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We discuss the theory of pulsar-timing and astrometry probes of a stochastic gravitational-wave
background with a recently developed “total-angular-momentum” (TAM) formalism for cosmological
perturbations. We review the formalism, emphasizing in particular the features relevant for this work and
describe the observables we consider (i.e., the pulsar redshift and stellar angular displacement). Using the
TAM approach, we calculate the angular power spectra for the observables and from them derive angular
auto- and cross-correlation functions. We provide the full set of power spectra and correlation functions not
only for the standard transverse-traceless propagating degrees of freedom in general relativity, but also for
the four additional non-Einsteinian polarizations that may arise in alternative-gravity theories. We discuss
how pulsar-timing and astrometry surveys can complement and serve as cross checks to one another and
comment on the importance of testing the chirality of the gravitational-wave background as a tool to
understand the nature of its sources. A simple rederivation of the power spectra from the plane-wave
formalism is provided in an Appendix.
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I. INTRODUCTION

Efforts to detect a stochastic gravitational-wave back-
ground using pulsar-timing arrays have been around for
almost three decades [1]. There are now three major efforts:
the Parkes Pulsar Timing Array [2,3], North American
Nanohertz Observatory for Gravitational Waves [4], and
the European Pulsar Timing Array [5]. The three collabo-
rate through an International Pulsar Timing Array (IPTA)
[6]. The effects of gravitational waves on the pulse arrival
times from pulsars were worked out presciently first in
Refs. [7,8]. The signature of a stochastic gravitational-wave
background is the characteristic angular correlation in the
timing residuals worked out by Hellings and Downs [9].
The measurements, which span timescales of years, are
sensitive primarily to gravitational waves with frequencies
∼10−9 sec−1, though constraints at lower frequencies have
been considered as well [10]. The endeavor is particularly
exciting given that a stochastic background in this frequency
range is expected from the mergers of supermassive-black-
hole binaries [11–15]. The first data release from IPTA has
placed a 2σ limit on the dimensionless strain of the stochastic
background to be 1.7 × 10−15 at a frequency of 1 yr−1, with
an assumed spectral index of−2=3, and significant improve-
ment in sensitivity is expected with the next dataset [6].
See Refs. [16–20] for recent reviews of the effort to detect
gravitational waves with pulsar timing.
Attention has recently turned to the possibility to detect a

stochastic gravitational-wave background with astrometry
[21,22], which probes frequencies H0 ≲ f ≲ 1 yr−1

(10−18 s−1 ≲ f ≲ 10−8 s−1) that overlap with and bridge
the frequency gap between cosmic microwave background
polarization measurements and pulsar-timing measure-
ments [23]. Book and Flanagan [24] provided the first
detailed characterization of the expected signals in terms
of angular correlation functions and power spectra. Their
work has been extended to the search for point sources of
gravitational waves [25] and to non-Einsteinian polariza-
tions [26,27], the latter of which echoes analogous work for
pulsar timing [28,29]. Astrometric data from GAIA and
extragalactic radio sources constrain the energy density
(integrated over ln f) of the stochastic background to be
< 0.011 for frequencies 6×10−18 s−1≲f≲10−9 s−1 [23].
Future astrometry missions [30] might provide improved
data for such measurements.
Here we extend previous work on the calculation of

angular correlation functions and angular power spectra
for pulsar-timing and astrometry probes of the
gravitational-wave background by employing a “total-
angular-momentum” (TAM) formalism developed recently
[31,32] for the study of cosmological perturbations. In most
discussions of cosmological perturbations and stochastic
gravitational-wave backgrounds, the spacetime-metric per-
turbation is decomposed into plane waves eik·x, as these
provide a simple and familiar complete orthonormal basis.
For gravitational waves in general relativity, there are two
polarizations, typically taken to be þ and ×, with polari-
zation vectors ϵþabðkÞ and ϵ×abðkÞ associated with each wave
vector k. The simplicity is lost, though, when projecting
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these plane waves onto observables on the spherical sky.
The TAM approach has been applied to simplify calcu-
lations of weak gravitational lensing [31], angular three-
point functions [32], and circular polarization of the cosmic
microwave background [33].
As elaborated below, the TAM formalism provides an

alternative complete orthonormal set of basis functions:
the TAM waves. In this formalism, the wave vector k is
replaced by quantum numbers klm, where k is a wave
number magnitude (equivalent to k) and lm are total-
angular-momentum quantum numbers. Observables on
the sphere are similarly quantified in terms of quantum
numbers lm, and any such observable receives contribu-
tions only from TAM waves of the same lm. This leads, as
we will see, to simple derivations of the predictions for
harmonic-space observables. The þ and × polarizations in
the plane-wave expansion are replaced in TAM waves by
two transverse-tensor polarizations which we call “tensor
E” (TE) and “tensor B” (TB). We decompose the two scalar
polarizations that may arise in alternative-gravity theories
into scalar-transverse (ST), sometimes referred to as
“breathing,” and scalar-longitudinal (SL) modes to corre-
spond to the decomposition used in prior work. There are
also two vector polarizations that we call “vector E” (VE)
and “vector B” (VB).
Our paper is organized as follows: in Sec. II we first

describe our characterization of the observables. For pulsar
timing, this is pulse frequency, and for astrometry the
angular positions, at two different epochs. These are then
translated to spherical-harmonic coefficients from which
correlation functions and power spectra are derived. We
provide the complete set of six two-point angular correla-
tion (and cross-correlation) functions for a combined
pulsar-timing/astrometry survey and relate them to the
six angular power spectra. We summarize briefly our main
results in Sec. III before going through the calculations
in Sec. IV, first for the redshift and then for astrometry.
This section also discusses the results for the various power
spectra and autocorrelation functions. Section V presents
results for the redshift-astrometry cross-correlations. In
Sec. VI we discuss the range of gravitational-wave frequen-
cies probed by pulsar timing and astrometry, point out that
information on the local three-dimensional metric perturba-
tion can be reconstructed from combined angular/time-
sequence information, and emphasize the importance of
pursuing the parity-violating observables thatmay arise from
chirality in the gravitational-wave background. Section VII
provides concluding remarks. In Appendix A we provide a
brief reprise of Ref. [31], emphasizing in particular the
aspects relevant for the study of a stochastic gravitational-
wave background, as well as a few new results needed for
our calculations. Appendix B provides some Legendre-
polynomial relations needed to translate angular power
spectra and angular correlation functions. Appendix C
describes a simple alternative technique, based on the

plane-wave formalism, to derive all of the power-spectrum
results. Appendix D derives the relations between angular
power spectra and correlation functions.

II. OBSERVABLES

We begin by describing the observables. For simplicity/
clarity, we assume that there are PTA and astrometry
measurements performed at two times t and tþ Δt sepa-
rated by a time interval Δt. The generalization to more
realistic observational cadences is described briefly later.

A. Spherical-harmonic coefficients and power spectra

We assume a multitude of pulsars spread throughout the
sky and that a pulsar in a direction n̂ is observed to have a
redshift zðn̂; tÞ at time t. Since, in practice, a single pulse is
typically buried in noise and is thus undetectable, the
relevant observable is the timing residual

R
t dt0zðn̂; t0Þ,

obtained by accumulating many pulses. To simplify the
discussion in this paper, we consider the observable to
be the change ðδzÞðn̂; tÞ≡ zðn̂; tþ ΔtÞ − zðn̂; tÞ over the
time interval Δt.1 These observational “data” can be
represented alternatively and equivalently in terms of the
spherical-harmonic coefficients,

zlmðtÞ ¼
Z

dn̂Y�
lmðn̂ÞðδzÞðn̂; tÞ; ð1Þ

where Ylmðn̂Þ are spherical harmonics. If the zlmðtÞ are
provided, the change in redshift can be obtained from the
inverse transformation,

ðδzÞðn̂; tÞ ¼
X∞
l¼0

Xl
m¼−l

zlmðtÞYlmðn̂Þ: ð2Þ

For astrometry measurements, we assume that each
source, with its proper motion already accounted for, in
the survey has moved an angular distance ðδnÞa over the
time interval Δt due to the presence of a gravitational-wave
background. From such measurements for sources spread
over the sky, we obtain a deflection-angle field ðδnÞaðn̂Þ,
which is a vector field (represented with the single abstract
index a) that lives in the celestial sphere and is a function
of position on the sky. It can thus be expanded in vector
spherical harmonics [as defined in Eq. (38) in Ref. [31] ],2

ðδnÞaðn̂Þ ¼
X
lm

½ElmYE
ðlmÞaðn̂Þ þ BlmYB

ðlmÞaðn̂Þ�; ð3Þ

1Using the simplified observable ðδzÞðn̂; tÞ does not affect our
main results, which relate to the angular dependence of corre-
lation functions.

