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We numerically compute the renormalized expectation value hΦ̂2iren of a minimally coupled massless
quantum scalar field in the interior of a four-dimensional Reissner-Nordstrom black hole, in both the
Hartle-Hawking and Unruh states. To this end we use a recently developed mode-sum renormalization
scheme based on covariant point splitting. In both quantum states, hΦ̂2iren is found to approach a finite
value at the inner horizon (IH). The final approach to the IH asymptotic value is marked by an inverse-
power tail r−n� , where r� is the Regge-Wheeler “tortoise coordinate” and with n ¼ 2 for the Hartle-Hawking
state and n ¼ 3 for the Unruh state. We also report here the results of an analytical computation of these

inverse-power tails of hΦ̂2iren near the IH. Our numerical results show very good agreement with this
analytical derivation (for both the power index and the tail amplitude), in both quantum states. Finally, from
this asymptotic behavior of hΦ̂2iren we analytically compute the leading-order asymptotic behavior of the
trace hT̂μ

μiren of the renormalized stress-energy tensor at the IH. In both quantum states this quantity is found
to diverge like bðr − r−Þ−1r−n−2� (with n specified above and with a known parameter b). To the best of our
knowledge, this is the first fully quantitative derivation of the asymptotic behavior of these renormalized
quantities at the IH of a four-dimensional Reissner-Nordstrom black hole. In particular, this is the first
conclusive result showing the divergence of the renormalized stress-energy tensor at the Cauchy horizon.
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I. INTRODUCTION

Einstein’s field equations admit black hole (BH) solutions
endowed with remarkable exotic features including naked
singularities, bridges to other universes and closed timelike
curves. Among these solutions there is the Reissner-
Nordstrom (RN) spacetime, describing a spherically sym-
metric BH carrying electric charge. This spacetime metric is
given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where fðrÞ ¼ 1 − 2M=rþQ2=r2, M and Q being, respec-
tively, the mass and charge of the BH. The event horizon
(EH) and the inner horizon (IH) are, respectively, located
at r ¼ rþ and r ¼ r−, the two solutions of fðrÞ ¼ 0 given
by r� ¼ M � ðM2 −Q2Þ1=2. Interestingly, this metric may
be analytically continued through the BH interior into a
concatenation of asymptotically flat spacetime regions
(“other universes”), accessible to an observer in the “uni-
verse” where the BH originally formed only by traveling
through the BH. Along the way through the BH and into the
other universes, the observer must cross the IH that lies
inside the BH. It is a treacherous path, however, as classical
perturbations appear to form a null curvature singularity
along the Cauchy horizon (CH) (the ingoing section of the
IH). This is the situation in spherically symmetric charged
BHs [1–6] as well as in spinning ones [7–9]. Nevertheless,

this null singularity, caused by classical perturbing fields,
is known to be weak [10] (i.e., tidally nondestructive [11],
with a C0 limiting metric)—in both the charged [3] and
spinning [7,12] cases.
However, a general indication that emerges from a

collection of analytical studies [13–15] on the effect of
quantum perturbations inside BHs has been that semi-
classical stress-energy fluxes are likely to diverge at the
CH, although so far it remained inconclusive in four
dimensions. It is the goal of this work to address this
issue via concrete numerical calculation (augmented by
some analytical results) of the actual strength and form of
these quantum effects inside a charged BH.
Semiclassical gravity considers quantum matter fields

propagating in a classical curved spacetime. The presence
of curvature “deforms the vacuum” and induces a nontrivial
stress energy in the quantum fields (even in “vacuum
states”). In turn, this stress-energy tensor deforms the
spacetime metric. This backreaction effect is to be deter-
mined from the semiclassical Einstein’s field equation

Gμν ¼ 8πhT̂μνiren: ð2Þ

Here Gμν is the Einstein tensor of spacetime, and hT̂μνiren is
the renormalized stress-energy tensor (RSET) associated
with the quantum fields.
For simplicity, our choice for a quantum field is that of a

minimally coupled [16] massless scalar field, satisfying the
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massless Klein-Gordon equation □Φ̂ ¼ 0, where Φ̂ is
the scalar field operator and □ denotes the covariant
d’Alembertian. It proves useful to first compute the
renormalized vacuum expectation value hΦ̂2iren (often
called the “vacuum polarization”), as it is simpler than
the RSET but still captures many of its essential features
and provides important insight into the physical content
of different vacua. Furthermore, as will be seen below, the
behavior of hΦ̂2iren actually determines the divergence rate
of the RSET trace hT̂μ

