
 

Tracking the pre-inflation era from density perturbation spectra
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One of the great triumphs of the inflationary model is the prediction of the flat power spectrum of the
CMB fluctuation. The prediction is based on the assumption of the de Sitter vacuum in the past infinity.
However, the true past infinity of the inflation is expected to be dominated by radiation and curvature of the
space. We consider the pre-inflation era as dominated by radiation and curvatures as well as inflation
potential. We derive the exact solutions for the scalar fields in this era and find an exact power spectra
caused by the inflaton vacuum fluctuation. We show that the power spectrum is almost flat for the
subhorizon scale and deviates from flat for very high superhorizon fluctuation, which is quite sensitive to
the radiation and the curvature in the pre-inflation era.
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I. INTRODUCTION

The inflationary scenario solves the problems of the
flatness, horizon, and origin of the fluctuation at the same
time. One of the remarkable predictions of inflation is the
power spectrum of the cosmic microwave background
(CMB). This prediction has been confirmed in great
accuracy and provides severe constraints on the inflationary
models [1].
However, it has been pointed out that there is a

discrepancy with the Hubble parameters if we assume
the flat-ΛCDM model [2–4]. Another problem that may be
related with the Hubble constant is that the CMB data favor
the value H0¼ð67.6�0.6Þkms−1Mpc−1 [1], whereas the
local measurement favorsH0¼ð73.24�1.74Þkms−1Mpc−1

[5]. Since we do not know the reason for this discrepancy, it
may be wise to find other models.
In inflationary models, the seed fluctuations are

explained by the quantum theory of the inflaton. The
quantum fluctuation of the inflaton or some other scalar
fields related to the inflation (e.g., the fields in the hybrid
inflation) freezes to some classical value through the
exponential expansion of the Universe. On the theoretical
side, it is known that there is an ambiguity in the choice of
quantum states for such scalar fields. In de Sitter spacetime,
it is known that there is no de Sitter-invariant Fock vacuum
state for minimally coupled massless scalar fields, while
there exists a family of such states, called α-vacua, for
massive scalar fields [6]. Later, it was shown that a de
Sitter-invariant state, which is not a Fock vacuum, can be
constructed by including the zero mode properly for
massless fields [7]. One natural choice is the so-called

Bunch-Davies vacuum (also called Euclidean or thermal
vacuum in the literature), which is associated with the mode
function vω satisfying the following condition:

lim
η→−∞

vωðηÞ ¼
1ffiffiffiffiffiffi
2ω

p e−iωη; ð1:1Þ

namely, the ordinary positive frequency mode in
Minkowski spacetime. Although this choice seems plau-
sible, there have been many arguments about the possibility
of non-Bunch-Davies vacuum states or even excited states
(see, e.g., [8–10]).
However if we have a pre-inflation era, the past infinity

of the inflation era may be affected by the history of the pre-
inflation evolution. For example, several works (see [11]
and references therein) considered a scenario in which
the slow-roll inflation is preceded by a fast-roll phase.
Assuming that the energy scale of inflation is well below
the Planck scale, we expect that the pre-inflation evolution
of the Universe is dominated by radiation as well as the
effects of spatial curvature. Note that if our Universe started
with the quantum to classical transition, we naturally expect
that the kinetic energy of the space is the same order as
the potential energy caused by the spatial curvature, which
is the origin of the flatness problem. A pre-inflation era
dominated by radiation component and its effect on
primordial spectrum has been considered in [12–14].1
Also, the effect of the spatial curvature on density pertur-
bation in inflation has been analyzed in several papers
[16–20]. They showed that the power spectrum for low l
region deviates from flat spectrum. The analysis comparing
to Plank results has been done in Refs. [21,22]. However,
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as far as we know, there is no simultaneous account of these
two effects. Usually we expect that they affect the overall
normalization as a transfer function.
In this paper, we consider the effect of both the radiation

