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A cosmological model with van der Waals gas and dust has been studied in the context of a three-
component autonomous nonlinear dynamical system involving the time evolution of the particle number
density, the Hubble parameter and the temperature. Due to the presence of a symmetry of the model, the
temperature evolution law is determined (in terms of the particle number density) and with this the
dynamical system reduces to a two-component one which is fully integrable. The globally conserved
Hamiltonian is identified and, in addition to it, some special (second) integrals, defined and conserved on a
lower-dimensional manifold, are found. The parameter choices and their implication for the global
dynamics in terms of cosmological relevance are comprehensively studied and the physically meaningful
parameter values are identified.
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I. INTRODUCTION

The 2018 release of the Planck cosmic microwave
background anisotropy measurements [1] reports, consis-
tently with previous Planck data releases, that standard
single-field inflationary models with Einstein gravity, based
on a slow-roll concave potentialV 00ðφÞ < 0, are increasingly
favored by the data. Cosmological scalar fields (with a
fundamental scalar field yet to be observed) are used for the
modeling of inflation, together with scalar-tensor theories,
perfect fluid models, dark energy fluids interacting weakly
with ordinary matter, modifications of gravity, etc. The
slow-roll parameters needed for an accelerated expansion in
the very early Universe can be achieved through all of these.
On the other hand, the current acceleration of the

expansion of the Universe [2] is the most mysterious
aspect of cosmology today. The six-parameter base
ΛCDMmodel, which incorporates a cosmological constant
Λ, modeling dark energy, and cold dark matter is the
current concordance cosmological model. It fits the obser-
vational data quite well [3] and gives good explanations for
the existence and structure of the cosmic microwave
background, the large-scale structure galaxy distribution,
and the abundance of elements. Perhaps the most con-
troversial tension between the Planck ΛCDM model and
astrophysical data is the discrepancy with the direct
measurements of the Hubble constant: the Planck base
ΛCDM results agree well with the baryon acoustic oscil-
lations and supernovae measurements, and also with some
galaxy lensing observations, but is in slight tension with the

Dark Energy Survey and in significant tension with local
measurements of the Hubble constant; see Ref. [3] and the
references therein.
The cosmological principle, namely, that on a very large

scale, the distribution of matter in the Universe is homo-
geneous and isotropic, leads to perfect fluids being the most
common choice for the cosmological models. The equation
of state of a perfect fluid connects the pressurep to its energy
density ρ via a relationship of the type p ¼ ωρ, where ω is
independent of time. Capozziello et al. [4] proposed the
consideration of a cosmological model with the more
general two-phase van derWaals fluid since a simple perfect
fluid model does not describe phase transitions between
successive thermodynamic states of cosmic fluids. This
model also accounts for the acceleration of the expansion
and is based on a binary mixture of baryons (modeled as
dust) and dark matter with a van derWaals equation of state.
It also allows an early de Sitter expansion, followed by a
matter-dominated epoch. Consequently, Kremer [5] pro-
posed a binarymodel with van derWaals fluid andwith dark
energy density, the latter modeled either as quintessence or
as aChaplygin gas.Van derWaals fluid has also been used to
describe the inflation of the early Universe [6].
The Friedmann equation ä=a ¼ −ð4πG=3Þðρþ 3pÞ

shows that ω < −1=3 is required for cosmic accelera-
tion. Separately, the energy conservation equation, _ρ ¼
−3Hðρþ pÞ, shows that ρþ pmust not be negative so that
the energy density of an expanding Universe (H > 0)
decreases with time (realistic cosmology) which leads to
the requirement ω ≥ −1. Dark energy is defined as any
physical field for which −1 ≤ ω < −1=3 and which sati-
sfies the weak energy condition ρ ≥ 0 (positive energy
density to account for the necessary density to make the
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Universe flat) and ρþ p ≥ 0 (realistic cosmology). The
latter is also a part of the strong energy condition. However,
the part ρþ 3p ≥ 0 of the strong energy condition must be
violated to account for the needed negative pressure which
drives the expansion. Dark energy is sought in many forms.
The ΛCDM model corresponds to ω ¼ −1. Phantom
cosmological models violate all four energy conditions
and these models have been increasingly favored recently.
Dark energy models are not the only models that account

for the current cosmic acceleration. It may be that the
acceleration is self-driven as curvatures and length scales in
the observable part of our Universe are only beginning to
reach values which make the infrared modification of
gravity apparent. Third, it is possible that there is some
as yet undiscovered property of the gravity and matter
model which accounts for the acceleration. Models with a
particle creation mechanism are among these. The rate of
change Γ of the particle numberN in a comoving volume V
cannot be known a priori—it is an input quantity in the
phenomenological description [7]—and there are numer-
ous particle creation models which investigate different
forms of Γ. The only restriction on Γ stems from the second
law of thermodynamics, which necessitates Γ > 0 so that
the entropy is never decreasing: _S=S ¼ _N=N ¼ Γ > 0.
Prigogine et al. [8] introduced an adiabatic model with
particle production in which the requested conservation of
the specific entropy led to the particle “creation” pressureΠ
being linear in the particle production rate Γ, that is Π ¼
−ðρþ pÞΓ=ð3HÞ (one should note that the total entropy is
not conserved due to the enlargement of the phase space).
Here ρ and p are the energy density and pressure of the
Universe and H is the Hubble parameter. Alternative
cosmological models that rely on a single pressureless
fluid with a constant bulk viscosity also exist; see
Refs. [7,9–11]. The particle creation mechanism and the
fluid viscosity are considered to have equivalent geome-
trothermodynamic effects [12] and this is manifested with
the associated additional pressure term Π, called the
“viscous pressure,” when associated with dissipative phe-
nomena like bulk viscosity, or the “creation pressure” when
particle number is not conserved; see Refs. [8,13].
To account for the inflation of the Universe, van der

Waals fluid has also been used [14], as part of a binary
mixture with (pressureless) matter, in the context of
existing bulk viscosity. The equation of state for the fluid
considered in Ref. [14] is p¼ωðρ;tÞρþfðρÞ−3HζðH;tÞ,
where ωðρ; tÞ describes a time-dependent van der Waals
fluid, fðρÞ is an arbitrary function, and ζðH; tÞ is the bulk
viscosity which depends on the Hubble parameter H and
time. One can attribute this accumulative pressure as the
effective pressure of a van der Waals fluid which itself is a
carrier of viscosity. The source of the viscosity term studied
in Ref. [14]—e.g. particle creation versus dissipative
phenomena—is not stated. In light of this, one should
point out that real gases are legitimate perfect fluids,

satisfying the Euler equations, as long as dissipative forces
are not included, and one has Tμν ¼ ðρþ pÞuμuν − pgμν.
There should be no shear, stresses or heat conduction.
Otherwise, a dissipative (or viscous) fluid (satisfying the
Navier-Stokes equation) for which the symmetric viscosity
stress tensor σμν ¼ λπμν∇ρuρ þ vð∇μuν þ∇νuμÞ is also
present in Tμν, thus linearly perturbing the perfect fluid
[15] (here the constants λ and v are the so-called bulk
viscosity and shear viscosity, respectively, and the projec-
tion tensor π is given by πμν ¼ gμν þ uμuν). Viscous terms
however do not enter the continuity equation on the same
footing as the “creation” pressure does; see, for example,
Eq. (2.3) of Ref. [16]. To overcome this difficulty, dis-
sipative terms should be multiples of H, as in Ref. [14].
In the present work, a two-component mixture of a real

