provided by Planck 2018.

4. Suppression of the Kalb-Ramond field in FðRÞ gravity
The energy density of the Kalb-Ramond field ρKR in our

FðRÞ model in terms of the cosmic time τ is given by

ρKRðτðtÞÞ ¼ e−2
ffiffi
2
3

p
κξðtÞ h0

a6
; ð3:86Þ

where we have used the conformal transformation of the
metric along with Eq. (3.17). Therefore, in order to address
the effect of the KR field on our present universe, it is
important to understand the late time evolution for ξðtÞ and
aðtÞ. As mentioned above, ξðtÞ goes to infinity at late times,
starting from a negative value at the early universe.
However, this solution ξðtÞ is based on the slow-roll
approximation which may not hold at late times. Then,
let us relax the slow-roll approximation, such that the field
equations for ξðtÞ and aðtÞ take the form

H2 ¼ κ2

3

�
1

2
_ξ2 þ m2

8κ2
ð1 − e

ffiffi
2
3

p
κξÞ2 þ 1

2

h0
a6

�
; ð3:87Þ

and

̈ξþ 3H_ξ −
ffiffiffi
2

3

r
m2

4κ
e
ffiffi
2
3

p
κξð1 − e

ffiffi
2
3

p
κξÞ ¼ 0: ð3:88Þ

FIG. 5. ns vs r for −5≲ σ0 ≲ −4 and 0.03≲ κ2h0
ffiffiffi
β

p ≲ 0.3.

TABLE II. Comparison of ns and r with/without the Kalb-
Ramond field.

Parameters κ2h0
m2 ¼ 0.0035, σ0 ¼ −10 h0 ¼ 0, σ0 ¼ −4.5

ns ≃0.9630 ≃0.9660
r ≃0.03 ≃0.003
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By solving these equations numerically, the evolution of
the KR field and the deceleration parameter are depicted in
Figs. 6 and 7 respectively, where we have used the relation
of τðtÞ given in Eq. (3.38). Figure 6 shows the evolution of
ξðτÞ for both cases, when assuming the slow-roll approxi-
mation and when no approximation is assumed. As shown,
the evolution for ξðτÞ is very similar in both cases. After
inflation, the acceleration term for ξðτÞ starts to contribute
and as a result both solutions (with and without slow-roll
conditions) differ from each other. A similar conclusion
holds for the deceleration parameter. Moreover in the slow-
roll approximation, ξðτÞ does not tend to a finite value
asymptotically, but goes to infinity at late times, while in
the absence of the slow-roll approximation, ξðτÞ moves
towards hξi ¼ 0 asymptotically, showing an oscillatory
behavior at late times.
By using these numerical solutions for ξðτÞ and aðτÞ, the

KR field energy density (3.86) is obtained in our FðRÞ
model, ρKR, as shown in Fig. 8, where the energy density of
the KR field gradually decreases with the cosmic time (τ)
and the decaying time scale τ̃ ¼ 40 is smaller than the exit
time from inflation (τ̃ ¼ 56). This may well explain why
the present universe does not show any footprint of the
antisymmetric Kalb-Ramond field.

However, besides the four-dimensional context, higher
dimension spacetimes may provide a natural solution to the
hierarchy problem, i.e., apparent mismatch between the
fundamental scale and the electroweak symmetry breaking
scale [32–34]. In such higher dimensional models, unlike
electromagnetic or other matter fields, the Kalb-Ramond
field does propagate through extra dimensions and thus
have Kaluza-Klein modes. Further attempts to unify gravity
and electromagnetism require the inclusion of the Kalb-
Ramond field in higher dimensional theories [55,56], such
that the KR field may become important in the context of
extra dimensional models. In the following sections, we
discuss such higher dimensional spacetimes.

IV. KALB-RAMOND FIELD IN FIVE DIMENSIONS
IN FðRÞ GRAVITY

Let us now investigate the cosmological evolution for the
Kalb-Ramond field when higher dimensional spacetimes
are considered. In particular, here we consider the well
known Randall-Sundrum (RS) braneworld model with the
presence of a Kalb-Ramond field in the bulk. The RSmodel
consists of one extra spatial dimension. The bulk spacetime
is AdS in nature and S1=Z2 orbifolded along the extra
dimension where the orbifold fixed points are identified
with two 3-branes. If φ is taken to be the extra dimensional
angular coordinate, then the branes are located at φ ¼ 0
(hidden brane) and at φ ¼ π (visible brane) respectively
while the latter is identified with our visible universe.
However, in such a braneworld scenario, the stabilization of
interbrane separation (also known as modulus or radion) is
an important issue to address and for this purpose one needs
an extra stabilizing agent which is able to generate a stable
radion potential. Here, in the present context, we consider
the quadratic curvature term in the five-dimensional action
together with the Einstein-Hilbert term as the stabilizing
agent. Moreover, it is well known that higher order
curvature terms become relevant in the limit of large
curvature. Thus, in the RS bulk geometry, where the
curvature is of the order of the Planck scale, such that

FIG. 8. ρKR vs τ̃ for κ2h0
m2 ¼ 0.0035, σ0 ¼ −10 and m ¼ 10−5 (in

Planckian unit).

Blue Curve: with slow roll

Red Curve: without slow roll
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FIG. 6. ξ vs τ̃ for κ2h0
m2 ¼ 0.0035, σ0 ¼ −10 and m ¼ 10−5 (in

Planckian unit).

Blue Curve: with slow roll

Red Curve: without slow roll
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FIG. 7. q vs τ̃ for κ2h0
m2 ¼ 0.0035, σ0 ¼ −10 and m ¼ 10−5 (in

Planckian unit).
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higher order curvature terms have to be included in the
action. Hence, the action of the model is given by

S ¼
Z

d4xdφ
ffiffiffiffiffiffiffi
−G

p �ðRþ αR2Þ
2κ2

− Λþ VhδðφÞ

þ Vvδðφ − πÞ − 1

12
HMNLHMNL

�
;

¼ Sg þ SKR; ð4:1Þ
where G is the determinant of the five-dimensional metric
GMN (M, N, whose indexes runs from 0 to 4 where 0 to 3
are reserved for brane coordinates), α is a constant
parameter having mass dimension [−2] and 1

2κ2
¼ M3 (with

M the five-dimensional Planck mass), while Λ (< 0)
symbolizes the bulk cosmological constant and Vh, Vv
are the brane tensions on hidden and visible brane respec-
tively. Moreover HMNL ¼ ∂ ½MBNL� denotes the field
strength tensor for the KR field BNL propagating in the
five-dimensional spacetime. However, as being allowed to
propagate in the extra dimension, the KR field can be
decomposed into Kaluza-Klein (KK) modes which are
obviously coupled with to the extra dimensional modulus
field. The overlap of these KK wave functions with the
visible brane actually determines the strength of theKR field
in our visible universe. In such a situation, it is important to
explore the effects of higher order curvature terms on the
dynamics of the modulus field which in turn controls the
evolution of the bulk Kalb-Ramond field. These issues are
addressed here from the perspective of four-dimensional
effective theory. In the following two subsections, we
determine the effective four-dimensional action individually

for Sg ¼
R
d4xdφ

ffiffiffiffiffiffiffi
−G

p ½ðRþαR2Þ
2κ2

−ΛþVhδðφÞþVvδðφ−πÞ�
and SKR ¼ R d4xdφ ffiffiffiffiffiffiffi

−G
p ½− 1

12
HMNLHMNL� respectively.

A. Four-dimensional effective action for Sg
In order to find the effective action of Sg, we need the

solution for the five-dimensional spacetime metric GMN .
For this purpose, first we determine the field(s) solutions in
the corresponding scalar-tensor (ST) theory and then
transform the solutions back to the Jordan frame by using
the inverse conformal transformation. Following Sec. II, the
conformal transformation of the spacetime metric can be

expressed as GMN → G̃MN ¼ e
κΦffiffi
3

p
GMN , while the action Sg

leads to

Sg½Φ; G̃MN �

¼
Z

d4xdφ
ffiffiffiffi
G̃

p �
R̃
2κ2

−
1

2
G̃MN∂MΦ∂NΦ − VðΦÞ − Λ

− e−
5

2
ffiffi
3

p κΦVhδðφÞ − e−
5

2
ffiffi
3

p κΦVvδðφ − πÞ
�
; ð4:2Þ

where Φ is the scalar field in ST theory and VðΦÞ is its
potential which takes the following form:

