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We analytically explore the effects of the gravitational electromotive force on magnetic reconnection
around Schwarzschild black holes through a generalized general-relativistic magnetohydrodynamic model
that retains two-fluid effects. It is shown that the gravitational electromotive force can couple to
collisionless two-fluid effects and drive magnetic reconnection. This is allowed by the departure from
quasineutrality in curved spacetime, which is explicitly manifested as the emergence of an effective
resistivity in Ohm’s law. The departure from quasineutrality is owed to different gravitational pulls
experienced by separate parts of the current layer. This produces an enhancement of the reconnecion rate
due to purely gravitational effects.

DOI: 10.1103/PhysRevD.99.063017

Magnetic fields are ubiquitous in the Universe and they
play a major role in a variety of astrophysical systems. At
large scales, the behavior of highly conducting magnetized
plasmas is well described by the equations of ideal
magnetohydrodynamics (MHD), which impose significant
constraints on the plasma dynamics. Indeed, an ideal MHD
evolution implies the frozen-in condition and therefore the
preservation of field line connectivity among fluid ele-
ments. This is a remarkably general result, which is valid in
nonrelativistic [1], special relativistic [1–3], as well as
general relativistic [4] plasmas.
On the other hand, at small spatial scales, physical effects

beyond ideal MHD can break the frozen-in condition and
allow for a topological rearrangement of the magnetic field
configuration that occurs on time scales much faster than
the global magnetic diffusion time. This process, known as
magnetic reconnection [5], enables a rapid conversion of
magnetic energy into plasma particle energy, and is gen-
erally believed to be the underlying mechanism that powers
some of the most energetic astrophysical phenomena in the
Universe, such as solar and stellar flares [6,7], nonthermal
signatures of pulsar wind nebulae [8,9], and gamma-ray
flares in blazar jets [10,11].
Electrical resistivity due to Coulomb interactions

between charged particles is the prototypical effect that
can break the frozen-in condition and allow for the
reconnection of magnetic field lines. This was indeed
employed in many models of magnetic reconnection, from
the pioneering Sweet-Parker model [12,13] to the more

recent models of fast magnetic reconnection mediated by
the plasmoid instability [14–19]. Anomalous resistivity due
to wave-particle interactions and scatterings off the turbu-
lent fluctuations can also enable magnetic reconnection,
and they have been considered as a possible agent of fast
reconnection [20–22]. Depending on the value of the
classical/anomalous resistivity, other nonideal effects can
be even more important. For example, electron inertia
effects are indeed known to permit nondissipative magnetic
reconnection [23–25], and in an analogous fashion, non-
gyrotropic electron pressure tensor effects can break the
frozen-in constraint and sustain most of the reconnection
electric field required for fast reconnection [26–28].
In relativistic plasmas, thermal effects proportional to the

relativistic enthalpy density couple to the inertial effects,
leading to an increase of the magnetic reconnection rate
[29,30]. Furthermore, the Hall terms, that cannot cause
magnetic reconnection per se in the nonrelativistic case, do
allow for a change in the magnetic field line connectivity if
there is a significant difference between the enthalpy
density of the positively and negatively charged fluids
constituting the plasma [31]. The situation is rendered even
more complex in the presence of a strong gravitational
field, as in the vicinity of compact objects like black holes.
Several studies have predicted the formation of reconnec-
tion layers in the vicinity of black holes [32–38], and the
theoretical investigation of magnetic reconnection in
curved spacetime has just started [30,39].
With this manuscript we intend to explore the effects of

the gravitational electromotive force on magnetic recon-
nection in a curved spacetime around a black hole. In
previous works [30,39] the role of the radial gravitational
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force due to the black hole was not studied, as it requires a
correct definition of the gravitational electromotive forces
as well as understanding the influence of the charge density
in curved spacetimes (see below). That the gravitational
electromotive force contributes to magnetic reconnection
was suggested by Koide [40], without working out explic-
itly its quantitative effects on the reconnection rate. Here we
focus on the simplest form of the gravitational field created
by a black hole, i.e., a Schwarzschild black hole, and we
calculate the reconnection rate due to the gravitational
electromotive force.
In order to show that the gravitational field of a

