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The intriguing question, why the present scale of the universe is free from any perceptible footprints of
rank-2 antisymmetric tensor fields (generally known as Kalb-Ramond fields), is addressed. A quite natural
explanation of this issue is given from the angle of higher-curvature gravity, both in four- and in five-
dimensional spacetime. The results here obtained reveal that the amplitude of the Kalb-Ramond field may
be actually large and play a significant role during the early universe, while the presence of higher-order
gravity suppresses this field during the cosmological evolution, so that it eventually becomes negligible in
the current universe. Besides the suppression of the Kalb-Ramond field, the extra degree of freedom in
F(R) gravity, usually known as scalaron, also turns out to be responsible for inflation. Such F(R) gravity
with Kalb-Ramond fields may govern the early universe to undergo an inflationary stage at early times
(with the subsequent graceful exit) for a wider range of F(R) gravity than without antisymmetric fields.
Furthermore, the models—in four- and five-dimensional spacetimes—are linked to observational
constraints, with the conclusion that the corresponding values of the spectral index and tensor-to-scalar

ratio closely match the values provided by the Planck survey 2018 data.
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I. INTRODUCTION

A surprising feature of the present universe is that it
carries no noticeable footprints of higher rank (rank two or
higher) antisymmetric tensor fields. Apart from being the
massless (1,1) representation of the Lorentz group, such
fields also arise naturally as closed string modes [1] and,
consequently, are of considerable interest in string theory.
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In this context, the second rank antisymmetric tensor fields,
generally known as Kalb-Ramond (KR) fields [2], have
drawn considerable attention and have been extensively
studied. However, dimensional analysis demands that the
coupling strength of the KR field to other matter fields
should go as 1/M, (M, being the four-dimensional Planck
mass), i.e., share the same dimensional coupling as the
graviton. In spite of this, the large scale behavior of the
present universe appears to be governed solely by gravity
and there is no experimental evidence of any second-
rank antisymmetric Kalb-Ramond field being present.
Therefore, if the KR field exists at all, it clearly must be
severely suppressed at the present scale of our universe.
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This raises a natural question: why are the effects of the KR
field less perceptible than the force of gravitation? Some
attempts have been made to solve this puzzle both in four-
dimensional as well as in higher dimensional braneworld
models [3—7]. In the context of higher dimensional models,
the warping geometrical nature of extra dimensions causes
a huge suppression of the amplitude of the bulk for the KR
field on our visible 3-brane.

However, the suppression of the KR field still awaits a
proper understanding in the context of cosmology. On the
other hand, it has been shown that the energy density
associated with the KR field is large and might play a
relevant role in the early universe. This fact, along with
present day observations, have inspired us to study the
cosmological evolution of the KR field from the very early
universe, where it is also crucial to investigate whether the
universe goes through an inflationary stage or not. In
particular, we are interested in analyzing the possible
evolution of the Kalb-Ramond field from the very early
stages of the universe, and whether a suppression of this
field can be achieved, in order to satisfy the observational
constraints that we have at present. In addition, we also
intend here to study whether inflation can still be realised in
the presence of the KR field, including its compulsory
graceful exit. The values of the spectral index, n,, and the
tensor-to-scalar ratio, r, are obtained and compared to the
most recent Planck data available [8]. The present paper is a
serious attempt to provide a natural explanation of the
questions above in the framework of F(R) gravity, both in
four- and in five-dimensional spacetimes.

It is well known that the Einstein-Hilbert term can be
generalized to include higher order curvature terms in the
gravitational action, which naturally arise from the diffeo-
morphism property of the action. Such higher order curva-
ture terms may have their origin in string theory, such that
they naturally arise in the gravitational action [9]. F(R)
gravity [10-25], Gauss-Bonnet (GB) [26-29] or more
generally Lanczos-Lovelock gravity [30,31] are some of
the well known higher order curvature gravitational theories.
While GB or Lanczos-Lovelock gravity have nontrivial
consequences besides in higher dimensions, F(R) gravity
survives even in the four-dimensional spacetime model. For
some choices of F(R) [for which F'(R) > 0], the corre-
sponding model becomes free of ghosts.

On the other hand, over the past two decades, models
with extra spatial dimensions [32-38] have been increas-
ingly playing a central role in physics beyond the standard
model of particle physics [39] and cosmology [40—44]. In
all such models our visible universe is identified with a
3-brane embedded within a higher dimensional spacetime.
Among all, the so-called Randall-Sundrum (RS) model
[34] has gained special attention as it solves the gauge
hierarchy problem without introducing any intermediate
scale (between Planck and TeV) in the theory. The RS
scenario assumes one extra spatial dimension (in addition
to the usual three spatial dimensions) with S'/Z,

orbifolding where the orbifolded fixed points are identified
with two 3-branes. The intermediate region between the
branes is fixed as a bulk which has a curvature of Planck
order. In such higher order curvature regime, F(R) gravity
is supposed to play a relevant role. However all the higher
dimensional braneworld scenarios demand a certain mecha-
nism for stabilization of interbrane separation, also known
as modulus or radion [45-48]. Here, we show that higher
order curvature degree(s) of freedom (d.o.f.) can generate a
potential term for the radion field and fulfill the purpose of
modulus stabilization. Keeping this in mind, here we try to
address the cosmological evolution of the antisymmetric
Kalb-Ramond field in F(R) gravity by analyzing two
frameworks: the KR field in four dimensions and in a
higher dimensional bulk spacetime.

The paper is organized as follows: in Sec. II we briefly
describe the equivalence between the F(R) model and
scalar-tensor (ST) theory in D dimensions. Sections III
and IV are devoted to the analysis of the cosmological
evolution of the KR field in four- and five-dimensional
spacetime in F(R) gravity, respectively. The paper ends
with some conclusive remarks and discussions in Sec. V.

II. F(R) GRAVITY AND ITS SCALAR-TENSOR
COUNTERPART IN D-DIMENSIONS

In this section, we briefly describe F(R) gravity in
D-dimensions and its conformal picture in the Einstein
frame, which results in the Hilbert-Einstein action with the
presence of a scalar field. The F(R) action can be written as

follows:
F(R
S = /de\/—G{ 2< 2)},
K

where G is the determinant of D-dimensional metric Gy
(M, N runs from O to D — 1), R is the D-dimensional Ricci
scalar and 2—11(2 = MP~? with M is the D-dimensional Planck
mass. By introducing an auxiliary field A(x), the action
(2.1) can be rewritten as

(2.1)

s— / dPx —G%[F’(A)(R—AH—F(A)]. (2.2)

The variation of this action over the auxiliary field A(x)
leads to A = R, which finally results in the original action
(2.1). Moreover, the action (2.2) can be mapped into the
Einstein frame by applying the following conformal trans-
formation on the metric Gy (x):

Gun(x) = Gyy(x) = 3_[ (Dflf(D?z)Kg} Gun(x), (2.3)

where &(x) is the conformal factor which is related to the
auxiliary field as F'(A) = ¢~ V=] while R and R are the
Ricci scalars in terms of the metrics G,y and Gy
respectively, such that they are related by
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where [J represents the d’ Alembertian operator formed by
G- Using the above expression along with the afore-
mentioned relation among &(x) and F'(A), the following
scalar-tensor action is achieved:

dPxV -G {% - %GMNaﬂgayg

AF'(A)—F(A)
- 2K2F/(A)D/(D—2) :
Note that the field £(x) acts as a scalar field with the

potential % [= V(A(&))]. Thus, the higher order

curvature d.o.f. manifests itself as a scalar field d.o.f. &(x)
with the potential V (&), which actually depends on the form
of F(R).

(2.4)

ITI. KALB-RAMOND FIELD IN FOUR
DIMENSIONS IN F(R) GRAVITY

Let us first consider a four-dimensional spacetime in
F(R) gravity. As mentioned earlier, here we are interested
in how the higher order terms affect the dynamical
evolution of a second rank antisymmetric tensor field,
generally known as the Kalb-Ramond field (B,,).
Therefore the action of the model is given by

S = /d“x\/—_g[};(g) —%H

Hvp
, 1 R\ 1 »
= [ dxy=g)5a (R4 ) =5 Hut (3.1)

Here we are assuming a particular form for gravitational
sector, the so-called Starobinsky model [49], F(R) =
R+ Rzz, where m is a parameter having mass dimension
and 5 D= M (M
mass). Moreover H,,, is the field strength tensor of the
Kalb-Ramond (KR) field, defined by H,,, = 9|, B, . As we
may notice, H,, is invariant under the KR gauge trans-
formation: B, — B, + 0j,®,) and thereby the action turns
out also invariant under such a transformation.

Using the conformal transformation from Sec. II, the
action (3.1) can be expressed as a scalar-tensor theory:

/ /7 [— 0,606~ V(D

- eV Haﬁgaﬂag”ﬂgﬂ,

HW/}:|

being the four-dimensional Planck

(3.2)

Hep

where the scalar potential V(&) has the following
expression:

(1 — eV,

V() = (3.3)

8k?
The potential has a stable minima at (¢) = 0 and asymp-
totically reaches g as & goes to —oo. Figure 9 depicts the
form of the potentlal V(&). From Egq. (3.2), it is straightfor-
ward to show that the kinetic term of the KR field becomes
noncanonical because of the presence of the scalar field

&(x). In order to make the KR field canonical, we redefine
the field as follows:

B,—B,=e 2\/-"58 (3.4)

Then, the final form of the scalar-tensor action can be
expressed as follows:

S:/d“x\/:EJL

12 MV/)FIWP ’

(3.5)

9"”5 £0,6-V(&) -

where we consider kB, < 1 and V(&) is obtained from
Eq. (3.3). In the following, we determine the solutions of
the cosmological field equations for the scalar-tensor model
[see Eq. (3.5)], from which one can extract the correspond-
ing solutions for the original F(R) model (3.1) by taking
the inverse conformal transformation.

A. Cosmological field equations and solutions
in the scalar-tensor representation

In order to obtain the field equations of the scalar-tensor
(ST) action (3.5), first we hav~e to obtain the energy-
momentum tensor for &(x) and B, (x),

2 0 1
T,[E = =55 [ =7 <§§7“ﬁ5a§aﬁ~f + V(é‘))}
1

= aﬂfabé - g;w (E ?]aﬁaafaﬁg + V(§)> ’ (36)

and
~ 2
Tﬂl/ [B] \/— |: \/_ggﬂa yﬁgAyH;w/lHaﬂy]
1 _ 1 - .
= 6 |:3gypHrzﬁuHaljp - zgvaaﬁyHaﬂy] . (37)

Here we are interested in the cosmological evolution of the
KR field. For that purpose, we assume the ansatz of a flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds* = g, (x)dx"dx”

= —dt* + a*(t)[dx* + dy* + d7?], (3.8)
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where ¢ and a(r) are the cosmic time and the scale factor
respectively. However before obtaining the field equations,
we would like to emphasize that & . has four independent
components in four-dimensional spacetimes due to its
antisymmetric nature, such that they can be expressed as

Hypp = hy, A% = p!,
Aoz = ho, OB — 52,
Hyps = h, HO% = h3,
Hyps = hy, A% = pt, (3.9)

As the KR field tensor I:Iﬂm owns four independent
components, it can be equivalently expressed as a vector
field (which has also four independent components in
four dimensions) [50], H,,, Y#, with Y’ being
the vector field.