μiren at the IH.
Semiclassical gravity predicts the evaporation of BHs

through the emission of Hawking radiation [17,18]. BH
evaporation obviously implies drastic differences in space-
time structure as compared to the corresponding classical
picture. Likewise, it is conceivable that semiclassical stress-
energy fluxes might affect the near-CH geometry inside RN
(as well as Kerr) BHs more strongly than the classical
perturbations do—potentially converting the CH into a
strong (i.e., tidally destructive) spacelike singularity (and
thereby preventing passage through the BH into the other
universes). However, these issues remained unresolved and
to address them one must, obviously, compute the RSET
in the interior region of BHs and especially near the CH.
We have therefore set out to ultimately compute the RSET
in BH interiors, and we present here novel results for a first
step in this direction: the numerical computation of hΦ̂2iren
throughout the interior region [19] of a RN BH [20],
followed by analysis of the leading-order behavior of
hΦ̂2iren and also hT̂μ

μiren near the CH.
The renormalization of the divergent hΦ̂2i was carried

out here by the recently developed pragmatic mode-sum
method [21,22], which numerically implements the point-
splitting renormalization scheme developed by Christensen
[23,24]. This prescription for hΦ̂2iren (and the same concept
holds for hT̂μνiren as well) is depicted in the following
equation:

hΦ̂2ðxÞiren ¼ lim
x0→x

½hΦ̂ðxÞΦ̂ðx0Þi − GDSðx; x0Þ�; ð3Þ

where GDSðx; x0Þ is the DeWitt-Schwinger counterterm
(explicitly given in [25]).
We consider here hΦ̂2iren in two quantum vacua. One is

the Unruh state describing an evaporation of a BH [26], and
the other is the Hartle-Hawking (HH) state describing a BH
in thermal equilibrium [27,28] with an infinite bath of
radiation. In Ref. [29] we derived an explicit expression for
the scalar field two-point function in the RN interior, in
both the Unruh and HH states, in terms of a radial function
ψωlðrÞ which can be computed numerically. This radial
function satisfies the radial equation:

d2ψωl

dr2�
þ ½ω2 − VlðrÞ�ψωl ¼ 0; ð4Þ

where ω denotes the mode’s frequency (with respect to t)
and l its angular-momentum number. Here the effective
potential VlðrÞ is given by

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 2M

r3
−
2Q2

r4

�
; ð5Þ

and r� is the tortoise coordinate defined by dr=dr� ¼ fðrÞ.
Note that r� → −∞ðþ∞Þ at the EH (IH). The boundary
condition for ψωl at the EH is

ψωl ≅ e−iωr� ; r� → −∞: ð6Þ

The required input for the computation of hΦ̂2iren inside
the BH is the radial function ψωlðrÞ and also ρupωl, namely the
reflection coefficient for the “up” modes (see e.g., [29])
outside the BH.We compute ψωlðrÞ and ρupωl numerically and
use them to construct the mode contributions to the two-
point function inside the BH, as prescribed in Ref. [29]. Then
we regularize the mode sum using the θ-splitting variant of
our method, as described in [22]. This same method was
implemented recently for computing hΦ̂2iren inside a
Schwarzschild BH in Ref. [30], where a more detailed
account of the procedure is provided. (Additional details are
provided in Supplemental Material [31].)
From the symmetries of the RN geometry it immediately

follows that hΦ̂2iren (like hT̂μ
μiren) only depends on r. In the

next section we present the results for hΦ̂2ðrÞiren through-
out the range r− ≤ r ≤ rþ. Interestingly, it turns out that for
both the Unruh and HH states, hΦ̂2iren remains finite upon
approaching the IH (although its gradient diverges there).
Then subsequently we present analytical results for the
asymptotic behaviors of hΦ̂2iren and hT̂μ

μiren very close to
the IH, and for hΦ̂2iren we also compare our analytical and
numerical results.

