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The plasma of quarks and gluons created in ultrarelativistic heavy-ion collisions turns out to be
paramagnetic. In the presence of a background magnetic field, this paramagnetism thus leads to a pressure
anisotropy, similar to anisotropies appearing in a viscous fluid. In the present paper, we use this analogy,
and develop a framework similar to anisotropic hydrodynamics, to take the pressure anisotropy caused, in
particular, by the nonvanishing magnetization of a plasma of quarks and gluons into account. We consider
the first two moments of the classical Boltzmann equation in the presence of an electromagnetic source in
the relaxation-time approximation, and derive a set of coupled differential equations for the anisotropy
parameter ξ0 and the effective temperature λ0 of an ideal fluid with nonvanishing magnetization. We also
extend this method to a dissipative fluid with finite magnetization in the presence of a strong and dynamical
magnetic field. We present a systematic method leading to the one-particle distribution function of this
magnetized dissipative medium in a first-order derivative expansion, and arrive at analytical expressions for
the shear and bulk viscosities in terms of the anisotropy parameter ξ and effective temperature λ. We then
solve the corresponding differential equations for ðξ0; λ0Þ and ðξ; λÞ numerically, and determine, in this
way, the proper time and temperature dependence of the energy density, directional pressures, speed of
sound, and the magnetic susceptibility of a longitudinally expanding magnetized quark-gluon plasma in
and out of equilibrium.

DOI: 10.1103/PhysRevD.99.056021

I. INTRODUCTION

The past decade has witnessed enormous progress in the
field of relativistic hydrodynamics, which finds important
applications in the modern ultrarelativistic heavy-ion col-
lision (HIC) experiments at the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC).
The aim of these experiments is to produce a plasma of
quarks and gluons, and to study its evolution from an early
out of equilibrium stage, immediately after the collision, to
a late hadronization stage, where the system is approx-
imately thermalized. It is widely believed that in the early
stage after the collision, the quark-gluon plasma (QGP)
produced at the RHIC and LHC possesses a high degree of
momentum-space anisotropy, which mainly arises from the
initial state spatial anisotropies of the collision [1–3]. These
anisotropies are then converted into large pressure anisot-
ropies in the transverse and longitudinal directions with
respect to the beam direction. The question of how fast
these anisotropies evolve during the hydrodynamical
expansion of the QGP, in other words, how fast the
isotropization process occurs, is extensively studied in
the literature (see [3] and references therein). In particular,

in the framework of anisotropic hydrodynamics (aHydro)
[4,5], the small but nonvanishing ratio of the shear viscosity
over entropy density of the QGP, η=s, is assumed to be the
main source for the evolution of pressure anisotropies in
this medium (for recent reviews of aHydro, see [2,3]). In
this framework, the momentum-space anisotropy is
intrinsically implemented in an anisotropic one-particle
distribution function fðx; p; ξ; λÞ, including an anisotropy
parameter ξ and an effective temperature λ [5]. Taking the
first two moments of the Boltzmann equation, satisfied by
f, and using an appropriate relaxation time approximation
(RTA), two coupled differential equations are derived for ξ
and λ. The numerical solution of these equations leads
directly to the proper time dependence of ξ and λ, and
indirectly to the evolution of thermodynamic quantities,
which are, in particular, expressed in terms of fðx; p; ξ; λÞ
via kinetic theory relations. Choosing the relaxation time
proportional to the shear viscosity of the medium, the effect
of dissipation is considered, in particular, in the evolution
of transverse and longitudinal pressures [5]. It turns out
that, in the local rest frame (LRF) of the fluid, the transverse
pressure is larger than the longitudinal pressure, and that in
the center of the fireball, the system needs many fm/c to
become approximately isotropic [3]. Subsequently, many
efforts have been undertaken to study the effect of
dissipation on the evolution of the ratio of longitudinal
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to transverse pressure in a more systematic manner (see
e.g., [6]).
However, apart from finite dissipative corrections, the

finite magnetization of the QGP created at the RHIC and
LHC may be considered as another source of the afore-
mentioned pressure anisotropies. It is the purpose of the
present paper to focus on anisotropies caused, in particular,
by the nonvanishing magnetization of a uniformly expand-
ing QGP in and out of equilibrium. One of the main
motivations for this study is the wide belief that the QGP
produced in the early stages of noncentral HICs is the
subject of an extremely large magnetic field [7–9] (see also
[10] and the references therein). Assuming the magnetic
field to be aligned in a fixed direction, an anisotropy is
naturally induced in any magnetized medium including
charged fermions. This kind of anisotropy is previously
studied, e.g., in [11–19]. One of the consequences of this
anisotropy is the difference between the longitudinal and
transverse pressures with respect to the fixed direction of
the magnetic field. This difference turns out to be propor-
tional to the magnetization of the medium, and leads, in
particular, to an anisotropic equation of state (EoS) for
the magnetized QCD matter. The latter is studied, e.g., in
[13–16] in different contexts. In [17], the EoS of the
magnetized QCD is determined in the hadron resonance
gas model. It is, in particular, shown that the magnetization
of the QCD matter is positive. Several other results from
lattice QCD [18,19] agree qualitatively with this result,
indicating that the QGP produced in HIC experiments is
paramagnetic, and that the magnetic susceptibility of the
medium increases with increasing temperature [18]. In
[19], it is argued that because of this paramagnetism, the
“QGP produced in noncentral HICs becomes elongated
along the direction of the magnetic field,” and this para-
magnetic squeezing may thus have a finite contribution to
the elliptic flow v2. The latter is one of the important
observables in HIC experiments. Let us again emphasize
that in all these computations, the magnitude and the
direction of the background magnetic field are mainly
assumed to be constant. Moreover, the quark matter
produced in HICs is assumed to be static.
In reality, however, the QGP created at the RHIC and

LHC is expanding, and the relativistic hydrodynamics is
one of the main tools to describe this specific expansion [1].
On the other hand, it is known that the magnetic field
produced in noncentral HICs decays very fast [7–10]. As
concerns the aforementioned pressure anisotropies, it is
thus necessary to consider the effect of the evolution of the
QGP and the magnetic field on the paramagnetic squeezing
of the QGP. Recently, a number of attempts have been
made to study the evolution of the magnetic field in ideal
and nonideal fluids in the framework of magnetohydrody-
namics (MHD) [20–24]. The idea in all these papers is to
combine hydrodynamic equations with the Maxwell equa-
tions, and to solve them simultaneously using a number of

assumptions. In [20], it is assumed that (i) the external
magnetic field is transverse to the fluid velocity (transverse
MHD), (ii) the system is invariant under a longitudinal
boost transformation, and (iii) the evolution of the system
occurs longitudinally with respect to the beam direction.
The last two assumptions are necessary for the 1þ 1
dimensional Bjorken flow to be applicable [25]. Using
Bjorken’s velocity profile, it is found that in an ideal fluid
with infinitely large conductivity, the magnitude of the
magnetic field evolves as BðτÞ ∝ τ−1, with τ being the
proper time, and, moreover, the direction of the magnetic
field is frozen, and thus unaffected by the expansion of the
fluid [20]. In [21,22], using the same assumptions as in
[20], the deviation from the frozen flux theorem in a
magnetized fluid with finite conductivity is studied within a
1þ 1 dimensional ultrarelativistic nonideal and nondissi-
pative MHD.1

In the present paper, we use the analogy between the
energy-momentum tensor of an ideal paramagnetic fluid in
the presence of a magnetic field and the energy-momentum
tensor of a longitudinally expanding fluid in the framework
of aHydro [3,5], and study paramagnetic squeezing of a
uniformly expanding QGP with and without dissipation.
To do this, we make the same three assumptions as is used
in the 1þ 1 dimensional transverse MHD (see above).
Moreover, we assume that the system includes massless
particles (conformal symmetry). Using the above-
mentioned analogy, we identify the unit vector in the
direction of the magnetic field, bμ, with the anisotropy
direction that appears in aHydro. Similar to aHydro, we
introduce an anisotropic one-particle distribution function,
fb,

2 which is expressed in terms of bμ, an anisotropy
parameter and an effective temperature. We then consider
the Boltzmann equation in the presence of an electromag-
netic source in the RTA. Taking the first two moments of
this equation, we arrive, similar to aHydro, to two differ-
ential equations whose solutions lead to the proper time
evolution of the anisotropy parameter and effective temper-
ature in the nondissipative and dissipative cases. The only
free parameter here is the relaxation time, which is chosen
to be different in these two cases. Using the kinetic theory
relations, it is then possible to determine numerically the
ratio of transverse to longitudinal pressures with respect
to bμ. This ratio can be regarded as a measure for the
anisotropy caused by the magnetization of the fluid in the
nondissipative case, and by the magnetization together with
the dissipation in the dissipative case. In the latter case, we
combine the method used in [26,27] to determine the
dissipative part of the one-particle distribution function in

1In a nonideal and nondissipative fluid, because of the
finite electric conductivity of the medium, the electric field
cannot be neglected. Moreover, the system is assumed to be
nondissipative.

