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Dynamical chiral symmetry breaking is studied within (2þ 1)-dimensional QED with N four-
component fermions. The leading and next-to-leading orders of the 1=N expansion were computed
exactly by V. P. Gusynin and P. K. Pyatkovskiy [Phys. Rev. D 94, 125009 (2016)] and A. V. Kotikov
and S. Teber [Phys. Rev. D 94, no. 11, 114011 (2016)] in an arbitrary nonlocal gauge. In this
addendum to the work by Kotikov and Teber, we show that the resummation of the wave-function
renormalization constant at the level of the gap equation yields a complete cancellation of the gauge
dependence of the critical fermion flavour number resulting in Nc ¼ 2.8469, which is such that
dynamical chiral symmetry breaking takes place for N < Nc. The result is in full agreement with one
of Gusynin and Pyatkovskiy.
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I. INTRODUCTION

We consider quantum electrodynamics in 2þ 1 dimensions (QED3), which is described by the Lagrangian

L ¼ Ψ̄ði∂̂ − eÂÞΨ −
1

4
F2
μν; ð1Þ

where Ψ is taken to be a four-component complex spinor. In the presence of N fermion flavors, the model has a Uð2NÞ
symmetry. A fermion mass term, mΨ̄Ψ, breaks this symmetry to UðNÞ ×UðNÞ. In a 1=N expansion [1,2], the theory is
super-renormalizable, and the mass scale is then given by the dimensionful coupling constant, a ¼ Ne2=8, which is kept
fixed as N → ∞.
A central issue is related to the value of the critical fermion number, Nc, which is such that DχSB takes place

only for N < Nc. An accurate determination of Nc is of crucial importance to understand the phase structure
of QED3.
In our studies Refs. [3,4], we followed the approach of Appelquist et al. [5], who found that Nc ¼ 32=π2 ≈ 3.24

by solving the Schwinger-Dyson (SD) gap equation in the Landau gauge using a leading order (LO) 1=N-expansion.
Soon after the analysis of Ref. [5], Nash approximately included next-to-leading-order (NLO) corrections and
performed a partial resummation of the wave-function renormalization constant at the level of the gap equation; he
found [6] Nc ≈ 3.28. Recently, upon refining the work of Ref. [7], the NLO corrections could be computed exactly
in the Landau gauge, yielding (in the absence of resummation) [4] Nc ≈ 3.29. More recently, the results of Ref. [4]
have been extended in Ref. [3] to an arbitrary nonlocal gauge [8]. Reference [3] then found a residual weak gauge
dependence of Nc even after Nash’s resummation; it was also noticed in Ref. [3] that, if the weak gauge-dependent
terms contributing to Nc were neglected, then the final result would be in perfect agreement with the one
of Ref. [9].
The purpose of this short paper is to upgrade the exact results of Ref. [3] and to show the complete gauge

independence of the critical value Nc in the 1=N2 approximation. Following Ref. [3] and after long discussions with
Valery Gusynin, we shall modify the expansion prescription used in Ref. [3], which was based on (a NLO
correction to) the gap equation to (a NLO correction to) the parameter α of its solution [see Eq. (4) and below it].
This subtle change in the interpretation of the NLO corrections does not affect at all the LO results of Appelquist
but significantly modifies the NLO results (see below Sec. III) leading to gauge-invariant Nc values after Nash’s
resummation.
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II. LEADING ORDER

Let us briefly recall the structure and solutions of the LO SD equations; see Ref. [3] for more details. In the LO
approximation to the 1=N expansion, the SD equation to the fermion propagator has the form

ΣðpÞ ¼ 8ð2þ ξÞa
N

Z
d3k
ð2πÞ3

ΣðkÞ
ðk2 þ Σ2ðkÞÞ½ðp − kÞ2 þ ajp − kj� þOðN−2Þ; ð2Þ

where ΣðpÞ is the dynamically generated parity-conserving mass.
Following Refs. [7] and [5], we consider the limit of large a and linearize Eq. (2), which yields

ΣðpÞ ¼ 8ð2þ ξÞ
N

Z
d3k
ð2πÞ3

ΣðkÞ
k2jp − kj þOðN−2Þ: ð3Þ

The mass function may then be parametrized as [5]