Schwarzschild black hole introduces new effects that are
relevant for reconnection, we adopt a generalized version of
the general relativistic magnetohydrodynamic (GRMHD)
equations [30,40] which retain two-fluid effects that are
neglected in the simpler single-fluid descriptions. In par-
ticular, we employ a set of equations [30] that describes
electron-ion plasmas in the thermal-inertia regime [41,42].
This is the regime in which the thermal-inertial terms are
larger than the Hall terms. Therefore, by taking into account
the proper mass ratio between the positively and negatively
charged particles, the same set of equations describes also
pair plasmas, where the Hall terms vanish identically.
The considered spacetime xμ ¼ ðt; x1; x2; x3Þ is charac-

terized by a metric gμν, where the line element is given by
ds2 ¼ gμνdxμdxν. Note that we choose units in which the
speed of light c is unity. The GRMHD equations deal with a
single-fluid plasma model with proper enthalpy density
h ¼ n2ðhþ=n2þ þ h−=n2−Þ, where n� indicate the proper
particle number density for the positively (þ) and neg-
atively (−) charged components fluids. Similarly, the
enthalpy density h� of each charged fluid is specified
with the corresponding subscript, and n ¼ nþ þ n−.
Furthermore, it is assumed that Δh ≪ h, where Δh ¼
mn2ðhþ=mþn2þ − h−=m−n2−Þ=2 is the difference between
enthalpy densities of the fluids (with m ¼ mþ þm−, and
m� indicating the mass of the corresponding charged
particle). It is also assumed the equation of state h� ¼
m�n�K3ðm�=kBT�Þ=K2ðm�=kBT�Þ [43,44], where K2

and K3 are the modified Bessel functions of the second
kind of orders 2 and 3, T� are the temperatures of each
fluid, and kB is the Boltzmann constant.
In this model the momentum equation that retains

thermal-inertia effects is [30,40]

∇ν

�
h

�
UμUν þ ξ

4n2e2
JμJν

��
¼ −∇μpþ JνFμν; ð1Þ

where ∇ν denotes the covariant derivative associated with
the spacetime metric gμν, Uμ is the plasma four-velocity,
Jμ is the four-current density, and Fμν is the electromag-
netic field tensor. Furthermore, p ¼ pþ þ p− indicates
the proper plasma pressure, e is the electron charge,
and ξ ¼ 1 − ðΔμÞ2, with Δμ ¼ ðmþ −m−Þ=ðmþ þm−Þ.

Observe that ξ ≈ 4m−=mþ for an electron-ion plasma,
while ξ ¼ 1 for a pair plasma.
Furthermore, the generalized Ohm’s law in the thermal-

inertial regime is [30]

UνFμν ¼ η½Jμ − ρ0eUμ�

þ ξ

4e2n
∇ν

�
h
n

�
UμJν þ JμUν −

Δμ
ne

JμJν
��

; ð2Þ

where ρ0e ¼ −UνJν is the charge density observed by the
local center-of-mass frame, and η is the electrical resistivity,
which is considered as a phenomenological parameter.
Notice that, in comparison with the model equations of
Ref. [30], we are considering a plasma where the thermal
energy exchange rate between the two fluids is negligible
[40], i.e., the redistribution coefficient of the thermalized
energy to the positively and negatively charged fluids is 0.
The plasma dynamics is completed by the continuity

equation

∇νðnUνÞ ¼ 0; ð3Þ

and Maxwell’s equations

∇νFμν ¼ Jμ; ∇νF�μν ¼ 0; ð4Þ

where F�μν is the dual of the electromagnetic field tensor.
To explicitly display the gravitational effects in the above

plasma model in a familiar fashion, we write the previous
equations in the 3þ 1 formalism [45–47]. In such a form,
the spacetime curvature effects become apparent in a set of
vectorial equations. For a Schwarzschild background, with
spherical geometry, the line element becomes

ds2 ¼ −α2dt2 þ h21dr
2 þ h22dθ

2 þ h23dϕ
2; ð5Þ

with α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2rs=r

p
, h1 ¼ 1=α, h2 ¼ r, and h3 ¼ r sin θ.