2In the rest of this paper, we refer to fb as magneto-anisotropic
one-particle distribution function.
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the first-order derivative expansion around fb. We hereby
use a number of results from [26–30]. Let us notice that in
both nondissipative and dissipative cases, apart from the
aforementioned ratio of transverse to longitudinal pressures,
the proper time evolution of the energy density and, in
particular, the magnetic susceptibility χm of the paramag-
netic QGP can be determined. To have a link to the
previously found temperature dependence of χm from lattice
QCD [18], we combine our results for the τ dependence of
the effective temperature and the magnetic susceptibility of
the QGP, and determine the effective temperature depend-
ence of χm. We show that, as in [18], χm increases up to a
maximum value with increasing temperature. After reaching
the maximum, it decreases with increasing temperature. This
is in contrast to the lattice QCD results from [18]. This
specific feature is, however, expected in our setup, bearing in
mind that in [18], in contrast to our case, the magnetic field is
constant, and the quark matter is assumed to be static. Apart
from the above-mentioned thermodynamic quantities, we
determine, as by-products, the proper time evolution and the
effective temperature dependence of the shear and bulk
viscosities, and compare the results with the existing results
in the literature [31,32].
The organization of the paper is as follows: In Sec. II, we

present a brief review on ideal MHD and the 1þ 1
dimensional Bjorkenian solution to the ideal transverse
MHD (see also [33,34] for a new systematic formulation of
relativistic MHD). In Sec. III, we first introduce the
magneto-anisotropic one-particle distribution function of
an ideal magnetized fluid, and then, using the first two
moments of the Boltzmann equation in the RTA, we derive
the corresponding differential equations for the anisotropy
parameter and effective temperature. In Sec. IV, we extend
our method to a dissipative magnetized fluid. In Sec. IVA,
the dissipative part of fb is determined, and analytical
expressions for the shear and bulk viscosities of a dis-
sipative and magnetized fluid are presented. Recently,
nonresistive and resistive dissipative MHD are formulated
via kinetic theory in the 14-moment approximation in
[35,36]. However, the effects of magnetization, which are
of particular interest in the present paper, are not discussed
in these papers. In Sec. IV B, the corresponding differential
equations for the anisotropy parameter and the effective
temperature are derived. In Sec. V, choosing appropriate
initial values for the anisotropy parameter at the initial
proper time, we numerically solve the two sets of differ-
ential equations arising in Secs. III and IV for nondissi-
pative and dissipative fluids. We then present numerical
results for the proper time dependence of anisotropic
pressures, the energy density, speed of sound, and magnetic
susceptibility of a longitudinally expanding magnetized
fluid. We discuss the effect of paramagnetic squeezing on
these observables, and compare the results with the existing
results in the literature. Section VI is devoted to concluding
remarks.

II. REVIEW MATERIAL

A. Ideal MHD

Ideal relativistic hydrodynamics is a useful tool to
describe the evolution of an ideal and locally equilibrated
fluid, which is mainly characterized by its long-wavelength
degrees of freedom, the four-velocity uμðxÞ and the temper-
ature TðxÞ. Here, uμ ¼ γð1; vÞ is derived from
uμ ¼ dxμ=dτ, with xμ ≡ ðt; xÞ being the four-coordinate
of each fluid parcel in a flat Minkowski space and τ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p
is the proper time. It satisfies uμuμ ¼ 1. In the

absence of external electromagnetic fields, the ideal fluid is
described by the local entropy density sμ and fluid energy-
momentum tensor T μν

f;0,
3

sμ ≡ suμ; and T μν
f;0 ≡ ϵuμuν − pΔμν; ð2:1Þ

where the transverse projector Δμν ≡ gμν − uμuν, and the
spacetime metric gμν ¼ diagð1;−1;−1;−1Þ. In the ideal
case, they satisfy

∂μsμ ¼ 0; and ∂μT
μν
f;0 ¼ 0: ð2:2Þ

In the presence of external magnetic fields, an ideal
magnetized fluid is described by a total energy-momentum
tensor

Tμν
0 ≡ Tμν

f;0 þ Tμν
em; ð2:3Þ

including the fluid and electromagnetic energy-momentum
tensors, Tμν

f;0 and Tμν
em. They are given by

Tμν
f;0 ¼ ϵuμuν − pΔμν −

1

2
ðMμλFλ

ν þMνλFλ
μÞ;

Tμν
em ¼ FμλFλ

ν þ 1

4
gμνFρσFρσ: ð2:4Þ

The total energy-momentum tensor (2.3) satisfies the
conservation relation

∂μT
μν
0 ¼ 0: ð2:5Þ

In (2.4), the field strength tensor Fμν and a magnetization
tensor Mμν are expressed in terms of the magnetic field as4

Fμν ≡ −Bbμν; and Mμν ≡ −Mbμν; ð2:6Þ

3In this paper, quantities with subscripts 0 are defined in
nondissipative magnetized fluid, which is described by ideal
MHD.

4In this paper, we focus on fluids with infinitely large electric
conductivity. We thus neglect the electric field (see [28] for a
similar treatment and [22,23,29] for more details).
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where bμν ≡ ϵμναβbαuβ, and bμ ≡ Bμ

B . Here, Bμ≡
1
2
ϵμναβFναuβ. This leads to BμBμ ¼ −B2. In (2.6), B is

the strength of the magnetic field and M is the magneti-
zation of the fluid. In the LRF of the fluid with uμ ¼ ð1; 0Þ,
the magnetic field Bμ ¼ ð0;BÞ. Using Bμ ¼ Bbμ with
B≡ jBj, we thus obtain bμbμ ¼ −1. Similarly, the anti-
symmetric polarization tensor Mμν, which describes the
response of the fluid to an applied electromagnetic field
strength tensor Fμν, defines the magnetization four-vector
Mμ ≡ 1

2
ϵμναβMναuβ. In the LRF of the fluid, Mμ ≡ ð0;MÞ

with MμMμ ¼ −M2 and M ≡ jMj. The magnetic suscep-
tibility of the fluid χm is then defined by M ≡ χmB.
Plugging Fμν and Mμν from (2.6) into Tμν

f;0 and Tμν
em

from (2.4), we arrive after some work at [28,29]

Tμν
f;0 ¼ ϵuμuν − p⊥Ξμν

B þ pkbμbν;

Tμν
em ¼ 1

2
B2ðuμuν − Ξμν

B − bμbνÞ: ð2:7Þ

Here, p⊥ ≡ p − BM, pk ≡ p and Ξμν
B ≡ Δμν þ bμbν.

Transverse and longitudinal directions, denoted by the
subscripts⊥ and k, are defined with respect to the direction
of the external magnetic field. Contracting first (2.5)
together with Tμν

f;0 and Tμν
em from (2.7), with uν, we arrive

at the energy equation

Dϵþθðϵþp⊥Þ−B2ð1−χmÞuνbμ∂μbνþBðDBþθBÞ¼0;

ð2:8Þ

whereD≡ uμ∂μ and θ≡ ∂μuμ. Contracting then (2.5) with
Δρν, we arrive at the Euler equation

ðϵþ p⊥ þ B2ÞDuρ −∇ρ

�
p⊥ þ 1

2
B2

�
þ B2ð1 − χmÞuρuνbμ∂μbν − ∂μ½ð1 − χmÞB2bμbρ� ¼ 0;

ð2:9Þ

with ∇ρ ≡ Δρν∂ν.
Apart from the energy and Euler equations, (2.8) and

(2.9), the magnetized fluid is described by homogeneous
and inhomogeneous Maxwell equations,

∂μF̃μν ¼ 0; and ∂μFμν ¼ Jν; ð2:10Þ

where the dual field strength tensor and the electromagnetic
current are given by

F̃μν ¼ Bμuν − Bνuμ; ð2:11Þ

and

Jμ ¼ ρeuμ þ ∂ρMρμ: ð2:12Þ

Here, ρe is the electric charge density, and ∂ρMρμ is the
magnetization current. It is given by contracting the
inhomogeneous Maxwell equation ∂μFμν ¼ Jν from
(2.10) with uν,

5

ρe ¼ 2ð1 − χmÞðB · ωÞ; ð2:13Þ

where ωμ ≡ 1
2
ϵμναβuν∂αuβ is the vorticity of the fluid.

Contracting the homogeneous Maxwell equation
∂μðBμuν − BνuμÞ ¼ 0 with bμ, we also obtain

D lnBþ θ − uνbμ∂μbν ¼ 0: ð2:14Þ

In what follows, we use these relations to determine the
evolution of the magnetic field in transverse 1þ 1 dimen-
sional MHD.