2Appendix B in Ref. [34] provides useful properties of these
harmonics, although their vector harmonics are smaller than
ours by a factor of

ffiffiffi
2

p
.
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in terms of spherical-harmonic coefficients,

Elm ¼
Z

dn̂ðδnÞaðn̂ÞYE
ðlmÞaðn̂Þ;

Blm ¼
Z

dn̂ðδnÞaðn̂ÞYB
ðlmÞaðn̂Þ: ð4Þ

The values that the zlm, Elm, and Blm take depend on
how our coordinate system is chosen. The power spectra

CXX
l ¼ 1

2lþ 1

X
m

jXlmj2; ð5Þ

for X ¼ fz; E; Bg are, on the other hand, rotational invar-
iants. Here CEE

l andCBB
l are power spectra for, respectively,

the E and B modes. There are three additional cross-
correlation power spectra,

CXX0
l ¼ 1

2lþ 1

X
m

XlmðX0
lmÞ�; ð6Þ

for XX0 ¼ fzE; zB; EBg that are also rotationally invariant.
The cross-spectrum CEB

l is expected, given the opposite
parities of E and B, to be zero unless the gravitational-wave
background breaks parity. The redshift zðn̂; tÞ is associated
with the longitudinal vector harmonic, which has the same
parity as E. Thus, we also expect CzB

l to be zero and CzE
l to

be nonzero if parity is not broken.
If the signal is due to a statistically isotropic stochastic

background, then we expect

hXlmðX0
l0m0 Þ�i ¼ CXX0

l δll0δmm0 ; ð7Þ

for all six XX0 ¼ fzz; EE;BB; zE; zB; EBg. This expres-
sion says that the variance of any Xlm is CXX

l , and the
covariance of any two different ones is CXX0

l . It also tells us
that each spherical-harmonic coefficient is statistically
independent. If the background is moreover a Gaussian
random field (e.g., as arises for inflationary gravitational
waves), then each Xlm (actually, its real and imaginary
components) is chosen from a Gaussian distribution. In this
case, the variance with which the theoretical expectation for
CXX
l can be obtained in the ideal case is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2lþ 1Þp

CXX
l

(with analogous expressions for the covariances as given,
for example, in Ref. [35]). In practice, the most likely
background, from supermassive black holes (SMBHs), is
unlikely to be Gaussian, and so this cosmic variance will be
a bit different [36,37].
The statistical independence of the Xlm gives the

harmonic approach (i.e., working with the Xlm and
CXX0
l ) a conceptual advantage over the configuration-space

approach [i.e., working with ðδzÞðn̂Þ and ðδnÞaðn̂Þ]. The
advantage may not be so clear in practice, though, given the
potentially limited number of pulsars or stellar sources or

their irregular distribution in the sky. If the local stochastic
background is dominated by the signal from a handful
of nearby sources, then the background will be non-
Gaussian and depart from statistical isotropy. This, too,
compromises the conceptual advantage of the Xlm over the
configuration-space description. For these reasons, it is
beneficial to have at hand also a description of the
correlations in terms of real-space correlation functions,
to which we now turn.

1. Correlation functions

The angular two-point autocorrelation function for the
redshift is

CzzðΘÞ≡ hðδzÞðn̂ÞðδzÞðm̂Þin̂·m̂¼cosΘ

¼
X
l

2lþ 1

4π
Czz
l PlðcosΘÞ; ð8Þ

where PlðcosΘÞ are Legendre polynomials and the angle
brackets denote an average over all pairs of points separated
by an angle Θ. This (as we will rederive below) is given by
the Hellings-Down curve for an isotropic stochastic back-
ground of transverse-traceless gravitational waves.
Rotationally invariant correlation functions for the angu-

lar deflection can be written in terms of the scalar functions
Eðn̂Þ and Bðn̂Þ, obtained by taking the divergence and curl,
respectively, of the vector field; these are the correlation
functions βEEðΘÞ and βBBðΘÞ in Ref. [24] and the EEðΘÞ
and BBðΘÞ functions in Ref. [27]. Although well-defined
mathematically, these scalars can only be computed from a
smooth full-sky map and are unstable to reconstruction
errors. We therefore work instead (as have prior authors
[24,26,27]) with rotationally invariant correlation functions
for vector fields (following the analogous approach in
Ref. [35] for tensor fields).
Consider the correlation of a vector field ðδnÞaðn̂Þ at a

point n̂ on the sky with a value ðδnÞaðm̂Þ at another point m̂.
We can then consider the great arc connecting these two
points on the sphere and then write these vectors in terms
of components ðδnÞk and ðδnÞ⊥ that are parallel and
perpendicular, respectively, to that great arc. There are
then two autocorrelations,

CkkðΘÞ ¼ hðδnÞkðn̂ÞðδnÞkðm̂Þin̂·m̂¼cosΘ;

C⊥⊥ðΘÞ ¼ hðδnÞ⊥ðn̂ÞðδnÞ⊥ðm̂Þin̂·m̂¼cosΘ; ð9Þ

and also a cross-correlation,

C⊥kðΘÞ ¼ hðδnÞ⊥ðn̂ÞðδnÞkðm̂Þin̂·m̂¼cosΘ; ð10Þ

that is nonzero only if parity is somehow broken (i.e., if
CEB
l ≠ 0). There are also two angular cross-correlation

functions,
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CzkðΘÞ ¼ hðδzÞðn̂ÞðδnÞkðm̂Þin̂·m̂¼cosΘ;

Cz⊥ðΘÞ ¼ hðδzÞðn̂ÞðδnÞ⊥ðm̂Þin̂·m̂¼cosΘ; ð11Þ

between the redshift and the two components of the
deflection angle aligned with the great arc connecting
the points being correlated. Again, the latter of these
vanishes if there is no parity breaking (i.e., if CzB

l ¼ 0).
To summarize, there are, for the combined astrometry/
pulsar-timing survey, six correlation functions (kk, ⊥⊥, zz,
k⊥, zk, and z⊥).
The six sets of correlation functions contain the same

information as the six sets of power spectra. They are
related to the power spectra through [in addition to Eq. (8)]

CkkðΘÞ ¼
X
l

2lþ 1

4π
½CEE

l Gðl1ÞðΘÞ þ CBB
l Gðl2ÞðΘÞ�;

ð12Þ

C⊥⊥ðΘÞ ¼
X
l

2lþ 1

4π
½CEE

l Gðl2ÞðΘÞ þ CBB
l Gðl1ÞðΘÞ�;

ð13Þ

CzkðΘÞ ¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
CzE
l Yðl1ÞðΘ; 0Þ

¼
X
l

2lþ 1

4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp CzE

l P1
lðcosΘÞ; ð14Þ

Cz⊥ðΘÞ ¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
CzB
l Yðl1ÞðΘ; 0Þ

¼
X
l

2lþ 1

4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp CzB

l P1
lðcosΘÞ; ð15Þ

C⊥kðΘÞ ¼
X
l

2lþ 1

4π
CEB
l ½Gðl1ÞðΘÞ −Gðl2ÞðΘÞ�; ð16Þ

where

Gðl1ÞðΘÞ≡ −
1

2

�
1

lðlþ 1ÞP
2
lðcosΘÞ − P0

lðcosΘÞ
�
;

Gðl2ÞðΘÞ≡ −
1

lðlþ 1Þ
P1
lðcosΘÞ
sinΘ

; ð17Þ

and Pm
l ðcosΘÞ are associated Legendre polynomials.

The inverse of these relations are

Czz
l ¼ 2π

Z
1

−1
d cosΘCzzðΘÞPlðcosΘÞ; ð18Þ

CEE
l ¼ 2π

Z
1

−1
d cosΘ½CkkðΘÞGðl1ÞðΘÞ

−C⊥⊥ðΘÞGðl2ÞðΘÞ�; ð19Þ

CBB
l ¼ 2π

Z
1

−1
d cosΘ½−CkkðΘÞGðl2ÞðΘÞ

þC⊥⊥ðΘÞGðl1ÞðΘÞ�; ð20Þ

CEB
l ¼ 2π

Z
1

−1
d cosΘC⊥k½Gðl1ÞðΘÞ þ Gðl2ÞðΘÞ� ð21Þ

CzE
l ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Z
1

−1
d cosΘCzkðΘÞP1

lðcosΘÞ;

CzB
l ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Z
1

−1
d cosΘCz⊥ðΘÞP1

lðcosΘÞ: ð22Þ

Appendix D derives these relations.

III. PREDICTIONS FOR POWER SPECTRA:
SUMMARY OF RESULTS

We now provide results for the six power spectra CXX0
l .