Moreover, Eq. (3.9) together with the expressions for the
energy-momentum tensor and the FLRW metric lead to the
off-diagonal Friedmann equations as follows [23]:

= Euvap

hyh® = hyh? = hyh' = hyh® = h h* =h k> =0, (3.10)
where the fields are considered homogeneous. The above
set of equations has the following solution:

l’ll :h2:h320, h4$é() (311)
Using this solution, one easily obtains the total energy
density and pressure for the matter fields (¢, B,,), which
become pr = [5& + V(&) +3hyh*]and pr = & - V(&) +
1 hyh?] respectively (where the dot denotes 4). As a result,

the diagonal Friedmann equations turn out to be
K [l., m? s\2 1
B="2 —(1— \/fké’) “hht|, (312
3|:25+8K2 vr) Rl (3.12)
and
. 1.
2H 4 3H 412 |8 —( —e\/'cf) 4o h4h4 —0,
2 8k?
(3.13)

where H = g is the Hubble parameter. In order to obtain the
above equations, we have used the explicit expression of
V(&) as shown in Eq. (3.3). Furthermore, the field equations
for the KR field (B/w) and the scalar field (£) are given by

vaR 2 /17
v, i

N a’(t) aﬂ[a3<t)ﬁﬂm] =0,

(3.14)

and

. . 2 m?
4 3HE - \ﬂm—e\/%mfu —eVA) =0, (3.15)
3 4k

From Eq. (3.14), we know that the nonzero component of
H e (€., H\»; = hy) depends on ¢ only (see Appendix A
for the derivation), which is also expected from the gravi-
tational field equations. Differentiating both sides (with
respect to ¢) of Eq. (3.12), one easily obtains

6HH =«? {55 \/Em e\/:cs( e\/%Ké).er;;(hm“)].

Furthermore, Eqs (3.12) and (3.13) lead to the expres-
sion 2H = —k [5 + hy4h*]. Substituting this expression of
H in the above equation and using the scalar field equation
of motion, we obtain the following cosmic evolution for
h4h4:

d

E (h4h4) — —6Hh4h4. (316)
Solving (3.16), we get
h
hyh* :;g, (3.17)

with h, being an integration constant which must be
taken positive in order to ensure a real solution for
h*(1). Recall that the term Jh4h* represents the energy
density contribution from the Kalb-Ramond field.
Therefore, Eq. (3.17) clearly indicates that the KR field
energy density (pgg) is proportional to 1/a® and as a result,
Pxr gradually decreases with the expansion of the universe.
However, Eq. (3.17) also shows that KR energy density is
large and may play a significant role in the early universe
(when the scale factor is small in comparison to the present
one). Therefore, in order to address the dynamical suppres-
sion of the KR field, we should study the dynamics of the KR
field from the very early universe when it is also important to
evaluate whether the early universe undergoes an accelerat-
ing stage or not, i.e., an inflationary phase. To check this
phenomena, we need to obtain the form of the scale factor at
early times.

From the solution i 4% in terms of the scale factor, two
independent equations remained,

211, 2 1h
=S I (- e Gy

and

. . 2m? s
NI L (Y
34k

Here, we should mention that Egs. (3.18) and (3.19) match
the field equations when H wa 18 expressed in the vector

(3.19)
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representation, i.e., H,,, = €,,5Y" (see Appendix B for
the derivation of this equivalence). This confirms the
equivalence between the two representations at the level
of the equations of motion, which is also in agreement
with Ref. [50].

However, Eqgs. (3.18) and (3.19) are sufficient to deter-
mine the evolution of two unknown functions: the scale
factor a(r) and the scalar field £(¢). As mentioned above,
we are interested in solving the field equations during the
initial phase of the universe where the potential energy of
the scalar field is assumed to be greater than that of the
kinetic energy, known as the slow-roll approximation, i.e.,

V(&) > %E. (3.20)
Under such an approximation, Eqs. (3.18) and (3.19)
become

k% [m? e\2  1h
H2:§{@(1—e\/§f) +§a_g}, (3.21)

and

. 2 m2 2 2
3HE— (21 \/?"5(1 - ﬁkf) —0. (322
STV 3ac¢ ¢ (322)
By considering ":n’;“ < 1 (which is also necessary in order to
relate the model with the observational constraints, as shown
below), Egs. (3.21) and (3.22) can be written as follows:

H:ﬁ(l —e\/i"‘f) {1 +

and

d 2k*h 1
de_m el o2 —|, (324
dr 18k mego(1 — e\/§x§)2

where we keep the terms up to the leading order in /. Under
2

the condition < 1, we can solve the above equations for

£(t) and a(r) perturbatively where ’ii—h;’ is treated as a
perturbation parameter. The solutions are (for m # 0)

E(r) = \/;[m <—\/6m(t ? o 9C) —I-K;ZOP(t)}
(3.25)
and
a(t) = D(l — %) v (1 —l—%Q(t))
X exp {”1(;7\;6“’)] (3.26)

Here P(r) and Q(t) have the following expressions:

(=V6m(t —ty) +9C)?

262 h 1 3.23 ro= (=V6m(t — t5) +9C +9)3 327
m? as(1 —e\/%’“f)z} - G2 and
|
(5+9C(1+3C)) (1 - \/gm(t - to)) +V6(1 +6C +81C?) (—m(t —ty) + \émz(r - to)2> . (3.28)

o(r) =

Furthermore, C and D are integration constants related to
the initial values of &£(¢) and a(¢) as follows:

I3 hy  C?
§(to) =& = \/%{ln(l/C) +Wm]

K2h0

a(ty) —D[l +-2(5+9c(1 +3C))]. (3.29)

m2

Note that for iy — 0, both solutions &(7) as a(t) go towards
the well known Starobinsky solution. Furthermore,
Eq. (3.25) leads to the fact that the scalar field increases
with time and goes to infinity as t — %. Keeping this in
mind, here we consider the initial value of the scalar field
(i.e., &) as negative. The negative initial value of the scalar
field is also consistent with the slow-roll condition, as may
be noticed from Fig. 1.

2m(t—ty)\7/2
(-5

0.51

-8 -6 —4 )

FIG. 1. V(&) vs &
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1. Beginning of inflation in scalar-tensor model

After obtaining the solution of the scale factor (3.26), we
can now analyze whether this form of the scale factor
corresponds to an accelerating stage during the early
universe (i.e., ¢ 2 ty). For this purpose, we expand a(¢)
in the form of Taylor series (about ¢t = 1) and keep those
terms up to linear order in ¢ — fg:

a(t > 1) =D <1 _2mlt— t0)>3/4 exp {m(f - fo)}

3v6C 2v6
x [1 +'i—h2° <(5 +9C(1 4+ 3C))

m

\@(11 +45C + 513c2)z>},

(3.30)

where we have used the expression of Q(t) at t — 1, as

O(t — 1) = (5+9C(143C)) =2 (11 4-45C + 513C?)t.

Differentiating (twice) both sides of Eq. (3.30) in the limit
t — 1y, one finally gets the following expression for the
acceleration:

|

i

a

Note that under the condition

m*(1 — e~1ool)

- ~ Ioo|
4(11 + 45¢lo0l 4+ 513¢2lo0l —m)

> th(),

(3.34)

the universe passes through an acceleration phase while it
m2(1_g—\ﬂo\)

oo ,2\50\_&
4(11+45¢l°01+513¢ 13(1+e\"0\)3)

does not when the condition <

k> hy holds.

Hence, the parameters m and h control the strength of
the scalar field and the KR field energy density respec-
tively. Therefore, the interplay among the scalar field and
the KR field fixes whether the early universe evolves
through an accelerating stage or not. In the next section,
we focus again on the cosmological solutions and their
possible consequences for the original F(R) model [see
Eq. (3.1)] by using the solutions of the corresponding
scalar-tensor theory.

B. Cosmological solutions and their possible
consequences in the F(R) gravity: Suppression
of the Kalb-Ramond field

Recall that the original higher order curvature F(R)
model is given by the action (3.1), solutions for the metric
can be obtained from the corresponding scalar-tensor

m \2 K*h
=(—=) (1 =elnl) {(1 —eloly — 4= 22 (11 + 45¢lo0l 4 513200l —
=1, (2\/6> m?

G

a

_( m )ZC—l
=1 2\/6 C
_ 2

5 [C LK };0

(114+45C+513C?)|.  (3.31)

By inverting Eq. (3.29), we obtain the explicit expression
for the integration constant C in terms of & (initial value
of the scalar field). For the zeroth order in %, one gets

2
cO = e—\/;&) and up to first order in hy, C becomes

K2h0 6_3\/¥§0
om? (1 + 6_@50)3

. ‘o‘ ‘ K2h0 63‘”()'
= el 3 s
9m= \ (1 + e|”0|)3
where 6, = \/27"250 and recall that the initial value of the

scalar field is considered to be negative. Then, by using
the above expression for C [see Eq. (3.32)], Eq. (3.31) turns
out as

%2

C=e Vo4

(3.32)

(3.33)

el“()‘ ):|
18(1 4 elol)3 /|
[

theory [see Egs. (3.25) and (3.26)] with the help of the
inverse conformal transformation. Thus, the line element in
the F(R) model can be written as

ds? = V3O [_d 4 a2 (1)(dx® + dy? + dz?)]
= —di® + 5s*(7)(dx* + dy* + d7?), (3.35)

where 7(t), s(r) are the cosmic time and scale factor
respectively in Jordan frame, which are related to the
Einstein frame by the conformal transformation:

o(f) = / d1eBVEEO] (3.36)
and
s(z(1)) = BVl (7). (3.37)

Equation (3.36) clearly indicates that z(¢) is a monoton-
ically increasing function of ¢. However, by integrating
Eq. (3.36), one gets the explicit functional form of z(z) as
follows:
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K%hy _ 3 _
2 tan™! —tan™'(1/V/C
+ o (tan (\/9C— \@m(z— z0)> tan~'(1/ ))

where the integration constant [that appeared while integrating Eq. (3.36)] is fixed by the condition z(#,) = 7,. Moreover,
with the solutions of £(¢) and a(t), Eq. (3.37) immediately leads to the form of s(z) [in terms of ¢, where z(¢) is given by the
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(8\/977 - 8\/9C —Vém(r - z0)>,

(3.38)

above expression] as

s(z(r)) = D(

where P(7) and Q(r) are given by Eqgs. (3.27) and (3.28)
respectively. However, by using Eq. (3.38), we obtain z()
at r — to,

(t > 1)) =70+ \/g{l +ﬂ <(1 fzo ﬂ(z—to).