B. Bjorken flow and the ideal transverse MHD

In the present paper, we mainly focus on the effect of
magnetic fields on the plasma of quarks and gluons created
in the early stages of HICs. It is believed that they are
created in a plane perpendicular to the reaction plane. For
later convenience, let us assume the beam line to be in the
longitudinal y direction, and the magnetic field B in the
LRF of the fluid being directed in the transverse z direction
perpendicular to the reaction plane in the x-y (see the sketch
in Fig. 1).6 In this setup, the transverse MHD [20–23] is
characterized by
(1) translational invariance in the transverse x-z plane,
(2) a uniform expansion of the fluid in the longitudinal

beam direction, leading to a nonaccelerated flow,
(3) boost invariance along the beam line in the y

direction, and
(4) boost invariance of the pressure p0.

Using the above assumption, and replacing vy in uμ ¼
γð1; 0; vy; 0Þ with vy ¼ y=t, we arrive after an appropriate
parametrization of the four-coordinate xμ in terms of the
Milne variables, the proper time τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − y2
p

and the
boost variable η≡ 1

2
ln tþy

t−y, at the 1þ 1 dimensional
Bjorken flow:

uμ ¼ ðcosh η; 0; sinh η; 0Þ: ð2:15Þ

5We use the notation a · b≡ aμbμ.6This choice is in contrast to the common practice where the
beam line is assumed to be in the longitudinal z direction and
the magnetic field B aligned in the transverse y direction. In the
framework of 1þ 1 dimensional approximation, it is assumed
that the QGP expands uniformly in the longitudinal z direction,
and the system remains translational invariant in the transverse
x-y plane. Its expansion is then described by the Bjorken flow
uμ ¼ γð1; 0; 0; vzÞ with vz ¼ z=t. In the Milne parametrization uμ
is thus given by uμ ¼ ðcosh η; 0; 0; sinh ηÞ (see e.g., [22] for more
details).
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Using this parametrization, we obtain

∂μ ¼ ð∂t; 0; ∂y; 0Þ; ð2:16Þ

with

∂
∂t ¼ þ cosh η

∂
∂τ −

1

τ
sinh η

∂
∂η ;

∂
∂y ¼ − sinh η

∂
∂τ þ

1

τ
cosh η

∂
∂η : ð2:17Þ

These specific features of uμ and ∂μ lead, in particular,
to vanishing vorticity ωμ in transverse MHD. Plugging
ωμ ¼ 0 into (2.13), the electric charge density ρe in
transverse MHD vanishes. To determine the evolution of
the magnetic field, we combine, at this stage, u · B ¼ 0
with v · B ¼ 0, which is valid in 1þ 1 dimensional trans-
verse MHD, and arrive at Bμ ¼ ð0; Bx; 0; BzÞ.7 Using then
these relations together with B · ∂ ¼ 0 and ∂ · B ¼ 0, the
homogeneous Maxwell equation ∂μðBμuν − BνuμÞ ¼ 0 in
transverse MHD reads

∂μðBuμÞ ¼ 0; or DBþ θB ¼ 0: ð2:18Þ

Using D ¼ ∂
∂τ and θ ¼ 1

τ arising from ∂μ from (2.17), we
then arrive at a simple differential equation for B ¼ jBj,

∂B
∂τ þ B

τ
¼ 0: ð2:19Þ

This leads immediately to the evolution of B in the ideal
transverse MHD,

B ¼ B̄

�
τ̄

τ

�
: ð2:20Þ

Here, B̄≡ Bðτ̄Þ and τ̄ is initial time of the hydrodynamic
expansion. Bearing in mind that in transverse MHD
B · ∂ ¼ 0, the differential equation (2.19) is consistent
with (2.14). We emphasize at this stage that the above τ
dependence of BðτÞ is also valid in dissipative MHD. This
is mainly because (2.20) arises from the homogeneous
Maxwell equation, which is unaffected by dissipative terms
in the energy-momentum tensor of the fluid.
UsingDBþ θB ¼ 0 from (2.18), B ·∂¼0 and ∂ · B ¼ 0

in transverse MHD, it turns out that the electromagnetic
part of the energy-momentum tensor Tμν

em from (2.7) is
conserved. Plugging uν∂μT

μν
em ¼ 0 in (2.5), we are therefore

left with

uν∂μT
μν
f;0 ¼ 0; ð2:21Þ

with Tμν
f;0 given in (2.7). Using DBþ θB ¼ 0 from (2.18)

and b · ∂ ¼ 0 as well as ∂ · b ¼ 0 in transverse MHD, the
energy equation (2.8) is modified as

Dϵþ θðϵþ p − BMÞ ¼ 0: ð2:22Þ

As concerns the Euler equation, we use the fact that in
the Bjorken setup the fluid is nonaccelerated, and obtain
Duρ ¼ 0. Plugging this relation into (2.9), the Euler
equation in ideal transverse MHD reads

∂
∂η ðp − BMÞ ¼ 0: ð2:23Þ

Here, ∇μ ¼ − 1
τ ðsinh η; 0;− cosh η; 0Þ ∂

∂η is used. Using
then the assumed boost invariance (η independence) of
p, the boost invariance of B arising from (2.20), and
M ¼ χmB, we arrive at the boost invariance of the magnetic
susceptibility χm.
Using the same method, it is also possible to determine

the evolution of the entropy. To do this, let us consider the
conservation equation of the entropy current ∂μðsuμÞ ¼ 0

from (2.2) leading to Dsþ θs ¼ 0. In the Milne coordi-
nates, we thus arrive at

∂s
∂τ þ

s
τ
¼ 0; ð2:24Þ

whose solution reads

s ¼ s̄

�
τ̄

τ

�
: ð2:25Þ

FIG. 1. Creation of magnetic fields in HIC experiments. The
beam line is in the y direction, and the magnetic field is aligned in
the z direction, perpendicular to the x-y reaction plane. A uniform
expansion of the QGP (the fluid droplet) occurs in the longi-
tudinal y direction. This system is described by a 1þ 1 dimen-
sional transverse MHD.

7In the specific setup, demonstrated in Fig. 1, the magnetic
field is aligned in the third direction. We thus have Bx ¼ 0.
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Here, s̄≡ sðτ̄Þ. As concerns the evolution of the energy
density ϵ, let us consider the energy equation (2.22). In the
case of vanishing magnetic susceptibility, one usually uses
the ideal gas EoS, ϵ ¼ κp, with κ ¼ const, to write (2.22)
with vanishing magnetic susceptibility as

∂p
∂τ þ

�
1þ 1

κ

�
p
τ
¼ 0; ð2:26Þ

whose solution is given by

p ¼ p̄

�
τ̄

τ

�
1þ1=κ

; for χm ¼ 0: ð2:27Þ

Here, p̄ ¼ pðτ̄Þ. Using ϵ ¼ κp, we have

ϵ ¼ ϵ̄

�
τ̄

τ

�
1þ1=κ

; for χm ¼ 0; ð2:28Þ

with ϵ̄ ¼ κp̄. Combining the EoS ϵ ¼ κp, (2.24), (2.27),
and the thermodynamic relation ϵþ p ¼ Ts, the evolution
of the temperature T is given by

T ¼ T̄

�
τ̄

τ

�
1=κ

; for χm ¼ 0; ð2:29Þ

with T̄ ≡ ð1þ κÞ p̄s̄.
In the next section, we determine the evolution of ϵ, p

and T in the case of nonvanishing and τ dependent χm in
ideal MHD.8 As a by-product, the evolution of the magnetic
susceptibility is also found. To do this, we use the method
used in [5] in the framework of aHydro (see also [3] and
references therein).