and the curvature, and show the exact solution of the
inflaton (massless scalar field) equation. By quantizing the
inflaton, we derive the exact power spectrum and show that
it is almost flat except for the very large scale. In the visible
scale, the modification seems to be very small but may be
observable.
In the next section, we consider the pre-inflation era and

find that the scale factor can be written as a Weierstrass
elliptic function ℘ðzÞ in conformal time. In Sec. III, we
show that the field equation of the inflaton can be written as
a Lamé equation so that the solutions can be written using
the Weierstrass sigma and zeta functions, σðzÞ and ζðzÞ.
By using various formulas concerning these functions, we
derive the exact power spectrum. The final section is
devoted to discussions.

II. PRE-INFLATION ERA

We consider the Friedmann-Robertson-Walker metric in
conformal time,

ds2 ¼ a2ðηÞ
�
−dη2 þ dr2

1 − Kr2
þ r2d2Ω

�
: ð2:1Þ

We do not know much about pre-inflation era. The inflation
may start from the quantum to classical transition in
gravity. However, the inflaton may be related to the grand
unified theories where the energy scale may be lower than
the Planck scale. Therefore, it is reasonable to think that
our Universe began with many relativistic matters. If our
Universe started with the quantum to classical transition,
it is reasonable to expect that the kinetic energy of our
Universe, which is related to the expansion rate, and the
potential energy, which is related to the spatial curvature,
are of the same order. The spatial curvature is suppressed
during inflation to resolve the flatness problem. In the
inflationary scenario, the vacuum energy caused by the
potential is the origin of the inflation era. There are many
interpretations of the origin of the potential. In the chaotic
inflation, the stochastic process is the origin of the initial
value of the potential. But here we assume that even before
the inflation, the energy caused by the effective potential
is present whose value is denoted by V0ð>0Þ. Then the
Friedmann equation is given by

�
1

a2
da
dη

�
2

¼ 8πG
3

ρ −
K
a2

; ð2:2Þ

where K is the curvature of the space. The energy density
is dominated by the radiation. Therefore, we include the
radiation density as well as the inflaton potential,

ρ ¼ ρr
a4

þ V0: ð2:3Þ

We assume that quantum to classical transition occurred
at Plank scale and the curvature energy is almost the
same order of energy of the radiation. Therefore, after
the quantum to classical transition of the spacetime, our
Universe is radiation and curvature dominant followed by
the era of vacuum energy domination. Exponential growth
starts when

jKj
a2

∼
8πG
3

V0: ð2:4Þ

We use the following notation:

8πGV0

3
¼ H2; A ¼ −

K
H2

; B ¼ ρr
V0

: ð2:5Þ

Then we have

Hη ¼
Z

a da

ða4 þ Aa2 þ BÞ1=2 : ð2:6Þ

a4 þ Aa2 þ B ¼ 0 has two solutions, a2 ¼ −A=2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA=2Þ2 − B

p
and a2 ¼ −A=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA=2Þ2 − B

p
, which

are denoted by ẽ2; ẽ3, respectively. There are two cases:
(i) A > −2

ffiffiffiffi
B

p
, and (ii) A < −2

ffiffiffiffi
B

p
. For case (i), the

Universe can start from a ¼ 0 since the singularities in
the integrand of (2.6) are not on the real axis. Therefore we
can fix the integration constant as

Hη¼
Z

a

0

da

ða4 þAa2 þBÞ1=2 ¼
1

2

Z
a2

0

dx

ðx3 þAx2 þBxÞ1=2 ;

ð2:7Þ

where x ¼ a2. By shifting integration variable as x ¼
y − A=3, we can remove the quadratic term,

Hη ¼
Z

a2þe1

e1

dy

½4ðy − e1Þðy − e2Þðy − e3Þ�1=2
; ð2:8Þ

where

e1 ¼
A
3
; e2 ¼ ẽ2 þ

A
3
; e3 ¼ ẽ3 þ

A
3
; ð2:9Þ

which satisfy

e1 þ e2 þ e3 ¼ 0: ð2:10Þ

Since (2.8) can be decomposed as
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Hη ¼
Z