gas with van der Waals equation of state and a pressure-
less dust are considered with ρ and p denoting the
cumulative energy density and pressure. The energy
density of the dust, ρd, will be allowed to take positive
values (for example, one could think of the dust
component in this case as of ordinary baryonic matter),
to be zero (absence of the dust component), or to take
negative values. Dust with negative energy density is not
a new feature; see Refs. [17–22] and the references
therein. One should also mention the recently proposed
model of negative masses and matter creation within a
modified ΛCDM framework [23].
Methods from dynamical system analysis (see for

example Refs. [24,25]) are commonly used for the study
of various cosmological models. With tools from Ref. [26],
this paper analyzes a simple particle production model the
setup for which has been considered by many authors; see,
for example, Ref. [4]. The “creation” pressure Π depends
only on the energy density ρ and the pressure p, namely
Π ¼ −βðρþ pÞ, where β is a positive constant, that is,
Γ ¼ 3βH; see, for example, Refs. [7,27]. Clearly, this
model works for the regime of expansion only, even though
the regime of negative H is dynamically allowed. The
dynamics of the model is studied with the help of a three-
component dynamical system with the particle number
density n, the Hubble parameter H, and the temperature T
taken as dynamical variables. Due to a symmetry in the
model (a first integral of the system), the temperature
evolution law can be immediately determined as a function
of the particle number density n and, as a result, the
dynamical system can be easily reduced to a two-component
one in terms of n and H. Another global first integral exists
(together with three second integrals) and due to it, the van
der Waals dynamical system turns out to be fully integrable
and having Hamiltonian structure.

II. THE SETUP

The setting for the analysis is a flat Friedmann-
Robertson-Walker-Lemaître cosmology with the metric
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ds2 ¼ gμνdxμdxν

¼ c2dt2 − a2ðtÞ½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�; ð1Þ

where aðtÞ is the scale factor of the Universe.
The Universe is modeled classically as a two-component

mixture. The first component is a real gas with van der
Waals equation of state which can be written as a virial
expansion of the pressure p over the number density
n ¼ N=V:

p ¼ nT½1þ nFðTÞ þ…�: ð2Þ

Here FðTÞ denotes two-particle interaction terms (all
higher-order terms, describing interactions of three or more
particles, are ignored) and has the form FðTÞ ¼ A − B=T,
where A and B are positive constants.1 The second
component of the Universe is taken to be dust with energy
density ρd and pressure pd ¼ 0.
In Planck units (8πG ¼ 1, c ¼ 1, kB ¼ 1), the energy-

momentum tensor Tμν, representing the two fractions of
the Universe, collectively modeled with a perfect fluid, is
given by

Tμν ¼ ðρ̃þ p̃þ ΠÞuμuν − ðp̃þ ΠÞgμν: ð3Þ

Here ρ̃ ¼ ρd þ ρ and p̃ ¼ p are, respectively, the cumu-
lative density and pressure for both fractions and uμ ¼
dxμ=dτ (with τ being the proper time) is the flow vector
satisfying gμνuμuν ¼ 1.
The Friedmann equations are

ä
a
¼ −

1

6
½ρd þ ρþ 3ðpþ ΠÞ�; ð4Þ

H2 ¼ 1

3
ðρd þ ρÞ; ð5Þ

whereHðtÞ ¼ _aðtÞ=aðtÞ is the Hubble parameter.HðtÞ will
be one of the three dynamical variables of the presented
model [the other two will be the number density nðtÞ and
the temperature TðtÞ]. As ä=a ¼ _H þH2, combining the
Friedmann equations allows to express _H as follows:

_H ¼ −
3

2
H2 −

1

2
ðpþ ΠÞ: ð6Þ

The processes of particle creation leads to the non-
conservation of the number of particles in the perfect fluid.
This is manifested by the continuity equation Nμ

;μ ¼ nΓ,
where Nμ ¼ nuμ is the particle flow vector and Γ is the
particle production rate.

The particle conservation equation can be written as

_n ¼ −3nH þΨ; ð7Þ

where Ψ ¼ nΓ. This equation will be further used as one of
the evolution equations in a dynamical system of three
simultaneous autonomous differential equations [in terms
of the number density nðtÞ, the Hubble parameterHðtÞ, and
the temperature TðtÞ].
Many forms of the term Ψ have been considered in the

literature. This paper studies the dynamics of an expanding
Universe with a particle creation term in the form [27]

Ψ ¼ 3βnH; ð8Þ

where β is a positive constant which will be treated as a
parameter of the model.
The energy conservation equation for the real gas is

_ρþ 3Hðρþ pþ ΠÞ ¼ 0 ð9Þ

and that of the dust is

_ρd þ 3Hρd ¼ 0: ð10Þ

By considering separate conservation laws for the energy
densities of the real gas and the dust, a choice is made that
there will be no exchange between the two fractions. To
find an expression [8] for the “creation pressure” Π,
consider the Gibbs equation:

Tds ¼ d

�
ρ

n

�
þ pd

�
1

n

�
¼ −

�
ρþ p
n2

�
dnþ 1

n
dρ: ð11Þ

Here s is the specific entropy (entropy per particle,
s ¼ S=N, where S is the total entropy and N is the total
number of particles). In the above, T is the temperature of
the Universe.
With the help of the particle conservation equation (7)

and the continuity equation (9), the Gibbs equation
becomes

nT _s ¼ −ðρþ pÞ _n
n
þ _ρ ¼ −3HΠ − Γðρþ pÞ: ð12Þ

If the specific entropy is conserved, one immediately
finds [8]

Π ¼ −
Γðρþ pÞ

3H
¼ −

ρþ p
n

Ψ
3H

: ð13Þ

Note that the total entropy S is not conserved due to the
enlargement of the phase space resulting from the particle
production [8].

1For illustrative purposes, the numerical example presented in
this paper is for van der Waals gas with parameters A ¼ 1=100
and B ¼ 10.
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The energy conservation equation thus becomes

_ρðn; TÞ ¼ −3Hðρþ pÞ
�
1 −

Ψ
3nH

�
: ð14Þ

Substituting Eq. (8) into Eq. (6) yields

_H ¼ −
3

2
H2 −

1

2
½ð1 − βÞpðn; TÞ − βρðn; TÞ�: ð15Þ

This is the dynamical evolution equation for the Hubble
parameter and the second equation of the dynamical system
of three simultaneous autonomous differential equations.
The particle conservation equation (7) can be rewritten as

a3 _nþ 3a2 _an ¼ a3Ψ. Thus ðd=dtÞða3nÞ ¼ dN=dt ¼ a3Ψ
and

nðtÞ ¼ 1

a3ðtÞ
Z

t

t0

a3ðt0ÞΨðt0Þdt0: ð16Þ

On the other hand, differentiating N ¼ na3 with respect to
time, using _a ¼ aH and Eq. (7), yields

_N ¼ 3βNH: ð17Þ

Separately, differentiating the specific entropy s ¼ S=N
with respect to time and using the fact that it is conserved
( _s ¼ 0), one can immediately find

_S
S
¼

_N
N

¼ 3βH ð18Þ

and thus, for a model with increasing entropy, one can only
consider the regime of cosmic expansion (H ¼ _a=a > 0),
and not for contraction as H < 0, despite being dynami-
cally allowed, leads to decreasing entropy and a violation of
the second law of thermodynamics.
Noting that the specific entropy is a full differential, the

Gibbs equation (11) yields the following integrability
condition (in chosen thermodynamical variables ρ and n):� ∂