III. PARAMAGNETIC ANISOTROPY IN A
NONDISSIPATIVE MAGNETIZED QGP

A. Boltzmann equation and ideal transverse MHD

Let us start by considering the fluid part of the energy-
momentum tensor Tμν

f;0 from (2.7), which can also be
given as

Tμν
f;0 ¼ ðϵþ p⊥Þuμuν − p⊥gμν þ ðpk − p⊥Þbμbν: ð3:1Þ

This relation is in many aspects comparable with the
energy-momentum tensor;

Tμν
f ¼ ðϵþ pTÞuμuν − pTgμν þ ðpL − pTÞYμYν; ð3:2Þ

appearing, e.g., in [3] in the context of aHydro. Here, Yμ is
the beam direction.9 Let us emphasize at this stage that
whereas subscripts T and L in (3.2) correspond to trans-
verse and longitudinal directions with respect to the beam
direction, ⊥ and k in (3.1) correspond to transverse and
longitudinal directions with respect to the direction of the
magnetic field in the z direction (see Fig. 1). Hence, fk;⊥g
correspond to fT; Lg in [3,5], respectively.
Using the analogy between (3.1) and (3.2), we identify

Yμ, appearing in (3.2), with bμ ¼ Bμ=B. Here, bμ satisfies
bμbμ ¼ −1, and, in the LRF of the fluid, we have
bμ ¼ ð0; 0; 0; 1Þ. Physically, the main difference between
Tμν from (3.2) and Tμν

f;0 from (3.1) lies in the difference
between the longitudinal and the transverse pressures.
Whereas pL − pT in (3.2) is brought in connection with
the dissipative nature of the fluid, in particular, its shear
viscosity [3], pk − p⊥ in (3.1) is related to the magneti-
zation of the fluid through pk − p⊥ ¼ BM ¼ χmB2. It is
therefore possible to follow the method presented in [3,5],
and to determine the evolution of the energy density, the
pressure and the effective temperature in the ideal non-
dissipative case, in order to focus on the effect of non-
vanishing magnetization of the fluid on the evolution of
anisotropies arising in the early stages of HICs. Similar to
aHydro, the anisotropy induced by nonvanishing magneti-
zation of the QGP is intrinsically implemented in the
momentum distribution of the system, and can be consid-
ered as a new source for the pressure anisotropy appearing
in the QGP created in HICs. In this section, we consider the
anisotropy caused by the nonvanishing magnetization of a
nondissipative fluid. We use the same method of moments
of Boltzmann equation in the RTA as in [3,5], and derive, in
this way, two differential equations whose solutions lead to
the proper-time dependence of the anisotropy parameter
and effective temperature.
To do this, we introduce, as in aHydro, the one-particle

distribution function,

f0 ¼ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kμΞð0Þ

μν kν
q

=λ0

�
; ð3:3Þ

with λ0 being the effective temperature, and

Ξð0Þ
μν ≡ uμuν þ ξ0bμbν: ð3:4Þ

Here, ξ0 is the anisotropy parameter that is induced by the
magnetization of the fluid. In transverse MHD, λ0 and ξ0
depend, in general, on τ and η. However, by the assumption
of boost invariance, they depend only on τ. In the presence

8The evolution of thermodynamic functions for constant χm is
studied in [21].

9Let us notice that in [3,5], the beam line is chosen to be in the
z direction. Hence, (3.2) is formulated in terms of Zμ, the unit
vector in this direction, instead of Yμ. In the present paper,
however, we take the beam line in the y direction, perpendicular
to the magnetic field. The latter is chosen to be in the z direction.
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of an external magnetic field described by the field strength
tensor Fμν, f0 satisfies the Boltzmann equation,

kμ∂μf0 þ qfeFμνkν
∂f0
∂kμ ¼ C½f0�; ð3:5Þ

with qf being the number of flavors. Using the RTA, we set,
as in [3],

C½f0� ¼ −ðk · uÞ
�
f0 − feq

τr;0

�
; ð3:6Þ

with

feq ¼ exp ð−ðk · uÞ=TÞ; ð3:7Þ

and τr;0 the relaxation time. In [3], the relaxation time is
brought in connection with the shear viscosity over the
entropy density ratio. In ideal MHD, however, the fluid is
dissipationless. The relaxation time τr;0 is thus only related
to the magnetization of the fluid, that, because of the
induced anisotropy, affects feq.
Contracting, at this stage, Tμν

f;0 from (3.1) with uμuν,
bμbν, and using b · b ¼ −1 and u · b ¼ 0, we obtain

ϵ0 ¼ uμuνT
μν
f;0; and p0 ¼ bμbνT

μν
f;0: ð3:8Þ

Using, moreover, Tμν
f;0gμν ¼ ϵ0 − 3p0 þ 2BM0, we

arrive at10

ΔμνT
μν
f;0 ¼ −3p0 þ 2BM0: ð3:9Þ

Using the standard definition of the energy-momentum
tensor in terms of the one-particle distribution function,

Tμν
f;0 ¼

Z
dk̃kμkνf0ðx; kÞ; ð3:10Þ

with dk̃≡ d3k
ð2πÞ3jkj, the energy density, the pressure and the

magnetization of the fluid including massless particles,
satisfying k2 ¼ 0, read

ϵ0 ¼
Z

dk̃ðk · uÞ2f0;

p0 ¼
Z

dk̃ðk · bÞ2f0;

M0 ¼ −
1

2B

Z
dk̃½ðk · uÞ2 − 3ðk · bÞ2�f0: ð3:11Þ

Plugging f0 from (3.3) into these expressions, and perform-
ing the integrations, we arrive after some computation at

ϵ0 ¼
3λ40
π2

Rðξ0Þ;

p0 ¼
3λ40
π2ξ0

�
Rðξ0Þ −

1

1þ ξ0

�
;

M0 ¼
3λ40

2π2ξ0B

�
ð3 − ξ0ÞRðξ0Þ −

3

1þ ξ0

�
; ð3:12Þ

where

RðξÞ≡ 1

2ð1þ ξÞ
Z

π

0

dθ sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ sin2 θ

p

¼ 1

2

�
1

1þ ξ
þ arctan

ffiffiffi
ξ

pffiffiffi
ξ

p
�
: ð3:13Þ

In (3.12), λ0 and ξ0 satisfy differential equations that can be
determined by making use of the Boltzmann equation (3.5).

B. Differential equations leading to ξ0 and λ0
We start by considering the zeroth moment of the

Boltzmann equation (3.5),

Z
dk̃

�
kμ∂μf0 þ qfeFμνkν

∂f0
∂kμ

�
¼

Z
dk̃C½f0�; ð3:14Þ

with C½f0� given in (3.6). Using

nμ0 ≡ n0uμ ¼
Z

dk̃kμf0 ¼
λ30

π2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p uμ; ð3:15Þ

and

Z
dk̃Fμνkν

∂f0
∂kμ ¼

Z
dk̃Fμνgμνf0 ¼ 0; ð3:16Þ

as well as

Z
dk̃C½f0� ¼ −

1

τr;0
ðn0 − neqÞ; ð3:17Þ

with

nμeq ¼ nequμ ¼
Z

dk̃kμfeq ¼
T3

π2
uμ; ð3:18Þ

we arrive at

Dn0 þ θn0 ¼ −
1

τr;0
ðn0 − neqÞ: ð3:19Þ

10We replace ϵ, p and M from (3.1) with ϵ0, p0 and M0 to
denote that these quantities are computed with anisotropic f0
through standard definitions (3.11).
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Using D ¼ ∂τ ≡ ∂
∂τ, θ ¼ 1

τ, and plugging n0 and neq into
(3.19), we arrive first at

∂τξ0
1þ ξ0

−
6∂τλ0
λ0

−
2

τ
¼ 2

τr;0

�
1 −

�
T
λ0

�
3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ0
p �

: ð3:20Þ

The relation between T and the effective temperature λ0
arises from the first moment of the Boltzmann equa-
tion (3.5),

Z
dk̃kρ

�
kμ∂μf0 þ qfeFμνkν

∂f0
∂kμ

�
¼

Z
dk̃kρC½f0�;

ð3:21Þ

with C½f0� given in (3.6). Using (3.10), the first term on the
left-hand side (lhs) of (3.21) is given by ∂μT

μρ
f;0. Using

n0uμ ¼
R
dk̃kμf0 and Fμνuν ¼ Eμ, the second term on the

lhs of (3.21) reads

qfeFμν

Z
dk̃kρkν

∂f0
∂kμ ¼ −qfeFρ

νnν0 ¼ −qfen0Eρ ¼ 0:

We thus arrive at

∂μT
ρμ
f;0 ¼

Z
dk̃kρC½f0� ¼ −

1

τr;0
uμðTρμ

f;0 − Tρμ
f;eqÞ; ð3:22Þ

where Tμν
f;eq is defined by (3.10) with f0 replaced with feq

from (3.7). Using, at this stage, ∂μT
μν
0 ¼ ∂μT

μν
f;0 ¼ 0 from

(2.21), we arrive at

uμT
ρμ
f;0 ¼ uμT

ρμ
f;eq; ð3:23Þ

which leads to

ϵ0 ¼ ϵeq; ð3:24Þ

upon multiplying (3.23) by uρ. Here, ϵ0 is defined in
(3.11) and

ϵeq ¼
Z

dk̃ðk · uÞ2feq ¼
3T4

π2
: ð3:25Þ

Plugging ϵ0 and ϵeq from (3.12) and (3.25) into (3.24), we
arrive at

T ¼ λ0R1=4ðξ0Þ; ð3:26Þ

with RðξÞ given in (3.13). Plugging this expression into
(3.20), we obtain

∂τξ0
1þξ0

−
6∂τλ0
λ0

−
2

τ
¼ 2

τr;0

�
1−R3=4ðξ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þξ0

p �
: ð3:27Þ

Let us now consider the energy equation (2.22). Plugging
ϵ0, p0 and BM0 from (3.12) into (2.22), we arrive at
the second differential equation leading to the evolution of
λ0 and ξ0,

∂Rðξ0Þ
∂ξ0

∂τξ0
Rðξ0Þ

þ 4∂τλ0
λ0

¼ −
1

2τξ0

�
3ξ0 − 1þ 1

ð1þ ξ0ÞRðξ0Þ
�
: ð3:28Þ

In Sec. V, we solve the above differential equations (3.27)
and (3.28) numerically for a given relaxation time τr;0, and
determine the evolution of λ0 and ξ0 in terms of the proper
time τ. The resulting solutions of λ0 and ξ0 are then used to
determine the evolution of thermodynamic quantities ϵ0, p0

and M0. Using then the relation M0 ¼ χm;0B and the
evolution (2.20) of B in terms of τ, the evolution of the
magnetic susceptibility χm;0 in a nondissipative QGP is
determined.