Here, α is known as the lapse function, r is the radial
distance to the black hole, rs is the half of the
Schwarzschild radius (hereafter G ¼ 1 ¼ c), 0 ≤ θ ≤ π,
and 0 ≤ ϕ ≤ 2π. In order to properly describe the plasma
dynamics, it is also useful to rewrite the plasma vectorial
equations by introducing a locally nonrotating frame
called “zero-angular-momentum-observer” (ZAMO) frame
[30,39,40,48], which introduces a locally Minkowskian
spacetime where the line element (5) can be written as
ds2¼−dt̂2þP

3
i¼1ðdx̂iÞ2, where dt̂¼αdt and dx̂i ¼ hidxi.

In the following, quantities observed in the ZAMO frame
are denoted with hats.
We first consider the continuity equation (3), which can

be rewritten in the ZAMO frame as [30,40]

∂ðγnÞ
∂t þ α

r2 sin θ

X
j

∂
∂xj

�
r2 sin θ
hj

γnv̂j
�

¼ 0; ð6Þ
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where v̂ is the velocity in the ZAMO frame, and γ ¼
ð1 − v̂2Þ−1=2 is the Lorentz factor (we use latin indices for
space components). We also consider the spatial compo-
nents of the generalized momentum equation (1), which
lead to the dynamical equation

∂P̂i

∂t ¼ −
α

r2 sin θ

X
j

∂
∂xj

�
r2 sin θ
hj

T̂ij

�

− ðϵþ γρÞ 1
hi

∂α
∂xi þ

X
j

α½GijT̂
ij −GjiT̂

jj�; ð7Þ

where

P̂i ¼ hγ2v̂i þ hξ
4n2e2

ĴiĴ0 þ
X
j;k

εijkÊjB̂k; ð8Þ

ϵ ¼ hγ2 þ hξ
4e2n2

ðĴ0Þ2 − p − ργ þ 1

2
ðB̂2 þ Ê2Þ; ð9Þ

and

T̂ij ¼ pδij þ hγ2v̂iv̂j þ hξ
4e2n2

ĴiĴj

þ 1

2
ðB̂2 þ Ê2Þδij − B̂iB̂j − ÊiÊj: ð10Þ

Here, Ĵ0 is the separation of charge density while Ĵi is the
current density, both observed in the ZAMO frame. It is
the main goal of this work to show (below) that Ĵ0 affects
the magnetic reconnection process by the gravitational
electromotive force. Besides, it is important to notice that
Ĵ0 is related to the invariant ρ0e ¼ −UμJμ. We also specify
that Êj and B̂j are the electric and magnetic fields measured
in the ZAMO frame,Gij ¼ −ð1=hihjÞð∂hi=∂xjÞ, and εijk is
the Levi-Civita symbol.
For the spatial components of the generalized Ohm’s law

(2), in the ZAMO frame we have

ξ

en
∂
∂t

�
hγ
4en

ðĴi þ Ĵ0v̂iÞ
�

¼ −
hξγĴ0

2e2n2hi

∂α
∂xi −

α

enr2 sin θ

X
j

∂
∂xj

�
r2 sin θ
hj

K̂ij

�

þ α

en

X
j

ðGijK̂
ij −GjiK̂

jjÞ

þ αγF̂i0 þ αγv̂jF̂ij − αηðĴi − ρ0eγv̂iÞ; ð11Þ

where K̂ij ¼ ðhξγ=4enÞðv̂iĴj þ v̂jĴiÞ. Similarly, the tem-
poral component of Eq. (2) becomes [40]