∂n
�∂s
∂ρ

�
n

�
ρ

¼
� ∂
∂ρ

�∂s
∂n

�
ρ

�
n

or

� ∂
∂n

�
1

Tn

��
ρ

¼
� ∂
∂ρ

�
−
ρþ p
Tn2

��
n
: ð19Þ

This can be written as

n

�∂T
∂n

�
ρ

þ ðρþ pÞ
�∂T
∂ρ

�
n
¼ T

�∂p
∂ρ

�
n
: ð20Þ

For any simple thermodynamical system, one has the
relationship ð∂Z=∂ζÞTð∂ζ=∂TÞZð∂T=∂ZÞζ ¼ −1, where
Z is the acting generalized force, associated with the
external parameter ζ, i.e. Z ¼ Zðζ; TÞ (this is the thermic

equation of state and it is warranted by the second initial
proposition of thermodynamics). The integrability condi-
tion can therefore be written as the following thermody-
namic identity:

ρþ p ¼ T

�∂p
∂T

�
n
þ n

�∂ρ
∂n

�
T
: ð21Þ

In thermodynamical variables n and T, the dynamics of the
energy density is given by

_ρðn; TÞ ¼
�∂ρ
∂n

�
T
_nþ

�∂ρ
∂T

�
n

_T: ð22Þ

Substituting the number conservation equation (7) and the
energy conservation equation (14) gives

−3HðρþpÞ
�
1−

Ψ
3nH

�
¼ðΨ−3nHÞ

�∂ρ
∂n

�
T
þ
�∂ρ
∂T

�
n

_T:

ð23Þ

Using the thermodynamic identity (21) to replace the term
ρþ p on the left-hand side in the above, one immediately
finds the following temperature evolution law:

_T ¼
�
Ψ
n
− 3H

�
T

�∂p
∂ρ

�
n
¼

�
Ψ
n
− 3H

�
T
ð∂p∂TÞn
ð∂ρ∂TÞn

: ð24Þ

This is the third dynamical equation.
In the absence of particle creation (i.e. when Ψ ¼ 0),

the above reduces to the well-known form given in
Refs. [16,26,28].
Using the equation of state (2) for the van der Waals gas,

namely

pðn; TÞ ¼ nTð1þ AnÞ − Bn2; ð25Þ

one finds ð∂p=∂TÞn ¼ nð1þ AnÞ. Substituting this,
together with the equation of state, into the integrability
condition (20) gives the following differential equation:

� ∂
∂n

�
ρ

n

��
T
¼ −B: ð26Þ

This integrates directly into

ρ ¼ n½ϕðTÞ − Bn�; ð27Þ

where ϕðTÞ can be determined as follows. Consider an
ideal gas limit [by setting the coefficient FðTÞ ¼ A − B=T
of the second term of the virial expansion to zero]. In the
case of a monatomic gas with three translational degrees of
freedom, the average kinetic energy of the particles is
ð3=2ÞT. Also, n ¼ ðNmÞ=ðVmÞ ¼ ðM=VÞð1=mÞ ¼ ρ=m,
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where M is the mass of the system and m is the relativistic
mass of a representative particle2: m ¼ m0 þ ð1=2Þm0u2 þ
Oðu4Þ. Here m0 is the rest mass and u is the speed of the
particle. One can write the mass density of the ideal gas
approximately as ρ ¼ n½m0 þ ð3=2ÞT�. Thus, ϕðTÞ ¼
m0 þ ð3=2ÞT. One immediately finds the relationship
between the number density n, the mass density ρ and
the temperature T of the van der Waals gas:

ρðn; TÞ ¼ n

�
m0 þ

3

2
T

�
− Bn2: ð28Þ

Thus, ð∂ρ=∂TÞn ¼ ð3=2Þn and the temperature law (24) for
the van der Waals gas becomes _T ¼ −2½H −Ψ=ð3nÞ�×
Tð1þ AnÞ.
Finally, the resulting dynamical system for the case of a

van der Waals gas is

_n ¼ 3ðβ − 1ÞnH; ð29Þ

_H ¼ −
3

2
H2 þ 1

2
½ðβ − 1Þpðn; TÞ þ βHρðn; TÞ�; ð30Þ

_T ¼ 2ðβ − 1Þð1þ AnÞHT; ð31Þ

where pðn;TÞ¼nTð1þAnÞ−Bn2 and ρðn; TÞ ¼ n½m0 þ
ð3=2ÞT� − Bn2.
There is a symmetry in the model: if one divides Eq. (31)

by Eq. (29), one obtains an expression independent of H:

dT
dn

¼ 2Tð1þ AnÞ
3n

> 0 as n > 0: ð32Þ

The solution is given by the monotone continuous function

TðnÞ ¼ τn
2
3e

2An
3 ; ð33Þ

where τ is a positive constant. It represents a temperature
scale which will be treated as a parameter of the model
(together with the other parameter β).
Equation (32) and its solution are the same as the ones

encountered in the case without matter creation [26]. There
is a global first integral given by

I1ðn; TÞ ¼ Tn−
2
3e−

2An
3 ¼ τ ¼ const > 0: ð34Þ

Using Eq. (33), the temperature can be excluded from the
system to give

_n≡ f1ðn;HÞ ¼ 3ðβ − 1ÞnH; ð35Þ

_H≡ f2ðn;HÞ ¼ −
3

2
H2 −

1

2
τn

5
3e

2An
3

�
ð1− βÞ

�
5

2
þAn

�
−
3

2

�

þ 1

2
βðm0 − 2BnÞnþ 1

2
Bn2 ð36Þ

and this resulting two-component dynamical system will
become the focus of attention.
Eliminating the temperature dependence of the energy

density (28) with the help of Eq. (33) yields

ρ½n; TðnÞ� ¼ n
�
m0 þ

3

2
τn

2
3e

2An
3

�
− Bn2: ð37Þ

A second integral Kðx⃗Þ ¼ 0 of an autonomous dynamical

system of the type _x⃗ðtÞ ¼ F⃗½x⃗ðtÞ� is defined as an invariant,
but only on a restricted subset, given by its zero-level set
[29]. It is defined by ðd=dtÞKðx⃗Þ ¼ μðx⃗ÞKðx⃗Þ. If a trajec-
tory starts on such an invariant manifold, it remains on it
throughout its evolution. This means that no trajectory can
cross a hypersurface defined by a second integral.
For the three-component dynamical system, the hyper-

surface, defined by K1 ¼ n ¼ 0, is one such invariant
manifold, i.e. n ¼ 0 is a second integral since ðd=dtÞn ¼
½−3ð1 − βÞH�n. The surface defined by K2 ¼ 3H2 − ρ ¼
3H2 − n½m0 þ ð3=2ÞT� þ Bn2 ¼ 0 is another second inte-
gral because ðd=dtÞð3H2 − ρÞ ¼ −3Hð3H2 − ρÞ. It is a
separatrix; see Fig. 1. Similarly, the hypersurface K3 ¼ 0,
defined by T ¼ 0, is another second integral and invariant
manifold since ðd=dtÞT ¼ ½2ðβ − 1Þð1þ AnÞ�HT.
As it will be necessary for the forthcoming analysis,

one needs to determine at what value τ ¼ τ0 the
separatrix 3H2 − n½m0 þ ð3=2ÞT� þ Bn2 ¼ 3H2 − n½m0 þ
ð3=2Þτn2=3e2An=3� þ Bn2 ¼ 0 is tangent to the n axis and at
what point n0 this happens. When τ ¼ τ0, the separatrix
has a minimum at n0 and that minimum is 0 (see Fig. 1).
Thus, ð3=2Þτ0n2=30 e2An0=3 ¼ Bn0 −m and ðd=dnÞ½n½m0 þ
ð3=2Þτn2=3e2An=3� − Bn2�n¼n0;τ¼τ0