∞

e1

dy

½4ðy − e1Þðy − e2Þðy − e3Þ�1=2

−
Z

∞

a2þe1

dy

½4ðy − e1Þðy − e2Þðy − e3Þ�1=2
; ð2:11Þ

we can write the inverse relation by using the Weierstrass
elliptic function as follows:

aðηÞ ¼ ½℘ðω1 − η̃Þ − e1�1=2; ð2:12Þ

where ℘ is defined as

℘ðzÞ ¼ 1

z2
þ

X
ðm;nÞ≠ð0;0Þ

�
1

ðz − 2mω1 − 2nω2Þ2

−
1

ð2mω1 þ 2nω2Þ2
�
; ð2:13Þ

and

η̃ ¼ Hη: ð2:14Þ

ω1 is one of the half periods and given by

ω1 ¼
Z

∞

e1

dy

½4ðy − e1Þðy − e2Þðy − e3Þ�1=2
: ð2:15Þ

It is easy to see that for small η we have

aðηÞ ∼ ffiffiffiffiffiffiffiffiffi
ẽ2ẽ3

p
η̃ ¼

ffiffiffiffi
B

p
η̃; ð2:16Þ

whereas a approaches

aðηÞ ∼ 1

ω1 − η̃
; ð2:17Þ

when η → ω1=H, which represents the de Sitter phase in
conformal time.
For case (ii), the integrand of (2.6) has two singularities

on the positive real axis at a ¼ ffiffiffiffiffi
ẽ2

p
and a ¼ ffiffiffiffiffi

ẽ3
p ð< ffiffiffiffiffi

ẽ2
p Þ.

Thus, the Universe starts with a finite value a ¼ ffiffiffiffiffi
ẽ2

p
and

our Universe does not have the “initial singularity.” In this
case we have

aðηÞ ¼ ½℘ðω2 − η̃Þ − e1�1=2; ð2:18Þ

where

ω2 ¼
Z

∞

e2

dy

½4ðy − e1Þðy − e2Þðy − e3Þ�1=2
ð2:19Þ

is another half period. Behavior around η ∼ 0 is different
from that of case (i),

aðηÞ ∼
ffiffiffiffiffi
ẽ2

p �
1þ ẽ2 − ẽ3

2
η̃2
�
; ð2:20Þ

while the de Sitter phase appears around η̃ ∼ ω2,

aðηÞ ∼ 1

ω2 − η̃
: ð2:21Þ

III. EXACT SOLUTION OF MASSLESS
SCALAR FIELDS AND THE SPECTRUM
OF THE DENSITY PERTURBATION

In this section, we solve the equation of massless scalar
field exactly on the background spacetime derived in the
previous section, and quantize it to calculate the power
spectrum. The equation of massless scalar field ψ is given by

∂2

∂η2 ψðx; ηÞ þ
2

a
da
dη

∂
∂η ψðx; ηÞ − Δψðx; ηÞ ¼ 0: ð3:1Þ

If we decompose the solution as ψðx; ηÞ ¼ χkðηÞϕkðxÞ,
where ΔϕkðxÞ ¼ −k2ϕkðxÞ, the equation for χkðηÞ is

d2

dη2
χk þ

2

a
da
dη

d
dη

χk þ k2χk ¼ 0: ð3:2Þ

We use the variable η̃ ¼ Hη and write the above equation as

χ00k þ 2
a0

a
χ0k þ k̃2χk ¼ 0; ð3:3Þ

where the prime denotes the derivative with respect to η̃ and
k̃ ¼ k=H. By rescaling χk as

vk ¼ aχk; ð3:4Þ

we have the following equation for vk:

v00k þ
�
−
a00

a
þ k̃2

�
vk ¼ 0: ð3:5Þ

Inserting (2.12) for the case (i), we find

d2

dη̃2
vk ¼ ½2℘ðω1 − η̃Þ þ e1 − k̃2�vk: ð3:6Þ

The equation for case (ii) is quite similar. We obtain

d2

dη̃2
vk ¼ ½2℘ðω2 − η̃Þ þ e1 − k̃2�vk: ð3:7Þ

We observe that these equations are the Lamé equation

d2

dx2
yðxÞ ¼ ½lðlþ 1Þ℘ðxÞ þ h�yðxÞ; ð3:8Þ
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with l ¼ 1; h ¼ e1 − k̃2. The solution of the Lamé equation
for l ¼ 1 is a classical result [23].2 For case (i), two
independent solutions are

vk ¼ a0
σðω1 − η̃þ cÞ
σðω1 − η̃ÞσðþcÞ e

−ðω1−η̃ÞζðþcÞ;

v−k ¼ a0
σðω1 − η̃ − cÞ
σðω1 − η̃Þσð−cÞ e

−ðω1−η̃Þζð−cÞ; ð3:9Þ

where a0 is the normalization constant, and ζðzÞ and σðzÞ
are defined as [25]

ζðzÞ ¼ 1

z
þ
X 0

�
1

z − ω
þ 1

ω
þ z
ω2

�
; ð3:10Þ

σðzÞ ¼ z
Y 0

��
1 −

z
ω

�
exp

�
z
ω
þ 1

2

z2

ω2

��
; ð3:11Þ

where
P0 ¼ P

ðm;nÞ≠ð0;0Þ;
Q0 ¼ Q

ðm;nÞ≠ð0;0Þ, and ω ¼
2mω1 þ 2nω2. They are related to the Weierstrass elliptic
function as follows:

℘ðzÞ ¼ −ζ0ðzÞ; ζðzÞ ¼ σ0ðzÞ
σðzÞ : ð3:12Þ

The value of c is defined as

℘ðcÞ ¼ e1 − k̃2: ð3:13Þ

Expansion around z ¼ 0 can be derived as

℘ðzÞ ¼ 1

z2
þ � � � ;

ζðzÞ ¼ 1

z
þ � � � ;

σðzÞ ¼ zþ � � � : ð3:14Þ

We also point out that ℘ðzÞ is an even function whereas
ζðzÞ, σðzÞ are odd functions. Although Eq. (3.13) deter-
mines c only up to the periods of ℘ðzÞ,3 the solutions (3.9)
are not ambiguous because these are periodic functions
with respect to c, namely,

vkðcþ 2ωiÞ ¼ vkðcÞ: ð3:15Þ

This result can be derived by using quasiperiodic properties

ζðzþ 2ωiÞ ¼ ζðzÞ þ 2ηi;

σðzþ 2ωiÞ ¼ −σðzÞ exp½2ðzþ ωiÞηi�; ð3:16Þ

where ηi ¼ ζðωiÞ.
For case (ii), the solutions are obtained as

vk ¼ a0
σðω2 − η̃þ cÞ
σðω2 − η̃ÞσðcÞ e

−ðω2−η̃ÞζðcÞ;

v−k ¼ a0
σðω2 − η̃ − cÞ
σðω2 − η̃Þσð−cÞ e

ðω2−η̃ÞζðcÞ; ð3:17Þ

which are also periodic with respect to c.
Let us next prove that vk and v−k are complex conjugates

when B > A2=4 [included in case (i)]. By (3.13), we find

c¼1

2

Z
∞

0

dx

x1=2ðx2þAxþBÞ1=2þ
1

2

Z
0

−k̃2

dx

x1=2ðx2þAxþBÞ1=2

¼ω1þ
1

2

Z
0

−k̃2

dx

x1=2ðx2þAxþBÞ1=2 : ð3:18Þ

The second term is pure imaginary so that

ðc − ω1Þ� ¼ −ðc − ω1Þ; ð3:19Þ

which leads to

c� ¼ 2ω1 − c ∼ −c; ð3:20Þ

where “∼” denotes the equivalence up to the periods. Note
that we also used the fact that ω1 is real for B > A2=4.
Then, it is straightforward to prove

v�k ¼ v−k; ∀ k > 0: ð3:21Þ

This relation also holds for A < −2
ffiffiffiffi
B

p
[case (ii)].