VðΦÞ ¼ 1

8κ2α
exp

�
−

5

2
ffiffiffi
3

p κΦ
��

exp

�
3

2
ffiffiffi
3

p κΦ
�
− 1

�
2

− Λ
�
exp

�
−

5

2
ffiffiffi
3

p κΦ
�
þ 1

�
: ð4:3Þ

Moreover, the last two terms in Eq. (4.2) are contributions
from the brane tensions of hidden and visible branes.
However, in order to check the stability of VðΦÞ, we take
the single derivative with respect to Φ in both sides of
Eq. (4.3),

V 0ðΦÞ¼ 1

16
ffiffiffi
3

p
κα

e−
5

2
ffiffi
3

p κΦ½e 6

2
ffiffi
3

p κΦþ4e
3

2
ffiffi
3

p κΦ− ð5−40κ2αΛÞ�;

ð4:4Þ

which immediately leads to the fact that VðΦÞ is stable only
for α > 0. Correspondingly the vacuum expectation value
hΦi and the squared mass (m2

Φ) of Φ are given by

exp

�
3

2
ffiffiffi
3

p κhΦi
�

¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 40κ2αΛ
p

− 2
i
; ð4:5Þ

and

m2
Φ ¼ 1

8α

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 40κ2αΛ

p ih ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 40κ2αΛ

p
− 2
i
−2
3: ð4:6Þ

As we will see below the stability of the modulus field is
also ensured by the condition α > 0—same as for the
stability of VðΦÞ. Thus, it can be argued that the stability of
VðΦÞ and of interbrane separation are intimately connected
in the higher order curvature RS model. However, note that
the minimum value of VðΦÞ is nonzero and is given by

VðhΦiÞ ¼ Λþ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 40κ2αΛ
p

− 2
i
−5
3

×
h
−Λþ ð1=8κ2αÞ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 40κ2αΛ

p
− 3
i
2
i
:

This nonzero value of the potential works as a cosmological
constant together with Λ and thus the effective cosmologi-
cal constant in ST theory is given by Λeff ¼ Λþ VðhΦiÞ (a
simple algebra shows that Λeff is negative). By considering
a small fluctuation of the scalar field around its stable value
as Φ ¼ hΦi þ ξ, the action (4.2) can be written as follows:

Sg½Φ; G̃MN � ¼
Z

d4xdφ
ffiffiffiffi
G̃

p �
R̃
2κ2

−
1

2
G̃MN∂Mξ∂Nξ

− ð1=2Þm2
Φξ

2 − Λeff − e−
5

2
ffiffi
3

p κðhΦiþξÞVhδðφÞ

− e−
5

2
ffiffi
3

p κðhΦiþξÞVvδðφ − πÞ
�
; ð4:7Þ

where we keep the terms up to quadratic order in ξ. As
expected, the scalar-tensor action contains two independent
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fields: Φ and G̃MN . Let us now find the corresponding
solutions of the field equations. By assuming a negligible
backreaction of the scalar field (Φ) on the background
spacetime, the metric G̃MN is given by the well known
Randall-Sundrum solution as

ds̃2 ¼ e−2krcjφjημνdxμdxν þ r2cdφ2; ð4:8Þ

where k ¼
ffiffiffiffiffiffiffiffi
−Λeff
24M3

q
and rc is the compactification radius of

the extra dimension in ST theory. Moreover, the brane
tensions are given by following expressions:

Vh ¼ 24M3k � exp
�

5

2
ffiffiffi
3

p κðhΦi þ vhÞ
�
;

Vv ¼ −24M3k � exp
�

5

2
ffiffiffi
3

p κðhΦi þ vvÞ
�
:

Here vh and vv are the boundary values of ξ on the hidden
and visible brane respectively. Together with the metric
(4.8), the scalar field Φ equation turns out to be

−
1

r2c
∂φ½expð−4krcjφjÞ∂φξ�þm2

Φ expð−4krcjφjÞξðφÞ¼ 0;

ð4:9Þ

where the scalar field ξ is considered to be the function of
an extra dimensional coordinate only. By taking nonzero
values of ξ on the branes, the above differential equation
has the following solution:

ξðφÞ ¼ e2krcjφj½Aeνkrcjφj þ Be−νkrcjφj�; ð4:10Þ

with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

Φ=k
2

p
. Furthermore, A, B are integration

constants that can be obtained from the boundary con-
ditions ξð0Þ ¼ vh and ξðπÞ ¼ vh, as follows:

A ¼ vve−ð2þνÞkrcπ − vhe−2νkrcπ;

and

B ¼ vhð1þ e−2νkrcπÞ − vve−ð2þνÞkrcπ:

Thus, Eqs. (4.8) and (4.10) specify the field solutions
in this spacetime. Recall that the original FðRÞ
model is represented by the action Sg½GMN � ¼R
d4xdφ

ffiffiffiffiffiffiffi
−G

p ½ðRþαR2Þ
2κ2

− Λþ VhδðφÞ þ Vvδðφ − πÞ�. The
solution of the spacetime metric (GMN) in the original
FðRÞ model can be obtained from the solutions of the
corresponding scalar-tensor theory with the help of the
inverse conformal transformation. Thus, the line element
turns out to be

ds2 ¼ e−
κffiffi
3

p ΦðφÞ½e−2krcjφjημνdxμdxν þ r2cdφ2�; ð4:11Þ

where ΦðφÞ ¼ hΦi þ ξðφÞ and ξðφÞ are obtained in
Eq. (4.10). In order to introduce the radion field, rc is
replaced by TðxÞ, known as radion (or modulus) field. For
simplicity, herewe consider that this new field depends only
on the brane coordinates. Thus, the line element becomes

ds2 ¼ e−
κffiffi
3

p Φðx;φÞ½e−2kTðxÞjφjgμνðxÞdxμdxν þ TðxÞ2dφ2�:
ð4:12Þ

Here gμνðxÞ is the induced on-brane metric and Φðx;φÞ
can be obtained from (4.10) by replacing rc by TðxÞ.
Substituting the above solution of GMN into the action
Sg½GMN � and integrating over the extra dimensional coor-
dinate φ, the effective four-dimensional on-brane action
becomes

A1
eff ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
M2

ð4ÞRð4Þ −
1

2
gμν∂μΨ∂νΨ −UradðΨÞ

�
;