¼ 0. From these two
simultaneous equations, one can immediately determine
that the separatrix K2 ¼ 0 is tangent to the n axis at
n0¼½2m0AþBþð4m2

0A
2þ20m0ABþB2Þ1=2�=ð4ABÞ (the

other root of the resulting quadratic equation is irrelevant
as it is negative), provided that τ ¼ τ0 ¼ ð2=3ÞðBn0 −
m0Þn−2=30 e−2An0=3.
Depending on the initial conditions (the choice of τ), the

trajectories for which the energy density ρ½n; TðnÞ� ¼
n½m0 þ ð3=2Þτn2=3e2An=3� − Bn2 is positive for all values
of n, are those with τ > τ0, while for values of τ below τ0,
the energy density ρ½n; TðnÞ� becomes negative over a finite
region of positive values of n (see Fig. 1). Thus, such
trajectories would become unphysical in this range of n or,
in fact, they could be admitted as trajectories exhibiting a
temporary violation of the weak energy condition, and thus
be admissible in phantom cosmology models [30]. In the

2For the numerical example in this paper, the value chosen for
m0 is 100.
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latter sense, the validity of the model will be extended to
include large values of the number density n.
The stability matrix L for the two-component dynamical

system (35)–(36) is given by

L11 ¼
∂f1
∂n ¼ 3ðβ − 1ÞH; ð38Þ

L12 ¼
∂f1
∂H ¼ 3ðβ − 1Þn; ð39Þ

L21 ¼
∂f2
∂n ¼ 1

3
τn

2
3e

2An
3

�
ðβ − 1Þ

�
5

2
þ An

�
2

þ 3

2
βAnþ 15

4

�

þ 1

2
βm0 þ ð1 − 2βÞBn; ð40Þ

L22 ¼
∂f2
∂H ¼ −3H: ð41Þ

Returning to the three-component dynamical system, one
notes that integration of the dust conservation equation (10)
yields ρd ¼ ρd;0 exp½3

R
t
t0
Hðt0Þdt0�. From the Friedmann

equation (5), one can express the dust density ρd as
3H2 − ρ. Additionally, the integration of the dynamical
equation (29) gives exp½3 R t

t0
Hðt0Þdt0� ¼ C0n1=ðβ−1Þ, where

C0 is a positive constant. Finally, using Eq. (28) to eliminate
ρ, yields another global first integral of the system:

I2ðn;H; TÞ ¼
�
3H2 − n

�
m0 þ

3

2
T

�
þ Bn2

�
n

1
β−1

¼ C ¼ const ð42Þ

or

I2ðn;HÞ ¼
�
3H2 − n

�
m0 þ

3

2
τn

2
3e

2An
3

�
þ Bn2

�
n

1
β−1

¼ C ¼ const ð43Þ

for the two-component system (35)–(36).
Separately, since K1 ¼ n ¼ 0 is a second integral, no

trajectory can reach a point on the H axis, including the
origin, unless the trajectory starts on the H axis itself, i.e. if
the trajectory is with n0 ¼ 0.
The second integral

K2 ¼ 3H2 − ρ½n; TðnÞ� ¼ 3H2 − n½m0 þ ð3=2Þτn2=3e2An=3
þ Bn2 ¼ 0 ð44Þ

represents the trajectory without a dust component
(ρd ¼ 0), that is, K2 is equal to the first integral I2 with
C ¼ 0. Due to the existence of a second integral, the phase
space is fragmented into separate regions, each with a
specific regime of ρd, and thus the curve K2 ¼ 0 is called a
separatrix; see Fig. 1.
One should note that, due to the presence of the two first

integrals, the three-dimensional system can be reduced to
one equation. Formally, from Eq. (43), one has

HðnÞ ¼ � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

�
m0 þ

3

2
TðnÞ

�
− Bn2 þ Cn

1
1−β

s
ð45Þ

and then, from Eq. (29)

Z
n

n0

dñ
ñHðñÞ ¼ 3ðβ − 1Þðt − t0Þ ð46Þ

or

FIG. 1. The second integral (separatrix) K2 ¼ 3H2 − n½m0 þ
ð3=2Þτn2=3e2An=3� þ Bn2 ¼ 0. It is an open curve when τ > τ0
(where τ0 ≈ 14.78 for a van der Waals gas with parameters A ¼
0.01 and B ¼ 10 and for m0 ¼ 100), while, when τ < τ0, it
exhibits a loop at small number densities, together with an open
curve at higher n. When τ > τ0, the trajectories to the right of the
open curve correspond to a dust component with negative energy
density ρd, while those to the left have ρd > 0. When τ < τ0, the
trajectories to the right of the open curve and those inside the loop
correspond to a dust component with negative energy density ρd
and the rest have ρd > 0. The curve with τ ¼ τ0 is tangent to the
abscissa at n0¼ð2m0AþBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

0A
2þ20m0ABþB2

p
Þ=ð4ABÞ

(for the numerical example, n0 ¼ 73.59). The energy density
ρ½n; TðnÞ� ¼ n½m0 þ ð3=2Þτn2=3e2An=3� − Bn2 is positive for all
values of n if τ > τ0.
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Z
n

n0

dñ

ñ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ñ½m0 þ 3

2
τñ

2
3e

2Añ
3 � − Bñ2 þ Cñ

1
1−β

q
¼ �ðβ − 1Þðt − t0Þ: ð47Þ

The integral on the left-hand side defines some function,
say ξ of n, which, however, also depends on the following
parameters: m0, τ, A, B, C and the initial condition n0, i.e.

ξðn;m0; τ; A; B; C; n0Þ ¼ �ðβ − 1Þðt − t0Þ: ð48Þ

The function ξ is probably impossible to find explicitly
or, even if possible, given that it depends on so many
parameters, one is likely to expect that its form and
behavior would strongly depend on the relationship
between these parameters. And this is only half of the
trouble. One does not need t ¼ tðnÞ but, rather, nðtÞ ¼
ξ−1ðt; β; m0; τ; A; B; C; n0; t0Þ, i.e. the inverse of the func-
tion ξ. Not only this, one would then have to find
HðtÞ ¼ H½ξ−1ðt; β; m0; τ; A; B; C; n0; t0Þ�, a task that is
hardly achievable even numerically. Even if the function
ξ−1 was known somehow in terms of special or, even,
elementary functions, the formal solution presented above
is of little or no practical relevance, since it is impossible
to see or analyze its behavior. Instead, the phase-space
dynamical analysis of the two-component system (35)–(36),
as always, reveals all the essential information about the
global behavior of the system. The fact that the system is
Hamiltonian is a bonus which facilitates the analysis. Many
different scenarios stem from the fact that one is dealing with
several model parameters (a table with references to the
phase portraits, provided at the end, summarizes all inter-
relations between the model parameters leading to different
types of global behavior). Furthermore, due to the presence
of second integrals (separatrices), several types of trajectories
are separated by these invariant curves. This corresponds to
differences in the global behavior, depending on the initial
conditions ðn0; H0Þ. Thus, the whole complexity of the
global behavior, reflecting the multitude of choices for the
parameters and initial data, can be only be captured and
explained through phase-space analysis.
As the energy density of the dust can be positive, zero, or

negative, in line with this, the first integral I2ðn;HÞ ¼ C
will be allowed to be positive, zero, or negative.
Due to the presence of the first integral I2, the two-

component van der Waals system is fully integrable and
has Hamiltonian structure. To illustrate this, introduce

uðnÞ ¼ 2

3
n−γ; ð49Þ

vðn;HÞ ¼ Hn−γ; ð50Þ

with γ¼½2ð1−βÞ�−1. The two-component system (35)–(36)
becomes

_u ¼ v; ð51Þ

_v ¼ φðuÞ ð52Þ

where

φðuÞ ¼ −
1

2
n−γ½ð1 − βÞpðnÞ − βρðnÞ� and

n ¼ nðuÞ from Eq: ð46Þ: ð53Þ

To rewrite the above in terms of the canonical variables,
consider the following. The first integral I2ðn;HÞ ¼ const is
the only conserved quantity for the two-component system
and one would expect the Hamiltonian Hðu; vÞ (conserved
quantity) to be related to I2. One would further guess that
Hðu; vÞ ¼ ð1=6ÞI2 in order to get a “proper” kinetic energy
term ð1=2Þv2. It is easy to see that such a guess is correct:

Hðu; vÞ ¼ 1

6
I2 ¼

1

6
n−2γð3H2 − ρÞ ¼ 1

2
v2 −

3u2

8
ρðuÞ

¼ 1

2
v2 þ VðuÞ: ð54Þ

Then

_u ¼ ∂H
∂v ¼ v; ð55Þ

_v ¼ −
∂H
∂u ¼ φðuÞ: ð56Þ

It is not difficult to check that

∂H
∂u ¼ −φðuÞ ¼ 1

2
n−γ½ð1 − βÞp − βρ�; ð57Þ

that is,

d
du

VðuÞ ¼ d
du

�
−
3u2

8
ρðuÞ

�
¼ 1

2
n−γ½ð1 − βÞp − βρ� ð58Þ

or

u
2

dρ
du

¼ −ð1 − βÞðpþ ρÞ ¼ −
1

2γ
ðpþ ρÞ: ð59Þ

Since dρ=du ¼ ðdρ=dnÞðdn=duÞ, one gets

dρ
dn

¼ −
2

u
du
dn

1

2γ
ðpþ ρÞ ¼ −

1

γ
ðpþ ρÞ d

dn
ln u: ð60Þ

Noting that

d
dn

ln u ¼ −γ
1

n
; ð61Þ
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the above yields

dρ
dn

¼ pþ ρ

n
: ð62Þ

That this is indeed the case can be easily seen from Eq. (11):
the specific entropy s is conserved. Therefore Hðu; vÞ ¼
ð1=6ÞI2 indeed.
As the two-component system (35)–(36) is Hamiltonian,

the critical points are either saddles (with real eigenvalues
of the stability matrix, i.e. λ1;2 ¼ �q) or centers (with
purely imaginary eigenvalues λ1;2 ¼ �iω). To determine
the critical points of the two-component dynamical system
(35)–(36), revisit the three-component system (29)–(31)
and consider first H ¼ H� ¼ 0 in it. If, further,

ð1 − βÞp½n�; T�ðn�Þ� − βρ½n�; T�ðn�Þ� ¼ 0; ð63Þ

then the right-hand sides of all three equations in the
dynamical system vanish. Solving Eq. (63) for T�ðn�Þ
results in the following critical points:

�
n�; H� ¼ 0; T�ðn�Þ ¼ ð2β − 1ÞBn� − βm0

ðβ − 1ÞAn� þ 5
2
β − 1

�
: ð64Þ

Which particular values of n� (and, hence, T�) the system
will choose depends on the initial conditions (together
with the parameters of the model) and this is manifested
by the presence of the global first integrals. For the initial
condition ðn0; T0Þ at initial time t ¼ t0; one has I1ðn; TÞ ¼
I1ðn0; T0Þ ¼ τ ¼ const. On the other hand, the curve
T�ðn�Þ intersects the hypersurface given by I1ðn; TÞ ¼ τ
exactly at points with coordinates ðn�; T�Þ, satisfying
Eq. (64), namely, the equation I1ðn�; T�Þ ¼ I1ðn0; T0Þ ¼
I1ðn; TÞ ¼ τ ¼ const. Together with Eq. (63), these are
the two simultaneous equations that select the particular
critical points of the type (64) that the system will
encounter for the chosen initial conditions ðn0; T0Þ, i.e.
the choice of the constant τ. Depending on the values of β
and τ, the number of intersection points of T�ðn�Þ with
TðnÞ ¼ τn2=3 expð2An=3Þ, that is, the number of critical
points of type (64), could be one, two, or three (see Fig. 2).
The coordinates of the critical points of the type (64)

for the two-component system are alternatively given by
H� ¼ 0 and n� being the solutions of

τn�
2
3e

2An�
3

�
ðβ − 1Þ

�
5

2
þ An�

�
þ 3

2

�
− ð2β − 1ÞBn�

þ βm0 ¼ 0: ð65Þ

(a) (b) (c)

FIG. 2. The case of β > 1. (a) Positive values for T�ðn�Þ exist for n� > βm0=ðð2β − 1ÞBÞ. The function T�ðn�Þ increases
monotonously from βm0=ð5β=2 − 1Þ when n� ¼ 0 and tends to ð2β − 1ÞB=ððβ − 1ÞAÞ as n → ∞. When τ > τ0, there are no
intersection points between the curves T�ðn�Þ and TðnÞ. In this case, the origin is the only critical point; see Fig. 2(b). If τ < τ0, then, in
addition to the origin, there are two more critical points—a center and a saddle; see Fig. 2(c). (b) As T�ðn�Þ and TðnÞ do not intersect
when τ ¼ 15.0, (that is, when τ > τ0) and β ¼ 1.2 (that is, β > 1), the origin is the only critical point. It repels all trajectories, except
those on the second integral n ¼ 0withH0 > 0 and the separatrix itself (which is another second integral). The origin is reachable along
these curves in infinite time. The physical trajectories are all those for which H0 > 0. These trajectories diverge to H → ∞ and n → ∞.
All physical trajectories become very close to the separatrix when H and n are very large. In this case, the leading term in TðnÞ grows
exponentially with n. Then 3H2 ∼ ρ ∼ ð3=2ÞnT, also p ∼ An2T > 0; _H ¼ ðβ − 1Þð3H2 þ pÞ=2 > 0. Thus ä=a ¼ _H þH2 > 0 and this
region is characterised by inflation. (c) When τ ¼ 14.0 (that is, τ < τ0) and β ¼ 1.2 (that is, β > 1), there are two intersections of T�ðn�Þ
and TðnÞ. This leads to the existence of three critical points: the origin (which, again, repels all trajectories except the separatrix and
those on the second integral n ¼ 0 with H0 > 0), a center at n� ¼ 41.49 and a saddle at n� ¼ 97.00. The saddle is in the region of
negative ρ�. The physical trajectories are those with H0 > 0 either to the right of the open part of the separatrix or between the stable
curve and the unstable curve of the saddle. They diverge toH → ∞ and n → ∞. There are dynamically allowed trajectories with ρd < 0
which exhibit cyclic behavior.
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The energy density at the critical point is given by

ρ� ≡ ρ½n�; T�ðn�Þ�

¼ ðβ − 1Þn�½−ABn�2 þ ðm0Aþ B
2
Þn� þm0�

ðβ − 1ÞAn� þ 5
2
β − 1

: ð66Þ

As discussed, the energy density can be temporarily nega-
tive when τ < τ0.
When τ < τ0 and for β > 1 and also for 0 < β < 2=5,

one has ρ� > 0 for 0 ≤ n� ≤ N�, where

N� ¼ m0Aþ B
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

0A
2 þ 20m0ABþ B2

p
2AB

ð67Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. (Continued).
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(in the numerical example, N� ¼ 73.5890). For the case of 2=5 < β < 1=2, one has ρ� > 0 for ð5=2β − 1Þ=
½ð1 − βÞA� ≤ n� ≤ N�, while for 1=2 < β < 1, one has ρ� > 0 for n� between ð5=2β − 1Þ=½ð1 − βÞA� and N� (depending
on β, the former can be bigger or smaller than the latter).
The eigenvalues of the stability matrix at the critical points (64) satisfy