In the case A > 2
ffiffiffiffi
B

p
, on the other hand, the relation

between vk and v−k depends on k. This is because the
complex conjugate of c behaves differently from (3.20) as
follows:

c� ∼
�
c ðk̃4 − Ak̃2 þ B < 0Þ
−c ðk̃4 − Ak̃2 þ B > 0Þ:

ð3:22Þ

This difference can be seen from the second term in
Eq. (3.18), whose integrand becomes real near x ¼ −k̃2,
leading to c� ∼ c. It follows then that vk is real for the wave
number k such that c�ðkÞ ∼ cðkÞ,

v�k ¼ vk; k̃4 − Ak̃2 þ B < 0: ð3:23Þ

2The method used in Ref. [23] has been applied to the
evolution equation for gravitational waves in Ref. [24].

3There is another ambiguity because ℘ð−cÞ ¼ ℘ðcÞ. Replac-
ing c with −c corresponds to the change vk ↔ v−k. We fix this
ambiguity later [see (3.27)].

TADASHI SASAKI and HISAO SUZUKI PHYS. REV. D 99, 063502 (2019)

063502-4



This result shows that the wave function vk is deformed in
this region so that vk can no longer be regarded as a mode
function to quantize. For this reason, we concentrate on the
case A < 2

ffiffiffiffi
B

p
in the rest of this paper.

We are going to find the normalization of the solutions.
We use the following normalization:

vk
d
dη

v�k − v�k
d
dη

vk ¼ i: ð3:24Þ

This normalization is equivalent to considering vk ∼
e−ikη=

ffiffiffiffiffi
2k

p
for the massless scalar field in flat space. By

explicit evaluation of (3.9) and (3.17) using the following
formulas [25],

σðu − vÞσðuþ vÞ ¼ −σ2ðuÞσ2ðvÞ½℘ðuÞ − ℘ðvÞ�;

ζðuþ vÞ ¼ ζðuÞ þ ζðvÞ þ 1

2

℘0ðuÞ − ℘0ðvÞ
℘ðuÞ − ℘ðvÞ ;

ð3:25Þ

we find

vk
dv�k
dη

− v�k
dvk
dη

¼ −a20H℘0ðcÞ: ð3:26Þ

℘0ðcÞ is determined up to sign by the differential equation
ð℘0ðzÞÞ2 ¼ 4ð℘ðzÞ − e1Þð℘ðzÞ − e2Þð℘ðzÞ − e3Þ with the
definition of c (3.13). Here we take

℘0ðcÞ ¼ −2ik̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃4 − Ak̃2 þ B

p
ð3:27Þ

to ensure that vk represents the positive frequency mode
around η ∼ 0 as is shown in the next paragraph. Then, the
normalization condition (3.24) gives

a0 ¼
1ffiffiffiffiffiffiffiffiffi

2k̃H
p

ðk̃4 − Ak̃2 þ BÞ1=4
: ð3:28Þ

Before considering the power spectrum, we must choose
the vacuum state of the quantum field. To do so, we first
derive the behavior of the mode function vkðηÞ in the past
infinity. The past infinity corresponds to η̃ ¼ 0. We rewrite
vkðηÞ as

vkðηÞ=vkð0Þ ¼ exp½ln σðω1 − η̃þ cÞ − ln σðω1 þ cÞ
− ðln σðω1 − η̃Þ − ln σðω1ÞÞ þ η̃ζðcÞ�;