We provide these results for each of the six possible
gravitational-wave polarizations. As we will see, all of
our results (except for those for the longitudinal polariza-
tion, about which we will say more below) appear in the
form,

CXX0;α
l ¼ 32π2FX;α

l ðFX0;α
l Þ�

×
Z

df
6H2

0ΩαðfÞ
ð2πÞ3f3 WXðfÞWX0 ðfÞ; ð23Þ

where X and X0 can be z, E, or B, and the polarization α can
be TE or TB (in general relativity), or more generally ST or
SL (scalar modes), or VE or VB (vector modes).3 Here, the
projection factors FX;α

l wind up taking relatively simple
forms, summarized in Table I. The window functions
WXðkÞ are related to the cadence of observations. For
the simple assumption that observations are made at two
times separated by an interval Δt, WXðkÞ ¼ sinðπfΔtÞ for
all X. More generally, WEðkÞ ¼ WBðkÞ, but WzðkÞ (which
comes from different observations) may differ. We make
comments about such generalizations in Sec. VI A. In the
above equation, ΩαðfÞ is the contribution, per logarithmic
frequency interval, of the type-α gravitational wave to the
critical density, and H0 is the Hubble parameter.
The second line of Eq. (23) contributes to the overall

amplitude of the correlation function and incorporates all
frequency dependencies relating to the gravitational wave

3Note that statistical homogeneity requires ΩTEðfÞ ¼ ΩTBðfÞ
and ΩVEðfÞ ¼ ΩVBðfÞ [38]. The energy densities in the SL and
ST modes are, however, not required to be the same.
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and the observation. Omitting this line from Eq. (23), we
find the resulting angular correlations functions agree with
previous results. We identify our CkkðΘÞ and C⊥⊥ðΘÞ for
the tensor polarizations with −σðΘÞ sin2 Θ and αðΘÞ sin2Θ,
respectively, in Ref. [24]. We also identify our CkkðΘÞ,
C⊥⊥ðΘÞ, and CzkðΘÞ with ΓxθðΘÞ, ΓyϕðΘÞ, and ΓzθðΘÞ,
respectively, for various polarizations in Ref. [26].

IV. CALCULATION OF THE POWER SPECTRA
AND CORRELATION FUNCTIONS

We now calculate the projection factors FX;α
l , and thus

the power spectra.

A. The redshift

The redshift z (the fractional frequency shift relative
to the emitted frequency) of a photon observed from a
pulsar at a distance rs in a direction n̂ in the presence of
a spacetime-metric perturbation habðt; xÞ is [e.g., from
Eq. (23.10) in Ref. [39] ],

zðt; n̂Þ ¼ 1

2

Z
t

t−rs
dt0

∂
∂t0 n

anbhabðt0; xðt0ÞÞ; ð24Þ

where ∂=∂t0 acts only on the first argument, and not the
time dependence in xðt0Þ.
Now consider a perturbation,

habðx; tÞ ¼ 4πilhαklmΨ
k;α
ðlmÞabðxÞe−ikt; ð25Þ

due to a single TAM wave of polarization α with amplitude
hαklm. We assume, with the e−ikt time dependence, that the
waves propagate at the speed of light with angular
frequency ω ¼ k. For the calculation of the redshift, we
need the quantity nanbΨk;α

ðlmÞabðxÞ, which can be written as a
spherical harmonic Ylmðn̂Þ times some radial function

−RL;α
l ðkrÞ provided in Appendix A. For example, the

radial function for TE is RL;TE
l ðkrÞ ¼ −NljlðkrÞ=ðkrÞ2,

where Nl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þ!=½2ðl − 2Þ!�p
and jlðkrÞ is the

spherical Bessel function, and it vanishes for VB
and TB. We then find that the redshift z due to a single
α mode is

zðn̂; tÞ ¼ −
i
2
4πilhαklmYlmðn̂Þe−ikt

Z
krs

0

dxRL;α
l ðxÞeix;

ð26Þ

with x ¼ kr. For example, for TE, this is

zðn̂; tÞ ¼ i
2
4πilhTEklmNlYlmðn̂Þe−ikt

Z
krs

0

dx
jlðxÞ
x2

eix:

ð27Þ

We then take the distant-source limit krs → ∞ and thus
infer that

zðn̂; tÞ ¼ 4πilFz;α
l hαklmYlmðn̂Þe−ikt; ð28Þ

with

Fz;α
l ¼ −

i
2

Z
∞

0

dxRL;α
l ðxÞeix: ð29Þ

For example, for the TE mode, the integral evaluates to

Fz;TE
l ¼ il

2
N−1

l : ð30Þ

The analogous results for the other five polarizations are
provided in Table I.
The pulsar-timing spherical-harmonic coefficient for the

observable change in the pulsar frequency, due to mode α,
is then obtained, differencing the result at two different
times separated by Δt, by

zlmðtÞ ¼ 4πilFz;α
l hEklmðe−ikΔt − 1Þe−ikt; ð31Þ

where here t is the time of the initial observation. This
particular TAM wave then contributes

ðCzz
l Þklm ¼ ð4πÞ2jFz;α

l j2jhEklmj2½2WðkÞ�2; ð32Þ

to the power spectrum for the redshift observable.
Here, WðkÞ≡ sinðkΔt=2Þ is the frequency-space window
function.
Now suppose we have a stochastic background charac-

terized by a power spectrum PhðkÞ, using the conventions/
definitions of Sec. V. A in Ref. [31]. We then infer that
each spherical-harmonic coefficient zlm takes on a value
selected from a distribution with zero mean and variance

TABLE I. The projection factors that relate the amplitude of a
given TAM wave to its associated observables. These also
determine the power spectra, through Eq. (23). The first
column X indicates the gravitational-wave polarization. Here,
Nl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þ!=½2ðl − 2Þ!�p

.

X FE;X
l FB;X

l Fz;X
l

ST i
6
δl1 0 − 1

2
ffiffi
2

p ðδl0 þ i
3
δl1Þ

SL − i
3
ffiffi
2

p δl1 þ il

2
ffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p 0 − il
4
lnðkrsÞ

VE 2i
3
ffiffi
2

p δl1 − ilffiffi
2

p
lðlþ1Þ

0 − i
3
δl1 þ ilffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðlþ1Þ
p

VB 0 i
3
ffiffi
2

p δl1 − ilffiffi
2

p
lðlþ1Þ

0

TE −il N−1
lffiffiffiffiffiffiffiffiffiffiffi

lðlþ1Þ
p 0 il

2
N−1

l

TB 0 −il N−1
lffiffiffiffiffiffiffiffiffiffiffi

lðlþ1Þ
p 0
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hjzlmj2i ¼ Czz
l , where the angular power spectrum Czz

l is
obtained by summing over all α-mode TAMwaves with the
same TAM quantum numbers lm. Thus,

Czz;α
l ¼

X
k

ðCzz
l Þklm¼ 4

π
jFz;α

l j2
Z

k2dkPhðkÞ½WðkÞ�2: ð33Þ

We then use Eq. (A4) to recover the form given in Eq. (23).

1. Specific results

Transverse-traceless modes. We begin with the trans-
verse-traceless modes that propagate in general relativity.
The results in this case are obtained exclusively from the
TE modes, since TB does not contribute to the redshift. We
obtain from Eq. (33),

Czz;GW
l ¼ 12H2

0N
−2
l

π

Z
df

ΩGWðfÞ
f3

jWzðfÞj2; ð34Þ

where we used ΩTEðfÞ ¼ ΩGWðfÞ=2, and ΩGWðfÞ is the
gravitational-wave energy density (summing over both
polarization states). Since Cl ∝ l−4 at larger l, the power
spectrum is very highly peaked at the smallest multipole
moments, and particularly the quadrupole. The l depend-
ence of the power spectrum is the same for any functional
form of ΩGWðfÞ, a consequence of the distant-source
limit—the observations probe the local spacetime-metric
perturbation. Using the results of Appendix B, the angular
correlation function is found, for the canonical transverse-
traceless modes, to be

Czz;GWðΘÞ ¼ 3H2
0

2π2

Z
df

ΩGWðfÞ
f3

jWzðfÞj2HDðθÞ; ð35Þ

where HDðΘÞ is the famous Hellings-Downs curve pro-
vided in Eq. (B8). The angular correlation function is
shown in Fig. 1.
Vector modes. The redshift power spectrum for the

vector modes is exactly as in Eq. (34), but with N−2
l →

½2lðlþ 1Þ�−1 − ð2=9Þδl1. Simple algebraicmanipulation of
results in Appendix B yields the vector analog,

HDvðΘÞ ¼ 2
X∞
l¼1

ð2lþ 1Þ
�

1

2lðlþ 1Þ −
2

9
δl1

�
PlðcosΘÞ

¼ −2 ln ½sinðΘ=2Þ� − 1 −
4

3
cosΘ; ð36Þ

which is shown in Fig. 1 and agrees with results obtained
from real-space calculations [26,28]. The logarithmic diver-
gence as Θ → 0 arises in the harmonic approach given that
the summand is∼l−1 at large l. This divergence is regulated
by taking krs finite. In practice, the divergence is irrelevant
given the finite density of pulsars on the sky.