IV. PARAMAGNETIC ANISOTROPY IN A
DISSIPATIVE MAGNETIZED QGP

In this section, we extend the method described in the
previous section to a dissipative QGP in the presence of a
strong but fast decaying magnetic field. To do this, we first
use the method described in [26], and determine the
dissipative part of the one-particle distribution function
in a magnetized fluid in the first-order derivative expansion.
Then, using the same method as in the previous section, we
determine the differential equations corresponding to the
anisotropy parameter ξ and the effective temperature λ in
the RTA. Choosing appropriate initial values, these equa-
tions are then solved numerically for various relaxation
times. The τ dependence of ξ and λ, arising from this
procedure, leads eventually to the τ dependence of thermo-
dynamic quantities ϵ, p and M in a dissipative and
magnetized QGP.

A. The dissipative part of the magneto-anisotropic
one-particle distribution function, shear

and bulk viscosities

To determine the dissipative part of the one-particle
distribution function, we start by plugging f ¼ fb þ δfd
including the nondissipative and dissipative one-particle
distribution functions, fb and δfd, into the Boltzmann
equation

kμ∂μf þ qfeFμνkν
∂f
∂kμ ¼ C½f�: ð4:1Þ

Here, as in the previous section, fb is given by

fb ≡ exp
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kμΞμνkν

q
=λ
�
; ð4:2Þ
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with

Ξμν ¼ uμuν þ ξbμbν: ð4:3Þ

In (4.2) and (4.3), λ and ξ are the effective temperature and
anisotropy parameter, receiving, in contrast to λ0 and ξ0
from the previous section, dissipative contributions.
Keeping the dissipative part up to the first-order derivative
expansion, and using Fμν ¼ −Bbμν and the RTA ansatz

C½f� ¼ −ðk · uÞ ðf − feqÞ
τr

; ð4:4Þ

we arrive at

kμ∂μfb − qfeBbμνkν
∂fb
∂kμ − qfeBbμνkν

∂δfd
∂kμ

¼ −ðk · uÞ ðf − feqÞ
τr

; ð4:5Þ

where the relaxation time τr and the equilibrium one-
particle distribution function feq are defined in (4.4) and
(3.7). Let us notice, at this stage, that in the dissipative case
τr is different from τr;0, which appeared in (3.6). In what
follows, we consider τr as a free parameter, and study
qualitatively the effect of different choices of τr > τr;0 and
τr ≤ τr;0 on the evolution of thermodynamical quantities,
which are separately affected by the anisotropy induced by
the magnetization and the first-order dissipation.11

Plugging fb from (4.2) into (4.5), and using uμbμν ¼ 0,
bμbμν ¼ 0, as well as ∂μ ¼ ∇μ þ uμD, we arrive after a
straightforward computation at12

−
fb
λHb

�
kμkνwμν þ ðk · bÞ2Dξ − ðk · uÞ2H2

b
Dλ

λ

�

− qfeBbμνkν
∂δfd
∂kμ ¼ −ðk · uÞ ðf − feqÞ

τr
: ð4:6Þ

Here, wμν ≡ 1
2
ð∇μuν þ∇νuμÞ, and

HbðkÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

ðk · bÞ2
ðk · uÞ2

s
: ð4:7Þ

Let us consider, at this stage, f − feq with f ¼ fb þ δfd on
the right-hand side (rhs) of (4.6). Bearing in mind that δfd
may include terms consisting of derivatives with respect to
λ, ξ and uμ, we introduce

δfd ¼ δfðaÞd þ δfðbÞd − ðfb − feqÞ; ð4:8Þ

with δfðaÞd and δfðbÞd including derivatives with respect to λ,
ξ and uμ. Plugging (4.8) into (4.6), and comparing the terms
including λ, ξ and uμ, we arrive at an algebraic equation,

satisfied by δfðaÞd :

δfðaÞd ¼ νH

�
ðk · bÞ2Dξ − ðk · uÞ2H2

b
Dλ

λ

�
; ð4:9Þ

with νH ≡ τrfb
λðk·uÞHb

, and a differential equation satisfied by

δfðbÞd :

fb
λHb

ðkμkνwμνÞ¼ðk ·uÞδf
ðbÞ
d

τr
−qfeBbμνkν

∂δfðbÞd

∂kμ : ð4:10Þ

Let us first consider (4.9). Defining three second rank
tensors

Uð0Þ
μν ≡ Δμν; Uð1Þ

μν ≡ bμbν; Uð2Þ
μν ≡ bμν; ð4:11Þ

expanding δfðaÞd in terms of UðnÞ
μν ; n ¼ 0, 1, 2 as

δfðaÞd ¼
X2
n¼0

lnkμkνU
ðnÞ
μν ; ð4:12Þ

and plugging (4.12) into (4.9), we obtain

l0 ¼ νH
Dλ

λ
;

l1 ¼ νHξ

�
Dξ

ξ
−
Dλ

λ

�
;

l2 ¼ 0: ð4:13Þ

This determines the final form of δfðaÞd . As concerns δfðbÞd ,
which satisfies (4.10), we follow the method presented
recently in [26]. We start with the ansatz

δfðbÞd ¼ νHkμkνwρσCμνρσ: ð4:14Þ

Plugging (4.14) into (4.10), and using uμbμν ¼ 0, we arrive
first at

kμkνwμν ¼ ðkρkσCρσαβ − 2χHbμνkνkρCμραβÞwαβ; ð4:15Þ

with χH ≡ qfeBτr
ðk·uÞ . Defining then the basis tensor of rank four

(see also [27–29] for similar bases)

11The exact determination of τr;0 and τr in the presence of
external magnetic fields and in terms of magnetization and
dissipative coefficients is beyond the scope of this paper.

12In a nonaccelerating system Duμ ¼ 0 is assumed. For a
boost invariant system ∇μξ ∼ ∂ξ

∂η ¼ 0 and ∇μλ ∼ ∂λ
∂η ¼ 0 are also

assumed.
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ξð1Þμνρσ ¼ΔμνΔρσ;

ξð2Þμνρσ ¼ΔμρΔνσþΔμσΔνρ;

ξð3Þμνρσ ¼ΔμνbρbσþΔρσbμbν;

ξð4Þμνρσ ¼bμbνbρbσ;

ξð5Þμνρσ ¼ΔμρbνbσþΔνρbμbσþΔμσbρbνþΔνσbρbμ;

ξð6Þμνρσ ¼ΔμρbνσþΔνρbμσþΔμσbνρþΔνσbμρ;

ξð7Þμνρσ ¼bμρbνbσþbνρbμbσþbμσbρbνþbνσbρbμ; ð4:16Þ

where Δμν and bμν are defined in previous sections, it is
straightforward to check that (4.15) is given by

ξð2Þμνρσ ¼
�
ξð2Þμναβ þ χHξ

ð6Þ
μναβ

�
Cαβ

ρσ: ð4:17Þ

Expanding, at this stage, Cμνρσ in terms of ξðnÞμνρσ from (4.16)
as

Cμνρσ ¼
X7
n¼1

cnξ
ðnÞ
μνρσ; ð4:18Þ

and plugging (4.18) into (4.17), we arrive after some
work at13

ξð2Þ ¼ 2ξð1Þðc1 þ 4χHc6Þ þ 2ξð2Þðc2 − 4χHc6Þ
þ 2ξð3Þðc3 þ 4χHc6Þ þ 2ξð4Þðc4 − 4χHc7Þ
þ 2ξð5Þðc5 − 3χHc6 − χHc7Þ þ 2ξð6Þðc6 þ χHc2Þ
þ 2ξð7Þðc7 þ χHc5Þ: ð4:19Þ