ΣðkÞ ¼ Bðk2Þ−α; ð4Þ
where B is arbitrary and the index α has to be self-consistently determined. Using this ansatz, Eq. (3) reads

ΣðLOÞðpÞ ¼ 4ð2þ ξÞB
N

ðp2Þ−α
ð4πÞ3=2

2β

π1=2
þOðN−2Þ; ð5Þ

from which the LO gap equation is obtained,

1 ¼ ð2þ ξÞβ
L

þOðL−2Þ or β−1 ¼ ð2þ ξÞ
L

þOðL−2Þ; ð6Þ

where

β ¼ 1

αð1=2 − αÞ and L≡ π2N: ð7Þ

Let us note that the two equations in (6) are completely equal to each other. Solving the gap equation yields

α� ¼ 1

4

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16ð2þ ξÞ
L

r !
; ð8Þ

which reproduces the solution given by Appelquist et al. [5]. The gauge-dependent critical number of fermions,
Nc ≡ NcðξÞ ¼ 16ð2þ ξÞ=π2, is such that ΣðpÞ ¼ 0 for N > Nc and

Σð0Þ ≃ exp½−2π=ðNc=N − 1Þ1=2� ð9Þ
for N < Nc. Thus, dynamical chiral symmetry breaking (DχSB) occurs when α becomes complex, that is, for N < Nc.

III. NEXT-TO-LEADING ORDER

Evaluating the NLO corrections to the SD equation (2) yields (see Ref. [3]) the gap equation

1 ¼ ð2þ ξÞβ
L

þ 1

L2

�
8Sðα; ξÞ − 2ð2þ ξÞΠ̂β þ

�
−
5

3
þ 26

3
ξ − 3ξ2

�
β2 − 8β

�
2

3
ð1 − ξÞ − ξ2

��
þOðL−3Þ; ð10Þ

where
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Π̂ ¼ 92

9
− π2 ð11Þ

arises from the two-loop polarization operator in dimension D ¼ 3 [10–12].
The factor Sðα; ξÞ contains the contribution of the most complicated diagrams. As was shown in Ref. [3], it is convenient

to extract the most important contributions ∼β and ∼β2 from the complicated part Sðα; ξÞ. After these calculations, the gap
equation takes the equivalent form

1 ¼ ð2þ ξÞβ
L

þ 1

L2

�
8S̃ðα; ξÞ − 2ð2þ ξÞΠ̂β þ

�
2

3
− ξ

�
ð2þ ξÞβ2 þ 4β

�
ξ2 −

4

3
ξ −

16

3

��
þOðL−3Þ; ð12Þ

where the new complicated part S̃ðα; ξÞ does not contain any positive β powers and can be expanded in series of αn (and,
hence, β−n) starting with n ¼ 0.

A. Gap equation

In Ref. [3], we analyzed Eq. (10) at the critical point β ¼ 16 and found the corresponding critical value Lc. The same
results can also be obtained from Eq. (12).
Here, we will follow another strategy. As was already discussed in the Introduction, we will proceed in computing the

NLO correction to the parameter β−1 of the solution of the SD equation. From (12), we have

β−1 ¼ 2þ ξ

L
þ 1

L2

�
8

β
S̃ðβ; ξÞ − 2ð2þ ξÞΠ̂þ

�
2

3
− ξ

�
ð2þ ξÞβ þ 4

�
ξ2 −

4

3
ξ −

16

3

��
þOðL−3Þ: ð13Þ

From this equation, it is clear that the first term in brackets is of the order of ∼1=L [as can be seen by solving Eq. (13)
iteratively], and thus its contribution is of the order of ∼1=L3 and should therefore be neglected in the present analysis.
So, with NLO accuracy, we obtain that

β−1 ¼ 2þ ξ

L
þ 1

L2

��
2

3
− ξ

�
ð2þ ξÞβ − 2ð2þ ξÞΠ̂þ 4

�
ξ2 −

4

3
ξ −

16

3

��
þOðL−3Þ: ð14Þ

We are now in a position to compute β−1 from Eq. (14) as a combination of terms ∼1=L and ∼1=L2. This is, however, not
so important in the present analysis. Since we are interested in the critical regime, we may derive Lc in a straightforward
way from (14) [or equally from Eq. (12) with the condition S̃ðβ; ξÞ ¼ 0] by setting β ¼ 16 and keeping the termsOð1=L2Þ.
This yields