ð4:13Þ

where M2
ð4Þ¼M3

k ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9−40κ2αΛ

p
−2�1=2 is the four-dimen-

sional Planck scale, Rð4Þ is the on-brane Ricci scalar formed

bygμνðxÞ.Moreover,ΨðxÞ¼
ffiffiffiffiffiffiffiffi
24M3

k

q
½1þ 20ffiffi

3
p αk2κvh�e−kπTðxÞ¼

fe−kπTðxÞ (with f ¼
ffiffiffiffiffiffiffiffi
24M3

k

q
½1þ 20ffiffi

3
p αk2κvh�), is the canonical

radion field and UradðΨÞ is the radion potential with the
following form [16]:

UradðΨÞ¼
20ffiffiffi
3

p αk5

M6
Ψ4

��
vh−

κv2h
2
ffiffiffi
3

p þκvhvv
2
ffiffiffi
3

p
�
ðΨ=fÞω−vv

�
2

;

ð4:14Þ

where the terms proportional to ω (¼ m2
Φ

k2 < 1, which is also
consistent with observational bounds) are neglected. Note
that UradðΨÞ goes to zero as the higher order curvature
parameter α tends to zero. However, as α → 0, the action
contains only the Einstein-Hilbert term which is not able to
generate any potential for themodulus field, as shown in [47].
Thereby, the potential term for the radion field is generated
entirely due to the presence of the higher order curvature term
(αR2) in the action. Hence, the sign of the higher curvature
term comes through the radion potential in the four-dimen-
sional effective action. In this context, the stabilization of the
interbrane separation is based onwhether the radion potential
is stable or not. Forα > 0, the potentialUrad has aminima and
a maxima at

Ψmin ¼ hΨi ¼

2
64 vvfω�

vh −
κv2h
2
ffiffi
3

p þ κvvvh
2
ffiffi
3

p
�
3
75
1=ω

; ð4:15Þ
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and

Ψmax ¼

2
64� 2

2þ ω

� 
vvfω

vh −
κv2h
2
ffiffi
3

p þ κvvvh
2
ffiffi
3

p

1
A
3
75
1=ω

:

Theminima ofUradðΨÞ immediately leads to the stabilization
of the interbrane separation,

kπhTðxÞi ¼ 4k2

m2
Φ

�
ln

�
vh
vv

�
−

κvv
2
ffiffiffi
3

p
�
vh
vv

− 1

��
: ð4:16Þ

The expression of m2
Φ as obtained in Eq. (4.6) clearly

indicates that hTðxÞi is proportional to parameter α. Thus,
the model considered here would collapse as α tends to zero,
as pointed out in the discussion above. Moreover, Eq. (4.14)
imposes that UradðΨÞ goes to zero at Ψ ¼ 0. In Fig. 9, the
potential UradðΨÞ is depicted.

B. Effective action for SKR

Recall that the 5D KR field action is given by

SH ¼ −
1

12

Z
d4xdφ

ffiffiffiffiffiffiffi
−G

p
½HMNLHMNL�; ð4:17Þ

where the KR field strength tensor HMNL is related to BMN
(second rank antisymmetric tensor field) as HMNL ¼
∂ ½MBNL�, with latin and greek indices running from 0 to 4
and 0 to 3 respectively. It is straightforward to see that the
action S½H� is invariant under the gauge transformation
BMN → BMN þ ∂ ½MWN�, withWN as an arbitrary function of
spacetime coordinates. This gauge invariance of theKR field
allows us to set B4μ ¼ 0. Then, by using the form of GMN

and keeping B4μ ¼ 0, the above action turns out to be

SH ¼ −
1

12

Z
d4xdφ

ffiffiffiffiffiffi
−g

p
e2kTðxÞφTðxÞ

�
gμαgνβgλγHμνλHαβγ

−
3

TðxÞ2 e
−2kTðxÞφgμαgνβBμν∂2

ϕBαβ

�
: ð4:18Þ

The Kaluza-Klein decomposition for the KR field can be
written as

Bμνðx;φÞ ¼
X

BðnÞ
μν ðxÞχðnÞðx;φÞ; ð4:19Þ

where BðnÞ
μν ðxÞ and χðnÞðx;φÞ represent the nth mode of on-

brane KR field and extra dimensional KR wave function
respectively. The wave function χðnÞ is considered to be a
function of the brane coordinates also (apart from the
coordinate φ), as we are interested in investigating whether
the dynamical evolution of the KR field leads to its
invisibility in the present universe.
By substituting the decomposition in the five-

dimensional action SH and integrating over the extra
dimension, the four-dimensional effective action turns
out to be

Að2Þ
eff ¼ −

1

12

Z
d4x

ffiffiffiffiffiffi
−g

p ½gμαgνβgλγHðnÞ
μνλH

ðnÞ
αβγ

þ 3m2
ngμαgνβB

ðnÞ
μν B

ðnÞ
αβ �; ð4:20Þ

as far as χðnÞðx;ϕÞ satisfies the following equation of
motion:

∂χðnÞ
∂t

∂χðmÞ

∂t −
1

T2ðtÞ e
−2kTðtÞφχðnÞ

∂2χðmÞ

∂φ2
¼ m2

nχ
ðnÞχðmÞ;

ð4:21Þ
along with the normalization condition,Z

π

0

dφe2kTðtÞφχðnÞχðmÞ ¼ 1

T2ðtÞ δmn; ð4:22Þ

wheremn denotes the mass of nth KKmode. As wewill see
below, obtaining the coupling between the KR field and the
Standard Model fields on the visible brane is important.
Furthermore, Eq. (4.21) clearly shows that the dynamical
evolution of χðnÞðx;φÞ is coupled to the modulus (or radion)
field TðxÞ. Equations (4.13) and (4.20) immediately lead to
the full form of four-dimensional effective action as
follows:

Aeff ¼Að1Þ
eff þAð2Þ

eff

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M3

k
Rð4Þ−

1

2
gμν∂μΨ∂νΨ−UradðΨÞ

−
1

12
ðgμαgνβgλγHðnÞ

μνλH
ðnÞ
αβγþ3m2

nB
ðnÞ
μν BμνðnÞÞ

�
; ð4:23Þ

FIG. 9. UradðΨÞ vs Ψ for M ¼ k ¼ 1 (in Planckian unit),
ω ¼ 0.04, κvv ¼ 10−7, vh

vv
¼ 1.2 and α ¼ 1

M2.
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where UradðΨÞ is explicitly shown in Eq. (4.14). From now
on, we deal with the zeroth Kaluza-Klein mode of Kalb-
Ramond field for which mn¼0 ¼ 0. With this lowest KK
mode, the four-dimensional effective action turns out to be

Aeff ¼ Að1Þ
eff þ Að2Þ

eff

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M3

k
Rð4Þ −

1

2
gμν∂μΨ∂νΨ − UradðΨÞ

−
1

12
gμαgνβgλγHð0Þ

μνλH
ð0Þ
αβγ

�
: ð4:24Þ

Due to the presence of UradðΨÞ, the radion field acquires
some certain dynamics which affect the dynamical evolu-
tion of the KR wave function χð0Þðx;φÞ, as Ψ and χð0Þðx;φÞ
are coupled through Eq. (4.21). In such a scenario, our
motivation is to investigate whether the evolution of
χð0Þðx;φÞ leads to a negligible footprint of the KR field
in the present visible universe. However, it was shown
earlier in [6] that the effect of the KR field may be
significant and can play an important role in the early
era of the universe. Therefore, in order to address the
dynamical suppression of the KR field, it is important to
start from the very early universe where we will investigate
whether the universe passes through an inflationary era. For
these purposes, we try to solve the cosmological Friedmann
equations obtained from Aeff in the following sections.