II. NUMERICAL RESULTS

We shall focus here on the specific exampleQ=M ¼ 0.8.
In this case rþ ¼ 1.6M and r− ¼ 0.4M. The radial equa-
tion (4) together with the initial condition (6) was solved
numerically for ψωlðrÞ, from the EH to very close to the IH,
for a sufficiently dense set of ωl modes in the range 0 ≤
l ≤ 10 and 0 < ω < 10=M. The reflection coefficient ρupωl
was also computed numerically for these ωl modes.
These quantities were then used to construct hΦ̂2iren.
See Supplemental Material [31] for more details.
Figure 1 displays the numerical results for hΦ̂2ðrÞiren in

the region between the two horizons (specifically for
0.5 ≤ r=M ≤ 1.6), for both quantum states. Our result
for the HH state agrees very nicely with the known
analytical result [32,33] at the EH, with a difference of
only ∼0.005%.
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The most obvious feature seen in this figure is the steady
growth with decreasing r, which becomes steeper when
getting close to the IH. This trend of sharp increase towards
the IH continues all the way up to, say, r − r− ∼ 10−6M.
From this behavior one might get the impression (as we
originally did) that hΦ̂2ðrÞiren would diverge at the IH.
To our surprise, we found that this picture drastically

changes once we start exploring regions much closer to the
IH. In fact, hΦ̂2ðrÞiren eventually approaches a finite value
at r → r−, which we denote by ðℏ=M2ÞhΦ̂2i−, where the
index “−” refers to the limit r → r−. This is clearly seen in
Fig. 2, which displays hΦ̂2iren as a function of the
logarithmic variable z defined by

z≡ lnðδrÞ; δr≡ ðr − r−Þ=M: ð7Þ

Note that the IH corresponds to z → −∞. In both quantum
states, after a few quickly decaying oscillations (there are
actually two maxima and two minima overall, although not
all of them can be seen in this figure), hΦ̂2iren approaches a
plateau. The asymptotic values are hΦ̂2iH− ≅ −0.05058 and
hΦ̂2iU− ≅ −0.07258. Hereafter, an index “H” or “U” will
denote the HH state or Unruh state, respectively.

III. NEAR-IH ASYMPTOTIC BEHAVIOR

To explore the near-IH asymptotic behavior we define
(respectively, for each quantum state)

Δ≡ ðM2=ℏÞhΦ̂2iren − hΦ̂2i− ð8Þ

(i.e., the dimensionless deviation from hΦ̂2i−).
As it turns out, ΔðzÞ decays like z−n, where hereafter n

will stand for either nH ¼ 2 (HH state) or nU ¼ 3 (Unruh
state). To demonstrate this, Fig. 3 displays zn · ΔðzÞ.
The flat horizontal forms of the red and blue lines, at
the left half of the z axis, clearly indicate this leading-order
behaviorΔ ∝ z−n in the two quantum states. (This behavior
is seen even more clearly in Fig. 4.)
The effective potential VlðrÞ, given in (5), vanishes at the

IH like f ∝ δr. Therefore, for sufficiently small δr the
radial equation (4) becomes free, and its general solution in
that domain is

ψωl ≅ Aωleiωr� þ Bωle−iωr� ðδr ≪ 1Þ: ð9Þ
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FIG. 2. hΦ̂2ðrÞiren in the HH (red) and Unruh (blue) states, as a
function of z.
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FIG. 3. ΔðzÞ · zn in the HH (red) and Unruh (blue) states, in the
region −845 < z < 0 (which roughly corresponds to 10−367 <
δr < 1). The results for the Unruh state are divided here by a factor
of −150, for convenience. The plateaus at the left half of the z axis
indicate the inverse-power behavior Δ ∝ z−n. For both the HH and
Unruh results, the crosses indicate full numerical results, the solid
curves indicate semiasymptotic results, and the dots indicate the
“refined variant” results.
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FIG. 1. The numerically computed hΦ̂2ðrÞiren in the HH (red)
and Unruh (blue) states in the region between the two horizons.
The short horizontal green line represents the analytical result for
hΦ̂2ðrÞiren in the HH state at the EH.
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The coefficients Aωl and Bωl are dictated by the scattering
problem off the potential VlðrÞ from the EH to the IH
and canbedetermined numerically.Note that on approaching
the IH r� diverges as r� ≈ −z=2κ−, where κ− ¼ ðrþ − r−Þ=
2r2− is the IH surface gravity.
In order to explore the aforementioned inverse-power