¼ exp

�Z
ω1−η̃

ω1

ðζðxþ cÞ − ζðxÞ − ζðcÞÞdx
�
:

ð3:29Þ

By using (3.25), we have

vkðηÞ=vkð0Þ¼ exp

�
1

2

Z
ω1−η̃

ω1

℘0ðxÞ−℘0ðcÞ
℘ðxÞ−℘ðcÞ dx

�

¼
�
℘ðω1− η̃Þ−℘ðcÞ
℘ðω1Þ−℘ðcÞ

�
1=2

×exp

�
−℘0ðcÞ

2

Z
ω1−η̃

ω1

dx
℘ðxÞ−℘ðcÞ

�
: ð3:30Þ

We evaluate (3.30) for η̃<ω1. Since ℘ðω1−η̃Þ¼e1þOðη̃2Þ,
we obtain

vkðηÞ=vkð0Þ ∼ exp ½−ik̃ð1 − A=k̃2 þ B=k̃4Þ1=2η̃� ð3:31Þ

for small η̃. This result shows that, in the past, vk behaves as
the mode function in the flat spacetime, i.e., e−ikη, only for
large k while the wave number is deformed for small k. So
we fix the mode function by considering large k behavior.
We expand the quantum field as

χðη;xÞ¼ 1

aðηÞ
X
k

ðakvkðηÞϕkðxÞþa†kv
�
kðηÞϕ�

kðxÞÞ: ð3:32Þ

This estimate of the asymptotic behavior is consistent with
the normalization by (3.24). We are considering the large k̃
region, where flat space approximation is valid; therefore

χðη; xÞ ¼ 1

a

Z
d3k

ð2πÞ3=2 ðakvkðηÞe
ik·x þ a†kv

�
kðηÞe−ik·xÞ

¼
Z

d3k

ð2πÞ3=2 ðakχk þ a†kχ
�
kÞ: ð3:33Þ

By using the explicit solutions (3.9) and (3.17), we get

χ�kχk¼
v�kvk
a2

¼ H2

2k3ð1−AH2=k2þBH4=k4Þ1=2
�
1þ k2

H2a2

�
:

ð3:34Þ

After inflation ða ≫ 1Þ, this value is frozen to

χ�kχk →
H2

2k3ð1 − AH2=k2 þ BH4=k4Þ1=2 : ð3:35Þ

By the usual definition of the power spectrum

PχðkÞ ¼
k3

2π2
χ�kχk; ð3:36Þ

we finally obtain the following power spectrum:

PχðkÞ ¼
�
H
2π

�
2 1

ð1 − AH2=k2 þ BH4=k4Þ1=2 : ð3:37Þ

One of the predictions of this spectrum is that at large
scale, i.e., sufficiently small k, the perturbation spectrum
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goes to 0 whereas it goes to constant value at large k. Small
k behavior is understood from (3.31). If we introduce the
effective wave number qðkÞ ¼ kð1 − A=k̃2 þ B=k̃4Þ1=2 to
write vkðηÞ=vkð0Þ ∼ e−iqη, we can see that qðkÞ has the

minimum qmin ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
B

p
− A

p
at k̃ ¼ B1=4. Thus, the

radiation energy is a kind of infrared cutoff. As a result,
the vacuum expectation value of χ2, which is evaluated as
the integral of PχðkÞ=k, is IR convergent in contrast to the
usual de Sitter vacuum case.
When the curvature is negative (K < 0 ⇔ A > 0), there

appears an enhancement of the perturbation at small k. As an
example, we list a figure (Fig. 1) for open space ðK < 0Þ
for the values A ¼ 5 × 10−3; B ¼ 2 × 54 × 10−8. For this
parameter, we find that there is a very small deviation from
flat space and there is a peak at k ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffi
2B=A

p
, which may

be invisible since the length scale is too large.However, if we
consider closed universe (K > 0), there is no enhancement
but a monotonic decrease as k becomes smaller (Fig. 2).