C. Effective cosmological equations and solutions

The on-brane metric ansatz that fits our purpose in the
present context can be expressed as follows:

ds2ð4Þ ¼ gμνðxÞdxμdxν

¼ −dt2 þ b2ðtÞ½dx2 þ dy2 þ dz2�; ð4:25Þ

where bðtÞ is the scale factor of our universe. With this
ansatz along with the expressions of the energy-momentum
tensor for the four-dimensional KR field (as shown in
previous section), we obtain the following Einstein’s field
equations for the action Aeff :

3H2
b ¼

1

2
_Ψ2 þ 20ffiffiffi

3
p αk5

M6
v2vΨ4½FΨω − 1�2 þ 1

2
h4h4; ð4:26Þ

2 _Hb þ 3H2
b þ

1

2
_Ψ2 −

20ffiffiffi
3

p αk5

M6
v2vΨ4½FΨω − 1�2

þ 1

2
h4h4 ¼ 0; ð4:27Þ

where Hb ¼ _b
b is known as the on-brane Hubble parameter,

F ¼ 1
vvfω

ðvh − κv2h
2
ffiffi
3

p þ κvvvh
2
ffiffi
3

p Þ and h4 ¼ Hð0Þ
123 (as the other

components of Hð0Þ
μνλ vanishes as given by the off-diagonal

Einstein’s equations). Moreover, the field equations for

Hð0Þ
μνλ and for radion field (Ψ) are given by

∇μHμνλð0Þ ¼ 1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
Hμνλð0Þ� ¼ 0; ð4:28Þ

and

Ψ̈þ 3H _Ψþ 80ffiffiffi
3

p αk5

M6
v2vΨ3½FΨω − 1�2 ¼ 0: ð4:29Þ

Following Appendix A, Eq. (4.28) leads to a nonzero

component ofHð0Þ
μνλ, i.e., h4 depends on the cosmic time t, as

also expected from the gravitational field equations.
Differentiating both sides of (4.26) with respect to t, the
following expression is obtained:

6Hb
_Hb ¼ _ΨΨ̈þ 80ffiffiffi

3
p αk5

M6
v2vΨ3½FΨω − 1�2 _Ψþ 1

2

d
dt

ðh4h4Þ:

Furthermore, Eqs. (4.26) and (4.27) immediately give
2 _Hb ¼ _Ψ2 − 1

2
h4h4. With this expression for _Hb along

with the above equation, we obtain the cosmic evolution for
the energy density of the on-brane KR field (ΩKR ¼ 1

2
h4h4)

as d
dtΩKR ¼ −6HbΩKR. Solving this equation, we get

ΩKR ¼ Ω0

b6
; ð4:30Þ

whereΩ0 is an integration constant. Equation (4.30) clearly
indicates that the on-brane KR field energy density is
proportional to 1=b6 (same as previous model) and thus
decreases with the expansion of the universe. Moreover,
note that ΩKR decreases more rapidly in comparison to
normal matter (∝ 1=b3) as well as radiation (∝ 1=b4)
energy density. This may well explain why the Kalb-
Ramond field has a negligible footprint in the present
visible universe. However, at the same time, Eq. (4.30) also
reveals that the KR field may have a significant contribu-
tion during the early universe [when bðtÞ is small in
comparison to the present one]. On the other hand, recall
that the bulk KR field has also an extra dimensional
Kaluza-Klein (KK) wave function (besides the on-brane
part) which determines the coupling among the on-brane
KR field and other matter fields. Thereby, along with the
on-brane part, the extra dimensional wave function
χð0Þðt;φÞ also plays a crucial role to control the signature
of the bulk KR field in our visible universe. However, the
dynamics of χð0Þðt;φÞ are coupled to the evolution of the
radion field ΨðtÞ and thus we need to obtain ΨðtÞ in order
to determine the cosmological evolution of the KK wave
function.
By Eq. (4.30), there remain two independent equations

to fix the evolution of ΨðtÞ and bðtÞ,
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H2
b ¼

1

3

�
1

2
_Ψ2þ 20ffiffiffi

3
p αk5

M6
v2vΨ4½FΨω−1�2

�
þ1

3

Ω0

b6
; ð4:31Þ

and

Ψ̈þ 3Hb
_Ψþ 80ffiffiffi

3
p αk5

M6
v2vΨ3½FΨω − 1�2 ¼ 0: ð4:32Þ

As mentioned above, we are interested in solving the
equations at the early universe where the potential energy
of the radion field is considered to be greater than the
kinetic term (slow-roll approximation), i.e.,

UradðΨÞ ≫
1

2
_Ψ2: ð4:33Þ

By this approximation, Eqs. (4.31) and (4.32) become

H2
b ¼

20

3
ffiffiffi
3

p αk5

M6
v2vΨ4½FΨω − 1�2 þ 1

3

Ω0

b6
; ð4:34Þ

and

3Hb
_Ψþ 80ffiffiffi

3
p αk5

M6
v2vΨ3½FΨω − 1�2 ¼ 0: ð4:35Þ

Then, solving the above two equations for ΨðtÞ and bðtÞ,
we get

ΨðtÞ ¼ Ψ0�
FΨω

0 −
�
FΨω

0 −
ffiffiffiffi
Ω0

p
b3
0
ξ2
0

− 1

�
exp

�
−8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffi
3

p αk5

M6

q
ðt − t0Þ

��
1=ω ; ð4:36Þ

and

bðtÞ ¼ C
h
1þ

ffiffiffiffiffiffiffiffi
3Ω0

p
ðt − t0Þ

i
1=3

exp

2
642vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðg1ðtÞ − g2ðtÞÞ

3
75: ð4:37Þ

Recall that F ¼ 1
vvfω

ðvh − κv2h
2
ffiffi
3

p þ κvvvh
2
ffiffi
3

p Þ andΨ0,C are integration constants with b0 ¼ C exp ½−Ψ2
0=8�. Furthermore, g1ðtÞ has

the following expression:

g1ðtÞ ¼ −
FΨω

0

ðFΨω
0 − 1Þ

1

16ωvv
ffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffi
3

p αk5

M6

q Ψ2
02F1

0
@1; 1; 2þ 2

ω
;

FΨω
0

FΨω
0 − 1

exp

0
@8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðt − t0Þ

1
A
1
A

× exp

0
@8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðt − t0Þ

1
A
0
@FΨω

0 − ðFΨω
0 − 1Þ exp

0
@−8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðt − t0Þ

1
A
1
A−2=ω

; ð4:38Þ

where 2F1 refers to an hypergeometric function. On the other hand, g2ðtÞ is given by

g2ðtÞ ¼ −
Ψω

0

ðFΨω
0 − 1Þ

1

16ωvv
ffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffi
3

p αk5

M6

q Ψ2
0 � ×2F1

0
@1; 1; 1þ 2

ω
;

FΨω
0

FΨω
0 − 1

exp

0
@8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðt − t0Þ

1
A
1
A

× exp

0
@8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðt − t0Þ

1
A
0
@FΨω

0 − ðFΨω
0 − 1Þ exp

0
@−8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðt − t0Þ

1
A
1
A1−2=ω

: ð4:39Þ

Note that for α → 0, the solution of the radion field and Hubble parameter becomes ΨðtÞ ¼ Ψ0

½1þ
ffiffiffiffi
Ω0

p
b3
0
ξ2
0

�1=ω
¼ Ψðt0Þ and

H ∝ 1
b3 respectively. However, this result is expected since without any higher order curvature term (i.e., α ¼ 0),

the radion potential vanishes and the radion field becomes constant ΨðtÞ ¼ Ψðt0Þ while the Hubble parameter ∝ 1=b3

