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We use an integral representation for nonthermal radiation, which is bounded from below and above, to
describe the spectrum of the cosmic microwave background (CMB). The upper bound is given by the
Rayleigh-Jeans law with a temperature TRJ that can be determined by the absorption signal of 21 cm
photons, where TRJ represents the equilibrium temperature of photons in the RJ tail. If TRJ > TCMB, then
the lower bound allows us to conclude that photons, additional to the remnant of the big bang, are needed
to explain the present CMB. These constraints are additional to other cosmological or astrophysical
constraints in the study of the distortions of the CMB brought about by new physics particles or fields.
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I. INTRODUCTION

The lambda cold dark matter (ΛCDM) model has been
established as the standard cosmological model to describe
the expansion history and the growth of the large-scale
structure of the Universe [1]. Assuming the ΛCDM model
[2], cosmological parameters have been measured within
percent-level uncertainties by a combination of observa-
tions such as the cosmic microwave background (CMB)
experiments [3,4]. Additional measurements include type
Ia supernovae and baryon acoustic oscillations (see refer-
ences in [2]). Despite the success of the model, we are
challenged by a fundamental lack of physical understand-
ing of the main components of the Universe, dark matter,
and cosmological constant Λ or more generally dark
energy. In order to understand these dark components, it
is of great importance to test the ΛCDM model at high
precision using a variety of cosmological probes [2].
Recently, Pospelov et al. [5] considered modifications

of the CMB, within its Rayleigh-Jeans (RJ) end of the
spectrum, ω ≪ TCMB, owing to dark matter (DM) and the
interaction of nonthermal dark radiation (DR) A0 with
ordinary photons A via the interaction eF0

μνFμν [6]. The
DR quanta are much softer, but more numerous than CMB
photons,

ωDR ≪ ωCMB; nDR > nRJ; ωDRnDR ≪ ρtot; ð1Þ

where ρtot is the total energy density of radiation and DM,
nDR is the number density of DR quanta, and nRJ represents
the low-energy RJ tail of the standard CMB. Recent
papers [7,8] examined interacting DR in the regime where
the individual quanta are fewer in number but harder in

energy than typical CMB photons, nDR ≪ nCMB and
ωDR ≫ ωCMB. The interest in an enhancement of the
CMB is based on recent tentative observation of a
stronger-than-expected absorption signal of 21 cm photons
[9], which can be explained by resonant A0 → A oscilla-
tions of dark photons into regular photons in the interval of
redshifts 20 < z < 1700 [5].
This paper is arranged as follows. In Sec. II, we review

the integral representation for nonthermal or nonequili-
brium radiation, where the low-frequency photons are in
thermal equilibrium with temperature TRJ owing to brems-
strahlung and the spectrum is bounded from below [10,11].
In Sec. III, we indicate the upper bound determined by the
RJ law with temperature TRJ and obtain the constraints on
the photon number per unit volume and the internal energy
per unit volume for the CMB that follow from the lower
bound of Sec. II. Section IV gives a simple illustrative
example that shows that the “heating” of the CMB in the
RJ tail, viz., TRJ > TCMB, does actually lead to “cooling” of
the CMB. Finally, Sec. V summarizes our results.

II. NONTHERMAL RADIATION

The distortions of the CMB have been studied with the
aid of the integral representation for the photon number
density

nCMBðω; tÞ ¼
1

π2
ω2

c3

Z
∞

0

dT
σðT; tÞ

eℏω=kT − 1
; ð2Þ

where the spectral function σðT; tÞ is positive definite and,
in general, is a function of time or the cosmological redshift
z, where z ≥ 0 and z ¼ 0 corresponds to our present time
[10,11]. Such integral representations were obtained by
unifying the notions of the “approach-to-equilibrium” in
quantum statistical mechanics and that of the asymptotic*alexanian@uncw.edu
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condition in axiomatic quantum field theory in order to
describe nonthermal radiation whereby the equilibrium,
thermal states form a basis for nonthermal or nonequili-
brium states [12].
It is interesting that the distribution (2) appears in an

integral equation of Laplace [13] by replacing the Maxwell
distribution by that of Planck. Paley and Wiener [13]
described radiation from a source in approximate local
equilibrium by (2), where σðT; tÞ denotes the “amount” of
radiation coming from blackbodies at temperature T;
consequently, σðT; tÞ must be positive definite and
σðT; tÞdT gives the amount of radiation coming from the
temperature range T to T þ dT.
The case of the integral equation of Laplace [13], viz.