λ�2 ¼ 3ðβ − 1Þn�L�
21

¼ ðβ − 1Þn�
�
T�ðn�Þ

�
ðβ − 1Þ

�
5

2
þ An�

�
2

þ 3

2
βAn� þ 15

4

�
þ 3βm0 þ 3ð1 − 2βÞBn�

�
: ð68Þ

It is clear that the eigenvalues are either real (when β − 1 and L�
21 have the same sign) or purely imaginary (when β − 1 and

L�
21 have opposite signs). This is not a surprise as Hamiltonian systems can only have centers or saddles. The different

regimes of the parameters β and τ and the resulting critical points are shown in Figs. 2–4. See also Table I for a summary of
all possible cases where Figs. 2–4 are referenced in detail.

FIG. 3. The case of 0 < β < 2
5
. (a) When βm0=ð1 − 5β=2Þ > ð2βB − BÞ=ðβA − AÞ, T�ðn�Þ decreases monotonously from

βm0=ð1 − 5β=2Þ at n� ¼ 0. The horizontal asymptote for the function T�ðn�Þ is ð2βB − BÞ=ðβA − AÞ. There is one intersection
point between the curves T�ðn�Þ and TðnÞ, irrespective of τ. The critical points are the origin and a saddle see Fig. 3(c) for τ > τ0 and
Fig. 3(d) for τ < τ0. (b) The horizontal asymptote for the function T�ðn�Þ is again ð2βB − BÞ=ðβA − AÞ, but this time
βm0=ð1 − 5β=2Þ < ð2βB − BÞ=ðβA − AÞ. The function T�ðn�Þ increases monotonously from βm0=ð1 − 5β=2Þ at n� ¼ 0. There is
either one intersection point between the curves T�ðn�Þ and TðnÞ (depicted here) or three; see Fig. 3(e) for this case. The critical points
here are, again, the origin and a saddle see Fig. 3(c) for τ > τ0 and Fig. 3(d) for τ < τ0. (c) When τ ¼ 15 (i.e. τ > τ0) and β ¼ 0.39 (that
is, 0 < β < 2=5), the situation in Fig. 3(a) applies. The critical points are the origin and a saddle at n� ¼ 72.76. The physical
trajectories are those with H0 > 0 which are to the left of the stable curve of the saddle. They all converge to the origin in infinite time.
(d) When τ ¼ 14 (that is, τ < τ0) and β ¼ 0.39 (that is, 0 < β < 2=5), the situation in Fig. 3(a) applies again. There are, again,
two critical points—the origin and a saddle at n� ¼ 76.71. The physical trajectories are those with H0 > 0 to the left
of the stable curve of the saddle, including those with ρd < 0 which are inside the closed loop of the separatrix. The trajectories
converge to the origin in infinite time. At the saddle point, ρ� is negative. Homoclinic orbits are present. (e) When
βm0=ð1 − 5β=2Þ < ð2βB − BÞ=ðβA − AÞ, both curves T�ðn�Þ and TðnÞ increase monotonously and, depending on τ and β, there
may be one intersection point between them (see Fig. 3(b) for this case) or there may be three intersection points between them. In the
latter case, there are four critical points—the origin, a saddle, a center, and another saddle, in order of increasing n�; see Figs. 3(f), 3(g),
3(h), and 3(i). (f) When τ ¼ 18 (that is, τ > τ0) and β ¼ 0.07 (that is, 0 < β < 2=5), the situation in Fig. 3(e) applies. There are four
critical points: the origin and the three intersections of the curves T�ðn�Þ and TðnÞ: the saddle at n� ¼ 1.38, the center at n� ¼ 2.68 (all
shown here) and the saddle at n� ¼ 49.14 which is shown in Fig. 3(g). The physical trajectories are those with H0 > 0 which are to the
left of the stable curve of the saddle at n� ¼ 49.14—drawn in Fig. 3(g) which shows the region of higher number densities. The
trajectories converge to the origin in infinite time. Again, there are dynamically allowed trajectories with cyclic behavior.
(g) Continuation of Fig. 3(f) for the region of higher number densities for the case of τ ¼ 18 (that is, τ > τ0) and β ¼ 0.07 (that
is, 0 < β < 2=5). The situation in Fig. 3(e) applies. There are four critical points: the origin and the three intersections of the curves
T�ðn�Þ and TðnÞ: the saddle at n� ¼ 1.38, the center at n� ¼ 2.68 (all shown in Fig. 3(f)) and the saddle at n� ¼ 49.14 shown here. The
physical trajectories are those with H0 > 0 which are to the left of the stable curve of the saddle at n� ¼ 49.14 and
they all converge to the origin in infinite time. (h) When τ ¼ 14.5 (that is, τ < τ0) and β ¼ 0.035 (that is, 0 < β < 2=5), the situation
in Fig. 3(e) applies again. There are four critical points: the origin and the three intersections of the curves T�ðn�Þ and TðnÞ: the saddle at
n� ¼ 0.40, the center at n� ¼ 1.77 (all shown here) and the saddle at n� ¼ 75.93 which is shown in Fig. 3(i). The physical trajectories
are those with ρd > 0 andH0 > 0which are to the left of the stable curve of the saddle at n� ¼ 75.93 (drawn in Fig. 3(i) which shows the
region of higher number densities), or the trajectories inside the closed loop of the separatrix which are withH0 > 0 and to the left of the
stable curve of the saddle at n� ¼ 0.40, drawn here. The physical trajectories converge to the origin in infinite time. (i) Continuation
of Figure 3(h) for the region of higher number densities for the case of τ ¼ 14.5 (that is, τ < τ0) and β ¼ 0.035 (that is, 0 < β < 2=5).
The situation in Fig. 3(e) applies again. There are four critical points: the origin and the three intersections of the curves T�ðn�Þ and
TðnÞ: the saddle at n� ¼ 0.40, the center at n� ¼ 1.77 (all shown in Fig. 3(h)) and the saddle at n� ¼ 75.93 which is shown here. The
physical trajectories are those with ρd > 0 andH0 > 0 which are to the left of the stable curve of the saddle at n� ¼ 75.93 (shown here),
or the trajectories inside the closed loop of the separatrix which are with H0 > 0 and to the left of the stable curve of the saddle at
n� ¼ 0.40, shown in Fig. 3(h) which shows the region of lower number densities. The physical trajectories converge to the origin in
infinite time.
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(a)

(c) (d) (e)

(f) (g) (h)

(b)

FIG. 4. (Continued).
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FIG. 4. The case of 1
2
< β < 1 and 2