Scalar-transverse modes. The power spectrum is again
as in Eq. (34), but now with N−2

l → ðδl0 þ δl1=9Þ=8.
The Hellings-Downs analogue then becomes simply
1=4þ ð1=12Þ cosΘ, as shown in Fig. 1 and again in
agreement with prior work [28]. In principle, the monopole
would be observable if we had a complete handle on timing
information from a terrestrial standard clock. In practice,
though, errors in timing and timing models can produce
monopolar correlations between pulsars [40], rendering
the extraction of the monopole difficult. There is also no
cross-correlation with angular deflections, since there is no
monopole for angular deflections.
Scalar-longitudinal. The radial function RL;SL

l for the
SL mode contains a term ∝ jlðxÞ that renders the radial
integral divergent in the distant-source limit krs → ∞. This
is a consequence of the fact that the light ray from a source
aligned with the direction of propagation of a gravitational
wave can “surf” the gravitational wave and (unlike the
other modes) experiences a stretching in this same direc-
tion. The magnitude of the redshift thus accrues monoton-
ically as the light ray propagates from the source. The
integral can be performed numerically (or written in terms
of hypergeometric functions, which are then determined
numerically), but can, using jlðxÞ∼x−1cosðx−ðlþ1Þπ=2Þ
for x ≫ l, be approximated in the krs ≫ 1 limit by

Fz;SL
l ðkÞ ¼ −

il

4
lnðkrsÞ: ð37Þ

Note that this result, unlike all the others we encounter in
this paper, depends on the wave number k and on the
source distance rs. It is also, strictly speaking, valid only for
krs ≫ l. Given the logarithmic dependence on both k and
rs, we can obtain rough estimates by fixing the logarithm
using some characteristic k [set, perhaps by the observatio-
nally preferred frequency f ¼ k=ð2πÞ ≃ yr−1] and source
distance (perhaps ∼3 kpc). With these canonical values
krs ∼ 6 × 104 (justifying the krs ≫ l assumption), and
the logarithm is roughly 10, explaining the roughly order-
of-magnitude enhancement inferred numerically in previous
work [26,27]. Since the logarithm grows very slowly, the
asymptotic expression in Eq. (37) is unlikely to be numeri-
cally precise, possibly with significant contributions from
subdominant terms.
The multipole-moment (l) dependence of the power

spectrum is also interesting. In the distant-source limit, it is
independent of l. Such a power spectrum is that for white
noise, which exhibits a correlation function that is nonzero
only at zero lag (formally, a Dirac delta function). This may
account for numerical evidence for a rapid increase of
CzzðΘÞ as Θ → 0 for the SL mode. Phenomenologically, it
implies that the SL mode gives rise to fluctuations that are
uncorrelated from one point on the sky to the other. Since
the large-x approximation for jlðxÞ used to obtain Eq. (37)
breaks down for l≳ krs ∼ 6 × 104, we surmise that the
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correlation should be nonzero at angular separations
Θ≲ 180°=l ≃ 10 arcsec.
We quantify these statements by augmenting the SL

projection factor with a Gaussian in l, to Fl ¼
−ðil=4Þ lnðkrsÞe−l2=2l2max , to account for the breakdown
in the distant-source limit at l≳ lmax. With this, the
“Hellings-Downs” curve for the SL modes becomes

HDSLðΘÞ ¼
1

4

X
l¼0

ð2lþ 1ÞPlðcos θÞe−l2=l2max

≃
l2
max

4
e−l

2
maxθ

2

: ð38Þ

B. Angular deflections

As derived in prior work [24], the angular deflection of a
light ray observed at time t propagating in the n̂ direction
from a source at distance rs is

ðδnÞaðn̂; tÞ¼Πacnb
�
−
1

2
hbcðt;0Þþ

1

rs

Z
rs

0

dr½hbcðt−r;rn̂Þ

−
rs− r
2

nd∂chbdðt− r;rn̂Þ�
�
; ð39Þ

where Πabðn̂Þ ¼ gab − n̂an̂b projects onto the plane
orthogonal to n̂ (i.e., onto the plane of the sky). Since
we are not concerned with sources at cosmological dis-
tances, we take the spacetime metric gab to be Minkowski.
Using the relation [31],

n̂bn̂d∂chbd ¼ ∂cðn̂bn̂dhbdÞ −
2

kr
Πcbn̂dhbd; ð40Þ

the angular deflection can be rewritten,

ðδnÞaðn̂;tÞ¼Πac

�
−
1

2
nbhbcðt;0Þþ

Z
rs

0

dr

�
1

r
nbhbcðt−r;rn̂Þ

−
rs−r
2rs

∂cnbndhbdðt−r;rn̂Þ
��

: ð41Þ

Now consider a single TAM wave of polarization α,
quantum numbers klm, and amplitude hαklm. The first term
in Eq. (41), the “observer” term, is obtained by evaluating
the coefficients of YE

ðlmÞaðn̂Þ and YB
ðlmÞaðn̂Þ in Eq. (A9) at

r ¼ 0 (the projection operator Πac does not affect the E and
B vector spherical harmonics, since they are already
defined on the 2-sphere of the sky). These turn out to be
nonzero only for l ¼ 2 and only for the ST, SL, VE, and
TE coefficients of YE

ðlmÞaðn̂Þ. As a result the first term in

Eq. (41) evaluates to FE;αð0Þ
l YE

ðlmÞaðn̂Þ, with FE;αð0Þ
l ¼ cδl2

and c ¼ −
ffiffiffi
6

p
=30 for SL, c ¼ ffiffiffi

3
p

=30 for ST, and c ¼
ð5 ffiffiffi

2
p Þ−1 for VE and TE.

The second term in Eq. (41) (the first term in the
integral) receives contributions from all terms in Eq. (A9).
The contribution from these terms to the angular
deflection is

FX;αð1Þ
l ¼

Z
krs

0

dx
x
eixRX;α

l ðxÞ; ð42Þ

where the radial function RX;α
l ðxÞ is the coefficient of the

appropriate YX
ðlmÞaðn̂Þ in Eq. (A9), and X ¼ fE;Bg. The

integrals are all finite and easily evaluated in the distant-
source limit krs → ∞.
The last term in Eq. (41) receives, as discussed at the end

of Appendix A, contributions only from the YL
ðlmÞaðn̂Þ

terms in Eq. (A9). The evaluation of this term is then aided
by the relation Πab∇bYðlmÞðn̂Þ ¼ −M⊥aYðlmÞðn̂Þ=r ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

YE
ðlmÞaðn̂Þ=r, where M⊥a is the gradient oper-

ator on the sphere [31]. The contributions from these terms
to the angular deflection are

FE;αð2Þ
l ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
2

Z
krs

0

dx
x
eix

krs − x
krs

RL;α
l ðxÞ: ð43Þ

The integrals are again all finite and easily evaluated in the
distant-source limit krs → ∞.
Putting the results together, the angular deflection from

this TAM mode is

ðδnÞaðn̂Þ ¼ 4πilhαklme
−ikt½FE;α

l YE
ðlmÞaðn̂Þ þFB;α

l YB
ðlmÞaðn̂Þ�;

ð44Þ

where the FE;α
l and FB;α

l are the sums of the three individual
contributions and listed in Table I. Interestingly, the
observer terms for FE;α

l augment the radial-integral con-
tributions that arise for l ¼ 2, yielding very compact
expressions in the table. The corresponding power spectra,
as given in Eq. (23), are then obtained, following the same
steps as above for the redshift, by taking the difference
between the angular deflections evaluated at two different
times separated byΔt, and then squaring and then summing
over all wave numbers k for a given lm.

1. Specific results

Transverse-traceless modes. The power spectra for the
gravitational waves that appear in general relativity are

CEE;GW
l ¼ CBB;GW

l

¼ 12H2
0N

−2
l

πlðlþ 1Þ
Z

df
ΩGWðfÞ

f3
jWzðfÞj2; ð45Þ
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and we note that this is equal to ½lðlþ 1Þ�−1Czz;GW
l .

As a result, the correlation functions βEEðΘÞ ¼
βBBðΘÞ ∝ HDðΘÞ, as noted previously.4 The kk and ⊥⊥
correlation functions are easily evaluated numerically and
shown in Fig. 2. Although they are nominally obtained from
an infinite sum, numerically precise results can be obtained
from just the first few terms, given the steep drop of Cl with
l, as seen in Figs. 2 and 3.We have checked numerically that
these correlation functions agree with those in prior work.