(3.40)

1. Beginning of inflation in F(R) gravity

In this section, we investigate whether the solution of the
scale factor [s(7), see Eq. (3.39)] corresponds to an infla-
tionary stage of the early universe. In order to analyze this
|

Zm(t - to) 3/4 K2h0 1

) er ) 6

I
matter, we expand s(7) in the form of a Taylor series (about
7 = 173) and keep the terms up to linear order in 7 — 7. For
this purpose, we need the expression of z(¢) at t — #,
which can be obtained from Eq. (3.38) as

1 K2h0 C2
t ty) = —1+—|— t—1y).
= to) =70t C[ T om? ((1+C)3 (=)
(3.41)
Recall that 7 goes to 7 as t — ¢, which is also evident from

the above expression. Equations (3.39) and (3.41) lead to
the expression of the scale factor at 7 — 7,

D 2mp(r — TO):| 3/4 {mﬁ(r - TO):| { K2hy (
s(to1) =—1|1- ex 1+ 549C(1+30)],
(7 ) = 1= 2R P [P 00] 14 S0 (15 4 9t +:30)
Cc? mp 1219 13849
_ 11+ +—C*| (- , 342
St op \@[ 27 27 ](T TO))] (3.42)
with # given by
2 2
K~y C
1
=yl 5 ()
Differentiating twice both sides with respect to 7, Eq. (3.42) becomes
1d%s o m\? K*h 1219 13849
il - ) (1= e o) [(1 = elooly — 4270 (11 o —=27 plool 1 2277 L2y 4
Sd’l'2 —, ﬁ <2\/6) ( e )|:( e ) m2 + 27 e + 27 e s (3 3)
where C = elool +5 K2hy ((1553()“)3) is used. Therefore, it is clear that for
2(1 = g~lool
m(1 — e7™) > Chy, (3.44)

log|
4(11 + l%;9e|50\ + 1328749 62|60\ _ el’0 )

18(1-+elool)?
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the early universe undergoes through an inflationary
stage (with 7, as the onset of inflation), while for
mZ(l_e—\Jo\)

log |
A(11-41219¢100] 113849 ,2/oq | e
( 27 27 180129003

< Khy, becomes

&s
de? 17=79

negative.

Comparison of Egs. (3.34) and (3.44) makes it clear that
the conditions for an early time acceleration in scalar-tensor
theory and F(R) gravity are different. However, note that
similarly as in scalar-tensor theory, the interplay among the
parameters m and h, fixes whether the universe evolves
through an inflationary stage during the early universe.
Furthermore, in order to solve the flatness and horizon
problems, the universe must pass through an accelerating
stage at early epoch [in the original F(R) model] and from
this requirement, here we assume the condition shown
in Eq. (3.44).

2. End of inflation in F(R) gravity
In the previous section, we have shown that the very
early universe expands with acceleration, a phase generally
known as the inflationary epoch. At this stage, it is
important to check whether the inflationary era has an
end in a finite time. We may define the end of inflation by
the condition

d?s

Recall s(7) = elVe<lg(s) is the scale factor in the F(R)
model, from which one obtains

d* : .
dTi = eVl g (1) [H +H> + \/Kgﬂg} . (3.46)

where H is the Hubble parameter in the scalar-tensor
picture and the dot represents %. Equations (3.45) and
(3.46) clearly indicate that the end of the inflationary epoch

in the F(R) model can be expressed by the following
equation:

V6

Now we analyze whether this condition is consistent with
the field equations. Differentiating (with respect to ) both
sides of Eq. (3.21), we get

2 2
M 2/ I d(x'hy 3.48
18° T RHa\S0)) (3.48)

H+H>+—=HE=0. (3.47)

H:

Here we have used the scalar field equation. At the end of
inflation, the term proportional to K% becomes small
enough so that we can apply the method of iteration (with
respect to that term) to determine H. Up to zeroth order of

iteration, H= —’f—;e[z\/g"‘f(’)]. Consequently, one deter-
mines H up to first order of iteration as follows:

e/
(1= i)

By this expression together with the field equations of
motion, Eq. (3.49) leads to the following condition on the
scalar field:

(3.49)

. m? 5 2m?
=" 2 (2
18°¢ T

1 2. s 1 8
D2 W) oL a4 O ia/aey)) _
43¢ tge T o

where #; — 1, denotes the duration of inflation in the F(R)

model (in terms of ). Solving the above algebraic equation
[for &(¢7)], we obtain

3 3
-~y /=—=In{ - ).
& 2i? n(5>

Equation (3.50) clearly indicates that the inflationary era of
the universe continues as long as the value of the scalar field

(3.50)

remains greater than & (= | /55In(2) <0). Correspondingly,

the duration of inflation can be calculated from the solution
of the scalar field [see Eq. (3.25)] as follows:

2
9 {em _eafl(l +’;_hge—lao>], (3.51)
m m

gy and oy =

tf—toz

where 6 = ZTKsz. Therefore in terms of

the cosmic time 7, the duration of inflation becomes

Tf — 79 :ﬁ\/g |:(8\/%— 8\/E)
+K2h0 ((27+5d)¢3_<3+sc)\@>’

2m* \ (9+d)? 3(1+C)?
+';2—nil§ (tan—l <\/i21> —tan‘l(l/\/E)ﬂ . (3.52)

. 2 . .
with d = e (1 + %e 0], Moreover, in order to derive

the above expression, we have used Eq. (3.38). Note that
7y — 7o depends on the parameters K:n—hz‘) and o,. Therefore, we
need the values of such parameters to estimate the duration
explicitly, which can be determined from the expression of
the spectral index and the tensor to scalar ratio as discussed
in the next section.
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3. Spectral index, tensor to scalar ratio and
number of e-foldings in the F(R) model

In order to test the broad inflationary paradigm as well as
particular models vs the observations, we need to calculate
the value of spectral index(n,) and tensor to scalar ratio (r)
and for this purpose, here we define a dimensionless
parameter (known as slow-roll parameter) as

1 dH
=~ dTF (3.53)
where Hy is the Hubble parameter in the F(R) model,
defined as H = -1 4. By Egs. (3.36) and (3.37), Hy turns

s(r) de
out to be

Hy = e_%m{ L V2, } (3.54)

2V3

Recall that H is the Hubble parameter in the corresponding
scalar-tensor frame. In order to find the explicit expression
of e, we determlne by differentiating with respect to 7,
both sides of Eq. (3. 54) leading to

o]

From the above expressions of Hp and & F = along with the
slow-roll field equations, one finally gets the following
form of ¢j:

dHp

= (3.55)

~(1) { i

1 dHy
r=T H2 dr ’
+— (1= e)
= { : (3.56)
%(1—6")2 Ky —I—% o(1—e))
with o(r) = /¢ (1(x)).

As mentloned above, the second rank antisymmetric KR
field can be equivalently expressed as a vector field which
can be further recast as the derivative of a massless scalar
field (see Appendix B). As a consequence, the spectral
index and tensor to scalar ratio in the present context are
defined as follows [51-53]:

ng = [1 — 4€F - 262 + 26'3 - 264”.[0, (357)
and
®
— 2 5
r =8k o (3.58)

Here the slow-roll parameters (e, €,, €3, €4) are defined by
the following expressions:

1 dHF 1 deR
€ = €y = y
F H2 dr 2pxrHp dr
1 dF'(R) 1 dE
= . - . 359
ST2F(R)H, dr “= ey a0
where ® and E are given by
PKR 3 d
O=—"""—1|F(R)+-——(—F(R)?|, (3.60
F/(R)H%' ( ) + 2K2PKR (d’l' ( )) ( )
and
OF' (R)H?
= & (3.61)
PKR

with pgr (= H »3H'??) being the energy density of the KR
field in the F(R) model. However, by virtue of Eq. (3.86),
the variation of pxr immediately leads to pxr = 6‘2\/»%’“5 (1) g
Keeping this in mind, now we are going to determine the
explicit expressions of various terms appearing in the right-

hand side of Egs. (3.57) and (3.58).
(1) ep: As obtained in Eq. (3.56), ¢ is given by

3K2ho+m ( )
%Z(I—e”) —|—Kh°+% 7(1—e°)

(3.62)

€p =
(i1) e,: As defined above, ¢, is related to the variation of
the KR field energy density and thus to the field
equation of the Kalb-Ramond field. However, the KR

field energy density in F(R) (pgr) and in the
corresponding scalar-tensor theory (pggr) are con-

nected by pgr—e~2px (With o= \/%cg). Differ-
entiating both sides of this expression (with respect to

7), one gets
deR _ i[ 2o~ } dt
. ar’ e
1 deR do
= prre?? | —— PR _ 5 90 .

where we have used the relation among 7 and ¢ as
shown in Eq. (3.36). Recall that the evolution of pxr
[see Eq. (3.16)] is given by

1 dpkr
Pkr dt

+6H = 0. (3.64)

With the help of expression (3.63), the above equa-
tion can be written in terms of pgr as follows:

pKR + e 26 + 3¢ °/2H = 0,

3.65
2pkRr ( )

063506-9



ELIZALDE, ODINTSOV, PAUL, and GOMEZ

PHYS. REV. D 99, 063506 (2019)

where prime and dot represent the derivative with
respect to 7 and ¢ respectively. Equation (3.65) along
with the expression of H ¢ [see Eq. (3.54)] leads to the
final form of e, as follows:

_ PKR
2pxrH

=-3 +—e‘”/2.

T (3.66)

(iii) e3: Using F(R) =R —l—fl—zz (as we consider in the
present context), €3 can be simplified as

1 dF(R)
€7 =
T 2F(R)Hy dt
1 dR
= SR 45" (3.67)

where we consider 1 + 2& e 2’§ near the beginning of

inflation (as n, and r are calculated at the onset of
inflation). Furthermore, for a flat FRW metric, the
Ricci scalar takes the form R =~ 12H%, and we get the
final form of ¢5 as

1 dH dHp
= H2 dr e
3i2h 2
B ; o+m_ 0(1_65)
=—|= N . (3.68)
m(l—e)* +532 °—|—m ’(1—e%)
(iv) €4;: As mentioned above, E is defined as
E = GF;SQ £ Differentiating this expression (with

respect to 7), one gets

E @ | dF(R) Hp  pie
EHF G)HF F/(R>HF dT H%: [)KRHF
(3.69)

The above expression can be further simplified with
the help of Egs. (3.66) and (3.68),

At this stage, we should obtain © in order to get the

final expression for ¢, as well as for n,. By its
definition, ® is given by
3 dF'(R)\?
© :pif"‘ 2 2 )
Hy 2«°F'(R)Hy dr
_ PKRr F'(R)
= +6e%( o) (3.71)

In the second line of the above expression, we have
used Eq. (3.68). Differentiating both sides of
Eq. (3.71), the following expression yields

® €r KPR
6F' (R)e2H>

H/
X |—6Hp 4 e~%6 ——L|,
F e (o2 HF

(3.72)

where we have used Eqgs. (3.66) and (3.68). How-
ever, the above expression together with Eq. (3.70)
lead to the final form of ¢, as

/

3__ —0/2
€FHF+ 2HF

K2PKR
6F'(R)e:H>y

:—3€F+

H/
{—6Hp+e“’/2(}——F] . (3.73)
Hp

Hence, we can now calculate the spectral index.
Introducing the above expressions of ¢; [i =1, 2, 3, 4,
see Egs. (3.62), (3.60), (3.68) and (3.73)] into Eq. (3.57),
we finally obtain the following form of n; as

2
K”PKR

) Cr
6F (R)e2H>

erHp

. H
ng=1- [—6HF +e7%6 — H—F} .