5
< β < 1

2
[panel (h)]. (a) When βm0=ð2βB − BÞ < ð1 − 5β=2Þ=ðβA − AÞ, the curve T�ðn�Þ

increases monotonously from βm0=ð1 − 5β=2Þ < 0 to infinity at ð1 − 5β=2Þ=ðβA − AÞ. Positive values of T�ðn�Þ exist for n� between
βm0=ð2βB − BÞ and the vertical asymptote ð1 − 5β=2Þ=ðβA − AÞ. Drawn here is the case of one intersection point between T�ðn�Þ and
TðnÞ; see Fig. 4(e) for the case of three intersection points. In the case of one intersection point, the critical points are the origin and a
saddle. The trajectories are in Fig. 4(c) for τ > τ0 and Fig. 4(d) for τ < τ0. (b) When βm0=ð2βB − BÞ > ð1 − 5β=2Þ=ðβA − AÞ, positive
values of the monotonously decreasing function T�ðn�Þ are between the vertical asymptote ð1 − 5β=2Þ=ðβA − AÞ and βm0=ð2βB − BÞ.
There is always one intersection point between T�ðn�Þ and TðnÞ and the critical points are, again, the origin and a saddle. The
trajectories are in Fig. 4(c) for τ > τ0 and Fig. 4(d) for τ < τ0. Panels (c) to (e): The case of 12 < β < 1. (c) When τ ¼ 16 (that is, τ > τ0)
and β ¼ 0.55 (that is, 1=2 < β < 1), one has βm0=ð2βB − BÞ < ð1 − 5β=2Þ=ðβA − AÞ. Thus, the situation in Fig. 4(a) applies. There are
two critical points: the origin and the only intersection point of the curves T�ðn�Þ and TðnÞ—the saddle at n� ¼ 74.14. The physical
trajectories are those with H0 > 0 which are to the left of the stable curve of the saddle. They converge to the origin in infinite time.
(d) When τ ¼ 14 (that is, τ > τ0) and β ¼ 0.55 (that is, 1=2 < β < 1), one again has βm0=ð2βB − BÞ < ð1 − 5β=2Þ=ðβA − AÞ. Thus,
the situation in Fig. 4(a) applies again. There are two critical points: the origin and the only intersection point of the curves T�ðn�Þ and
TðnÞ—the saddle at n� ¼ 73.20. The physical trajectories are those with H0 > 0 which are to the left of the stable curve of the saddle,
including the ones with ρd < 0 which are inside the closed loop of the separatrix. The physical trajectories converge to the origin in
infinite time. (e) When βm0=ð2βB − BÞ < ð1 − 5β=2Þ=ðβA − AÞ, both curves T�ðn�Þ and TðnÞ increase monotonously and, depending
on τ and β, there may be a case of three intersection points between them—as illustrated here. There are four critical points—the origin,
a saddle, a center, and another saddle, in order of increasing n�; see Figs. 4(f) and 4(g). Panels (f) and (g); The case of 1

2
< β < 1.

Also shown here in panel (h) is the separate case of 2
5
< β < 1

2
which exhibits very similar behavior to the case of 1

2
< β < 1, discussed in

Figs. 4(b), 4(c), 4(d). (f) When τ ¼ 15 (that is, τ > τ0) and β ¼ 0.79 (that is, 1=2 < β < 1), one has βm0=ð2βB − BÞ <
ð1 − 5β=2Þ=ðβA − AÞ. The situation in Fig. 4(e) applies. There are four critical points: the origin and the three intersection points
of the curves T�ðn�Þ and TðnÞ: the saddle at n� ¼ 78.21, the center at n� ¼ 200.98 and the saddle at n� ¼ 326.43. The physical
trajectories are those with H0 > 0 which are to the left of the stable curve of the saddle at n� ¼ 78.21. They converge to the origin in
infinite time. Again, there are dynamically allowed periodic trajectories. (g) When τ ¼ 14.65 (that is, τ < τ0) and β ¼ 0.79 (that is,
1=2 < β < 1), one again has βm0=ð2βB − BÞ < ð1 − 5β=2Þ=ðβA − AÞ. The situation in Fig. 4(e) applies again. There are four critical
points: the origin and the three intersection points of the curves T�ðn�Þ and TðnÞ: the saddle at n� ¼ 71.19, the center at n� ¼ 231.51 and
the saddle at n� ¼ 309.00. The physical trajectories are those with H0 > 0 which are to the left of the stable curve of the saddle at
n� ¼ 71.19. They converge to the origin in infinite time. Again, there are dynamically allowed periodic trajectories. (h) The separate
case of 2

5
< β < 1

2
is included here due to the similarities with the situation in Fig. 4(b). Again, ð1 − 5β=2Þ=ðβA − AÞ is a vertical

asymptote and the positive values of the monotonously decreasing function T�ðn�Þ are to the right of it. The difference between this case
and the one in Fig. 4(b) is in the presence of a horizontal asymptote at ð2βB − BÞ=ðβA − AÞ. There is always one intersection point
between T�ðn�Þ and TðnÞ—at n� > ð1 − 5β=2Þ=ðβA − AÞ—and the critical points are, again, the origin and a saddle. The trajectories are
as those in Fig. 4(c) for τ > τ0 and as those in Fig. 4(d) for τ < τ0 (in the latter case ρ� is negative at the saddle).

TABLE I. Classification of the equilibrium points depending on the parameters of the model (β and τ).

Equilibrium
Points

Parameters

β

0 < β < 2
5

2
5
< β < 1

2
1
2
< β < 1 β > 1

βm0

1−5β=2 <
ð2β−1ÞB
ðβ−1ÞA

βm0

1−5β=2 >
ð2β−1ÞB
ðβ−1ÞA

βm0

1−5β=2<
ð2β−1ÞB
ðβ−1ÞA

βm0

1−5β=2>
ð2β−1ÞB
ðβ−1ÞA

(n�, H� ¼ 0) τ > τ0

Two saddles
and a center.
Fig. 3(e)–3(g)

One saddle.
Fig. 3(a)
and 3(c)

One saddle.
Fig. 4(h).
See also
Fig. 4(b)–4(d)

Either one saddle,
or two saddles
and a center.
Fig. 4(a),
4(e), 4(f)

One saddle.
Fig. 4(a)
and 4(c)

Does not exist.
Fig. 2(b)

τ < τ0

Two saddles
and a center.
Fig. 3(e),
3(h), 3(i)

One saddle.
Fig. 3(a)
and 3(d)

One saddle.
Fig. 4(h).
See also
Fig. 4(b)–4(d)

Either one saddle,
or two saddles
and a center.
Fig. 4(a),
4(e), 4(g)

One saddle.
Fig. 4(a)
and 4(d)

One saddle
and a center.
Fig. 2(c)

(0,0) τ > τ0 Attractive in the upper half-plane (H > 0), repulsive in the lower half-plane (H < 0)

τ < τ0 Attractive in the upper half-plane (H > 0), repulsive in the lower half-plane (H < 0) Attractive or
repulsive for
different
trajectories
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There is another critical point of the two-component
dynamical system: the origin (n�� ¼ 0, H�� ¼ 0). The
eigenvalues of the stability matrix are zero at the origin.
To analyze the behavior near the origin (n → 0, H → 0),

expand the right-hand sides of the dynamical equations and
keep only the leading terms in n and H:

_n ¼ 3ðβ − 1ÞnH; ð69Þ

_H ¼ −
3

2
H2 þ βm0

2
n: ð70Þ

There are two cases to consider.
First, when β < 1, then from I2ðn;HÞ ¼ C one has

3H2 ¼ m0nþ smaller terms. Thus Eq. (70) becomes
_H ¼ ð1=2Þðβ − 1Þm0n. Introduce the Lyapunov function
G½nðtÞ; HðtÞ� ¼ n2ðtÞ þH2ðtÞ. This function is strictly
non-negative. Differentiating it with respect to time and
substituting _n and _H with their corresponding expressions
near the origin yields