They can also be shown analytically to agree by writing the
associated Legendre polynomials P2

lðxÞ and P1
lðxÞ in the

definitions of Gðl1ÞðxÞ and Gðl2ÞðxÞ in terms of Legendre
polynomials and then using the techniques of Appendix B.
The derivation is straightforward but not particularly illumi-
nating, and so we leave out the details.
Vector modes. The EE/BB power spectra for these

modes are again equal and turn out to be CEE;vector
l ¼

CBB;vector
l ∝ ½lðlþ 1Þ�−2 for l > 1, with an additional

contribution (that is the same for EE and BB) for l ¼ 1.
The E/B correlation functions βEEðΘÞ ¼ βBBðΘÞ ¼
HDvðΘÞ in this case turn out to be the same as the angular
redshift correlation (which can again be understood simply
from the arguments in Appendix C). Again, the rotationally
invariant angular correlation functions are shown in Figs. 2
and 3 and agree with those in Refs. [26,27].
Scalar modes. Statistical homogeneity implies equal TE

and TB powers for transverse-traceless modes and equal
VE and VB powers for vector modes. There is, however,
no corresponding symmetry requirement that the SL
and ST modes should have the same power [20,41]. The
relative amplitudes may depend on the details of the
alternative-gravity theory.5 For example, Brans-Dicke
theory has a massless scalar that excites the ST mode
[42]. In fðRÞ ¼ Rþ αR2 gravity, there is a single massive
scalar mode that introduces a mixture of SL and ST modes,
with a ratio dependent on α [43]. In the more general case
of Horndeski gravity, the trend is the same: a massless
scalar mode excites ST modes, while a massive scalar
excites both SL and ST modes [44]. The two modes must
therefore be considered separately.

FIG. 2. The CkkðΘÞ correlation functions for the transverse-
traceless tensor modes, vector modes, and the ST and SL modes.
They are normalized by omitting second line in Eq. (23). The
solid curves show the exact results in the distant-source limit, and
dashed curves show the results from truncating the multipole
expansion at lmax ¼ 5.

FIG. 3. The same as Fig. 2, but for the C⊥⊥ðΘÞ correlation
functions. The correlation functions are the same as CkkðΘÞ for
the vector and tensor modes.

FIG. 1. The CzzðΘÞ correlation functions for the transverse-
traceless tensor modes, vector modes, and the ST mode. They are
normalized by omitting second line in Eq. (23). The solid curves
show the exact results in the distant-source limit, and dashed
curves show the results from truncating the multipole expansion
at lmax ¼ 5.

4An explanation of this coincidence is provided in
Appendix C.

5We reiterate that the calculations in this work assume
gravitational waves propagate at the speed of light; if this is
not the case, the modified dispersion relation ωðkÞ must be used
in the expression for plane-wave propagation e−iωðkÞt.
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The EE correlation function βEEðΘÞ for the SL mode
exhibits a Dirac delta function with an added dipole, and for
the ST mode it is a pure dipole. The B-mode correlation
βBBðΘÞ ¼ 0 for both scalar modes. The rotationally invari-
ant angular correlation functions are shown in Figs. 2 and 3;
note that CkkðΘÞ and C⊥⊥ðΘÞ are unequal for these modes.
The angular correlations for the ST modes are simply
Ckk ¼ ð3=8πÞCEE

l¼1 cosΘ and C⊥⊥ ¼ ð3=8πÞCEE
l¼1.

V. REDSHIFT-DEFLECTION
CROSS-CORRELATION

Since the redshift and E-mode deflection angle both arise
from the same TE TAM waves, there is a cross-correlation
between these two observables characterized by a power
spectrum,

CzE
l ¼ hzlmE�

lmi: ð46Þ

Moreover, since the k integrands in the expressions for
the E-mode and redshift power spectra are identical, this
cross-correlation is exact (for concurrent PTA/astrometry
observations) in the distant-source limit; i.e.,

CzE
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CEE
l Czz

l

q
; ð47Þ

(except for the SL mode, for which the redshift is sensitive
to the location of the source, while the deflection is
dominated by the local metric perturbations, resulting in
essentially no cross-correlation). As a result, pulsar-timing
and astrometry probes of the stochastic gravitational-
wave background can be used to cross-check. This exact
cross-correlation moreover suggests that astrometry and

pulsar-timing surveys can be used to complement each
other to optimize sky coverage in the event that there are
blind regions in the sky in one survey or the other.
These cross-correlations can be obtained numerically

and are provided in Fig. 4. Again, the correlations are
well characterized by the lowest multipole moments. The
analytic results for CzkðΘÞ in Eqs. (53) and (55) of
Ref. [26], for tensor and vector modes, respectively, can
be obtained from the relation,

P1
lðcosΘÞ ¼

lðlþ 1Þ
2lþ 1

Plþ1ðcosΘÞ − Pl−1ðcosΘÞ
sinΘ

; ð48Þ

and those in Appendix B.

VI. GRAVITATIONAL-WAVE WINDOW
FUNCTIONS, POINTING, AND CHIRALITY

A. Time evolution and window functions

We now note that all of the predicted power spectra can
be written as the product of a function of multipole moment
l and an integral,Z

k2dkPhðkÞ½Wðk;ΔtÞ�2; ð49Þ

for the power spectrum (with analogous results for vector
and scalar modes). The absence of any dependence of the
angular structure on the form of PhðkÞ arises because the
observables arise only in the distant-source limit. We probe
with these measurements only the local spacetime-metric
perturbation; there are no long-range spatial correlations
imprinted on the observed angular correlations.
We now focus on the window function Wðk;ΔtÞ ¼

sinðkΔt=2Þ obtained by assuming redshifts and stellar
positions were obtained at two instantaneous times separated
by an interval Δt. The window function is then just the
Fourier transform of a time “exposure,” δDðtþ ΔtÞ − δDðtÞ.
More realistically, themeasurementsmay be done over some
range of times, or (for pulsar timing) inferred from timing
residuals. The detailed functional form of the window
function WðkÞ will therefore differ from the simple
Wðk;ΔtÞ inferred here. Regardless, we expect ½WðkÞ�2 ∝
ðkΔtÞ2 for kΔt ≪ 1, where Δt ∼ yrs is the overall time
interval in which measurements are done. Also, there will be
a suppression at high k that arises from the finite duration of
any particular measurement made.
As discussed in Sec. V above, the angular cross-

correlation between the astrometry and pulsar-timing sig-
nals are exact if the two observing periods coincide. More
generally, though, the observations will not necessarily be
concurrent, and so the astrometry-PTA cross-correlation
will be degraded. For example, suppose the pulsar-timing
measurements are done at two times t and tþ Δt, while the
astrometry measurements are done at times tþ δt and
tþ δtþ Δt. The cross-correlation coefficient will then be

FIG. 4. The CzkðΘÞ correlation functions for the transverse-
traceless tensor modes, vector modes, and the ST mode. They are
normalized by omitting second line in Eq. (23). The solid curves
show the exact results in the distant-source limit, and dashed
curves show the results from truncating the multipole expansion
at lmax ¼ 5.
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r≡ hzlmE�
lmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjzlmj2ihjElmj2i
p

¼
R

dk
2πPðkÞ sin2ðkΔt=2Þ cosðkδt=2ÞR

dk
2πPðkÞ sin2ðkΔt=2Þ

: ð50Þ

One can see that if the PTA and astrometry measurements
are separated by times δt≲ Δt, the cross-correlation
remains strong and then becomes weak for δt≳ Δt.
Here we have assumed that pulsar-timing and astrom-

etry results are each made at only two epochs. In this case,
the measured spherical-harmonic coefficients for each lm
receive contributions from an array of TAM waves hklm
for an array of values of wave number k, and if the
observations are concurrent, the same set of TAM waves.
If, however, measurements are made over a larger set of
times—say N times, rather than two—then the measure-
ments can be decomposed into power spectra for N − 1
different window functions, which probe different
ranges of frequencies. If so, then information about the
distribution of the wave numbers k that give rise to the
signal, for each lm, can be extracted. In other words, with
time measurements, the three-dimensional spacetime-
metric perturbation (and not just some two-dimensional
projection) can begin to be reconstructed. We leave an
elaboration of this frequency-space analysis for future
work.
Suppose now that the stochastic background has an

energy density ΩgwðfÞ ∼ constant, which is expected for
the nearly scale-invariant spectrum (nt ≃ 0) generated from
inflation. In this case, the window-function behavior
WðkÞ ∝ k for kΔt ≪ 1 results in an equal contribution
per logarithmic frequency interval (at frequencies kΔt ≪ 1)
to the observables. If so, then the distant-source limit we
have employed is not strictly speaking valid. We have
checked (but leave details for elsewhere), that the contri-
bution of longer-wavelength modes (i.e., those with
krs ≲ 1) to l ≥ 3 multipole moments is suppressed relative
to what is inferred using the distant-source limit. The
contribution to the quadrupole is, however, a bit larger.
Still, given that the amplitude of the inflationary back-
ground is expected to be far too small (Ωgwh2 ∼ 10−16 at
frequencies f ∼ 10−9 Hz) to be accessed with PTAs and
astrometry [45], we consider this point academic.
The background more realistically accessible is that from

the merger of supermassive black holes. If the SMBH
binaries are all circular, then the expected background has
Ωgw ∝ f2=3, in which case the contributions of longer-
wavelength gravitational waves to the observables are sup-
pressed. The suppression is even stronger if the SMBHorbits
are eccentric (e.g., the scalingmay be as strong asΩgw ∝ f3)
[15,46–48]. We thus conclude that the distant-source limit is
valid for the SMBH signal.