(3.74)

Note that in the absence of the Kalb—Ramond field (i.e.,

in agreement with the

pxr = 0), ng turns out n, = 1- 26 i

expression of spectral index in a pure F(R) gravity model
[51]. However, due to the presence of the KR field, n; is

/ / >
£ = o _ dep +6— O o-ol2. (3.70) modified by the terms proportional to pxg. Taking these
EHp ©Hp Hp modifications into account, the final form of n; is given by
|
_K ho 4 1 £0o(1=en0)(1-27) _3hg _ 1 _e0(1=e0)
P\ (1meopttn w0 ey
ns = 1 - 2 3K2h 1 - : KZh . — T m -
5 +3e%(1 —e™) 52 +g(1—e?)” +ee™(l —e®)
+2 zl/l()/l’l’l2 3 2]’[0/1’}12

16 (1—em) g+ el

_ e(,—o)] [31( hg

(3.75)

+ L e(1 = )] 8[3'<h°+,2eﬂo(1—erfo)]2'
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Let us now calculate the tensor to scalar ratio () which is

defined as r = 8«? F/(?R>. By using the explicit expression of
®, one gets
PKR 1 dF'(R)\?
=8Kk?—— —+48 3.76
" mE®R <2HFF’(R) )|, (3.76)

We need the terms of the right-hand side of Eq. (3.76)
which can be obtained as follows:
(i) First term in the rhs of Eq. (3.76): With F'(R) =
1 +2R/m? ~24H2%/m? along with the expression
Hp = e™?[H + 9] [see Eq. (3.54)], one gets
K*h,

= : 3.77
2 [H? + Ho]? (3.77)

PKR

82
HEF'(R)|,,

By using the slow-roll field equations, the above
expression can be further simplified leading to the
following form:

B 3k2hy/m?
o B1—e)? 5% Lem(1—e)]
(3.78)

PKR

8x2
HEF'(R)

(i) Second term in the rhs of Eq. (3.76): As obtained in
Eq. (3.68), the second term of the rhs of Eq. (3.76) is
equal to 48¢%.

Hence, we obtain the tensor to scalar ratio:

3k%hy/m?
[é(l _ eGO)Z +K 2 hy +6600<1 _ eag)]

r= +48¢%.  (3.79)

Note that from Eq. (3.79), whether pxgr = 0 (or equiv-
alently iy = 0 i.e., without the KR field), r goes to 48¢%—
the expression for tensor to scalar ratio in a pure F(R)
gravity model [51]. However taking the effect of the Kalb-
Ramond field into account and substituting the expression
of e [obtained in Eq. (3.56)] in Eq. (3.79), we get the final
form of r as follows:

35 AP L eoo(1 — )]
TRy "”°+6 “(1-e”)

Thereby the final expressions of n; and r are shown in
Egs. (3.75) and (3.80) respectively, from which it is evident

(3.80)

(

that both quantities depend on the parameters = h° and oy.
Equations (3 75) and (3.80) lead to the parametnc plot for

shown in Fig. 2.

However, observations based on Planck 2018 impose
a constraint on n, and r as ng, = 0.9650 + 0.0066
and r <0.07 (combining with BICEP2/Keck—Array)
respectively. Therefore, Fig. 2 clearly indicates that for

oon2[f T T T T T T T T T T T
S~
1 e
I T
0.970} | ~_
.
T~
0.968 \\ T
\ T~
X \\
0.966 I \
"S \ \
\
0.964 \\ \
~ \
0.962 I
r
X \
0.960 X
1 n n n n 1 n 1 n n n 1 n 1 A\XA
0.00 0.01 0.02 0.03 0.04 0.05
FIG. 2. n, vs r for 10 < |oy| < 14 and 0.003 < m—h 0.004

|og] > 10 and 0.003 < ’ii—h;’ < 0.004, the theoretical values

of ng, r (in the present context) match with the observa-
tional constraints. In addition, by the estimated values of
% and o (=~ — 10), the duration of inflation [z, — 7, see
Eq. (3.38)] becomes 10~'? (Gev)~! if the mass parameter
(m) is separately taken as 107> (in Planckian units). We also
obtain the number of e-foldings, defined by N = [* Hpdr
(at = 74 — 1, duration of inflation), numerically, leading
to N ~ 56 (with 6y = —10). These results are summarized
in Table I.

Table I clearly indicates that the present model may well
explain the inflationary scenario of the universe in terms of
the observable quantities n, and r as based on the results of
Planck 2018.

Using the solutions of s(z) [see Eq. (3.39)] along with

the estimated values of the parameters (%, 0o, M), We

depict the deceleration parameter g = —%% vs a dimen-

sionless time variable 7 = TifN in Fig. 3.

Figure 3 shows that the early universe starts from
an accelerating stage with a graceful exit at a finite time.
However, frzom Table I, the maximum value for the
parameter Km}? is given by Kmﬂ ~(.004, in order to
match the present model with the observations of Planck
2018. Taking m = 107> (in Planckian unit), we obtain
R ~ 109 (GeV)*. Recall that the term hgel™270 [see
Eq. (3.4)] denotes the energy density for the KR field (pggr)
during the early universe in the F(R) model. Therefore, the

TABLE 1. Estimated values of various quantities for
K h“ = 0.0035, 6, = —10 and m = 107> (in Planckian unit).
Parameters Estimated values
n ~(0.9630
r ~(0.03
Tr — 70 10_12 (GCV>_1
N 56
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20 60 80 100 120

-10

-20

=30

=50

FIG.3. g¢(r) vsfor ™ = 0.0035, 6y = ~10and m = 10~ (in
Planckian unit).

present model along with the constraints of Planck 2018
give an upper bound on the KR field energy density during
the early universe as (pgr)™™ ~ 1070 (GeV)* (with
o9 = —10). In such a situation, it is important to examine
whether the energy density of the KR field [starting with
~107 (GeV)* from the early universe] gets suppressed and
leads to a negligible footprint during our present universe.
This matter is discussed in the next section.

However, let us discuss briefly the cosmological evolu-
tion and the corresponding observable parameters for the
cases: (1) quadratic curvature gravity in the absence of the
Kalb-Ramond field [i.e., for the pure F(R) = R + R*/m?
model], (2) in the absence of higher order terms in the
gravitational action, i.e., for Einstein gravity with a KR
field, and (3) when considering cubic curvature gravity
with a KR field.

(1) Quadratic curvature gravity in the absence of the

KR field—In this case, the action of the model
becomes

2

}. (3.81)

1 R

m2

0.010F

0008

0.006}

0004}

0.002¢

Recall that # = M%, (where M, is the four-
dimensional Planck mass). For this action, the
solution of the FRW scale factor can be obtained
by fixing hy; =0 in the expression obtained in
Eq. (3.39), yielding

s(z(t))=D (1 _2m(t—t0)> 3/4

3V6C
X exp [mg\;é()) +1In <_\/6m(t9— t) +9C> } ’
(3.82)

where C = ¢7°, 7 is the cosmic time related to ¢ by
Eq. (3.38) with hy = 0. Equation (3.82) leads to the
acceleration of the early universe as

1
s dz?

m
=C|——=
. (2\/6

which clearly indicates that the early universe under-
goes an inflationary stage, the well known Starobin-
sky inflation. Correspondingly, the observational
parameters as the spectral index and the tensor to
scalar ratio depend only on the parameter o in the
absence of the KR field. By introducing A, = 0 into
the Egs. (3.75) and (3.80), one obtains the variation of
n, and r in terms of the parameter oy, as illustrated in
Fig. 4, which clearly shows that in the absence of the
Kalb-Ramond field, the spectral index and tensor to
scalar ratio lie within the observational constraints for
the interval —5.0 <oy < —4.5. However, as men-
tioned above, even in the presence of the KR field, 7,
and r also remain within the constraints but with a
bound given by (pgg)™> ~ 107 (GeV)* (with
oo = —10). For clearness, below we illustrate the
comparison with/without the antisymmetric KR field
in Table II.

2
> (1—elnh2 (3.83)

FIG. 4.
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TABLE II. Comparison of n; and r with/without the Kalb-
Ramond field.

Parameters % = 0.0035, 6y = —10 hy =0, 6p = —4.5
ng ~0.9630 ~0.9660
r ~0.03 ~0.003

(2) In the absence of higher order curvature gravity.—
Without higher order curvature d.o.f., the action
takes the following form:

S = /d4x\/—_g {%—%HW)H”W . (3.84)

As mentioned above, for a flat FLRW metric, the
KR three tensor has only one nonzero component,
i.e., Hypy; symbolized by h,. With this nonzero
component, the pressure and energy density of the
KR field turn out to be same and equal to %h4h4. As

a consequence, the FLRW equation becomes H =
—3H? which can be solved and the scale factor
yields a(t) = (t—t,)'/3. The acceleration of the
scale factor turns out negative and inflation does
not occur. This result is in agreement with [54],
which states that a minimal model with an anti-
symmetric tensor field (in the Einstein frame) is not
consistent with inflation.

However, authors from [54] showed that a stable
de-Sitter solution can be achieved in the context of
antisymmetric tensor field by introducing a non-
minimal coupling between the Ricci scalar and the
tensor field. On the other hand, in the present paper,
we argue that the minimal prescription (in the
presence of an antisymmetric tensor field) can also
give rise to an inflationary era, but in the regime of
higher order curvature gravity.

(3) Cubic curvature gravity with the presence of the KR
field.—In this case, the action is given by

1 1
S = / d*x\/=g [sz R + pR?] - EHW,H”W )
(3.85)

Here f is a free parameter with mass dimension
[—4]. It is well known that F(R) = R + SR> does
not give a good inflation, i.e., the theoretical
values of n, and r do not support the observable
constraints from Planck 2018. However, in the
presence of an antisymmetric Kalb-Ramond
field, model (3.85) is consistent with Planck
2018 constraints (i.e., ny, = 0.9650 4+ 0.0066 and
r < 0.07, combining with BICEP2/Keck—Array).
Here we present the plot for simultaneous compat-
ibility of ng, r in Fig. 5:

1.021- B

1.00 B

098 4

096 4

094 C 1 1 1 1 1 1 1 1
000 001 002 003 004 005 006

FIG. 5. n, vs r for =5 <6y < —4 and 0.03 < x%hy/B < 0.3.

In Fig. 5, e =1+ 3ﬁR(2) (with R, be the
spacetime curvature at the time of horizon crossing).
In addition, Fig. 5 clearly reveals that the observable
parameters {n,, r} remain within the confident re-
gions provided by Planck 2018.

4. Suppression of the Kalb-Ramond field in F(R) gravity

The energy density of the Kalb-Ramond field pgg in our
F(R) model in terms of the cosmic time 7 is given by

pra((1)) = e2Vie o (3.86)

a

where we have used the conformal transformation of the
metric along with Eq. (3.17). Therefore, in order to address
the effect of the KR field on our present universe, it is
important to understand the late time evolution for £(7) and
a(t). As mentioned above, £(7) goes to infinity at late times,
starting from a negative value at the early universe.
However, this solution &(7) is based on the slow-roll
approximation which may not hold at late times. Then,
let us relax the slow-roll approximation, such that the field
equations for £(r) and a(z) take the form

K21 . m? 5 1h
7L e SRS PRV L ,
3 {2‘5 teal=eV i i4a6 (B87)
and
) . hm? ;
E+3HE- \/;Z:—e\/g’“f(l —eVA) =0, (3.88)
K
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Blue Curve: with slow roll

Red Curve: without slow roll

—-10

b,

—-15

FIG. 6. ¢ vs 7 for K;}QO =0.0035, 6, = —10 and m = 107> (in
Planckian unit).

60

80 100 120
Blue Curve: with slow roll

Red Curve: without slow roll

t ..

FIG. 7. ¢ vs 7 for % =0.0035, 65 = =10 and m = 107> (in
Planckian unit).