Comparing both sides of this relation, and solving the set of
algebraic equations that arises from this comparison, the
coefficients cn from (4.18) are determined as

c1 ¼
2χ2H

1þ 4χ2H
; c4 ¼

6χ4H
ð1þ χ2HÞð1þ 4χ2HÞ

;

c2 ¼
1

2ð1þ 4χ2HÞ
; c5 ¼ −

3χ2H
2ð1þ χ2HÞð1þ 4χ2HÞ

;

c3 ¼
2χ2H

1þ 4χ2H
; c6 ¼ −

χH
2ð1þ 4χ2HÞ

;

c7 ¼
3χ3H

2ð1þ χ2HÞð1þ 4χ2HÞ
: ð4:20Þ

Plugging then Cμνρσ from (4.18) into (4.14), δfðbÞd is

determined. In the next step, we express δfðbÞd in terms

of traceless and traceful bases VðnÞ
μνρσ; n ¼ 0;…; 4 and

WðnÞ
μνρσ; n ¼ 0, 1, defined by14

Vð0Þ ¼ ξð2Þ −
2

3
ξð1Þ;

Vð1Þ ¼ ξð2Þ − ξð1Þ − ξð3Þ þ ξð4Þ þ ξð5Þ;

Vð2Þ ¼ −ðξð5Þ þ 4ξð4ÞÞ;
Vð3Þ ¼ ξð6Þ þ ξð7Þ;

Vð4Þ ¼ ξð7Þ; ð4:21Þ

and

Wð0Þ ¼ ξð1Þ; and Wð1Þ ¼ ξð3Þ; ð4:22Þ

with ξðnÞμνρσ; n ¼ 1;…; 7 given in (4.16). The aim is to
determine the shear and bulk viscosities of the magnetized
fluid. To do this, we first introduce

VðnÞ
μν ≡ VðnÞ

μνρσwρσ; and WðmÞ
μν ≡WðmÞ

μνρσwρσ; ð4:23Þ

with VðnÞ
μνρσ; n ¼ 0;…; 4 and WðmÞ

μνρσ; m ¼ 0, 1 from (4.21)
and (4.22). We then use

δfðbÞd ¼
X4
n¼0

gnpμpνVðnÞ
μν þ

X1
n¼0

hnpμpνWðnÞ
μν : ð4:24Þ

The coefficients gn and hn, appearing in (4.24) are

determined by comparing δfðbÞd from (4.24) with δfðbÞd that
arises by plugging (4.18) with cn from (4.20) into (4.14).
They are given by

g0 ¼ νH

�
c2 þ

1

3
c4 −

4

3
c5

�
¼ νH

2
;

g1 ¼ νH

�
4c5 − c4

3

�
¼ −

2νHχ
2
H

ð1þ 4χ2HÞ
;

g2 ¼ νH

�
c5 − c4

3

�
¼ −

νHχ
2
H

2ð1þ χ2HÞ
;

g3 ¼ νHc6 ¼ −
νHχH

2ð1þ 4χ2HÞ
;

g4 ¼ νHðc7 − c6Þ ¼
νHχH

2ð1þ χ2HÞ
; ð4:25Þ

and

h0 ¼ νH

�
c1 þ

2

3
c2 −

1

9
c4 þ

4

9
c5

�
¼ νH

3
;

h1 ¼ νH

�
c3 −

1

3
c4 þ

4

3
c5

�
¼ 0: ð4:26Þ13In (4.19), the indices μνρσ of ξðnÞ are skipped.

14In (4.21) and (4.22), the indices μνρσ of ξðnÞ are skipped.
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This determines δfðbÞd in terms of traceless and traceful

bases VðnÞ
μνρσ, n ¼ 0;…; 4 and WðmÞ

μνρσ , m ¼ 0, 1 from (4.21)

and (4.22). Plugging finally δfðaÞd from (4.12) and δfðbÞd
from (4.24) into (4.8), the dissipative part of the magneto-
anisotropic one-particle distribution function is given by

δfd ¼
X2
n¼0

lnkμkνU
ðnÞ
μν þ

X4
n¼0

gnkμkνV
ðnÞ
μν

þ
X1
n¼0

hnkμkνW
ðnÞ
μν − ðfb − feqÞ; ð4:27Þ

with ln, gn and hn from (4.13), (4.25) and (4.26).
Combining finally δfd with fb from (4.2), we arrive at
the one-particle distribution function of the magnetized
QGP up to first-order derivative expansion.
Let us notice, at this stage, that δfd from (4.27) can be

used to determine the dissipative part τμν of the energy-
momentum tensor Tμν ¼ Tμν

b þ τμν, defined by

Tμν ≡
Z

dk̃kμkνf: ð4:28Þ

Using f ¼ fb þ δfd, plugging δfd from (4.27) into

τμν ¼
Z

dk̃kμkνδfd; ð4:29Þ

and comparing the resulting expression with

τμν ¼
X1
n¼0

αnU
ðnÞ
μν þ

X4
n¼0

ηnV
ðnÞ
μν þ

X1
n¼0

ζ̃nW
ðnÞ
μν

− ðTb
μν − Teq

μνÞ; ð4:30Þ

we arrive after some work at

αn ¼
1

3

Z
dk̃lnjkj4;

ηn ¼
2

15

Z
dk̃gnjkj4;

ζ̃n ¼
1

3

Z
dk̃hnjkj4; ð4:31Þ

where ηn is the shear viscosity of the medium. An
appropriate combination of ζ̃n and αn is then identified
with the bulk viscosity of the medium (see below). In
(4.30), Tμν

b and Tμν
eq are defined by (4.28) with f replaced

with fb and feq, respectively.

B. Differential equations leading to ξ and λ

We start, as in Sec. III B, with the zeroth moment of the
Boltzmann equation (4.1),

Z
dk̃

�
kμ∂μf þ qfeFμνkν

∂f
∂kμ

�
¼

Z
dk̃C½f�; ð4:32Þ

with f ¼ fb þ δfd and C½f� given in (4.4). Here, fb and
δfd are given in (4.2) and (4.27). Whereas the second term
on the lhs of (4.32) vanishes because of the same argument
as in (3.16), the first term on the lhs of (4.32) leads toZ

dk̃kμ∂μf ¼ ∂μnμ; ð4:33Þ

with nμ ≡ nμb þ δnμd consisting of two terms defined by

nμb ≡
Z

dk̃kμfb ¼
λ3

π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p uμ; ð4:34Þ

δnμd ≡
Z

dk̃Δμνkνδfd: ð4:35Þ

The expression arising in (4.34) is similar to (3.15) with
ðξ0; λ0Þ replaced by ðξ; λÞ. Plugging, on the other hand, δfd
from (4.27) into (4.35), and comparing the resulting
expression with [30]

δnμd ¼
X2
n¼0

ρnU
ðnÞ
μν ∂νξþ

X2
n¼0

ρ0nU
ðnÞ
μν ∂νλþ

X3
n¼0

σnT
ðnÞ
μαβw

αβ;

ð4:36Þ

where UðnÞ
μν ; n ¼ 0, 1, 2 are given in (4.11) and TðnÞ

μν ,
n ¼ 0;…; 3 are defined by [30]

Cð0Þ
γαβ ≡ bγbαbβ; Cð2Þ

γαβ ≡ bαΔβγ þ bβΔαγ;

Cð1Þ
γαβ ≡ bγΔαβ; Cð3Þ

γαβ ≡ bαbβγ þ bβbαγ; ð4:37Þ

it turns out that δnμd vanishes, as expected [6]. We are
therefore left with ∂μnμ ¼ ∂μn

μ
b with nμb given in (4.34).

Plugging, at this stage, C½f� from (4.4) into the rhs of
(4.32), the equation arising from the zeroth moment of the
Boltzmann equation reads

Dnb þ θnb ¼ −
1

τr
ðnb − neqÞ: ð4:38Þ

Here, we used nμb ¼ nbuμ. Using, as in Sec. III B, D ¼ ∂τ,
θ ¼ 1=τ, and plugging nb and neq from (4.34) and (3.18),
we arrive at

∂τξ

1þ ξ
−
6∂τλ

λ
−
2

τ
¼ 2

τr

�
1 −

�
T
λ

�
3 ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p �

: ð4:39Þ

Similar to the nondissipative case in Sec. III B, the relation
between T and λ arises from the first moment of the
Boltzmann equation,
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Z
dk̃kρ

�
kμ∂μf þ qfeFμνkν

∂f
∂kμ

�
¼

Z
dk̃kρC½f�: ð4:40Þ

Using (4.28), we arrive first at

∂μTρμ ¼
Z

dk̃kρC½f� ¼ −
1

τr
uμðTρμ − Tρμ

eqÞ; ð4:41Þ

where Tρμ
eq is defined in (4.28) with f replaced with feq.