decay we need to push the numerical solution to extremely
small δr values, say δr < e−400 ∼ 10−175, as can be seen in
e.g., Fig. 3. This is hard to do with the brute-force
numerical solution for ψωl. [One of the difficulties,
already seen in Eq. (9), is the very rapid variation of
ψωl with ω for r�=M ≫ 1.] To overcome this difficulty, we
introduce the semiasymptotic approximation, in which we
simply employ Eq. (9) as an approximation to ψωl for
sufficiently small δr. The results obtained from this
approximation are displayed in Fig. 3 by the red and
blue solid curves.
Still, in the deep tails region (say z < −700) even this

semiasymptotic approximation starts to be noisy (when
numerically implemented to explore the inverse-power
tails). We therefore designed a refined variant of this
approximation, aimed to explore the tails region, which
can more efficiently take us to very large jzj values. It is
this refined variant that we have used to produce Fig. 4
below (and also the left region in Fig. 3). We point out that
there are nice overlap regions on the z axis between
these three slightly different numerical procedures, as may
be seen e.g., in Fig. 3. This is further discussed in
Supplemental Material [31], which provides additional
information about the semiasymptotic approximation and
its refined variant.

IV. ANALYTICAL EXPRESSIONS FOR THE
INVERSE-POWER TAILS

To our pleasant surprise, we found that it is possible to
obtain, analytically [34], the dominant inverse-power tails
characterizing the near-IH asymptotic behavior of ΔðzÞ.
This is possible because, as it turns out, these tails are
actually governed by the small-ω asymptotic behavior of
Aωl, Bωl, and ρ

up
ωl; and this small-ω behavior can be deduced

analytically. This analysis yields the two dominant inverse
powers (nH ¼ 2 and nU ¼ 3) as well as their multiplicative
amplitude parameters (for both quantum states).
Furthermore, since we had to carry the analysis to order

z−3 (needed for the Unruh-state leading order), we actually
got, almost for free, the term ∝z−3 for the HH state as well.
Thus, including all the inverse-power terms to which we
presently have analytical access, we write the tail expres-
sions as

ΔU ¼ CUz−3 þ � � � ; ΔH ¼ CHz−2 þ C1
Hz

−3 þ � � � ;
ð10Þ

where “� � �” denotes higher-order corrections. Defining
α≡ rþ=r−, we find

CU ¼ 2Λð1 − α4Þð1 − αÞ2ð11þ 14αþ 11α2Þ; ð11Þ

CH ¼ 3Λα−2ð1 − α4Þ2; ð12Þ

C1
H ¼ 2 log

�
2ðα − 1Þ
αþ 1

�
CH −

1

4
ðα−2 − 3ÞCU; ð13Þ

where Λ≡ ð1 − α2Þ=768π2.
Figure 4 displays the analytical expressions (10) (black

curves) and the numerical data (dots) for the inverse-
power tails, for both quantum states, in the range
400 < −z < 1500. It shows excellent agreement, support-
ing the validity and accuracy of both the theoretical analysis
and numerics.

V. TRACE OF THE STRESS TENSOR

For a minimally coupled massless scalar field, the RSET
trace hT̂μ

μiren is uniquely determined [29] by hΦ̂2ðxÞiren via

hT̂μ
μiren ¼ −

1

2
□hΦ̂2ðxÞiren þ ðlocal termÞ: ð14Þ

The local term only depends on the background metric,
which is perfectly regular at the IH. Therefore the singular
piece of hT̂μ

μiren is fully described by the d’Alembertian
term. Since the constant hΦ̂2i− contributes nothing to the
d’Alembertian, we are left with −ðℏ=2M2Þ□Δ. Applying
the d’Alembertian operator to Eq. (10), we obtain for the
two quantum states, at leading order in 1=z (and δr),