_G½nðtÞ; HðtÞ� ¼ 2n _nþ 2H _H ¼ ðβ − 1ÞHð6n2 þm0nÞ:
ð71Þ

This is negative in the upper half-plane H > 0 (thus the
origin attracts trajectories from the upper half-plane) and
positive in the lower half-plane (thus trajectories in the
lower half-plane H < 0 are repelled by the origin).
As an alternative point of view when β < 1, one can

consider the trajectories near the origin (including the
separatrix) and obtain the asymptotic behavior of nðtÞ
as t → ∞. Using 3H2 ¼ m0nþ smaller terms in _n ¼
3ðβ − 1ÞHn gives

nðtÞ ¼ n0
½1þ 1

2
σð1 − βÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3m0n0
p ðt − t0Þ�2

; ð72Þ

where σ ¼ þ1 for trajectories in the half-plane H > 0 and
σ ¼ −1 for those in the half-plane H < 0. For the trajec-
tories in the upper half-plane, one has nðtÞ ≃ 1=t2, while for
those in the lower half-plane, nðtÞ increases with time.
One also has _H ¼ ð3=2Þðβ − 1ÞH2 or

HðtÞ ¼ H0

1þ 3
2
ð1 − βÞH0ðt − t0Þ

: ð73Þ

Therefore H decays to zero (H ≃ 1=t) for trajectories in the
upper half-plane orH decreases with time for trajectories in
the lower half-plane.
Clearly, the origin is reachable in infinite time along the

trajectories in the H > 0 half-plane.
Second, when β > 1, one can look at the separatrix

3H2−n½m0þð3=2ÞT�þBn2¼0. As discussed, this curve
is a second integral and it passes through the origin. Along
the separatrix near the origin, one has 3H2¼m0nþ smaller

terms and, along the separatrix only, one also has _n ¼
3ðβ − 1ÞnH and _H ¼ ð3=2Þðβ − 1ÞH2 near the origin. The
solutions to these two equations are given by Eqs. (72) and
(73), respectively. The difference between the cases β < 1
and the current case β > 1 lies in the fact that the solutions
to Eqs. (72) and (73) apply to all trajectories near the origin
when β < 1, while Eqs. (72) and (73) apply only to the
separatrix when β > 1. It is now obvious that the separatrix
enters the origin from the lower half-plane H < 0 and exits
it from the upper half-planeH > 0. Also, it takes an infinite
amount of time to enter the origin.
The only other curve that passes through the origin is

the second integral n ¼ 0. When n0 ¼ 0, the motion is
restricted to the H axis and is governed by _H ¼ −ð3=2ÞH2

or HðtÞ ¼ H0½1þ ð3=2ÞH0ðt − t0Þ�−1. If H0 > 0, such a
trajectory converges to the origin along the H axis in
infinite time (t → ∞). When H0 < 0, such trajectories
diverge to H → −∞ in time t ¼ t0 þ ð2=3ÞjH0j−1.
As no trajectory can cross n ¼ 0 or the separatrix (the

two curves, given by the second integrals), all trajectories
between the separatrix and the H axis in either of the half-
planes [for each of these trajectories ρd > 0, namely,
I2ðn;HÞ ¼ C > 0] are therefore repelled by the origin.
As discussed, the critical points of the two-component

system (35)–(36) have number densities which satisfy the
equation T�ðn�Þ ¼ Tðn�Þ, namely

ð2β − 1ÞBn� − βm0

ðβ − 1ÞAn� þ 5
2
β − 1

¼ τn�
2
3e

2An�
3 : ð74Þ

The analysis of T�ðn�Þ reveals several regimes; see Figs. 2
to 4 where all possibilities are shown.
Extending the validity of the model for large values of n,

one can investigate the blowup n → ∞ which occurs in
finite time. Using the first integral I2ðn;H; TÞ ¼ C ¼ const
[Eq. (43)], for big n, the leading contribution in H is

HðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
τn

5
3e

2An
3

r
; ð75Þ

where nðtÞ is again determined by separation of variables
from _n ¼ −3ð1 − βÞHn:

ffiffiffi
2

τ

r Z
n−

11
6 e−

An
3 dn ¼ −3σð1 − βÞðt − t�Þ: ð76Þ

Here σ ¼ signðHÞ and t� is an integration constant.
For n → ∞, the integral behaves asymptotically as

−ð3=AÞn−11=6e−An=3, and thus

n−
11
6 e−

An
3 ¼ Aσð1 − βÞ

ffiffiffi
τ

2

r
ðt − t�Þ: ð77Þ

When n → ∞, the left-hand side approaches zero and
hence t → t�. Therefore, t� is the blowup time and the
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above formulas are valid for t < t� only. This is clearly
possible only when ð1 − βÞσ < 0 and signðHÞ ¼
signðβ − 1Þ. Hence H → signðβ − 1Þ∞ and this blowup
represents a big crunch:

nðtÞ ≃ −
3

A
ln jt − t�j: ð78Þ

One should also note that for β > 1, the regime of high n
and H is characterized by inflation [see Fig. 2(c)]. The
physical trajectories, when β > 1, are those with H0 > 0
and they all diverge to H → ∞ and n → ∞ by getting very
close to the separatrix as they do so. The leading term in
TðnÞ grows exponentially with n. Then 3H2∼ρ∼ð3=2ÞnT
and also p ∼ An2T > 0. Thus _H¼ðβ−1Þð3H2þpÞ=2>0

and ä=a ¼ _H þH2 > 0 which implies inflationary
behavior.

III. CONCLUSIONS

The considered cosmological model has been reduced
to a two-component autonomous nonlinear integrable
dynamical system. This system however involves several
physical parameters and, depending on these, its global
behavior could be quite different, despite the fact that the
system is Hamiltonian and a conserved Hamiltonian is
identified. In physical terms this means that it describes
various cosmological scenarios depending on the parameter
choices.
The parameter choices and their implication for the

global dynamics in terms of cosmological relevance are
comprehensively studied and the physically meaningful
parameter values are identified. The presented examples
illustrate all possible situations and in this sense a complete
classification of the global behavior of the system is
provided.
The (dynamically allowed) closed orbits and the saddles

determine the essential behavior of the system, since these

always appear in the spectrum of the Hamiltonian systems.
In addition to the global conserved Hamiltonian, there are
special (second) integrals, defined and conserved on a
lower-dimensional manifold (lines or curves) in the two-
dimensional phase space. They are invariant under the time
evolution and separate the possible trajectories in the phase
space. This further allows to identify specific sets of initial
conditions in the phase space whose evolution is compliant
with the fundamental laws (nondecreasing entropy, positive
density and temperature).
The solution near the origin has been determined

explicitly, as for example in Eqs. (72) and (73), showing
that the origin is reachable for an infinite time. The
possibility for a blowup in finite time is also established
in Eq. (77).
When β > 1, at high n and H, the trajectories exhibit

inflation, driven by the process of matter creation. The
parameter β is related to the rate of particle creation and is
taken positive (by other authors as well). There is no
fundamental principle that prevents the possibility of
negative values of β. Indeed, for β and H both negative
the entropy increases and such a situation is possible. It
needs further investigation since the system is not invariant
under the change of signs of both β and H.
On the other hand, the system is symmetric under n → n,

H → −H, and t → −t, that is, the curves in the upper and
the lower half-planes are symmetric, provided that the
direction of the time arrows is reversed. In addition, one
can study only trajectories with n > 0 since the line n ¼ 0
is an invariant curve (second integral) and no trajectory can
cross it, that is, trajectories starting at n0 < 0 remain with
n < 0 throughout their evolution, while those with n0 > 0
remain with n > 0 throughout theirs. All of the critical
points are on the H ¼ 0 axis, but the axis itself is not an
invariant curve and the trajectories, in general, can cross
from the upper half-plane into the lower half-plane or
vice versa.
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