(solely due to the Kalb-Ramond field has an equation of state parameter w ¼ 1). Moreover, forΩ0 ¼ 0, the solution turn out
to be the one for pure FðRÞ ¼ Rþ αR2 gravity in the Randall-Sundrum model, as found in [43].
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Equation (4.36) shows that the radion field decreases
with the cosmic time and finally its bulk leads to [see
Eq. (4.15)] asymptotically, i.e.,

Ψðt ≫ t0Þ ¼ f

�
vv
vh

�
1=ω

¼ hΨi:

Thereby, the dynamics of the interbrane separation (TðtÞ)
are as follows: TðtÞ increases [as ΨðtÞ ∝ e−kπTðtÞ] with the
expansion of the universe and gradually goes to a stable
value [kπhTi ¼ 4k2

m2
Φ
½lnðvhvvÞ −

κvv
2
ffiffi
3

p ðvhvv − 1Þ�] asymptotically,

as shown in Fig. 10.
Once we obtain the solution for ΨðtÞ, we can obtain the

evolution of the extra dimensional KR wave function
χð0Þðt;φÞ. Nevertheless, let us study whether the solution
of the scale factor (4.37) corresponds to an inflationary stage.

D. Beginning of inflation

In order to check whether the solution of the scale factor
is consistent with an early inflationary stage, we expand
bðtÞ in the form of Taylor series (about t ¼ t0) and keep the
terms up to the linear order in t − t0:

bðt≳ t0Þ ¼ b0½1þ
ffiffiffiffiffiffiffiffi
3Ω0

p
ðt − t0Þ�1=3

× exp

2
42ðFΨω

0 − 1ÞΨ2
0vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
ðt − t0Þ

3
5;

ð4:40Þ
where b0 is the value of the scale factor at t ¼ t0 and is
related to the integration constant C as

b0 ¼ C exp ½−Ψ2
0=8�:

Equation (4.40) leads to an accelerating expansion at t → t0
as follows:

ä
a
ðt≳t0Þ¼

2
42ðFΨω

0 −1ÞΨ2
0vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
þ

ffiffiffiffiffiffi
Ω0

p �
1þ 1ffiffiffi

3
p
�35

×

2
42ðFΨω

0 −1ÞΨ2
0vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
−

ffiffiffiffiffiffi
Ω0

p �
1−

1ffiffiffi
3

p
�35:

ð4:41Þ

Note that under the condition

2ðFΨω
0 − 1ÞΨ2

0vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffiffi
3

p αk5

M6

s
>

ffiffiffiffiffiffi
Ω0

p �
1 −

1ffiffiffi
3

p
�
; ð4:42Þ

the early universe expands with an accelerating phase.
Otherwise, the acceleration b̈

b ðt → t0Þ turns out negative.
Recall that the on-brane KR field energy density (ΩKR) is
proportional to 1=b6 as given by Eq. (4.30). Thereby, due to
the inflationary expansion of the scale factor, ΩKR rapidly
decreases during the very early universe. However,
Eq. (4.41) clearly reveals that for α → 0, b̈b ðt≳ t0Þ becomes
less than zero, i.e., the early universe passes through a
decelerating phase—solely due to the KR field having
equation of state parameter w ¼ 1. Therefore, besides
stabilizing the interbrane separation, the higher order cur-
vature term also ensures the early inflationary stage sub-
jected to the condition (4.42), which in turn provides a rapid
decrease of the Kalb-Ramond field energy density on the
visible universe.

E. End of inflation

After obtaining the inflationary solution, it is important
to evaluate whether the inflationary phase has a graceful
exit in a finite time, as is connected to the resolution of the
Horizon problem. The end of inflation can be defined as

b̈
b
¼ _Hb þH2

b ¼ 0: ð4:43Þ

Now let us estimate the time interval consistent with this
condition. However, at the end of inflation, the term
proportional to 1=b6 can be safely ignored and thus
Eq. (4.31) becomes

H2
b ¼

20

3
ffiffiffi
3

p αk5

M6
v2vΨ4½FΨω − 1�2:

Differentiating both sides of this expression, one gets

_Hb ¼ −
160

3
ffiffiffi
3

p αk5

M6
v2vΨ2ðFΨω − 1Þ2: ð4:44Þ

Using the above expressions of H2
b and _Hb in Eq. (4.43),

we finally get the following condition on the radion field:

FIG. 10. TðtÞ
hTi vs t̃ for κvv ¼

ffiffiffiffi
Ω0

p
M2 ≃ 10−7, mΦ

k ¼ 0.2 and Ψ0 ¼ 36
(in Planckian unit).

ELIZALDE, ODINTSOV, PAUL, and GÓMEZ PHYS. REV. D 99, 063506 (2019)

063506-20



Ψ ¼ 2
ffiffiffi
2

p
¼ Ψf ¼ ΨðtfÞ; ð4:45Þ

where tf is the time when the radion field takes the value
2
ffiffiffi
2

p
(in Planckian units). Therefore, Eq. (4.45) clearly

indicates that the inflationary era continues as long as the

value of the radion field remains greater than 2
ffiffiffi
2

p
(in

Planckian units). With this information, one can determine
the duration of inflation tf − t0 from the solution of ΨðtÞ
[see Eq. (4.36)] as

ΨðtfÞ ¼
Ψ0�

FΨω
0 −

�
FΨω

0 −
ffiffiffiffi
Ω0

p
b3
0
ξ2
0

− 1

�
exp

�
−8ωvv

ffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffi
3

p αk5

M6

q
ðtf − t0Þ

��
1=ω :

By simplifying, we get the expression of tf − t0 as follows:

tf − t0 ¼
1

8ωvv
ffiffiffiffiffiffiffiffiffiffiffiffi
5

3
ffiffi
3

p αk5

M6

q ln

2
64FΨω

0 − 1 −
ffiffiffiffi
Ω0

p
b3
0
Ψ2

0

FΨω
0 − Ψω

0

Ψω
f

3
75: ð4:46Þ

Recall thatF ¼ 1
vvfω

ðvh − κv2h
2
ffiffi
3

p þ κvvvh
2
ffiffi
3

p Þ andω ¼ m2
Φ

4k2 withm
2
Φ

given in Eq. (4.6). Hence, the duration of inflation depends
on the parameters α and Ω0, i.e., on the strength of the
higher order curvature term and on the energy density of the
KR field respectively. Therefore, in order to estimate tf − t0
explicitly, we need to determine the value of these param-
eters which, on the other hand, should be consistent with
the observational constraints.