IV. SUMMARY AND DISCUSSIONS

The usual inflationary scenarios assume that inflation
starts from the de Sitter vacuum in the past infinity. We here
considered that we have radiation and curvature dominant
eras before inflation. These stages affect the in-state
vacuum compared with the case of usual inflation. We
have shown that the massless free scalar field equation (3.1)
in this scenario can be written as Lamé equation (3.6) and
can be solved exactly. The solution can be written in terms
of Weierstrass elliptic functions and we showed the exact
power spectrum of the inflation. It modifies the usual
scaling behavior, especially for small k. Power spectrum
(3.37) is suppressed as PχðkÞ ∝ k2 around k ¼ 0. This
kind of large scale suppression was observed in previous
studies on various pre-inflationary scenarios [11–14,17].
Moreover, our result (3.37) exhibits a peak before the
suppression when the Universe is open (K < 0). The peak
is located at k̃peak ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2B=A

p
, so smaller energy density of

radiation compared with that of spatial curvature makes
the length scale of the peak larger. On the other hand,
the height of the peak behaves as Pχðk̃peakÞ=Pχð∞Þ ¼
ð1 − A2=4BÞ−1=2, which means that larger radiation energy
makes the peak invisible. Therefore we are in a dilemma:
smaller radiation energy (or larger curvature) makes the
peak noticeable but leads to longer length scale, where the
effect of cosmic variance becomes dominant. Note that this
behavior can be understood by comparing the comoving
Hubble scale divided by the inflation energy scale H=H ¼
a0=a with k̃peak. Since H monotonically decreases in the
radiation era while increases in the inflationary epoch, it

has a minimum Hmin=H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 2

ffiffiffiffi
B

pp
at a ¼ B1=4. The

ratio of these two scales can be written as

Hmin

k̃peakH
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Affiffiffiffi
B

p þ 1

2

�
Affiffiffiffi
B

p
�

2

s
; ð4:1Þ

which shows that the comoving scale k̃peak can, at least for
short time, be inside the Hubble scale when 0 < A=

ffiffiffiffi
B

p
<ffiffiffi

3
p

− 1. In this parameter region, the peak height is con-

strained as Pχðk̃peakÞ=Pχð∞Þ <
ffiffiffiffiffiffiffiffiffiffiffiffi
2=

ffiffiffi
3

pq
≈ 1.07, so we can

conclude that the enhancement in the power spectrum is due
to large scale modes that are never inside the horizon before
and during inflation. Nevertheless, it is interesting that the
scalar field equation can be written as a Lamé equation
and we could find the solution exactly; and deviation from
the scale-invariant spectrum for low multipole l observed
in CMB anisotropy may be attributed to this kind of pre-
inflationary effect.
There are some problems, however. One is our

assumption that the inflaton potential is present as constant
even before inflation. There are many scenarios for
inflation, in some of which the vacuum energy happens

FIG. 1. A plot of the spectrum of PχðkÞ normalized by ðH=2πÞ2
for open universe A ¼ 5 × 10−3; B ¼ 2 × 54 × 10−8 at very high
superhorizon wavelength. We can see an enhancement of the
power spectrum for small k.

FIG. 2. A plot of the spectrum PχðkÞ for closed universe A ¼
−5 × 10−3; B ¼ 2 × 54 × 10−8 at very high superhorizon wave-
length. We see no enhancement of power spectrum for small k.
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as phase transition. For such a case, we have to consider
effective potential before inflation, which may change in
accordance with the energy scale. Furthermore, our con-
sideration here lacks how to realize a pre-inflationary era
that is dominated by radiation and curvature. We note
that in Ref. [18], the authors proposed a mechanism for

introducing negative curvature by assuming a preceding
old inflationary epoch. Another problem is that we do not
know whether it is valid to use free inflaton before inflation.
The interaction may change the behavior of the spectrum.
However, it is still interesting that the free scalar field can
be solved exactly.
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