B. Chirality

Here we have taken the normal modes of the transverse-
traceless tensor field to be Ψk;TE

ðlmÞab and Ψk;TB
ðlmÞab. Statistical

homogeneity then requires that these have equal power [38].
However, we could have equally well worked alter-

natively with a helicity basis, in terms of TAM modes
Ψk;�

ðlmÞab ¼ 2−1=2½Ψk;TE
ðlmÞab � iΨk;TB

ðlmÞab�. These two modes

represent right- and left-circularly polarized gravitational
waves. If parity is unbroken, then the energy densities in the
two circular-polarization states should be the same. If so,
the cross-correlations CzB

l ¼ CEB
l ¼ 0.

However, it is conceivable, and perhaps even to be
expected, that the stochastic background observed by
pulsar timing and astrometry may be chiral—i.e., may
exhibit a preponderance of one handedness over the other.
The emission from SMBH binaries is expected to be
circularly polarized, to some degree (depending on the
orientation of the binary relative to the line of sight). If the
background is dominated by a small number N of SMBHs
(see, e.g., Refs. [15,49–51]), then the fractional difference
between the powers in the two helicities should be ∼N−1=2;
i.e., not too small. It is thus not advisable to assume
that these cross-correlations will be zero and can thus be
used to as null tests for systematics. On the other hand,
these parity-breaking power spectra CzB

l and CEB
l (or

equivalently, the parity-breaking z⊥ and k⊥ correlation
functions) should be pursued observationally along with
the others, as they may shed light on the nature of the
sources that give rise to the background. Chirality probes
that can be constructed from time-sequence information
[52] should also be similarly employed. We moreover note
that these cross-correlations provide pulsar timing and
astrometry with a capability to test the chirality of the
gravitational-wave background in a frequency regime
previously thought to be inaccessible [53].

VII. CONCLUSIONS

Here we have employed a total-angular-momentum
formalism to describe the angular correlations in pulsar-
timing and astrometry probes of a stochastic gravitational-
wave background. Results were presented both in terms of
angular power spectra and in terms of angular correlation
functions and for all six polarizations that may arise in
alternative-gravity theories. Redshift-astrometry cross-
correlations were provided for the first time for all six
polarizations. An Appendix describes an alternative way to
rederive simply the power-spectrum results from plane
waves. The dependence of the astrometry signal on the
frequency spectrum of the gravitational-wave background
was clarified, and it was speculated that information on the
local three-dimensional metric perturbation might be
inferred by the inclusion of time-sequence information.
We also emphasized that the parity-breaking cross-
correlations, usually assumed to be zero, will not
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necessarily vanish for stochastic backgrounds generated by
supermassive-black-hole binaries.
A natural next step would be to ask whether a detected

gravitational-wave background exhibits any preferred
direction. One possible way to search for such asymmetries
is with bipolar spherical harmonics [54–56], which could
be used to seek, for example, a dipole asymmetry in the
strength of the gravitational-wave signal. It may also be
worthwhile to consider merging the techniques presented
here with other novel approaches, such as those involving
gravitational-wave Stokes parameters [57]. Elaboration of
the details and development of such strategies is left for
future work.
We hope that the mathematical tools and calculational

results we have presented will be of value in further
characterization and exploration of stochastic backgrounds.

ACKNOWLEDGMENTS

We thank E. Berti for useful discussions. This work was
supported at Johns Hopkins in part by NASA Grant
No. NNX17AK38G, NSF Grant No. 0244990, and the
Simons Foundation. L. D. is supported at the Institute for
Advanced Study by NASA through Einstein Postdoctoral
Fellowship Grant No. PF5-160135 awarded by the Chandra
X-ray Center, which is operated by the Smithsonian
Astrophysical Observatory for NASA under Contract
No. NAS8-03060.

APPENDIX A: REVIEW OF TOTAL-ANGULAR-
MOMENTUM WAVES

1. The standard decomposition

The most general symmetric tensor field habðxÞ ¼
hðabÞðxÞ≡ ½habðxÞ þ hbaðxÞ�=2 can be decomposed into
a trace component hðxÞ, a longitudinal component ξðxÞ,
two vector components wa (with ∇awa ¼ 0), and two
transverse-traceless tensor components hTTab (which satisfy
∇ahTTab ¼ 0 and haa ¼ 0), as

hab ¼ hgabþ
�
∇a∇b−

1

3
gab∇2

�
ξþ∇ðawbÞ þhTTab : ðA1Þ

The most general rank-two symmetric 3 × 3 tensor can
be expanded as

habðxÞ ¼
X
k;s

εsabðk̂ÞhsðkÞeik·x þ cc; ðA2Þ

in terms of Fourier modes of wave vector k and in terms of
six polarization states εsabðkÞ, where s ¼ f0; z; x; y;þ;×g,
for the trace, longitudinal, two vector, and two transverse-
traceless polarizations, respectively, with amplitudes hsðkÞ
[58]. The quantity cc denotes the complex conjugate of the
first term. The polarization tensors are normalized such that
εsabεs

0
ab ¼ 2δss0 . The two transverse-traceless polarization

states that propagate in general relativity have kaεþ;×
ab ¼ 0.

Power spectra PhðkÞ for these transverse-traceless gravi-
tational waves are defined by

hhsðkÞhs0 ðk0Þi ¼ δss0 ð2πÞ3δDðk − k0ÞPhðkÞ
4

; ðA3Þ

for s; s0 ¼ fþ;×g.
To connect with prior work on pulsar timing and

astrometry, we note that with these conventions, the wave
number k ¼ 2πf in terms of the gravitational-wave
frequency f, and

Phð2πfÞ ¼
3H2

0ΩgwðfÞ
8π3f5

¼ 1

2πf2
ShðfÞ ¼

1

4πf3
h2cðfÞ;

ðA4Þ

in terms of the contribution ΩgwðfÞ per unit logarithmic
frequency interval to the critical density (and H0 is the
Hubble parameter), the gravitational-wave spectral density
ShðfÞ [16], and hcðfÞ, the dimensionless amplitude
per logarithmic frequency interval. To be precise, the
total gravitational-wave energy density, summing over
all frequencies, is ρgw ¼ ρc

R ðdf=fÞΩgwðfÞ, where ρc ¼
3H2

0=ð8πGÞ is the critical density.

2. Total-angular-momentum waves

TAM waves [31] provide an alternative complete ortho-
normal set of basis functions for tensor fields. Here, the
Fourier wave vector k is replaced by quantum numbers
klm, where k is a wave number and lm are TAM quantum
numbers. The 5 trace-free polarizations are replaced by
5 sets of TAM modes, which include L (a trace-free
longitudinal mode), VE and VB (two vector modes),
and TE and TB (the two transverse-traceless modes).
We augment the formalism of Ref. [31] to include a trace
degree of freedom. To facilitate comparison with prior
astrometry work, we also construct from the L mode tensor
harmonic and the scalar harmonic a ST mode and a SL
mode to accord with those of Refs. [26–28].
Then, any symmetric habðxÞ can be expanded,

habðxÞ ¼
X
αklm

4πilhαklmΨ
k;α
ðlmÞabðxÞ þ cc; ðA5Þ

in terms of TAM waves Ψk;α
ðlmÞabðxÞ. Here,

P
k is a short-

hand for
R
k2dk=ð2πÞ3, and α is summed over ST, SL, VE,

VB, TE, and TB. The VE/VB/TE/TB TAM waves are as
given in Ref. [31].
The SL and ST modes are

ΨST
ðlmÞabðxÞ ¼

ffiffiffi
2

p

3
ΨðlmÞðxÞgab þ

ffiffiffi
1

3

r
ΨL

ðlmÞabðxÞ; ðA6Þ
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ΨSL
ðlmÞabðxÞ ¼

1

3
ΨðlmÞðxÞgab −

ffiffiffi
2

3

r
ΨL

ðlmÞabðxÞ; ðA7Þ

where ΨðlmÞðxÞ ¼ jlðkrÞYlmðn̂Þ is the scalar TAM wave
and jlðkrÞ is the spherical Bessel function. The ST TAM
wave ΨST