F. Spectral index, tensor to scalar ratio and
number of e-foldings

As shown in previous sections, the results of Planck 2018
[8] put a certain constraint on the spectral index ns and
the tensor to scalar ratio r as ns ¼ 0.9650� 0.00661 and
r < 0.07 (combined with BICEP2/Keck–Array) respec-

tively. As shown in Appendix B, the KR tensor Hð0Þ
μνα can

be mapped to a derivative of a massless scalar field and thus
ns, r are defined as follows (in terms of a dimensionless

parameter ϵb ¼ − _Hb
H2

b
) [57,58]:

ns ¼ 1 − 6ϵb

			
t¼t0

− 2
_ϵb

Hbϵb

				
t¼t0

;

r ¼ 16ϵ
			
t¼t0

: ð4:47Þ

Thereby, in order to scan the possible values of α and Ω0

provided by the constraints of Planck 2015, first we need to
determine ϵb which determines the spectral index and the
tensor to scalar ratio. For this purpose, we use the field
equationH2

b ¼ 1
3
UradðΨÞ þ Ω0

6b6
. Differentiating both sides of

this equation with respect to time, we get

2 _Hb ¼ −
1

9H2
b

�∂Urad

∂Ψ
�

2

−
Ω0

b6
;

where we have used the field equation for the radion field.
These expressions for _Hb and H2

b lead to the slow-roll
parameter ϵb as follows:

ϵb ¼
1

2

�
16p2v4vξ6ðFΨω − 1Þ4 þ 3Ω0

b6
ðpv2vΨ4ðFΨω − 1Þ2 þ Ω0

2b6
Þ

ðpv2vΨ4ðFΨω − 1Þ2 þ Ω0

2b6
Þ2

�
; ð4:48Þ

where p ¼ k3

144M6 and F ¼ 1
vvfω

ðvh − κv2h
2
ffiffi
3

p þ κvvvh
2
ffiffi
3

p Þ.
By using the expression of ϵb along with Eq. (4.47), r and ns turn out to be

r ¼ 8

2
416p2v4vξ60ðFΨω

0 − 1Þ4 þ 3Ω0

b6
0

ðpv2vΨ4
0ðFΨω

0 − 1Þ2 þ Ω0

2b6
0

Þ
ðpv2vΨ4

0ðFΨω
0 − 1Þ2 þ Ω0

2b6
0

Þ2

3
5; ð4:49Þ

and

ns ¼ 1 −
U1

U2

; ð4:50Þ

where U1 and U2 have the following expressions:
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U1 ¼
�
384p3v6vΨ8

0ðFΨω
0 − 1Þ6 þ 18Ω0

b60

�
pv2vΨ4

0ðFΨω
0 − 1Þ2 þ Ω0

2b60

�
2

−
6Ω0

b60

�
16p2v4vΨ6

0ðFΨω
0 − 1Þ4 þ 3Ω0

b60

�
pv2vΨ4

0ðFΨω
0 − 1Þ2 þ Ω0

2b60

��
−
144Ω0

b60
p2v4vΨ6

0ðFΨω
0 − 1Þ4

�
;

and

U2 ¼
�
pv2vΨ4

0ðFΨω
0 − 1Þ2 þ Ω0

2b60

��
16p2v4vΨ6

0ðFΨω
0 − 1Þ4

þ 3Ω0

b60

�
pv2vΨ4

0ðFΨω
0 − 1Þ2 þ Ω0

2b60

��
:

As expected, the spectral index and the tensor to scalar ratio
depend on the parameters vv, Ω0 and Ψ0. To fix these
parameters, we use the observational results from Planck
2018 [8]. Here we take

κvv ¼
ffiffiffiffiffiffi
Ω0

p
M2

≃ 10−7:

These values of vv and Ω0 are consistent with the condition
that is necessary for neglecting the backreaction of the bulk
scalar field and the KR field on the background five-
dimensional spacetime. Then, by using Eqs. (4.50) and
(4.49) along with the values of vv and Ω0, the parametric
plot for ns vs r is depicted in Fig. 11, which clearly shows
that within the interval 34 < Ψ0 < 38 (in Planckian unit),
both observable quantities ns and r satisfy the constraints
provided by Planck 2018 [8]. Furthermore, with the
estimated values of vv, Ω0 and Ψ0, the duration of inflation
tf − t0 becomes 10−10 ðGevÞ−1 as far as the ratio mΦ=k
(bulk scalar field mass to bulk curvature ratio) is taken
to be 0.2 [46]. This ratio of mΦ=k leads to the stabilized
interbrane separation as kπhTi ≃ 36—required for
solving the gauge hierarchy problem [46]. We also deter-
mine the number of e-foldings, defined by N ¼ R ▵t0 Hdt
(▵t ¼ tf − t0, duration of inflation), numerically and

leading to N ≃ 58 (with ξ0 ¼ 36, in Planckian unit). In
Table III, the results are summarized.
Table III clearly indicates that the present model may

well explain the inflationary scenario of the universe in
terms of the observable quantities ns and r. Moreover, from
Tables I and III, ns lies closer to the observational mean
value (hnsi ¼ 0.9650) in four dimensions in comparison to
the five-dimensional Randall-Sundrum scenario.
By using the solution of bðtÞ (4.37) along with the

estimated values of the parameters (vv, Ω0, Ψ0), the
deceleration parameter is depicted in 12] in terms of
the time variable t̃ ¼ t

tf
N, which shows that the early

universe starts from an accelerating stage with a graceful
exit in a finite time.

G. Solution for the Kalb-Ramond extra
dimensional wave function

The equation for the zeroth mode of the KR wave
function χð0Þðt;φÞ follows from (4.21), leading to

�∂χð0Þ
∂t
�

2

−
1

T2ðtÞ e
−2kTðtÞφχð0Þ

∂2χð0Þ

∂φ2
¼ 0: ð4:51Þ

The dynamics of the interbrane separation controls the
evolution of χð0Þðt;φÞ. The overlap of χð0Þðt;φÞ with the
brane φ ¼ π [i.e., χð0Þðt; πÞ] regulates the coupling
strengths among the KR field and various Standard
Model fields on the visible brane. These interaction terms
play the key role to determine the observable signatures of
the KR field in our universe, such that we are interested in
solving Eq. (4.51) in the vicinity of φ ¼ π (i.e., near the
visible brane). Near the regime of φ ≃ π, Eq. (4.51) can be
written as

�∂χð0Þv

∂t
�

2

−
1

T2ðtÞ e
−2kπTðtÞχð0Þv

∂2χð0Þv

∂φ2
¼ 0; ð4:52Þns

0.050 0.052 0.054 0.056 0.058 0.060

0.966

0.967

0.968

0.969

0.970

0.971

0.972

r

FIG. 11. ns vs r for 34 < Ψ0 < 38 (in Planckian unit).

TABLE III. Estimated values of various quantities for κvv ¼ffiffiffiffi
Ω0

p
M2 ≃ 10−7 and Ψ0 ¼ 36.5 (in Planckian unit).

Parameters Estimated values

ns 0.9695
r 0.053
tf − t0 10−10 ðGeVÞ−1
N 58
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where χð0Þv denotes the KR wave function near the visible
brane. Equation (4.52) can be solved by using the method

of separation of variables as χð0Þv ðt;φÞ ¼ f1ðtÞf2ðφÞ. By
this expression, Eq. (4.52) turns out to be

T2ðtÞe2kπTðtÞ 1
f21

�
df1
dt

�
2

¼ 1

f2

d2f2
dφ2

: ð4:53Þ

As the left- and right-hand sides of Eq. (4.53) are functions
of time and φ respectively, both sides can be separately
fixed to a constant as follows:

T2ðtÞe2kπTðtÞ 1
f21

�
df1
dt

�
2

¼ γ2; ð4:54Þ

and

1

f2

d2f2
dφ2

¼ γ2; ð4:55Þ

where γ is the constant of separation. The solution for
Eq. (4.55) is given by f2ðφÞ ¼ e−γφ, while Eq. (4.54) is

solved numerically. Thereby, the solution for χð0Þv ðt;φÞ is

given by χð0Þv ðt;φÞ ¼ e−γφf1ðtÞ. Similarly in the vicinity
of a general φ ¼ constant hypersurface within the
bulk (i.e., φ ≃ φ0), the solution of the KR wave function

is given by χð0Þφ0
ðt;φÞ ¼ e−γφfφ0

ðtÞ, where fφ0
ðtÞ satisfies

the differential equation: T2ðtÞe2kφ0TðtÞ 1
f2φ0

ðdfφ0dt Þ2 ¼ γ2

[obviously fφ0¼πðtÞ ¼ f1ðtÞ]. The solution of χð0Þφ0
ðt;φÞ

along with the evolution of brane separation [i.e., TðtÞ, see
Eq. (4.36)] leads to the numerical plot for the time
evolution of the KR wave function on the φ ¼ φ0 hyper-
surface, which is depicted in Fig. 13 for several values of
φ0. Figure 13 reveals that the zeroth mode of the KR wave
function χð0Þðt;φÞ decreases with time in the whole five-
dimensional bulk, i.e., for 0 ≤ φ ≤ π. However, for a fixed
t, χð0Þðt;φÞ has different values (in Planckian units) on the
hidden (φ0 ¼ 0) and visible brane (φ0 ¼ π) and such
hierarchial nature of χð0Þðt;φÞ (between the two branes)
is controlled by the constant γ.
For TðtÞ ¼ hTi, the zeroth mode of the KR wave

function acquires a constant value throughout the bulk
and given by

χð0Þðt;φÞ
			
T¼hTi

¼
ffiffiffiffiffiffiffi
k
hTi

s
e−kπhTi; ð4:56Þ

wherewe have used the normalization condition as shown in
Eq. (4.22). This result is also in agreement with [3]. Using
the above expression of χð0Þðt;φÞjT¼hTi, we obtain the
coupling strengths of Kalb-Ramond field with Uð1Þ gauge
field and fermion field on the visible brane as follows [3]:

λKR−Uð1Þ ¼
1

Mp
e−kπhTi; ð4:57Þ

and

λKR−fer ¼
1

Mp
e−kπhTi: ð4:58Þ

Here Mp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M3=k

p
. For khTi ≃ 12 (required for solving

the gauge hierarchy problem), e−kπhTi becomes of the order
10−16. Thereby, Eqs. (4.57) and (4.58) clearly indicate that
the interaction strengths of the KR field to the matter fields
are heavily suppressed over the usual gravity-matter cou-
pling strength 1=Mp. This may well serve as an explanation
aboutwhy the behavior of the present universe at large scales
is solely governed by gravity and carries practically no
observable footprints of antisymmetric Kalb-Ramond field.

V. CONCLUSIONS

We have here addressed the issue of the absence of any
perceptible footprints of rank-2 antisymmetric tensor fields,
ordinarily known as Kalb-Ramond fields, in the framework

Brown Curve : 0 = 0

Red Curve : 0 = /2

Green Curve : 0 = 

10 20 30 40

0.2

0.4

0.6

0.8

1.0

FIG. 13. χð0Þφ0
ðt;φÞ vs t̃ for γ ¼ 0.15, κvv ¼

ffiffiffiffi
Ω0

p
M2 ≃ 10−7, mΦ

k ¼
0.2 and Ψ0 ¼ 36 (in Planckian unit).

FIG. 12. qðtÞ vs t̃ for κvv ¼
ffiffiffiffi
Ω0

p
M2 ≃ 10−7 and Ψ0 ¼ 36 (in

Planckian unit).
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of higher-order curvature gravity, both in four- and in five-
dimensional spacetimes. Since all other types of fields,
those with scalar, fermion and vector d.o.f., are known to be
present in our Universe, the question of the absence of KR
fields arises naturally.
We have started from a particular FðRÞ model, the well

known Starobinsky model [49], FðRÞ ¼ Rþ R2

m2, in the
presence of a second rank antisymmetric, KR field propa-
gating in a four-dimensional spacetime. In such a scenario,
we have obtained the cosmological evolution of the KR
field in a flat FLRW universe. Our results reveal that the
higher-order curvature term causes a gradual suppression of
the energy density ρKR of the KR field, eventually leading
to an imperceptible footprint in the present universe.
However, the effect of the KR field might still play a
significant role in the early universe. This has led us to
study the evolution of the KR field starting at the very early
universe, when inflation is supposed to occur. We have
shown that inflation is reproduced in our model due to the
presence of higher-order terms in the action, so that the
early universe expands through an accelerating phase, as
far as the condition (3.44) is satisfied. This condition arises
owing to an interplaywhich takes place between the strength
of the higher-order curvature terms and the KR field itself,
which at the end establishes whether the universe will go
through an inflationary stage. In order to test the model with
the most recent data (2018 run) from the Planck survey, we
have matched the theoretical values for the spectral index of
curvature perturbation (ns) and tensor to scalar ratio (r),
which are defined in terms of the slow-roll parameters, with
the values coming from the Planck observations. By relying
in these definitions, the expressions of ns and r are explicitly
obtained, which provides some suitable values for the
remaining free parameters (h0, ξ0), while keeping ns and
r within the confidence regions provided by Planck 2018
(see Table I). In addition, we have also obtained an upper
bound for the energy density of the KR field during the early
universe, as ρKR ≤ 1070 ðGeVÞ4 (see also Ref. [23]).
By contrast, we have proven that in the absence of

higher-order curvature terms, the KR field behaves as a
stifflike fluid and consequently does not support inflation.
However, authors in Ref. [54] showed that a stable de-Sitter
solution can be achieved in the context of antisymmetric
tensor fields, by introducing a nonminimal coupling
between the Ricci scalar and the tensor field. On the other
hand, in the present paper, we argue that the minimal
prescription (in the presence of an antisymmetric tensor
field) can also give rise to an inflationary era, but in the
presence of quadratic-curvature gravity. On top of this, we
have also considered cubic gravity, where we have shown
that, in the presence of the KR field, the spectral index and
the tensor to scalar ratio satisfy the observable constraints.
However, a successful model for inflation also requires a
graceful exit from it, within a finite time with an enough
number of e-foldings. Hence, it is important to further

analyze whether R3 gravity (or a more general Rn gravity
with n ≥ 3) together with the KR field is consistent with an
inflationary model, having a graceful exit, which we
expected to investigate in a future work.
Moreover, we have also considered the same FðRÞ

model in a five-dimensional Randall-Sundrum warped
geometry within a two 3-brane scenario. Such a braneworld
scenario requires the stabilization of the interbrane sepa-
ration (known as modulus or radion), for which one needs a
stable potential term for the radion field. Here, the higher-
order curvature term αR2 generates such a stable radion
potential, fulfilling the requirement of modulus stabiliza-
tion, since the radion potential UradðΨÞ vanishes as the
parameter α goes to zero, which clearly indicates that Urad
is generated entirely by the extra gravitational terms in the
action. In such a scenario, the cosmological evolution of the
KR field is obtained by using a four-dimensional effective
theory. However, when the KR field is allowed to propagate
along the extra dimension, an additional wave function χð0Þ

arises, besides the on-brane partHð0Þ
μνλ, which obviously gets

coupled to the extra dimensional modulus field. Furthe-
rmore, the overlap between χð0Þ and the visible brane
determines the coupling strength of the KR field to other
matter fields. These interaction terms play a key role in the
evaluation of the possible observable effects of the KR field
in the current universe.
Due to the presence of UradðΨÞ, the modulus field TðtÞ

becomes dynamical, since TðtÞ increases with the cosmic
time (t) and finally leads to a stable value asymptotically, as
shown in Fig. 10. This dynamics of the radion field triggers
such evolution of the extra dimensional KR wave function
χð0Þðt;φÞ (recall that φ is the extra dimensional coordinate),
which decreases with time in the full five-dimensional bulk,
i.e., for 0 < φ < π. Moreover, for TðtÞ ¼ hTi, χð0Þðt;φÞ
becomes constant throughout the bulk, as obtained
in Eq. (4.56).
Consequently, we have obtained the strengths of the

couplings of the KR field to several matter fields in the
present visible universe, with the result that such interaction
strengths come with a heavily suppressed factor over the
usual gravity-matter coupling 1=Mp, thus obtaining a
remarkably natural explanation of the absence of any
observation of the antisymmetric Kalb-Ramond field at
large scales in the current universe.
In addition, the on-brane part, the energy density of the