ξ

2en
∂
∂t

�
hγĴ0

en

�

¼ −
hξγ
4e2n2

X
j

1

hj

∂α
∂xj ðĴ

j þ Ĵ0v̂jÞ

−
α

enr2 sin θ

X
j

∂
∂xj

�
r2 sin θ
hj

hξγ
4en

½Ĵj þ Ĵ0v̂j�
�

þ αγv̂jF̂j0 − αηðĴ0 − ρ0eγÞ: ð12Þ

Finally, we rewrite Maxwell’s equations (4) in the
ZAMO frame. These are

X
j

∂
∂xj

�
r2 sin θ
αhj

B̂j

�
¼ 0; ð13Þ

α

r2 sin θ

X
j

∂
∂xj

�
r2 sin θ
αhj

Êj

�
¼ Ĵ0; ð14Þ

αĴi þ ∂Êi

∂t ¼ αhi
r2 sin θ

X
j;k

εijk
∂
∂xj ðαhkB̂kÞ; ð15Þ

∂B̂i

∂t ¼ −αhi
r2 sin θ

X
j;k

εijk
∂
∂xj ðαhkÊkÞ: ð16Þ

The gravitational field of a Schwarzschild black hole
introduces effects in the generalized Ohm’s law (11) that
can be seen as effective electric fields. In particular, terms
with the form GijK̂

ij and GjiK̂
jj in Eq. (11) can introduce

effective resistivities of the order ðhξ=4enÞð∂jhi=hihjÞ,
where both the gravitational field and the thermal-inertial
effects are important. However, as we see below, in the
simplest possible geometry for the reconnection layer, both
these terms vanish. On the other hand, as noticed by Koide
in Ref. [40], the term proportional to Ĵ0ð∂iα=hiÞ in Eq. (11)
produces a radial contribution to the generalized Ohm’s law
that can be interpreted as an effective electric field, as long
as Ĵ0 does not vanish. Therefore, in this work we analyze
this possibility, showing that a reconnection layer around a
Schwarzschild black hole allows a solution in which the
separation of charge Ĵ0 is finite, and that in this case the
electromotive force due to gravity can drive magnetic
reconnection.
Without loss of generality, let us assume that the

reconnection layer is at θ ¼ π=2 at some given distance
r. We consider a quasi-two-dimensional reconnection layer
having characteristic length L and width δ such that δ ≪ L.
The length L is in the ϕ-direction, while the width δ is in the
θ-direction, as depicted in Fig. 1. We also assume that the
layer is not close to the black hole, δ ≪ L ≪ r. This model
allows us to study magnetic reconnection using a Sweet-
Parker-like approach for a plasma that is supported against
the black hole gravity [49–51], as for the model we
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investigated in Kerr curved spacetime [30,39]. We also
assume that the radial plasma velocity is null or negligible,
i.e. v̂r ¼ 0, and that in the diffusion region Ĵθ ¼ 0 and
Ĵϕ ¼ 0. Then, it is important to observe that ρ0e ¼
−UμJμ ¼ γĴ0 ≠ 0, in general [40]. Furthermore, the recon-
necting magnetic field has magnitude B̂in in the ϕ-direction
(with no radial component in the reconnection layer), while
the electric field is in the radial direction (see Fig. 1).
Under the above assumptions, we can readily calculate

the outflow velocity of the plasma accelerated through
the reconnection channel. This plasma outflow is in the
ϕ-direction along the neutral line. By using the momentum
equation (7) we find

X
j

∂
∂xj

�
r2 sin θ
hj

T̂ϕj

�
¼ 0; ð17Þ

as other terms identically vanish along the ϕ-direction. The
solution for this equation is Tϕϕ ¼ 0. Taking the tensor (10)
along the neutral line, and using that p ≈ B̂2

in=2 ≈ h=4 in
the relativistic regime [30,39], we can readily find that the
outflow plasma velocity satisfies γoutv̂out ≈ 1=

ffiffiffi
2

p
.

Similarly, we can estimate other relevant quantities for
this reconnection layer configuration. From the divergence-
less equation (13), the outflow magnetic field in the
θ-direction is

B̂θ

���
out

≈
δ

L
B̂in: ð18Þ

On the other hand, using the continuity equation (6) for the
Schwarzschild geometry, the inflow plasma velocity can be
written as

γinv̂in ≈
δ

L
γoutv̂out: ð19Þ

Besides, from Eq. (15) we obtain that the radial current
density at the X point is simply