By solving these equations numerically, the evolution of
the KR field and the deceleration parameter are depicted in
Figs. 6 and 7 respectively, where we have used the relation
of z(t) given in Eq. (3.38). Figure 6 shows the evolution of
&(7) for both cases, when assuming the slow-roll approxi-
mation and when no approximation is assumed. As shown,
the evolution for &(7) is very similar in both cases. After
inflation, the acceleration term for £(z) starts to contribute
and as a result both solutions (with and without slow-roll
conditions) differ from each other. A similar conclusion
holds for the deceleration parameter. Moreover in the slow-
roll approximation, &(z) does not tend to a finite value
asymptotically, but goes to infinity at late times, while in
the absence of the slow-roll approximation, £(z) moves
towards (&) =0 asymptotically, showing an oscillatory
behavior at late times.

By using these numerical solutions for &(z) and a(z), the
KR field energy density (3.86) is obtained in our F(R)
model, pgr, as shown in Fig. 8, where the energy density of
the KR field gradually decreases with the cosmic time (7)
and the decaying time scale 7 = 40 is smaller than the exit
time from inflation (7 = 56). This may well explain why
the present universe does not show any footprint of the
antisymmetric Kalb-Ramond field.

10 20 30 40

FIG.8. pgrVs7T for% =0.0035, 69 = =10 and m = 107 (in
Planckian unit).

However, besides the four-dimensional context, higher
dimension spacetimes may provide a natural solution to the
hierarchy problem, i.e., apparent mismatch between the
fundamental scale and the electroweak symmetry breaking
scale [32-34]. In such higher dimensional models, unlike
electromagnetic or other matter fields, the Kalb-Ramond
field does propagate through extra dimensions and thus
have Kaluza-Klein modes. Further attempts to unify gravity
and electromagnetism require the inclusion of the Kalb-
Ramond field in higher dimensional theories [55,56], such
that the KR field may become important in the context of
extra dimensional models. In the following sections, we
discuss such higher dimensional spacetimes.

IV. KALB-RAMOND FIELD IN FIVE DIMENSIONS
IN F(R) GRAVITY

Let us now investigate the cosmological evolution for the
Kalb-Ramond field when higher dimensional spacetimes
are considered. In particular, here we consider the well
known Randall-Sundrum (RS) braneworld model with the
presence of a Kalb-Ramond field in the bulk. The RS model
consists of one extra spatial dimension. The bulk spacetime
is AdS in nature and S'/Z, orbifolded along the extra
dimension where the orbifold fixed points are identified
with two 3-branes. If ¢ is taken to be the extra dimensional
angular coordinate, then the branes are located at ¢ =0
(hidden brane) and at ¢ = z (visible brane) respectively
while the latter is identified with our visible universe.
However, in such a braneworld scenario, the stabilization of
interbrane separation (also known as modulus or radion) is
an important issue to address and for this purpose one needs
an extra stabilizing agent which is able to generate a stable
radion potential. Here, in the present context, we consider
the quadratic curvature term in the five-dimensional action
together with the Einstein-Hilbert term as the stabilizing
agent. Moreover, it is well known that higher order
curvature terms become relevant in the limit of large
curvature. Thus, in the RS bulk geometry, where the
curvature is of the order of the Planck scale, such that
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higher order curvature terms have to be included in the
action. Hence, the action of the model is given by

S = / d*xdpV—G [(R AR V,8(0)

1
+V,6(p—7m)— EHMNLHMNL] .

- Sg + SKR’ (41)

where G is the determinant of the five-dimensional metric
Gyy (M, N, whose indexes runs from 0 to 4 where O to 3
are reserved for brane coordinates), o is a constant
parameter having mass dimension [—2] and 5! 32 = = M3 (with
M the five-dimensional Planck mass), while A (< 0)
symbolizes the bulk cosmological constant and V,, V,
are the brane tensions on hidden and visible brane respec-
tively. Moreover Hyy, = OBy denotes the field
strength tensor for the KR field By; propagating in the
five-dimensional spacetime. However, as being allowed to
propagate in the extra dimension, the KR field can be
decomposed into Kaluza-Klein (KK) modes which are
obviously coupled with to the extra dimensional modulus
field. The overlap of these KK wave functions with the
visible brane actually determines the strength of the KR field
in our visible universe. In such a situation, it is important to
explore the effects of higher order curvature terms on the
dynamics of the modulus field which in turn controls the
evolution of the bulk Kalb-Ramond field. These issues are
addressed here from the perspective of four-dimensional
effective theory. In the following two subsections, we
determine the effective four-dimensional action individually

for S, = [d*xdpv/-G [R+aR —A+V,8(p)+V,8(p—n))
and Sxg = [ d*xdp/—G|—5 Hyy HYNE] respectively.

A. Four-dimensional effective action for S,

In order to find the effective action of §,, we need the
solution for the five-dimensional spacetime metric Gyy.
For this purpose, first we determine the field(s) solutions in
the corresponding scalar-tensor (ST) theory and then
transform the solutions back to the Jordan frame by using
the inverse conformal transformation. Following Sec. II, the
conformal transformation of the spacetime metric can be

~ s . .
expressed as Gyy — Gyy = €3Gy, while the action S
leads to

S,[®@. Gyn]
/ Frdp\ G [?

- e V,8() - V80— 7) |,

% MN Oy ®ON® — V(@) — A

(4.2)

where @ is the scalar field in ST theory and V(®) is its
potential which takes the following form:

V(®) = Sklzaexp <— : \5@,@) {exp (chp> - 1]2
- A[exp <_%§K®> + 1}. (4.3)

Moreover, the last two terms in Eq. (4.2) are contributions
from the brane tensions of hidden and visible branes.
However, in order to check the stability of V(®), we take
the single derivative with respect to @ in both sides of
Eq. (4.3),

1
16V/3ka

V(@) =— ¢ 37 a7 4077 — (5 - 40k2aA)],

(4.4)
which immediately leads to the fact that V(®) is stable only
for a > 0. Correspondingly the vacuum expectation value
(®) and the squared mass (m3) of ® are given by

exp (2\3—@;«@) = [\/9 — 40K%aA — 2} . (4.5)

and

2

1
— [\/9 - 4OK2aA] [%9 — 40K2aA — 2} ;.
a

m3 (4.6)
As we will see below the stability of the modulus field is
also ensured by the condition a > O—same as for the
stability of V(®). Thus, it can be argued that the stability of
V(®) and of interbrane separation are intimately connected
in the higher order curvature RS model. However, note that
the minimum value of V(®) is nonzero and is given by

V(@) = A + [\/9 — 40K%aA — 2} B
x [—A + (1/8¢) [\/9 — 40k%ah — 3] 2] :
This nonzero value of the potential works as a cosmological
constant together with A and thus the effective cosmologi-
cal constant in ST theory is given by Ay = A + V(D)) (a
simple algebra shows that A is negative). By considering

a small fluctuation of the scalar field around its stable value
as ® = (@) + £, the action (4.2) can be written as follows:

2
- (1/2)’"%1)52 = Aegr — e_ﬁgx«@ﬂ:) V(o)

_ e‘f_ﬁ"(@ﬂﬁ V1,.6((p _ 7[):| i

. ~[R 1.
S, 1@, Gyl = / d4xd¢\/5{2—’<2——GMNBM§6N§

(4.7)

where we keep the terms up to quadratic order in &. As
expected, the scalar-tensor action contains two independent
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fields: ® and G,y. Let us now find the corresponding
solutions of the field equations. By assuming a negligible
backreaction of the scalar field (®) on the background
spacetime, the metric G,y is given by the well known
Randall-Sundrum solution as

ds? = e‘zkrﬂ"‘”nwdx”dx" + r2dg?, (4.8)
where k = ﬁ and r, is the compactification radius of

the extra dimension in ST theory. Moreover, the brane
tensions are given by following expressions:

V, = 24M3k * exp Liﬁk(((m + vh)],

5
V, = =24M>k x exp | —=k((® +’U1):|.
| p[m (@) + v,)

Here v, and v, are the boundary values of £ on the hidden
and visible brane respectively. Together with the metric
(4.8), the scalar field ® equation turns out to be

1
— 5Dy lexp (—4kr.lgl) D)+ 1 exp (~4kr o)) () =0,

c

(4.9)

where the scalar field £ is considered to be the function of
an extra dimensional coordinate only. By taking nonzero
values of £ on the branes, the above differential equation
has the following solution:

2kr|g [Aevkrc\w\ + Bevkrelel],

Ep)=e (4.10)
with v = /4 + m2 /k*. Furthermore, A, B are integration
constants that can be obtained from the boundary con-
ditions &(0) = v, and &(n) = vy, as follows:

A= UU€_<2+V)kr‘” _ Uhe_ZDkr"”,

and
B = Uh(l + e—2ykr(ﬂ) _ 1}1)6_(2+D>kr‘”.

Thus, Egs. (4.8) and (4.10) specify the field solutions
in this spacetime. Recall that the original F(R)
model is represented by the action S, [Gyy]=

[ d*xdpv/=G[EE) A 4 V,8(p) + V,6(p — 7)]. The
solution of the spacetlme metric (Gyy) in the original
F(R) model can be obtained from the solutions of the
corresponding scalar-tensor theory with the help of the
inverse conformal transformation. Thus, the line element
turns out to be

ds? = ¢~ [e=2krelely , dxtdx + r2dg?],  (4.11)

where ®@(¢) = (D) + £(p) and &(p) are obtained in
Eq. (4.10). In order to introduce the radion field, r. is
replaced by T'(x), known as radion (or modulus) field. For
simplicity, here we consider that this new field depends only
on the brane coordinates. Thus, the line element becomes

ds? = ¢ 9) [e2KTWlel g, (x)dx*dx? + T(x)?dep?).
(4.12)

Here g,,(x) is the induced on-brane metric and ®(x, @)
can be obtained from (4.10) by replacing r. by T(x).
Substituting the above solution of G,y into the action
S,[Gyy] and integrating over the extra dimensional coor-
dinate ¢, the effective four-dimensional on-brane action
becomes

1
A= | dx\/_[M Ry =500, 90,% ~ Upa(¥) .

(4.13)

where M7, = =M1\/9—40k>aA~2]"/? is the four-dimen-

sional Planck scale Ry
by g, (x). Moreover, ‘P( )=/ 21 (142 kv, e ™) =

Fe () (with f =

radion field and Ur.dd(‘I’) is the radion potential with the
following form [16]:

where the terms proportional to w (= 73 "o - 1, which is also

consistent with observational bounds) are neglected. Note
that U,q(W) goes to zero as the higher order curvature
parameter « tends to zero. However, as a — 0, the action
contains only the Einstein-Hilbert term which is not able to
generate any potential for the modulus field, as shown in [47].
Thereby, the potential term for the radion field is generated
entirely due to the presence of the higher order curvature term
(aR?) in the action. Hence, the sign of the higher curvature
term comes through the radion potential in the four-dimen-
sional effective action. In this context, the stabilization of the
interbrane separation is based on whether the radion potential
is stable ornot. Fora > 0, the potential U ,q has a minima and
a maxima at

1s the on-brane Ricci scalar formed

1M 4 \2/(1 ak®kvy)), is the canonical

20 ak®
VeI

2
_ KU, KonV

T ﬁ) (‘P/f)‘”—vvr,
(4.14)

rad (LP)

1/w

lIlmin = <\P> = - f ’

(=535

(4.15)
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The minima of U 4 (¥) immediately leads to the stabilization
of the interbrane separation,

k(T (x)) = ﬁ {m <ﬂ>

mg, v,

- <_1)} (4.16)

The expression of mg as obtained in Eq. (4.6) clearly
indicates that (7'(x)) is proportional to parameter a. Thus,
the model considered here would collapse as a tends to zero,
as pointed out in the discussion above. Moreover, Eq. (4.14)
imposes that U,q(¥) goes to zero at ¥ = 0. In Fig. 9, the
potential U, (¥) is depicted.