KR field ΩKR has been found to behave as 1=b6 (here bðtÞ
is the scale factor of the visible brane), which clearly
indicates that ΩKR decreases more rapidly in comparison to
radiation and pressureless matter. However, similarly to the
four-dimensional case, Eq. (4.30) also entails that ΩKR is
large and may play a significant role during the early
universe. After exploring the dynamics of the KR field
during the early universe, when the scale factor is small
compared to the present one, we have found solutions for
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the scale factor consistent with an early inflationary stage of
the universe. Note that, in the absence of the higher-order
curvature term αR2, the radion field becomes constant
while the Hubble parameter varies as Hb ∝ 1=b3. This was
to be expected, because for α → 0, the radion potential
tends to zero, and thus the radion field has no dynamics
leading to a Hubble parameter that goes as Hb ∝ 1=b3

(solely due to the KR field having equation of state
parameter ¼ 1). Furthermore, the duration of inflation
(tf − t0) is also obtained by Eq. (4.46), which reveals that
the accelerating phase of the universe ends within a finite
time. We have also determined the spectral index and tensor
to scalar ratio in the present context and found the
corresponding constraints on the free parameters when
compared to the Planck 2018 values.
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APPENDIX A: TIME DEPENDENCE OF THE
KALB-RAMOND FIELD

The field equation for Kalb-Ramond field is given by

∂μ½
ffiffiffiffiffiffi
−g

p
H̃μνλ� ¼ 0; ðA1Þ

where g is the determinant of the on-brane metric. Using the
FRW metric ansatz, one obtains

ffiffiffiffiffiffi−gp ¼ a3ðtÞ, where aðtÞ
is the scale factor of the universe. Thus, Eq. (A1) takes the
following form:

∂μ½a3ðtÞH̃μνλ� ¼ 0;

⇒∂0½a3ðtÞH̃0νλ� þ ∂1½a3ðtÞH̃1νλ�;
∂2½a3ðtÞH̃2νλ� þ ∂3½a3ðtÞH̃3νλ� ¼ 0: ðA2Þ

Here the greek indices ν, λ run from 0 to 3.
(i) For ν ¼ 2 and λ ¼ 3, Eq. (A2) becomes

∂t½a3ðtÞH̃023� þ ∂x½a3ðtÞH̃123�;
∂y½a3ðtÞH̃223� þ ∂z½a3ðtÞH̃323� ¼ 0: ðA3Þ

Due to the antisymmetric nature of the KR field, the
last two terms of the above equation identically
vanish. Furthermore, from Eq. (3.11), H̃023 ¼ 0. As
a result, only the second term of Eq. (A3) survives

and leads to the information that the nonzero
component of the KR field (H̃123) is independent
of the coordinate x, i.e., ∂x½H̃123� ¼ 0.

(ii) For ν ¼ 1 and λ ¼ 3, Eq. (A2) becomes

∂t½a3ðtÞH̃013� þ ∂x½a3ðtÞH̃113�;
∂y½a3ðtÞH̃213� þ ∂z½a3ðtÞH̃313� ¼ 0: ðA4Þ

Here the third term survives, which ensures that H̃123

is independent of y.
(iii) For ν ¼ 1 and λ ¼ 2, Eq. (A2) becomes

∂t½a3ðtÞH̃012� þ ∂x½a3ðtÞH̃112�;
∂y½a3ðtÞH̃212� þ ∂z½a3ðtÞH̃312� ¼ 0; ðA5Þ

where the fourth term sustains and gives ∂z½H̃123� ¼ 0.
Therefore it is clear that the nonzero component of the

Kalb-Ramond field, i.e., H̃123, depends only on the time (t)
coordinate.

APPENDIX B: EXPRESSING KALB-RAMOND
FIELD AS A VECTOR FIELD

Due to the antisymmetric nature, H̃μνα has four inde-
pendent components in four dimensions and thus it can be
equivalently expressed as a vector field as

H̃μνα ¼ εμναβϒβ; ðB1Þ

where εμναβ is the Levi-Civita symbol and ϒβ is a vector
field propagating in four-dimensional spacetime. The four
components of ϒβ are connected with the independent
components of H̃μνα as follows:

H̃012 ¼ h1 ¼ ϒ3; H̃013 ¼ h2 ¼ −ϒ2;

H̃023 ¼ h3 ¼ ϒ1; H̃123 ¼ h4 ¼ −ϒ0: ðB2Þ

Here, we assume the FLRW metric as the ansatz,

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�:
By thismetric, the off-diagonal Einstein’s equations become

ϒ3ϒ2 ¼ ϒ3ϒ1 ¼ ϒ2ϒ1 ¼ ϒ0ϒ3 ¼ ϒ0ϒ2 ¼ ϒ0ϒ1 ¼ 0:

ðB3Þ
The above set of equations clearly indicates that only one
component ofϒβ is nonzero which reduces the independent
components of H̃μνα to 1. Therefore, in a spatially flat FLRW
metric in four dimensions, ϒβ can be expressed as a
derivative of a massless scalar field ZðxμÞ (i.e.,
ϒβ ¼ ∂βZ), which further relates the KR field tensor with
the scalar field as follows:
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H̃μνα ¼ εμναβϒβ

¼ εμναβ∂βZ: ðB4Þ

Due to the FLRW metric, the scalar field Z is considered to
be homogeneous in space and thus its equation of motion
turns out to be

Z̈ þ 3H _Z ¼ 0; ðB5Þ

where H is the Hubble parameter. Then, by solving the
above equation, one obtains

∂Z
∂t ∝

1

a3
¼ d

a3
: ðB6Þ

Here d is a proportional constant. By this solution of ∂Z∂t , the
diagonal Friedmann equations take the following form:

H2 ¼ κ2

3

�
1

2
_ξ2 þ m2

8κ2
ð1 − e

ffiffi
2
3

p
κξÞ2 þ 1

2
_Z2

�

¼ κ2

3

�
1

2
_ξ2 þ m2

8κ2
ð1 − e

ffiffi
2
3

p
κξÞ2 þ d

2a6

�
; ðB7Þ

and

2 _H þ 3H2 ¼ −κ2
�
1

2
_ξ2 −

m2

8κ2
ð1 − e

ffiffi
2
3

p
κξÞ2 þ 1

2
_Z2

�

¼ −κ2
�
1

2
_ξ2 −

m2

8κ2
ð1 − e

ffiffi
2
3

p
κξÞ2 þ d

2a6

�
: ðB8Þ

Recall that ξðtÞ is the scalar field which arises from the
higher order curvature d.o.f. Furthermore, the field equation
for ξðtÞ is given by

̈ξþ 3H_ξ −
ffiffiffi
2

3

r
m2

4κ
e
ffiffi
2
3

p
κξð1 − e

ffiffi
2
3

p
κξÞ ¼ 0: ðB9Þ

Note that the above equations match with the field
equations obtained in Eqs. (3.18) and (3.19), by identifying
the constant d with h0. This leads to the argument
that the two representations (H̃μνα is expressed/is not
expressed by a vector field) are equivalent at the level of
equation of motion.
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