Ĵr
���
X
≈
B̂in

δ
: ð20Þ

The results (18), (19), and (20) are equivalent to those
pertaining to relativistic plasmas in flat spacetimes [29,52].
The explanation for this is the chosen configuration around
the Schwarzschild black hole. The simple geometry studied
here, with the invoked assumptions, implies that no
gravitational effects appear in the momentum equation
or Maxwell’s equations when they are evaluated in the
reconnection layer. As we see now, all the gravitational
effects appear in the generalized Ohm’s law.
We focus on the spatial part of the generalized Ohm’s

law (11) along the r-direction. For our geometry, in the
current sheet this equation becomes

α

enr2 sin θ

X
j

∂
∂xj

�
r2 sin θ
hj

hξγ
4en

v̂jĴr
�
þ hξαγĴ0

2e2n2
∂α
∂r

¼ þαγÊr − αγv̂θB̂φ þ αγv̂φB̂θ − αηĴr: ð21Þ

We evaluate this equation in the inflow point, where the
inflow plasma velocity is in the θ-direction and the term
proportional to the resistivity is negligible. Thus, we get

Êr

���
in
≈ v̂inB̂in þ

hξĴ0
2e2n2

rs
αr2

����
in
; ð22Þ

where we have used that ∂rα ¼ rs=αr2. Here, we have
neglected the nonlinear terms and considered γin ≈ 1, in
agreement with the results of Refs. [30,39]. We can also
evaluate Eq. (21) at the X point (where the plasma velocity
vanishes), obtaining

Êr

���
X
≈ ðηþ ΛÞĴr þ hξĴ0

2e2n2
rs
αr2

����
X
; ð23Þ

where we have introduced the effective relativistic colli-
sionless resistivity [29]

Λ ¼ hξ
4e2n2L

: ð24Þ

Both results (22) and (23) reduce to those of Ref. [29] in the
flat spacetime limit rs → 0.
As there is no quasineutrality, with Ĵ0 different from 0,

the electric fields Êrjin and ÊrjX are not equal. This is due to
the presence of different gravitational gradients at the
inflow and X points. The radial distance of the inflow
point rjin is related to the radial distance r of the X point

FIG. 1. Sketch of a magnetic reconnection layer showing the
studied configuration. The shaded gray area represents the
magnetic diffusion region.
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by rjin ≈ rþ δ2=ð8rÞ, where rjX ≡ r, and thereby the two
points experience slightly different gravitational pulls. We
can obtain the difference between the electric field at the
inflow and X points by using Eq. (14). By integration
among these two points in the current layer, and the radial
distance of the inflow point, we get

Êr

���
in
− Êr

���
X
≈

δ2

8αr
Ĵ0; ð25Þ

where the lapse function must be evaluated at the distance r
of the X point.
What remains to be done is to obtain a relation between

the current density and Ĵ0. This can be achieved through the
temporal part of the generalized Ohm’s law, namely
Eq. (12). We can use that ρ0e ¼ γĴ0 is an invariant to
calculate Ĵ0 by evaluation of Eq. (27) at the outflow point.
Thereby, assuming that the variations of the current density
are negligible in this geometry compared to the gravita-
tional gradient, i.e., neglecting the divergence of the current
density with respect to the gradient of the lapse function
projected along the current

α

r2
∂
∂r ðαr

2ĴrÞ ≪ α
∂α
∂r Ĵ

r; ð26Þ

from Eq. (12) evaluated in the outflow point we obtain

0 ≈ −
γΛLrs
r2

Ĵr
���
out

−
αγΛL
r

∂
∂ϕ ðv̂ϕĴ0Þ

���
out

þ αηγ2v̂2Ĵ0jout; ð27Þ

where we have used that 1 − γ2 ¼ −γ2v̂2. As Ĵ0 decreases
to the X point, the previous equation can be solved for Ĵ0 to
finally get

Ĵ0 ≈
2ΛLχrs

αr2ðηþ ΛÞ Ĵ
r; ð28Þ

where χ ¼ 1 − L2=ð4r2Þ − rsL2=ð8α2r3Þ, and we have
used the radial distance of the outflow point rjout ≈
rþ L2=ð8rÞ in terms of the radial distance r of the X
point. Notice that the separation of charge Ĵ0 is only
relevant in curved spacetimes, as it vanishes when rs → 0.
Finally, using the above equations, we can obtain the

reconnection rate for this configuration. In order to preserve
the validity of our result, we restrict ourselves to a plasma
sufficiently far from the black hole, rs ≪ r. In this case, the
reconnection rate becomes simply

v̂in ≈
�
1

S
þ Λ

L

�
1=2

�
1þ ΛL2rs

8α2r3ðηþ ΛÞ
�
; ð29Þ

where S ¼ L=η ≫ 1 is the relativistic Lundquist number.