Laplace transforms, is the application of the completeness
of the equilibrium thermal states in the description of
nonthermal or nonequilibrium states in classical statistical
mechanics. The classical integral transform was applied
successfully in the study of the approach to equilibrium of
Maxwell molecules [14], an exact (similarity) solution of
the nonlinear Boltzmann equation [15,16]. The application
of the classical transform and consequently that for non-
thermal radiation were characterized as the temperature
integral transform [17].
The low-frequency photons comprising the RJ tail of the

nonthermal radiation (2) are in thermal equilibrium with
temperature,

TRJðtÞ ¼
Z

∞

0

dTTσðT; tÞ; ð3Þ

which arises from bremsstrahlung processes that are always
present.
Spectrum (2) is bounded from below [11] by

nCMBðω; tÞ ≥
1

π2
ω2

c3
CðtÞ

exp ½ℏωCðtÞ=kTRJðtÞ� − 1
; ð4Þ

where

CðtÞ ¼
Z

∞

0

dTσðT; tÞ; ð5Þ

and CðtÞ and TRJðtÞ are, in general, functions of time, viz.,
redshift [11].

III. CMB SPECTRUM CONSTRAINTS

One obtains an upper bound to nCMBðω; tÞwith the aid of
the inequality ex − 1 − x ≥ 0 and so (2) implies

1

π2
kω
ℏc3

TRJðtÞ ≥ nCMBðω; tÞ; ð6Þ

which bounds the CMB spectrum by the Rayleigh-Jeans
law with temperature TRJðtÞ. This places a constraint on the

value of TRJðtÞ from obtained data of the cosmological
excess at 21 cm emission or absorption signal [9].
One obtains the following inequalities for the number of

photons per unit volume nCMBðtÞ and the internal energy
per unit volume uCMBðtÞ with the aid of inequality (4):

nCMBðtÞ ¼
Z

∞

0

dωnCMBðω; tÞ ≥
2ζð3Þ
π2ðcℏÞ3

ðkTRJðtÞÞ3
ðCðtÞÞ2 ; ð7Þ

where ζð3Þ is the Riemann’s zeta function and

uCMBðtÞ ¼
Z

∞

0

dωℏωnCMBðω; tÞ ≥
π2

15ðcℏÞ3
ðkTRJðtÞÞ4
ðCðtÞÞ3 ;

ð8Þ

respectively.
The ratio of the internal energy per unit volume uCMBðtÞ

to the internal energy per unit volume uPðtÞ of a Planckian
spectrum with temperature TCMBðtÞ is

uCMBðtÞ
uPðtÞ

≥
�

1

CðtÞ
�
3
�
TRJðtÞ
TCMBðtÞ

�
4

; ð9Þ

where

nPðω; tÞ ¼
1

π2
ω2

c3
1

eℏω=kTCMBðtÞ − 1
ð10Þ

and

uPðtÞ ¼
Z

∞

0

dωℏωnPðω; tÞ: ð11Þ

Note, in particular, that if CðtÞ ¼ 1 and TRJðtÞ > TCMBðtÞ,
then the present CMB is “hotter” than a blackbody
radiation with temperature TCMB ¼ 2.725K, viz.,
uCMBðtÞ > uPðtÞ. Therefore, if TRJðtÞ > TCMBðtÞ, then
one must have CðtÞ > 1 to allow the present CMB to be
“cooler” than a blackbody radiation with temperature
TCMB.
Actually, from (4) one has

nCMBðω; tÞ >
1

π2
ω2

c3
1

exp ½ℏω=kTCMBðtÞ� − 1
; ð12Þ

if CðtÞ ¼ 1 and TRJðtÞ > TCMBðtÞ and so there would be a
photon number enhancement for all values of ω, which
contradicts present CMB data.