B. Effective action for Sgg
Recall that the 5D KR field action is given by

1
= —75 d4Xd(0V —G[HMNLHMNL],

S
" 12

(4.17)

where the KR field strength tensor H ,y;, is related to By
(second rank antisymmetric tensor field) as Hyy; =
OimByy)» with latin and greek indices running from O to 4
and O to 3 respectively. It is straightforward to see that the
action S[H| is invariant under the gauge transformation
By = Byn + O Wy, with Wy as an arbitrary function of
spacetime coordinates. This gauge invariance of the KR field
allows us to set By, = 0. Then, by using the form of Gy
and keeping By, = 0, the above action turns out to be

Sy =— I d*xdg\/=ge* T IT (x) {g”agyﬂglyHﬂulHaﬁy
3
_ P e—2kT(x)(pgﬂagVﬁBﬂD8$§Baﬂ:|, (4.18)

The Kaluza-Klein decomposition for the KR field can be
written as

B (x.0) =Y B (" (x.0),  (4.19)

where BEZ) (x) and ") (x, @) represent the nth mode of on-

brane KR field and extra dimensional KR wave function
respectively. The wave function y(") is considered to be a
function of the brane coordinates also (apart from the
coordinate ¢), as we are interested in investigating whether
the dynamical evolution of the KR field leads to its
invisibility in the present universe.

By substituting the decomposition in the five-
dimensional action Sy and integrating over the extra
dimension, the four-dimensional effective action turns
out to be

d*xy/=glg g’ g HIGHY,)

+3m2gg’ By BY)), (4.20)

as far as y")(x,¢) satisfies the following equation of
motion:

Ay a;((m)_ 1
ot ot TX1)

e_ZkT(t)ga)((n) e m%}((n))((m)’

(4.21)

along with the normalization condition,

/” d(/)ezk”t)(/))(("))((m) — Lé (4.22)
0

(1) ™"

where m,, denotes the mass of nth KK mode. As we will see
below, obtaining the coupling between the KR field and the
Standard Model fields on the visible brane is important.
Furthermore, Eq. (4.21) clearly shows that the dynamical
evolution of ") (x, ¢) is coupled to the modulus (or radion)
field T(x). Equations (4.13) and (4.20) immediately lead to
the full form of four-dimensional effective action as
follows:

1 2

At :A.S,ff) +A£,ff)
= [ d*x\/=g M3R(4) 1””6 YO,¥ —U,q(¥
= X_QT —59 " u_rad()

1 n n n
—E(gwgvﬂgﬂmfwﬁﬂ&ﬁ)y+3m33,(,)3ﬂ”<">) . (423)
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where U_,4(P) is explicitly shown in Eq. (4.14). From now
on, we deal with the zeroth Kaluza-Klein mode of Kalb-
Ramond field for which m,_y, = 0. With this lowest KK
mode, the four-dimensional effective action turns out to be

1 2
At = Aéff) + Aift?

M3
= / d*x\/=g [—R(4)

g;wz uﬁglly y/IHa[)’y:|

1
) 0, ¥0,¥ — Uy (¥P)
(4.24)

Due to the presence of U,y(¥), the radion field acquires
some certain dynamics which affect the dynamical evolu-
tion of the KR wave function y(*)(x, ¢), as ¥ and y() (x, ¢)
are coupled through Eq. (4.21). In such a scenario, our
motivation is to investigate whether the evolution of
79(x, ) leads to a negligible footprint of the KR field
in the present visible universe. However, it was shown
earlier in [6] that the effect of the KR field may be
significant and can play an important role in the early
era of the universe. Therefore, in order to address the
dynamical suppression of the KR field, it is important to
start from the very early universe where we will investigate
whether the universe passes through an inflationary era. For
these purposes, we try to solve the cosmological Friedmann
equations obtained from A,y in the following sections.

C. Effective cosmological equations and solutions

The on-brane metric ansatz that fits our purpose in the
present context can be expressed as follows:

ds?

W = 9w (x)dx*dx”

= —df* + b*(1)[dx* + dy* + d7?], (4.25)
where b(¢) is the scale factor of our universe. With this
ansatz along with the expressions of the energy-momentum
tensor for the four-dimensional KR field (as shown in
previous section), we obtain the following Einstein’s field
equations for the action A.:

1. 20 ak’ 1

2 2 2 4 0] 4

3H), = ‘I’ NI TFP — 1P + S haht, (4.26)
] 1. 20 ak’

2H, +3H2 + -V - o WP — |

bt bt 2 fM6 [ ]

1

+5hah* =0, (4.27)
where H, = ; b is known as the on-brane Hubble parameter,
F=5 fw (vn = 2f+'<2”\/”—") and hy = Hg% (as the other

components of H;(wl vanishes as given by the off-diagonal

Einstein’s equations). Moreover, the field equations for

HL% and for radion field (W) are given by
V H YO = ——9,[\/=gH"* 0] =0, (4.28)
and
80 ak’
‘I’+3H‘P+—— V2P [FP” — 1]2 = 0. 4.29
T P 1 (4.29)

Following Appendix A, Eq. (4.28) leads to a nonzero
component of HL%, i.e., hy depends on the cosmic time 7, as
also expected from the gravitational field equations.
Differentiating both sides of (4.26) with respect to ¢, the

following expression is obtained:

80 ak’ 1d
H,H, =PV 4+ — " 2P [Fye — Y = 4
6H,H, +\/§M [ 1] +2d(h4h)

Furthermore, Egs. (4.26) and (4.27) immediately give
2H, =W —Lh,h*. With this expression for H, along

with the above equation, we obtain the cosmic evolution for
the energy density of the on-brane KR field (Qgg = 3 hyh*)

as %QKR = —6H,Qgg. Solving this equation, we get
Q

where € is an integration constant. Equation (4.30) clearly
indicates that the on-brane KR field energy density is
proportional to 1/b% (same as previous model) and thus
decreases with the expansion of the universe. Moreover,
note that Qgr decreases more rapidly in comparison to
normal matter (o< 1/6%) as well as radiation (o< 1/b%)
energy density. This may well explain why the Kalb-
Ramond field has a negligible footprint in the present
visible universe. However, at the same time, Eq. (4.30) also
reveals that the KR field may have a significant contribu-
tion during the early universe [when b(z) is small in
comparison to the present one]. On the other hand, recall
that the bulk KR field has also an extra dimensional
Kaluza-Klein (KK) wave function (besides the on-brane
part) which determines the coupling among the on-brane
KR field and other matter fields. Thereby, along with the
on-brane part, the extra dimensional wave function
7\9(t, ) also plays a crucial role to control the signature
of the bulk KR field in our visible universe. However, the
dynamics of y(%)(z, ) are coupled to the evolution of the
radion field ¥(¢) and thus we need to obtain ¥(¢) in order
to determine the cosmological evolution of the KK wave
function.

By Eq. (4.30), there remain two independent equations
to fix the evolution of ¥(¢) and b(¢),
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1{1. 20 ak’ 1Q By this approximation, Egs. (4.31) and (4.32) become
Hi=2 WP+ 2P PP — 12| 4o, (431
b 3 2 + \/§M6 Ub [ } +3 b6 ’ ( )
20 ak’ 1Q
and H} = —— 0 PFP° — 1> + -2, 4.34
b 3\/§M6 UI/ [ ] + 3 b6 ( )
. . 80 ak’
V4 3HNW 4 o 2P — 12 =0, (4.32)
V3M and
As mentioned above, we are interested in solving the
equations at the early universe where the potential energy .80 ak®
of the radion field is considered to be greater than the 3HYY +—— 07 P [FP” — 12 =0.  (4.35)
kinetic term (slow-roll approximation), i.e., V3iMm

1.
Upaa(¥) > - W2 (4.33)

Then, solving the above two equations for ¥(z) and b(z),

2 we get
|
¥
¥(r) = —, (4.36)
N » J®
{FTS) — <F‘P8’ - \bgg - 1) exp <—8wvm /%Miz(t - to))]
and
1/3 5 ak’
b(1) = C[14/30(1 = 10)| " exp |20, e ()~ (). (4.37)

Recall that F = —L5 (v}, — % + ’(2“—\/%”) and W, C are integration constants with by = C exp [-¥3/8]. Furthermore, g, () has

vvf .
the following expression:

FYY 1 FYy 5 ak’
g1(t) = — 0 PRF, [ 1,1,24+ =, —— % —exp [ 8wv,| | —=—=(t—1;)
FP? — 1 5 ak’ o FPY -1 3./3 M°
( 0 ) 16a)yv 375 M6 0 f
|5 ak® 5 ak’ o
a a
X exp 8(01)1} mﬁ(t - to) Fng - (FlPS) - 1) eXp —8(()1)1) ﬁﬁ(f — t0> (438)
where 2F1 refers to an hypergeometric function. On the other hand, g,(7) is given by
Yy 1 2 FYY 5 ak’
9 (t) = — — Wi+ x2F | 11,1+ =, ———"—exp | 8wwv,| | —=—=(t — 1)
(F¥§ _1)16a)v,, %aﬁks o FYy -1 3V/3M
1-2/w
xexp | 8 “ks(z t0) | [ Fo2 — (Fwo —1)e 8 “ks(t 1) (4.39)
X WV | —=—=(F— - —Dexp | -8wv, | —=—=(t— .
p v 3\/§ M6 0 0 0 p 3\/§ MO 0

Note that for @ — 0, the solution of the radion field and Hubble parameter becomes ¥(r) =

¥

B \/% ) - \P(IO) and
[1+_b352—]

0%

H x # respectively. However, this result is expected since without any higher order curvature term (i.e., a = 0),

the radion potential vanishes and the radion field becomes constant W(z) = ¥(,) while the Hubble parameter « 1/b°
(solely due to the Kalb-Ramond field has an equation of state parameter w = 1). Moreover, for Q;, = 0, the solution turn out
to be the one for pure F(R) = R + aR? gravity in the Randall-Sundrum model, as found in [43].
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Equation (4.36) shows that the radion field decreases
with the cosmic time and finally its bulk leads to [see
Eq. (4.15)] asymptotically, i.e.,

Wt 1) = f[ﬂ] Yy,

Up

Thereby, the dynamics of the interbrane separation (7'(¢))
are as follows: T(¢) increases [as ¥() o e7**T()] with the
expansion of the universe and gradually goes to a stable
value [kz(T) = i’i [In(32) — 2’<\“/. (3= 1] asymptotically,
as shown in Fig. 10.

Once we obtain the solution for ¥(¢), we can obtain the
evolution of the extra dimensional KR wave function

79(t,p). Nevertheless, let us study whether the solution
of the scale factor (4.37) corresponds to an inflationary stage.