Using then the energy-momentum conservation ∂μTμν ¼ 0,
we obtain uμTρμ ¼ uμT

μν
eq. Moreover, using the definition

Tμν ¼ Tμν
b þ τμν and the fact that uμτμν ¼ 0, we obtain

ϵb ¼ ϵeq; ð4:42Þ

as in the nondissipative case [see (3.24)]. Here,

ϵb ≡
Z

dk̃ðk · uÞ2fb ¼
3λ4

π2
RðξÞ; ð4:43Þ

and ϵeq ¼ 3T4

π2
is given in (3.25). In (4.43), RðξÞ is defined

in (3.13). Using (4.42) thus leads to the Landau matching
condition

T ¼ λR1=4ðξÞ: ð4:44Þ

Plugging, at this stage, (4.44) into (4.39), we obtain the first
differential equation leading to the τ dependence of ξ and λ,

∂τξ

1þ ξ
−
6∂τλ

λ
−
2

τ
¼ 2

τr

�
1 −R3=4ðξÞ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p �
: ð4:45Þ

The second differential equation arises from ∂μTμν ¼ 0,
leading to the energy equation

Dϵb þ ðϵb þ pb − BMbÞθ ¼ wμντ
μν: ð4:46Þ

Here, ϵb is given in (4.43), pb and Mb are given by

pb ¼
Z

dk̃ðk · bÞ2fb ¼
3λ4

π2ξ

�
RðξÞ − 1

1þ ξ

�
;

Mb ¼ −
1

2B

Z
dk̃½ðk · uÞ2 − 3ðk · bÞ2�fb

¼ 3λ4

2π2ξB

�
ð3 − ξÞRðξÞ − 3

1þ ξ

�
ð4:47Þ

[see also (3.11) and (3.12) for similar expressions]. The
dissipative part of the energy-momentum tensor is given by

(4.30). Plugging UðnÞ
μν , n ¼ 0, 1, 2, VðnÞ

μν , n ¼ 0;…; 4 and

WðnÞ
μν , n ¼ 0, 1, 2 from (4.11), (4.21) and (4.22) into (4.30),

and using

Tμν
eq ¼ ðϵeq þ peqÞuμuν − peqgμν;

Tμν
b ¼ ðϵb þ pbÞuμuν − ðpb − BMbÞgμν þ BMbbμbν;

ð4:48Þ

we arrive first at

τμν ¼ 2η0

�
wμν −

1

3
θΔμν

�
þ η1ð2wμν − θΞB

μνÞ

þ 2η3ðΔμρbνσ þ ΔνρbμσÞwρσ þ ζ̃0θΔμν þ ζ̃1θbμbν

þ α0Δμν þ α1bμbν þ α2bμν − BMbΞB
μν

þ ðpb − peqÞΔμν; ð4:49Þ

where ΞB
μν ≡ Δμν þ bμν, pb is given in (4.47) and peq ¼

ϵeq
3
¼ T4

π2
with ϵeq defined in (4.25). To arrive at (4.49), we

mainly used bμwμν ¼ 0, which is valid in transverse MHD.
Multiplying τμν from (4.49) with wμν, and using a number
of algebraic relations like wμνΔρν ¼ wμ

ρ, we arrive after
some work at

τμνwμν ¼ 2ðη0 þ η1Þwμνwμν −
�
2

3
η0 þ η1 − ζ̃0

�
θ2

þ α0θ þ ðpb − peq − BMbÞθ: ð4:50Þ

The relevant transport coefficients α0, η0, η1 and ζ̃0 can be
determined using (4.31) and the assumption of large

magnetic field, leading to χH ¼ qfeBτr
ðk·uÞ ≫ 1. Defining the

relaxation frequency ωr ≡ 1=τr, the limit χH ≫ 1 can be
interpreted as ωr ≪ ωL with the Larmor frequency

ωL ≡ qfeB
ðk·uÞ. Plugging l0 from (4.13) into α0 from (4.31),

and performing the corresponding integration, we obtain

α0 ¼
λ4τr
π2

�
3RðξÞ þ 1

ð1þ ξÞ2
�
Dλ

λ
: ð4:51Þ

Similarly, plugging g0 ¼ νH
2
and g1 ≈ − νH

2
for χH ≫ 1 from

(4.25) into ηi, i ¼ 0, 1 from (4.31), and performing the
integration over k, we arrive at

η0 ¼ −η1 ¼
λ4τr
5π2

�
3RðξÞ þ 1

ð1þ ξÞ2
�
: ð4:52Þ

Finally, plugging h0 ¼ νH
3
from (4.26) into ζ̃0 and perform-

ing the integration, we obtain

ζ̃0 ¼
λ4τr
3π2

�
3RðξÞ þ 1

ð1þ ξÞ2
�
: ð4:53Þ
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Plugging all these results into (4.46), the second differential
equation leading to ξ and λ reads

4∂τλ

λ

�
1 −

τr
12τ

�
3þ 1

RðξÞð1þ ξÞ2
��

þ ∂τξ

RðξÞ
∂RðξÞ
∂ξ þ 4

3τ

−
2τr
15

�
3þ 1

RðξÞð1þ ξÞ2
�

1

τ2
¼ 0: ð4:54Þ

Equations (4.45) and (4.54) build a set of coupled differ-
ential equations, whose solution leads to λ and ξ for the case
of dissipative QGP. In Sec. V, we solve these differential
equations numerically, and compare the corresponding
results with those arising from (3.27) and (3.28) in the
case of nondissipative QGP.

V. NUMERICAL RESULTS

In this section, we present the numerical solutions of two
sets of coupled differential equations (3.27) and (3.28) for
nondissipative, as well as (4.45) and (4.54) for dissipative
fluids. They are determined by using the analogy between
the energy-momentum tensor in ideal MHD with nonzero
magnetization and the energy-momentum tensor of an
anisotropic fluid. The only free parameter in these differ-
ential equations is the relaxation time τr;0 and τr appearing
in (3.27) and (4.54) for nondissipative and dissipative QGP,
respectively. Bearing in mind that the onset of hydrody-
namical expansion occurs approximately at τ̄ ∼ 0.2 fm=c,
we set, in what follows, τr;0 and τr equal to 0.3, 0.5 fm=c,
and compare the corresponding results for the proper time
evolution of ξ0, ξ as well as λ0, λ, separately. These results
are then used to determine the evolution of longitudinal and
transverse pressures pk and p⊥, that, together with the
expressions for the energy density ϵ, lead to the transverse
and longitudinal speeds of sound, cs;i ¼ pi=ϵ, i ¼ k, ⊥ in
nondissipative and dissipative cases. Moreover, combining

these results with the corresponding results to the mag-
netization M0 and M, the evolution of the magnetic
susceptibilities χm;0 and χm is determined in these two
cases for fixed values of eB̄ ¼ 5m2

π and eB̄ ¼ 15m2
π . These

are the values of magnetic fields that are believed to be
created in noncentral HICs at the RHIC and LHC,
respectively. In order to compare our results with the
results arising from lattice QCD, we use the proper time
evolution of the temperature (2.29), and plot χm;0 and χm as
a function of T. The corresponding results are in good
agreement with lattice QCD results from [18] in the regime
T < Tc, where Tc ≃ 200 MeV is the critical temperature of
the QCD phase transition. We discuss the apparent dis-
crepancy for T > Tc, and argue that it may lie on the effect
of dynamical magnetic field created in HICs. We perform
the same analysis for transverse and longitudinal speeds of
sound, and present the temperature dependence of these
velocities in the interval T ∈ f100; 400g MeV. To study
the effect of the relaxation time τr on the evolution of
thermodynamic quantities, we plot the τr dependence of χm
for fixed eB̄ ¼ 5m2

π , and cs;i ¼ pi=ϵ, i ¼ k, ⊥ at fixed
proper times τ ¼ 2, 4, 6 fm=c. We also focus on the
position of the maxima appearing in χmðTÞ and cs;kðTÞ,
and study their dependence on the relaxation time τr. We
finally present the τ as well as T dependence of shear and
bulk viscosities η0 and ζ0. As aforementioned, the latter is
given as a linear combination of ζ̃0 and α0, whose analytical
expressions are presented in the previous section.
To start, let us consider the differential equations (3.27)

[(4.45)] and (3.28) [(4.54)], whose solution yields the
anisotropy parameter and the effective temperature ξ0
and λ0 (ξ and λ) for nondissipative (dissipative) magnetized
fluid. In Fig. 2, the proper time evolution of ξ0 and ξ
is plotted for τr;0 (blue solid curves) and τr (black dashed
curves) equal to 0.3 fm=c [Fig. 2(a)] and 0.5 fm=c
[Fig. 2(b)]. To solve the corresponding differential

(a) (b)