ðlmÞabðxÞ has components only transverse to the

direction of its gradients, and ΨSL
ðlmÞabðxÞ is entirely aligned

with the gradient. These TAM waves are normalized in
accord with the conventions of Ref. [31].
If the metric perturbation is constructed of wavelike

solutions that propagate at the speed of light, then the time-
dependent metric perturbation habðx; tÞ is obtained by
multiplying the summand in Eq. (A5) by e−ikt. If we are
dealing with a stochastic background of general-relativistic
gravitational waves, then the sum is only over TE/TB
modes. In a statistically isotropic stochastic background of
GR gravitational waves, the TAM-wave coefficients are
statistically independent and taken from a random distri-
bution with variance PhðkÞ; i.e.,

hðhαklmÞ�hβk0l0m0 i ¼ ð2πÞ3
2k2

PhðkÞδll0δmm0δαβδðk − k0Þ ðA8Þ

for the TE/TB modes. In alternative-gravity theories, there
will be analogous expressions for VE/VB, SL, and ST
modes in terms of vector and scalar power spectra, if such
modes exist and propagate. Note that the TE/TB modes
exist only for l ≥ 2 and the VE/VB modes for l ≥ 1. Note
also that statistical homogeneity requires that PTEðkÞ ¼
PTBðkÞ and PVEðkÞ ¼ PVBðkÞ [38], but the power spectra
for SL and ST may most generally differ.
Reference [31] provides an array of results on the proper-

ties of these TAM waves, related scalar and vector TAM
waves, and several alternative TAM-wave bases. In particu-
lar, Eq. (94) in that paper provides the projections of these
TAM waves onto an orthonormal basis determined by unit
vectors in the radial (n̂) and angular (θ̂, and ϕ̂) directions in
the usual spherical coordinates. The central quantitieswewill
need for this work are nbΨα;k

ðlmÞabðxÞ. From Eq. (94) of

Ref. [31], and our definitionof theSLandSTmodes,wehave

n̂aΨSL
ðlmÞabðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p 1

kr

�
j0lðkrÞ −

jlðkrÞ
kr

�
YE
ðlmÞbðn̂Þ −

�
2
j0lðkrÞ
kr

þ
�
1 −

lðlþ 1Þ
ðkrÞ2

�
jlðkrÞ

�
YL
ðlmÞbðn̂Þ;

n̂aΨST
ðlmÞabðxÞ ¼ −

1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p 1

kr

�
j0lðkrÞ −

jlðkrÞ
kr

�
YE
ðlmÞbðn̂Þ −

�
2
j0lðkrÞ
kr

−
lðlþ 1Þ
ðkrÞ2 jlðkrÞ

�
YL
ðlmÞbðn̂Þ

�
;

n̂aΨVE
ðlmÞabðxÞ ¼

ffiffiffi
2

p �
j0lðkrÞ
kr

þ
�
1

2
þ ð1 − l − l2Þ

ðkrÞ2
�
jlðkrÞ

�
YE
ðlmÞbðn̂Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

kr

�
j0lðkrÞ −

jlðkrÞ
kr

�
YL
ðlmÞbðn̂Þ;

n̂aΨVB
ðlmÞabðxÞ ¼ −

iffiffiffi
2

p
�
j0lðkrÞ −

jlðkrÞ
kr

�
YB
ðlmÞbðn̂Þ;

n̂aΨTE
ðlmÞabðxÞ ¼ −Nl

jlðkrÞ
ðkrÞ2 YL

ðlmÞbðn̂Þ −
Nlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp �
j0lðkrÞ
kr

þ jlðkrÞ
ðkrÞ2

�
YE
ðlmÞbðn̂Þ;

n̂aΨTB
ðlmÞabðxÞ ¼ −i

Nlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp jlðkrÞ

kr
YB
ðlmÞbðn̂Þ; ðA9Þ

withNl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þ!=½2ðl − 2Þ!�p
. Note that these vectorial

quantities have a projection onto a vector spherical harmonic
YL
ðlmÞaðn̂Þ≡ −naYlmðn̂Þ, which points along the radial

direction, and another onto either the vector spherical
harmonic YE

ðlmÞaðn̂Þ or YB
ðlmÞaðn̂Þ, which lie in the plane

of the sky. We thus define radial functions RL;α
l ðxÞ and

RE;α
l ðxÞ through

n̂aΨα
ðlmÞabðxÞ ¼ RL;α

l ðkrÞYL
ðlmÞbðn̂Þ þ RE;α

l ðkrÞYE
ðlmÞaðn̂Þ;

ðA10Þ

and analogously for RB;α
l ðxÞ.

We will also need in our calculations the quantities
nanbΨα;k

ðlmÞabðxÞ, which are obtained from the above expres-

sions by replacing YL
ðlmÞaðn̂Þ by −Ylmðn̂Þ and ignoring the

E/B components, given the orthogonality of the E/B vector
spherical harmonics to the radial direction n̂.

APPENDIX B: USEFUL LEGENDRE-
POLYNOMIAL RELATIONS

Here we show how to derive the Hellings-Downs curve
from a power spectrum Cl ∝ ðl − 2Þ!=ðlþ 2Þ! for l ≥ 2
and from the fact that HDðΘÞ ¼ P

lð2lþ 1ÞClPlðcosΘÞ.
Expanding this quantity using partial fractions yields
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HDðΘÞ ¼
X∞
l¼2

ð2lþ 1Þ ðl − 2Þ!
ðlþ 2Þ!PlðcosΘÞ ¼

1

2

X∞
l¼2

�
1

l − 1
−
1

l
−

1

lþ 1
þ 1

lþ 2

�
PlðcosΘÞ: ðB1Þ

Each of these four infinite sums can be calculated using the generating function of the Legendre polynomials, which is
given by

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 2txþ 1

p ¼
X∞
n¼0

tnPnðxÞ: ðB2Þ

For example, let us rewrite the first partial fraction as

1

l − 1
¼

Z
∞

0

e−zðl−1Þdz: ðB3Þ

Then we can rewrite the sum as

X∞
l¼2

1

l − 1
PlðcosΘÞ ¼

Z
∞

0

ez
X∞
l¼2

e−zlPlðcosΘÞdz ¼
Z

∞

0

ez
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2z − 2xe−z þ 1

p − 1 − e−zx

�
dz

¼
Z

∞

1

�
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2xyþ y2
p − 1 −

x
y

�
dy ¼ 1 − x −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2x

p
þ x ln

�
2

1 − xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2x

p
�
; ðB4Þ

where x ¼ cosΘ. Similar calculations for the other sums give

X∞
l¼2

1

l
PlðcosΘÞ ¼ −xþ ln

�
2

1 − xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2x

p
�

ðB5Þ

X∞
l¼2

1

lþ 1
PlðcosΘÞ ¼ −1 −

1

2
xþ ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
2

1 − x

r �
ðB6Þ

X∞
l¼2

1

lþ 2
PlðcosΘÞ ¼ −

3

2
−
1

3
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2x

p
þ x ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
2

1 − x

r �
: ðB7Þ

We then obtain the Hellings-Downs angular correlation function,

HDðΘÞ ¼ 1

4
þ 1

12
xþ 1

2
ln

�
1 − x
2

�
−
x
2
ln

�
1 − x
2

�
¼ 1

2
ð1 − xÞ log

�
1

2
ð1 − xÞ

�
−
1

6

�
1

2
ð1 − xÞ

�
þ 1

3
: ðB8Þ

APPENDIX C: ALTERNATIVE DERIVATION
OF POWER SPECTRA

Here we present an alternative derivation of the redshift
and angular-deflection power spectra (see also Ref. [59]).
The calculation begins with the well-known angular
dependence,6

zðn̂Þ ¼ nanbhab
2ð1þ p̂ · n̂Þ ðC1Þ

of the redshift in the presence of a gravitational wave
traveling in the p̂ direction. For example, for a transverse-
traceless gravitational wave in the ẑ direction with þ
polarization, this becomes

zðn̂Þ ∝ ð1 − cos θÞ cos 2ϕ: ðC2Þ

The spherical-harmonic coefficients for this angular
pattern are

6Note that this function has an unphysical discontinuity at
cos θ → −1. This is smoothed by the source term. It can be shown
that the neglect of the source term has no effect on the subsequent
derivation, though.
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zlm ¼
Z

dn̂Ylmðn̂Þzðn̂Þ

∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl − 2Þ!