D. Beginning of inflation
In order to check whether the solution of the scale factor
is consistent with an early inflationary stage, we expand
b(t) in the form of Taylor series (about # = #;) and keep the
terms up to the linear order in ¢ — f,:

b(t 2 t0> - bo[l + 3Q0([ - t0>]1/3

x exp |2(FY§ —1)¥3v, —(t—10) |,

(4.40)

where b is the value of the scale factor at t = ¢, and is
related to the integration constant C as

by = Cexp[-¥3/8].

Equation (4.40) leads to an accelerating expansion at t — f
as follows:

a - » 5 5 ak’
E(ZNIO): Z(F\PO—I)TOUU \/_M6+V 1+

=

X 2(FlP0m—1)lP(2J’UD Wgﬁ
(4.41)

Note that under the condition

2(FW — 1)¥2, ,/35 “ks>\/_< ) (4.42)

the early universe expands with an accelerating phase.
Otherwise, the acceleration 2 4 (t = 1) turns out negative.
Recall that the on-brane KR fleld energy density (Qgg) is
proportional to 1/b° as given by Eq. (4.30). Thereby, due to
the inflationary expansion of the scale factor, Qgg rapidly
decreases during the very early universe. However,
Eq. (4.41) clearly reveals that for a — 0,2 (1 2 #,) becomes
less than zero, i.e., the early universe passes through a
decelerating phase—solely due to the KR field having
equation of state parameter w = 1. Therefore, besides
stabilizing the interbrane separation, the higher order cur-
vature term also ensures the early inflationary stage sub-
jected to the condition (4.42), which in turn provides a rapid
decrease of the Kalb-Ramond field energy density on the
visible universe.

E. End of inflation

After obtaining the inflationary solution, it is important
to evaluate whether the inflationary phase has a graceful
exit in a finite time, as is connected to the resolution of the
Horizon problem. The end of inflation can be defined as

b .

_ 2 _
Z_Hb +H; = 0. (4.43)
Now let us estimate the time interval consistent with this
condition. However, at the end of inflation, the term

proportional to 1/b° can be safely ignored and thus
Eq. (4.31) becomes

20 ak’
H} = -2 2w e — 12,
3V3M
Differentiating both sides of this expression, one gets
. 160 ak’
Hy,=————12W2(FP” - 1 4.44
b=y s R IR (4ad)

Using the above expressions of H3 and H » in Eq. (4.43),
we finally get the following condition on the radion field:
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W=2v2 =¥, =¥(1), (4.45)

where Iy is the time when the radion field takes the value

2v/2 (in Planckian units). Therefore, Eq. (4.45) clearly
indicates that the inflationary era continues as long as the
|

value of the radion field remains greater than 2\/§ (in
Planckian units). With this information, one can determine
the duration of inflation ¢, — ¢, from the solution of ¥(z)
[see Eq. (4.36)] as

o

V() = 7

{F‘Pg’ - (F‘Pg’ —

By simplifying, we get the expression of 7, — £, as follows:

! FWo -1
tf — Iy = E In (446)
5 _ak 0 _ _
8(1)711) ng F‘P
Recall that F = 7 (v, ;\U/’L + K;\'/g—") and o = 7% 5 with m3

given in Eq. (4.6). Hence, the duration of inflation depends
on the parameters a and €, i.e., on the strength of the
higher order curvature term and on the energy density of the
KR field respectively. Therefore, in order to estimate , —
explicitly, we need to determine the value of these param-
eters which, on the other hand, should be consistent with
the observational constraints.

F. Spectral index, tensor to scalar ratio and
number of e-foldings

As shown in previous sections, the results of Planck 2018
[8] put a certain constraint on the spectral index n; and
the tensor to scalar ratio » as n, = 0.9650 4+ 0.00661 and
r < 0.07 (combined with BICEP2/Keck—Array) respec-

tively. As shown in Appendix B, the KR tensor H ;(4% can

1w
- 1) exp (—80)1)” Sﬂ‘;/ll‘é( - to))]

I
be mapped to a derivative of a massless scalar field and thus
ng, r are defined as follows (in terms of a dimensionless

parameter €, = —%) [57,58]:
b

€)
Hyep

-2

t=t,

ny, =1 — 6¢,

)

t=t,

r = 16e (4.47)

t=t,

Thereby, in order to scan the possible values of a and €
provided by the constraints of Planck 2015, first we need to
determine €; which determines the spectral index and the
tensor to scalar ratio. For this purpose, we use the field
Urad(qj) + 61)6
this equation Wlth respect to time, we get

1 [OUq\2
AN
where we have used the field equation for the radion field.

These expressions for H,, and H7 lead to the slow-roll
parameter ¢, as follows:

equation H; = Differentiating both sides of

%

2Hb: bﬁ»

L LI6pP e (R — 1) 4 e (pr (R — 1) 4 50) (4.48)
b=75 ’ '
2 (pop W4 (F” = 1)° + 51)°
where p = 14];1M6 and F = T( 2\/——1-'(2””\/%”).
By using the expression of ¢, along with Eq. (4.47), r and n, turn out to be
16p20AE8(FWg — 1)* + 22 (pu2Wi( P — 1)? + 22
r—s . 2 , (4.49)
(pv;¥ (F‘P‘” —1)? +2b6)
and
U
n,=1-=-1, (4.50)
U,

where U; and U, have the following expressions:
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189
U = {384;731;2\113(1“}'5) —1)0+—2
0

6
bO 0

and

Q
U, = <pv%‘I‘3(F‘Pg’ —1)? +2—b06> <16p21)‘b‘,‘1‘8(F‘P‘5’ —1)*
0

3£20 2 ® 2 QO
+Tg (pv,;‘l’g(F‘PO - 1) ‘I—Tbg .

As expected, the spectral index and the tensor to scalar ratio
depend on the parameters v,, Q, and ¥,. To fix these
parameters, we use the observational results from Planck
2018 [8]. Here we take

V%

e ~ 1077,

Kv, =

These values of v, and Q are consistent with the condition
that is necessary for neglecting the backreaction of the bulk
scalar field and the KR field on the background five-
dimensional spacetime. Then, by using Eqs. (4.50) and
(4.49) along with the values of v, and €, the parametric
plot for n; vs r is depicted in Fig. 11, which clearly shows
that within the interval 34 < W, < 38 (in Planckian unit),
both observable quantities n, and r satisfy the constraints
provided by Planck 2018 [8]. Furthermore, with the
estimated values of v, Qy and ¥, the duration of inflation
1 — to becomes 10710 (Gev)™" as far as the ratio mg/k
(bulk scalar field mass to bulk curvature ratio) is taken
to be 0.2 [46]. This ratio of mg/k leads to the stabilized
interbrane  separation as kx(T) ~36—required for
solving the gauge hierarchy problem [46]. We also deter-
mine the number of e-foldings, defined by N = [ Hdt
(at =ty — 1y, duration of inflation), numerically and

0.972 \
nS

0.971
0.970
r

0.969
0.968
0.967
0.966
0.050 0.052 0.054 0.056 0.058 0.060
FIG. 11. ng vs r for 34 < ¥, < 38 (in Planckian unit).

60 30,
~—5 <16P20‘$‘P8(F‘1"6’ — 1t (pv%‘Pé(F‘Pﬁ - 12+ —)) -

Q 2
ey - 17 2)

268
Q 1440,

by

20 PPUs WY (FPy —1)%],

|
leading to N ~58 (with &, = 36, in Planckian unit). In
Table III, the results are summarized.

Table III clearly indicates that the present model may
well explain the inflationary scenario of the universe in
terms of the observable quantities n,; and r. Moreover, from
Tables I and III, n, lies closer to the observational mean
value ({n,) = 0.9650) in four dimensions in comparison to
the five-dimensional Randall-Sundrum scenario.

By using the solution of b(#) (4.37) along with the
estimated values of the parameters (v,, Q,, ¥,), the
deceleration parameter is depicted in 12] in terms of
the time variable 7 = tifN, which shows that the early

universe starts from an accelerating stage with a graceful
exit in a finite time.

G. Solution for the Kalb-Ramond extra
dimensional wave function

The equation for the zeroth mode of the KR wave
function y(©)(t, @) follows from (4.21), leading to

—2kT(1)9,,(0)

90N 1 P40
- =0. 4.51
(f%) PO 1 g 0 @S

The dynamics of the interbrane separation controls the
evolution of ) (z, ). The overlap of (¢, ) with the
brane ¢ = [ie., y%(t,7)] regulates the coupling
strengths among the KR field and various Standard
Model fields on the visible brane. These interaction terms
play the key role to determine the observable signatures of
the KR field in our universe, such that we are interested in
solving Eq. (4.51) in the vicinity of ¢ = z (i.e., near the
visible brane). Near the regime of ¢ ~ z, Eq. (4.51) can be
written as

(0) (0)
I \? _ 1 e—2kﬂT(t)){(0) O xv —0
ot T2(1) " 0¢? '

(4.52)

TABLE III. Estimated values of various quantities for kv, =

\/M—SF ~ 1077 and ¥, = 36.5 (in Planckian unit).

Parameters Estimated values
n 0.9695

r 0.053

tp =1y 10710 (GeV)‘1
N 58
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FIG. 12. ¢(t) vs 7 for kv, :@z 1077
Planckian unit).

and ¥y =36 (in

where ;(5,0) denotes the KR wave function near the visible

brane. Equation (4.52) can be solved by using the method
i = f1(1)f2(e). B

of separation of variables as y, (¢, @)
this expression, Eq. (4.52) turns out to be
1 &f, 2

2 2kITT dfl)
T 5 < =72 dg?

As the left- and right-hand sides of Eq. (4.53) are functions
of time and ¢ respectively, both sides can be separately
fixed to a constant as follows:

(4.53)

T2(1) 2T ;2 (dfl) =2, (4.54)
and
1 &
EW{; =72, (4.55)

where y is the constant of separation. The solution for
Eq. (4.55) is given by f,(p) = e77%, while Eq. (4.54) is

1.0

Brown Curve : ¢y =10

0.8
Red Curve : ¢y = /2

Green Curve: gy=n

FIG. 13. 43 (t, ) vs 7 for y = 0.15, kv, = Y20 = 1077, "o —
0.2 and ¥, = 36 (in Planckian unit).

solved numerically. Thereby, the solution for ;A)")(t, @) is

given by ;A)O)(t, @) = e 77 f(¢). Similarly in the vicinity

of a general ¢ = constant hypersurface within the
bulk (i.e., ¢ ~ ¢g), the solution of the KR wave function

is given by ;(4(,,%)(1‘, @) =e1?f, (t), where f, (t) satisfies
df,
T2( ) 2kpoT (1 >f(l,0( 0) — yz

the differential equation: o

[obviously £, _(r) = f1(£)]. The solution of i (t,¢)
along with the evolution of brane separation [i.e., T(¢), see
Eq. (4.36)] leads to the numerical plot for the time
evolution of the KR wave function on the ¢ = ¢, hyper-
surface, which is depicted in Fig. 13 for several values of
@o. Figure 13 reveals that the zeroth mode of the KR wave
function y(%)(z, @) decreases with time in the whole five-
dimensional bulk, i.e., for 0 < ¢ < 7. However, for a fixed
t, ¥9(t, @) has different values (in Planckian units) on the
hidden (¢, =0) and visible brane (¢, = x) and such
hierarchial nature of y(9)(,¢) (between the two branes)
is controlled by the constant y.