L2
c − 16ð2þ ξÞLc þ 32

�
ð2þ ξÞΠ̂þ 2ξ

�
20

3
þ 3ξ

��
¼ 0: ð15Þ

Solving Eq. (15), we have two standard solutions:

Lc;� ¼ 8
�
2þ ξ�

ffiffiffiffiffiffiffiffiffiffiffi
d1ðξÞ

p �
; ð16aÞ

d1ðξÞ ¼ 4 −
8

3
ξ − 2ξ2 −

2þ ξ

2
Π̂: ð16bÞ

Combining these values with the one of Π̂ in Eq. (11) yields

Ncðξ ¼ 0Þ ¼ 3.17; Ncðξ ¼ 2=3Þ ¼ 2.91; ð17Þ

where “−” solutions are unphysical and there is no solution in the Feynman gauge (ξ ¼ 1). The range of ξ values for which
there is a solution corresponds to ξ− ≤ ξ ≤ ξþ, where ξþ ¼ 0.82 and ξ− ¼ −2.24.
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B. Resummation

Performing Nash’s resummation, the gap equation takes the form (see Ref. [3])

1 ¼ 8β

3L
þ 1

L2

�
8S̃ðα; ξÞ − 16

3
β

�
40

9
þ Π̂

��
þOðL−3Þ; ð18Þ

which displays a strong suppression of the gauge dependence as ξ-dependent terms do exist but they enter the gap equation
only through the rest, S̃, which is very small numerically.
In Ref. [3], we have analyzed Eq. (18) at the critical point β ¼ 16 and found the corresponding critical value Lc. By

analogy with the previous subsection, we now proceed in finding the NLO correction to the parameter β−1 of the solution of
the SD equation. From (18), this yields

β−1 ¼ 8

3L
þ 1

L2

�
8

β
S̃ðα; ξÞ − 16

3

�
40

9
þ Π̂

��
þOðL−3Þ: ð19Þ

From this equation, it is again clear that the first term in brackets is of the order of ∼1=L [as can be seen by solving Eq. (19)
iteratively], and thus its contribution is ∼1=L3 and should be neglected in the present analysis. So, we have

β−1 ¼ 8

3L
−

1

L2

16

3

�
40

9
þ Π̂

�
þOðL−3Þ; ð20Þ

which is now completely gauge independent.
We now consider Eq. (20) [or, equivalently, Eq. (18) with the condition S̃ðβ; ξÞ ¼ 0] at the critical point α ¼ 1=4

(β ¼ 16) keeping all terms Oð1=L2Þ. This yields

L2
c −

128

3
Lc þ

256

3

�
40

9
þ Π̂

�
¼ 0: ð21Þ

Solving Eq. (21), we have two standard solutions,

Lc;� ¼ 64

3

�
1�

ffiffiffiffiffiffiffiffiffiffiffi
d2ðξÞ

p �
; ð22aÞ

d2ðξÞ ¼ 1 −
3

16

�
40

9
þ Π̂

�
¼ 1

6
−

3

16
Π̂; ð22bÞ

and we have for the “þ” solution (the − one is nonphysical):

L̄c ¼ 28.0981; N̄c ¼ 2.85: ð23Þ
The results of Eq. (23) are in full agreement with the recent results of Ref. [9].

IV. CONCLUSION

We have studied DχSB in QED3 by including 1=N2 corrections to the SD equation exactly and taking into account the
full ξ dependence of the gap equation. Following Nash, the wave-function renormalization constant has been resummed at
the level of the gap equation leading to a very weak gauge variance of the critical fermion number Nc.
Reconsidering the NLO expansion of Ref. [3], we have implemented a NLO expansion for the parameter β−1, which is

related to the index parametrizing the mass function rather than the mass function itself. This prescription allowed us to
show that the complicated weakly gauge-variant terms are actually of the order of 1=N3 and should be neglected in the
present NLO analysis. Thus, the obtained value Nc ¼ 2.85 is completely gauge independent and in full agreement with the
one of Ref. [9]. Both Refs. [9] and [3] are therefore in perfect agreement and yield order by order fully gauge-invariant
methods to compute Nc.
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