The result (29) shows that the gravitational electromotive
force increases the reconnection rate due to purely the
gravitational attraction of the Schwarzschild black hole,
compared to the MHD limit v̂in ≈ S−1=2 (when Λ ¼ 0).
In the flat spacetime limit, rs → 0, we recover the recon-
nection rates for special relativistic pair plasmas v̂in ≈
ð1=Sþ Λ=LÞ1=2 studied in Ref. [29].
The physical mechanism for the increase of the recon-

nection rate due to gravity is straightforward to understand.
The gravitational force (due to gradients of α) at the
inflow point is along the radial direction at an angle
θ ≈ π=2 − δ=ð2rÞ. This is the force proportional to
Ĵ0ðrs=αr2Þjin that appears in Eq. (22). On the other hand,
the gravitational force that the plasma experiences at the X
point is also along the radial direction but now at an angle
θ ¼ π=2. Anew, this force is proportional to the term
Ĵ0ðrs=αr2ÞjX in Eq. (23). These two gradient forces point
in the radial direction at different angles, implying the
existence of a net force antiparallel to the θ direction, along
the plane of the reconnection layer. Therefore, the net force
pushes the plasma toward the X point, producing an
increase of the reconnection rate.
In the case in which the difference of gravitational forces

between the inflow and X points is neglected, the plasma
can be considered as quasineutral, with Ĵ0 ¼ 0. This is the
case of the analyses presented in Refs. [30,39], where
quasineutral plasma were studied around Kerr black holes,
and only the curvature due to spacetime rotation was
considered. However, if the most general case for the
simplest gravitational effect produced by any compact
object is considered in the study of magnetic reconnection
in the surrounding plasma, a deviation from quasineutrality
is expected.
Finally, the reconnection rate (29) explicitly displays the

importance of taking into consideration the collisionless
effects. Those effects are the ones coupled to gravity. In
particular, the difference of the reconnection rate (29) in the
limit S → ∞ and its flat spacetime counterpart v̂in ≈

ffiffiffiffiffiffiffiffiffi
Λ=L

p
is proportional to

v̂inffiffiffiffiffiffiffiffiffi
Λ=L

p − 1

����
S→∞

∝
�

h
m−n

�
1=2

�
de
16

��
L
r

�
2
�
2rs
r

�
; ð30Þ

for pair plasmas, and proportional to

v̂inffiffiffiffiffiffiffiffiffi
Λ=L

p − 1

����
S→∞

∝
�

h
mþn

�
1=2

�
de
8

��
L
r

�
2
�
2rs
r

�
; ð31Þ

for ion-electron plasmas (here de ¼ λe=L is the dimension-
less electron inertial length, with λe indicating the electron
skin depth). Both results show that reconnection rates are
larger in plasmas around Schwarzschild black holes,
depending on the size of the black hole ∝ 2rs=r, and on
the geometry of the current sheet ∝ L=r. Nevertheless, the
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reconnection rate for pair plasmas is larger according to the
fact that positrons contribute as the electrons to the effective
relativistic collisionless resistivity Λ.
The presented results complete the theoretical analysis of

magnetic reconnection in curved spacetime initiated in
Refs. [30,39]. In this way, we have shown that spacetime
curvature effects (gravitational pull or rotation) form an
intrinsic part of magnetic reconnection processes in

astrophysical plasmas around compact objects. Future
high-resolution numerical simulations with general relativ-
istic codes should be able to extend the predictions of the
analytic theory to more complex scenarios, as asymmetric
reconnection layers, strong field inhomogeneities in all three
spatial directions, and nonsteady reconnection processes.

F. A. A. thanks Fondecyt-Chile Grant No. 1180139.
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