For T(t) = (T), the zeroth mode of the KR wave
function acquires a constant value throughout the bulk
and given by

W) = (4.56)

T=(T)

where we have used the normalization condition as shown in
Eq. (4.22). This result is also in agreement with [3]. Using
the above expression of (%) (z,¢) l7—(r)» We obtain the

coupling strengths of Kalb-Ramond ﬁeld with U(1) gauge
field and fermion field on the visible brane as follows [3]:

1
AKR-U(1) = 7~ k() (4.57)
M,
and
ARRfor = —— e ¥, (4.58)

Here M, = \/M? k. For k(T) ~ 12 (required for solving
the gauge hierarchy problem), e **{7) becomes of the order
1071, Thereby, Egs. (4.57) and (4.58) clearly indicate that
the interaction strengths of the KR field to the matter fields
are heavily suppressed over the usual gravity-matter cou-
pling strength 1/M ,. This may well serve as an explanation
about why the behavior of the present universe at large scales
is solely governed by gravity and carries practically no
observable footprints of antisymmetric Kalb-Ramond field.

V. CONCLUSIONS

We have here addressed the issue of the absence of any
perceptible footprints of rank-2 antisymmetric tensor fields,
ordinarily known as Kalb-Ramond fields, in the framework
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of higher-order curvature gravity, both in four- and in five-
dimensional spacetimes. Since all other types of fields,
those with scalar, fermion and vector d.o.f., are known to be
present in our Universe, the question of the absence of KR
fields arises naturally.

We have started from a particular F(R) model, the well
known Starobinsky model [49], F(R) =R+ %, in the
presence of a second rank antisymmetric, KR field propa-
gating in a four-dimensional spacetime. In such a scenario,
we have obtained the cosmological evolution of the KR
field in a flat FLRW universe. Our results reveal that the
higher-order curvature term causes a gradual suppression of
the energy density pgr of the KR field, eventually leading
to an imperceptible footprint in the present universe.
However, the effect of the KR field might still play a
significant role in the early universe. This has led us to
study the evolution of the KR field starting at the very early
universe, when inflation is supposed to occur. We have
shown that inflation is reproduced in our model due to the
presence of higher-order terms in the action, so that the
early universe expands through an accelerating phase, as
far as the condition (3.44) is satisfied. This condition arises
owing to an interplay which takes place between the strength
of the higher-order curvature terms and the KR field itself,
which at the end establishes whether the universe will go
through an inflationary stage. In order to test the model with
the most recent data (2018 run) from the Planck survey, we
have matched the theoretical values for the spectral index of
curvature perturbation (rn;) and tensor to scalar ratio (r),
which are defined in terms of the slow-roll parameters, with
the values coming from the Planck observations. By relying
in these definitions, the expressions of n; and r are explicitly
obtained, which provides some suitable values for the
remaining free parameters (A, &), while keeping n, and
r within the confidence regions provided by Planck 2018
(see Table I). In addition, we have also obtained an upper
bound for the energy density of the KR field during the early
universe, as pgr < 1070 (GeV)* (see also Ref. [23]).

By contrast, we have proven that in the absence of
higher-order curvature terms, the KR field behaves as a
stifflike fluid and consequently does not support inflation.
However, authors in Ref. [54] showed that a stable de-Sitter
solution can be achieved in the context of antisymmetric
tensor fields, by introducing a nonminimal coupling
between the Ricci scalar and the tensor field. On the other
hand, in the present paper, we argue that the minimal
prescription (in the presence of an antisymmetric tensor
field) can also give rise to an inflationary era, but in the
presence of quadratic-curvature gravity. On top of this, we
have also considered cubic gravity, where we have shown
that, in the presence of the KR field, the spectral index and
the tensor to scalar ratio satisfy the observable constraints.
However, a successful model for inflation also requires a
graceful exit from it, within a finite time with an enough
number of e-foldings. Hence, it is important to further

analyze whether R® gravity (or a more general R" gravity
with n > 3) together with the KR field is consistent with an
inflationary model, having a graceful exit, which we
expected to investigate in a future work.

Moreover, we have also considered the same F(R)
model in a five-dimensional Randall-Sundrum warped
geometry within a two 3-brane scenario. Such a braneworld
scenario requires the stabilization of the interbrane sepa-
ration (known as modulus or radion), for which one needs a
stable potential term for the radion field. Here, the higher-
order curvature term aR” generates such a stable radion
potential, fulfilling the requirement of modulus stabiliza-
tion, since the radion potential U,4(¥) vanishes as the
parameter a goes to zero, which clearly indicates that U 4
is generated entirely by the extra gravitational terms in the
action. In such a scenario, the cosmological evolution of the
KR field is obtained by using a four-dimensional effective
theory. However, when the KR field is allowed to propagate
along the extra dimension, an additional wave function ;(“))

arises, besides the on-brane part H;S%’
coupled to the extra dimensional modulus field. Furthe-
rmore, the overlap between y(® and the visible brane
determines the coupling strength of the KR field to other
matter fields. These interaction terms play a key role in the
evaluation of the possible observable effects of the KR field
in the current universe.

Due to the presence of U,q(¥), the modulus field 7(¢)
becomes dynamical, since 7'(¢) increases with the cosmic
time (7) and finally leads to a stable value asymptotically, as
shown in Fig. 10. This dynamics of the radion field triggers
such evolution of the extra dimensional KR wave function

which obviously gets

79(¢, p) (recall that ¢ is the extra dimensional coordinate),
which decreases with time in the full five-dimensional bulk,
ie., for 0 < ¢ < . Moreover, for T(t) = (T), (¢, )
becomes constant throughout the bulk, as obtained
in Eq. (4.56).

Consequently, we have obtained the strengths of the
couplings of the KR field to several matter fields in the
present visible universe, with the result that such interaction
strengths come with a heavily suppressed factor over the
usual gravity-matter coupling 1/M,, thus obtaining a
remarkably natural explanation of the absence of any
observation of the antisymmetric Kalb-Ramond field at
large scales in the current universe.

In addition, the on-brane part, the energy density of the
KR field Qg has been found to behave as 1/b° (here b(t)
is the scale factor of the visible brane), which clearly
indicates that Qgg decreases more rapidly in comparison to
radiation and pressureless matter. However, similarly to the
four-dimensional case, Eq. (4.30) also entails that Qgg is
large and may play a significant role during the early
universe. After exploring the dynamics of the KR field
during the early universe, when the scale factor is small
compared to the present one, we have found solutions for
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the scale factor consistent with an early inflationary stage of
the universe. Note that, in the absence of the higher-order
curvature term aR?, the radion field becomes constant
while the Hubble parameter varies as H;, « 1/b>. This was
to be expected, because for @« — 0, the radion potential
tends to zero, and thus the radion field has no dynamics
leading to a Hubble parameter that goes as H,  1/b°
(solely due to the KR field having equation of state
parameter = 1). Furthermore, the duration of inflation
(tf — 1) is also obtained by Eq. (4.46), which reveals that
the accelerating phase of the universe ends within a finite
time. We have also determined the spectral index and tensor
to scalar ratio in the present context and found the
corresponding constraints on the free parameters when
compared to the Planck 2018 values.
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APPENDIX A: TIME DEPENDENCE OF THE
KALB-RAMOND FIELD

The field equation for Kalb-Ramond field is given by

0,[V=gi"] = 0,

where g is the determinant of the on-brane metric. Using the
FRW metric ansatz, one obtains /=g = a*(t), where a(r)
is the scale factor of the universe. Thus, Eq. (A1) takes the
following form:

(A1)

9, a (1)) = 0,
=0la® (1) H"] + 0,[a® (1) H',

O, () H*] + 05]a’ (1) H**] = 0. (A2)

Here the greek indices v, 4 run from O to 3.
(i) For v =2 and 4 = 3, Eq. (A2) becomes

Oila* () H?] + 0,[a’ (1) H'],

8y[a3(t)1:1223] +0.[@()E*?]) =0. (A3)
Due to the antisymmetric nature of the KR field, the
last two terms of the above equation identically
vanish. Furthermore, from Eq. (3.11), A% = 0. As
a result, only the second term of Eq. (A3) survives

and leads to the information that the nonzero
component of the KR field (H'?) is independent
of the coordinate x, i.e., O, [H'%] = 0.

(i) For v =1 and A = 3, Eq. (A2) becomes

Oila* () HOV] + 0, [a* () H'P],

3},[a3(t)l:1213} + 5Z[a3(t)l:1313] =0. (A4)
Here the third term survives, which ensures that '

is independent of y.
(iii) For v =1 and 4 = 2, Eq. (A2) becomes

Oila* () HOP] + 0, [a* () '],

3},[613(0[:1212} +0,[a®()H*"?]) =0, (AS)
where the fourth term sustains and gives 9, [H'?}] = 0.
Therefore it is clear that the nonzero component of the
Kalb-Ramond field, i.e., /'?*, depends only on the time (7)
coordinate.

APPENDIX B: EXPRESSING KALB-RAMOND
FIELD AS A VECTOR FIELD

Due to the antisymmetric nature, H uwe has four inde-
pendent components in four dimensions and thus it can be
equivalently expressed as a vector field as

H;wa = Euap Tﬁ ’ (B 1)

where €,,,; is the Levi-Civita symbol and Y’ is a vector
field propagating in four-dimensional spacetime. The four
components of YT# are connected with the independent
components of H e s follows:

FIOIZ = hl = T3’
Hops = hy =T,

Hoz = hy = =12,

Hyp = hy = =07 (B2)

Here, we assume the FLRW metric as the ansatz,

ds* = —dt* + a*(t)[dx* + dy* + d7?).
By this metric, the off-diagonal Einstein’s equations become
T2 = 13X =T, =711 = Ty Y? =T, Y =0.
(B3)

The above set of equations clearly indicates that only one
component of Y* is nonzero which reduces the independent
components of H e t0 1. Therefore, in a spatially flat FLRW
metric in four dimensions, Y# can be expressed as a
derivative of a massless scalar field Z(x*) (.e.,
Y# = §#Z7), which further relates the KR field tensor with
the scalar field as follows:
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H uva — EﬂvaﬂTﬁ

= Eﬂmﬂﬁﬂz. <B4)
Due to the FLRW metric, the scalar field Z is considered to
be homogeneous in space and thus its equation of motion
turns out to be

7 +3HZ =0, (B5)

where H is the Hubble parameter. Then, by solving the
above equation, one obtains

0z 1 d

Here d is a proportional constant. By this solution of "—f the
diagonal Friedmann equations take the following form:

201, 2 ; 1.
B=5 [—§2+m—(1—e\/§'f‘f)2+§zz]

312 8k?

R R )
= — | = JE— —e _

312 8k? 2a°]’

and

1

. 1.
2H +3H? = —2 [— 2

2
p_m V2
- - Z
28 Tgelmeviity }

1~2 I’n2 . d
:‘Kz[z‘f ‘8,@(“6*“)2*2616]' (B8)

Recall that &(r) is the scalar field which arises from the
higher order curvature d.o.f. Furthermore, the field equation
for £(7) is given by

. . 2 m? o 6
—_ = (1 — ) —
E+3HE \/;4K e\/ (1 e\/ ) =0. (B9)

Note that the above equations match with the field
equations obtained in Eqs. (3.18) and (3.19), by identifying
the constant d with hy. This leads to the argument
that the two representations (A wa 18 expressed/is not
expressed by a vector field) are equivalent at the level of
equation of motion.
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