FIG. 4. ΔðzÞ in the HH state (red dots) and Unruh state (blue
dots) exceedingly close to r− (up to z ∼ 1500, which roughly
corresponds to δr ∼ 10−650), computed using the refined variant.
The black curves are the analytical expressions (10) for the
inverse-power tails. The green curve indicates the leading-order
analytical result ΔH ≈ CHz−2 (whereas the corresponding black
curve also includes the next-order term C1

Hz
−3).
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hT̂μ
μiren ≅ nðnþ 1Þ ℏ

M2
κ−

C
r − r−

z−n−2; ð15Þ

where, recall, nH ¼ 2, nU ¼ 3 and C is either CH or CU
specified above.

VI. DISCUSSION

We found that hΦ̂2iren is finite at the IH. This finite
asymptotic value is approached via a few quickly decaying
oscillations followed by an inverse-power tail. In turn, the
RSET trace hT̂μ

μiren diverges as 1=ðr − r−Þ softened by a
certain inverse power of lnðr − r−Þ. We obtained a fully
analytical description of this divergent trace (at leadingorder),
Eq. (15). Obviously the divergence of the trace hT̂μ

μiren
implies the divergence of the tensor hT̂μνiren. This is the first
conclusive result showing the RSET divergence at the CH.
Here we only investigated numerically the case

Q=M ¼ 0.8. However, our results for the inverse-power
tails—and, more importantly, for the asymptotic divergence
(15) of the RSET trace—apply to any (nonextremal) M
and Q.
The behavior of hΦ̂2iren on approaching the IH is

remarkably complex. In particular, the final inverse-power
tails are only exposed at, say, δr < 10−175. This complex
asymptotic behavior may be traced to the factors e�iωr� in
Eq. (9). The mode contribution to hΦ̂2iren contains terms
quadratic in ψωl, including factors e�2iωr� (multiplying
certain functions of Aωl, Bωl, etc.). Integration over ω then
leaves a nontrivial function of r�, embodied in the asymp-
totic behavior of hΦ̂2iren.
It is interesting to compare these results to a recent work

[35] carried out by one of us (O. S.), in which the large-l
approximation was used to obtain bounds on the diver-
gence rate of hΦ̂2iren, hT̂μ

μiren, and certain components of
hT̂μνiren. In particular it was found that for both the Unruh
and HH states hΦ̂2iren and hT̂μ

μiren must be less divergent
than 1=ðr − r−Þ and 1=ðr − r−Þ2, respectively. The results
presented here for these two quantities are fully consistent
with these bounds.
The expressions presented here for the prefactors CH and

CU that control the divergence of hT̂μ
μiren only apply to a

minimally coupled massless scalar field. In the case of
nonminimal coupling they will change. In particular, in the
case of conformal coupling these prefactors will vanish
altogether, because the standard trace-anomaly formula
guarantees regularity of the trace at the IH. The same
situation will occur in the case of a quantum electromag-
netic field, since this field is conformal too.
It is still unclear, however, if the gravitational semi-

classical contribution to the effective stress energy will
possess such a trace divergence at the IH. The presence of a
gravitational contribution (associated with quantized lin-
earized modes of the gravitational field) to the effective
hT̂μνiren is obvious from the very basic fact that gravitons
do significantly contribute to Hawking radiation [36] (and,
correspondingly, negative semiclassical gravitational-field
influx must penetrate into the EH of the evaporating BH
and contribute to its shrinkage). However, a formalism for
quantifying the semiclassical effective gravitational stress-
energy tensor has not been formulated so far.
This analysis calls for extension in several obvious

directions. The first obvious step is to elevate the analysis
from hΦ̂2iren to the RSET. Second, the quantum scalar field
should better be replaced by the (more realistic) quantum
electromagnetic field. In addition, it will be important to
extend the analysis from RN to the Kerr background (a
spinning BH), which is obviously much more realistic than
a spherical charged BH.
Finally, it will be very interesting (but also very chal-

lenging) to explore the backreaction effect of the semi-
classical RSET on the BH interior, according to the
semiclassical Einstein equation (2).
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