IV. ILLUSTRATIVE EXAMPLE

Recent works suggest a CMB that is very close to a
Planckian spectrum but with a significant increase of
photon counts in the RJ tail [5]. We present a simple
example of the distortions of the CMB, from that of a pure
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Planckian spectrum with temperature TCMB, that follows
from the integral representation (2). Consider

uCMBðωÞ ¼
ω3

π2

�
C1

eω=T1 − 1
þ C2

eω=T2 − 1

�
; ð13Þ

where we have chosen ℏ ¼ c ¼ k ¼ 1. One has from (3)
and (5) that

C ¼ C1 þ C2 and TRJ ¼ C1T1 þ C2T2: ð14Þ

Let C1¼C2¼1 and T1¼0.999TCMB and TRJ¼1.060TCMB,
which implies that T2 ¼ 0.061TCMB.
Figure 1 shows the plots for the upper bound given

in (6) (green), the lower bound in (4) (red), our example
in (13) (blue), and the Planckian blackbody spectrum
in (12) (black). The present temperature of the CMB is
TCMB ¼ 2.725K. Note that the blue plot is between the red
and the green, which will always be the case. The dot in the
green plot at ω=TCMB ¼ 0.0251 represents the upper bound
(6) for the 21 cm photons for TRJ ¼ 1.060TCMB. Note that
the observation of the absorption signal of 21 cm photons
will determine the maximum possible value of TRJ.
Figure 2 shows plots for our example in (13) and the

Planckian blackbody spectrum in (12) (black). The plots
cross at ω=TCMB ¼ 0.360 (not shown) with the higher
values of the blue plot over the black plot representing the
enhancement of photons over that of the blackbody
radiation. The enhancement of photons in the RJ tail does
not give rise to an increase in the internal energy of our
example (13) over that of the blackbody radiation given
in (12). In fact, the internal energy per unit volume of both
spectra are about the same since the contribution of the

spectrum with temperature T2 in (13) is negligible in
comparison to the overall internal energy per unit volume.
Figure 3 shows the region of maximum difference

between our example (13) and the blackbody radiation
in inequality (12). The difference between the two plots for
TRJ ¼ 1.060TCMB is 0.03% at x ¼ 2.82, where the black-
body radiation attains its maximum value. Therefore, the
model of interacting DR quanta that are much softer, but
more numerous than CMB photons [5] may result in
actually “cooling” the CMB radiation even though TRJ >
TCMB implies the enhancement of photons in the RJ tail,
viz., the “heating-up” of low-frequency photons.
It is important to remark that CðtÞ ¼ 1 is in total

disagreement with the data for the CMB. The lower bound
(4) implies for TRJ ¼ 1.060TCMB, that is, a 6% increase of

FIG. 1. Plots of the upper bound given in (6) (green), the lower
bound in (4) (red), our example in (13) (blue) and the Planckian
blackbody spectrum in (12) (black) at the temperature of the
CMB as observed in the present day, viz., TCMB ¼ 2.725K. The
dot in the green plot at ω=TCMB ¼ 0.0251 represents the upper
bound (6) for the 21 cm photons for TRJ ¼ 1.060TCMB.

FIG. 2. The blue plot represents our example (13) and the black
that of the blackbody radiation in (12). The plots cross at
ω=TCMB ¼ 0.360 (not shown) with the higher values of the blue
plot over the black plot representing the enhancement of photons
over that of the blackbody radiation with temperature TCMB.

FIG. 3. Region of maximum difference between our example
(13) and the blackbody radiation in inequality (12).
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the temperature TRJ over TCMB, that at x ¼ 2.82, which is
near the peak of the blackbody radiation, the lower bound
(4) with CðTÞ ¼ 1 is 19% higher than the blackbody
radiation and so in total disagreement with the data.
This, of course, implies that CðtÞ > 1, which is the case
for our example (13) of the two-temperature approximation
to the integral (2) and indicates an additional cosmological
contribution to the present CMB besides the contribution of
the original remnant of the big bang.

V. SUMMARY AND CONCLUSION

We have established several constraints on the
spectrum of the CMB that follow from the integral

representation (2). One obtains an upper bound (6) to
the spectrum given by the Rayleigh-Jeans law with
temperature TRJ and a lower bound given by (4)
[10,11]. Observations of the absorption signal of the
21 cm photons set an upper bound to the value of TRJ.
Also, if TRJ > TCMB, then we must have that CðtÞ > 1 in
(5) which requires additional cosmological sources which
when added to the remnant radiation from the big bang
give us the present CMB. We believe that the integral
representation (2) for nonthermal radiation may be con-
sidered as an additional constraint to other cosmological or
astrophysical constraints in the study of the distortions of
the CMB brought about by new physics particles or fields.
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