ðlþ 2Þ!

s
ðδm2 þ δm;−2Þ: ðC3Þ

The contribution of this mode to the power spectrum is thus
∝
P

mjzlmj2=ð2lþ 1Þ ∝ ðl − 2Þ!=ðlþ 2Þ!. Since this is a
rotational invariant, the contribution of any Fourier mode
in any direction (and of any magnitude), and of either
polarization, is the same. From this we infer that
Cl ∝ ðl − 2Þ!=ðlþ 2Þ!. The power spectra for the vector
and scalar modes can be similarly obtained.
Likewise, the angular deflection from a wave propagat-

ing in the p̂ direction is [24]

ðδnÞaðn̂Þ ¼ ðna þ paÞnbnchbc
2ð1þ n̂ · p̂Þ −

1

2
nbhab: ðC4Þ

The scalar E-mode pattern associated with this is
Eðn̂Þ ¼ ∇aðδnÞa, while the B-mode pattern is Bðn̂Þ ¼
ϵabcna∇bðδnÞc. Using∇anb ¼ δab − nanb and∇aðp̂ · n̂Þ ¼
pa − naðp̂ · n̂Þ, we find

Eðn̂Þ ¼ −
1

2
Trhþ ðna þ paÞnbhab

1þ p̂ · n̂
; ðC5Þ

and

Bðn̂Þ ¼ ϵabc
pandnchbd
1þ p̂ · n̂

: ðC6Þ

Now consider again the transverse-traceless gravitational
wave propagating in the ẑ direction with þ polarization.
The transverse-traceless wave has Trh ¼ 0 and pahab ¼ 0
from which we infer that the angular pattern of the E mode
from transverse-traceless gravitational waves is identical
with that for the redshift. This thus explains why the
E-mode correlation function βEEðΘÞ has the exact same
form as the Hellings-Downs curve. It is furthermore found
that the B-mode pattern is the same as the E-mode pattern,
but rotated about p̂ by 45°, thus explaining why the B-mode
correlation function and power spectrum are the same as
those for the E mode (and also why it is not correlated with
the redshift). The power spectra for the vector and scalar
E and B modes are similarly derived.

APPENDIX D: RELATION BETWEEN
DEFLECTION-ANGLE CORRELATION
FUNCTIONS AND POWER SPECTRA

The correlation functions described in Sec. II A 1 are
rotationally invariant. We can evaluate them most easily,
though, by choosing one of the two points to be correlated
to be at the north pole (Θ ¼ Φ ¼ 0) and the other at a
ðΘ;Φ ¼ 0Þ. In terms of the conventional scalar spherical
harmonics, YlmðΘ;ΦÞ, the vector spherical harmonics
are [31]

YE
ðlmÞaðΘ;ΦÞ ¼ −

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ∇aYlmðΘ;ΦÞ ¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp h

θ̂a
∂
∂Θþ ϕ̂a

1

sinΘ
∂
∂Φ

i
YlmðΘ;ΦÞ

¼ −
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp fθ̂a½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmþ 1Þ

p
e−iΦYl;mþ1ðΘ;ΦÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mþ 1Þ

p
eiΦYl;m−1ðΘ;ΦÞ�

þϕ̂a
2im
sinΘ

Yl;mðcosΘÞg; ðD1Þ

YB
ðlmÞaðΘ;ΦÞ ¼ −

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ϵabcnb∇cYlmðΘ;ΦÞ ¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �

ϕ̂a
∂
∂Θ − θ̂a

1

sinΘ
∂
∂Φ

�
YlmðΘ;ΦÞ

¼ −
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �

ϕ̂a½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmþ 1Þ

p
e−iΦYl;mþ1ðΘ;ΦÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mþ 1Þ

p
eiΦYl;m−1ðΘ;ΦÞ�

−θ̂a
2im
sinΘ

Yl;mðcosΘÞ
�
: ðD2Þ

There is a third vector spherical harmonic YL
ðlmÞaðΘ;ΦÞ in the direction normal to the two-sphere of the sky, but it does not

enter our calculations here. These vector spherical harmonics obey the orthogonality relation

Z
dn̂YX

ðlmÞaðn̂Þ½YX0a
ðl0m0Þ��ðn̂Þ ¼ δll0δmm0δXX0 ; ðD3Þ

where X;X0 ¼ fE;B; Lg.
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Evaluating the vector spherical harmonics at Φ ¼ 0 gives

YE
ðlmÞaðΘ;Φ ¼ 0Þ ¼ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lðlþ 1Þ
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s �
θ̂a½Pmþ1

l ðcosΘÞ − ðlþmÞðl −mþ 1ÞPm−1
l ðcosΘÞ�

þϕ̂a
2im
sinΘ

Pm
l ðcosΘÞ

�
; ðD4Þ

YB
ðlmÞaðΘ;Φ ¼ 0Þ ¼ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lðlþ 1Þ
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s �
ϕ̂a½Pmþ1

l ðcosΘÞ − ðlþmÞðl −mþ 1ÞPm−1
l ðcosΘÞ�

−θ̂a
2im
sinΘ

Pm
l ðcosΘÞ

�
; ðD5Þ

where we have expressed the scalar spherical harmonics,

YlmðΘ;ΦÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcosΘÞeimΦ; ðD6Þ

in terms of associated Legendre polynomials, Pm
l ðcosΘÞ. Further evaluating at Θ ¼ 0 using Eq. (5.2) in Ref. [35] gives

YE
ðlmÞað0; 0Þ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½ðδm1 − δm;−1Þθ̂a þ iðδm1 þ δm;−1Þϕ̂a�; ðD7Þ

YB
ðlmÞað0; 0Þ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½ðδm1 − δm;−1Þϕ̂a − iðδm1 þ δm;−1Þθ̂a�: ðD8Þ

With these expressions, the correlation functions become,

CkkðΘÞ ¼
X
lm

½CEE
l YE

ðlmÞθðΘ; 0ÞYE�
ðlmÞθð0; 0Þ þ CBB

l YB
ðlmÞθðΘ; 0ÞYB�

ðlmÞθð0; 0Þ�

¼ 1

2

X
l

2lþ 1

4π

�
CEE
l

�
P0
lðcosΘÞ −

1

lðlþ 1ÞP
2
lðcosΘÞ

�
− CBB

l
2

lðlþ 1Þ
1

sinΘ
P1
lðcosΘÞ

�
ðD9Þ

C⊥⊥ðΘÞ ¼
X
lm

½CEE
l YE

ðlmÞϕðΘ; 0ÞYE�
ðlmÞϕð0; 0Þ þ CBB

l YB
ðlmÞϕðΘ; 0ÞYB�

ðlmÞϕð0; 0Þ�

¼ 1

2

X
l

2lþ 1

4π

�
−CEE

l
2

lðlþ 1Þ
1

sinΘ
P1
lðcosΘÞ þ CBB

l

�
P0
lðcosΘÞ −

1

lðlþ 1ÞP
2
lðcosΘÞ

��
; ðD10Þ

while the cross-correlation function becomes

C⊥kðΘÞ ¼
X
lm

½CEE
l YE

ðlmÞϕðΘ; 0ÞYE�
ðlmÞθð0; 0Þ þ CBB

l YB
ðlmÞϕðΘ; 0ÞYB�

ðlmÞθð0; 0Þ�

¼ −
1

2

X
l

2lþ 1

4π
CEB
l

�
1

lðlþ 1ÞP
2
lðcosΘÞ − P0

lðcosΘÞ þ
2

lðlþ 1Þ
1

sinΘ
P1
lðcosΘÞ

�
: ðD11Þ

The zk and z⊥ correlations are analogously derived most simply by putting the deflection at the north pole and the redshift
at ðΘ; 0Þ.
To write the power spectra in terms of the correlation functions, we define the vector quantities

CaðΘÞ≡ CkkðΘÞθ̂a þ iC⊥⊥ðΘÞϕ̂a ¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½CEE

l YE
ðl1ÞaðΘ; 0Þ þ iCBB

l YB
ðl1ÞaðΘ; 0Þ� ðD12Þ
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DaðΘÞ≡ C⊥kðΘÞðθ̂a − iϕ̂aÞ ¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
CEB
l ½YE

ðl1ÞaðΘ; 0Þ − iYB
ðl1ÞaðΘ; 0Þ�: ðD13Þ

Using the orthogonality relation in Eq. (D3), which holds if the vector spherical harmonics are evaluated at Φ ¼ 0, the
multipole moments are

CEE
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r Z
dn̂CaðΘÞYEa

ðl1ÞðΘ; 0Þ CBB
l ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r Z
dn̂CaðΘÞYBa

ðl1ÞðΘ; 0Þ; ðD14Þ

and from these follow Eqs. (19) and (20). Similarly, for the cross-correlation,

CEB
l ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r Z
dn̂DaðΘÞ½YEa

ðl1ÞðΘ; 0Þ þ iYBa
ðl1ÞðΘ; 0Þ�; ðD15Þ

from which Eq. (21) follows. The inverse relations in Eq. (22) for the redshift-deflection cross-correlations follow from the
orthogonality of the spherical harmonics.
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