FIG. 2. The τ dependence of the anisotropy function ξ0 (nondissipative case) and ξ (dissipative case) is plotted for relaxation times τr;0
(blue solid curves) and τr (black dashed curves) equal to 0.3 fm=c (panel a) and 0.5 fm=c (panel b). For a comparison see the main text.
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equations, the initial values of ξ0, ξ and λ0, λ in the initial
time τ̄ ¼ 0.2 fm=c are chosen to be ξ0ðτ̄Þ ¼ ξðτ̄Þ ¼ 10−7

and λ0ðτ̄Þ ¼ λðτ̄Þ ¼ 400 MeV. The comparison between
ξ0 and ξ for each fixed τr;0 and τr shows that, qualitatively,
nonvanishing dissipation does not change the τ depend-
ence of the anisotropy function ξ0 and ξ. They sharply
decrease in the early stages of the evolution, and then
increase, and approach asymptotically a fixed value. The
corresponding minimum of ξ0 is however deeper. This
specific feature, which does not obviously depend on the
choice of the relaxation time, may show that the effect of
pressure anisotropies arising from the magnetization
of the fluid is diminished by the dissipation. The two
plots demonstrated in Fig. 2 have the same scale. It is
thus possible to compare ξ0 (blue solid curves) for
τr;0 ¼ 0.3 fm=c in Fig. 2(a) and ξ0 for τr;0 ¼ 0.5 fm=c
in Fig. 2(b). As it turns out, the minima of ξ0 and ξ
become deeper with increasing τr;0 and τr. Moreover, ξ0
and ξ need longer to reach their asymptotic value ≈ − 0.1
at τ ≃ 10 fm=c.
Using the same initial values for ξ0, ξ and λ0, λ at

τ̄ ¼ 0.2 fm=c, the τ dependence of the effective temper-
ature λ0 (nondissipative case) and λ (dissipative case) is
plotted in Figs. 3(a) and 3(b). It turns out that neither
for small value of τr;0 and τr equal to 0.3 fm=c (blue
solid curves) nor for larger value of τr;0 and τr equal to
0.5 fm=c (black dashed curves), the dissipation does affect
the effective temperature significantly. In Fig. 4, we
compare the temperature T ¼ T̄ðτ̄=τÞ1=3 from (2.29)
(green dashed curve), with the effective temperatures, λ0
and λ for τr;0 ¼ τr ¼ 0.5 fm=c. Except in the interval
τ ∈ ½∼0.5;∼4� fm=c, the dynamics of T, λ0, and λ coin-
cides. Bearing in mind that T is the temperature for an
isotropic ideal fluid, the result presented in Fig. 4 indicates
that neither the magnetization nor the dissipation affect the

late time dynamics of the temperature in a magnet-
ized fluid.
In Fig. 5, the evolution of the ratio p0;⊥=p0;k and

pb;⊥=pb;k for a nondissipative and a dissipative magnetized
fluid is plotted for relaxation times τr;0 (red solid curves)
and τr (black dashed curves) equal to 0.3 fm=c [Fig. 5(a)]
and 0.5 fm=c [Fig. 5(b)]. Here, p0 and M0 in p0;⊥ ¼
p0;k − BM0 with p0;k ¼ p0 are given in (3.12) in terms of
ξ0 and λ0, and pb as well asMb in pb;⊥ ¼ pb;k − BMb with
pb;k ¼ pb are given in (4.47) in terms of ξ and λ. As it turns
out, independent of the choice of the relaxation time,
p0;⊥=p0;k and pb;⊥=pb;k decrease abruptly at the beginning

(a) (b)

FIG. 3. The τ dependence of the effective temperature in a magnetized fluid λ0 (nondissipative case) and λ (dissipative case) is plotted
for relaxation times τr;0 (blue solid curves) and τr (black dashed curves) equal to 0.3 fm=c (panel a) and 0.5 fm=c (panel b). It turns out
that, independent of the value of the relaxation time, the effect of dissipation on the effective temperature of a magnetized fluid is
negligible.

FIG. 4. The τ dependence of T from (2.29) for χm ¼ 0 (green
dashed curve), λ0, the effective temperature for a nondissipative
magnetized fluid (black solid curve), and λ, the effective temper-
ature for a dissipative magnetized fluid (red dots) for τr ¼
0.5 fm=c is plotted. It turns out that, except in the interval
τ ∈ ½∼0.5;∼4� fm=c, the dynamics of T, λ0, and λ coincides.
Hence, the effect of magnetization and dissipation on the proper
time evolution of the temperature is negligible.
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of the evolution. After reaching a minimum at τmin, they
increase with increasing τ, and become almost constant at a
certain proper time τc. The values of τmin and τc, as well as
the values of p0;⊥=p0;k and pb;⊥=pb;k at these times,
depend on the value of the relaxation time τr;0 and τr.
For larger values of τr;0 and τr, the minima are deeper,
and τc is larger. A comparison between the evolution of
p0;⊥=p0;k and pb;⊥=pb;k with the evolution of ξ0 and ξ
shows that the dynamics of these anisotropy parameters is
strongly reflected in the dynamics of the ratio of transverse
over longitudinal pressures in a magnetized fluid with and
without dissipation. Let us notice, at this stage, that the
evolution of p0;⊥=p0;k and pb;⊥=pb;k in Fig. 5 is similar to
the evolution of pL=pT , e.g., from Fig. 3 in [3], where the
difference between the longitudinal and transverse pres-
sure, pL and pT , arises from the nonvanishing ratio of the
shear viscosity to the entropy density of the fluid, η=s. In
the case discussed in the present paper, however, the
difference between p0;k and p0;⊥ arises because of the
finite magnetization of the QGP, which has to be consid-
ered as an additional source, apart from dissipative effects,
for the pressure anisotropy of the QGP in the early stages of
HICs. Here, it is believed that large magnetic fields are
created in noncentral collisions. The magnetization of the
medium and its evolution thus plays an important role in the
isotropization process which occurs in the early stages of
the collision. A comparison with pb;k and pb;⊥ shows that,
similar to p0;⊥ and p0;k, p⊥ ≲ pk. This result coincides
with the results presented in [3,5].15

In Fig. 6, the τ dependence of the energy density ϵ (green
squares) of an isotropic ideal fluid from (2.28), ϵ0 (black

solid curve) of a magnetized nondissipative fluid from
(3.12), and ϵb (red circles) of a magnetized dissipative fluid
from (4.43) is plotted for relaxation times τr;0 and τr equal
to 0.3 fm=c. The initial value of these energy densities at
the initial proper time τ̄ ¼ 0.2 fm=c is taken to be
ϵ̄ ¼ ϵðτ̄Þ ¼ 1 GeV fm−3. As expected from (3.24) and
(4.42), we have ϵ ¼ ϵ0 ¼ ϵb. In all these cases, the energy
density decreases very fast with increasing τ.
Combining the results for p0;⊥, pb=⊥ and p0;k, pb;k as

well as ϵ0 and ϵb, the speed of sound in the transverse and
longitudinal directions with respect to the magnetic field,

cs0;i ≡ p0;i

ϵ0
; and cs;i ≡ pb;i

ϵb
; i ¼ ⊥; k; ð5:1Þ

for a nondissipative (subscript 0) and a dissipative
fluid (subscript b) is determined. In Figs. 7 and 8,
the τ dependence of cs0;i and cs;i with i ¼ ⊥; k in a

(a) (b)

FIG. 5. The τ dependence of the ratio p0;⊥=p0;k and pb;⊥=pb;k for a nondissipative and a dissipative magnetized fluid is plotted for
relaxation times τr;0 (red solid curves) and τr (black dashed curves) equal to 0.3 fm=c (panel a) and 0.5 fm=c (panel b). For a comparison
see the main text.

FIG. 6. The τ dependence of ϵ (green squares), ϵ0 (black solid
curve), and ϵb (red circles) is plotted for relaxation times τr;0 and
τr equal to 0.3 fm=c. As expected, ϵ ¼ ϵ0 ¼ ϵb.

15Let us remind that, according to our descriptions in Sec. III,
the subscripts fk;⊥g in the present paper correspond to fT; Lg
used in [3,5].
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nondissipative (red solid curves) and dissipative (black
dashed curves) fluid is plotted for the relaxation times τr;0
and τr equal to 0.3 fm=c [Figs. 7(a) and 8(a)] and 0.5 fm=c
[Figs. 7(b) and 8(b)]. In contrast to transverse speed of
sound from Fig. 7, whose τ dependence is similar to the τ
dependence of ξ0 and ξ from Fig. 2 as well as p0;⊥=p0;k and
pb;⊥=pb;k from Fig. 5, nondissipative and dissipative
longitudinal speed of sound cs0;k and cs;k increase very
fast at the beginning of the expansion to a maximum at
τmax, and then decrease slowly to certain constant values at
τc (see Fig. 8). The values of τmax and τc depend on the
relaxation times τr;0 and τr. The same is also true for the
proper time at which cs0;⊥ and cs;⊥ reach their minima, and
become approximately constant. Moreover, as it turns out,
for larger values of τr;0 and τr the minima (maxima) of cs0;⊥

and cs;⊥ (cs0;k and cs;k) are deeper (higher). A comparison
between the results presented in Figs. 7 and 8 shows that
the transverse speed of sound is in general smaller than the
longitudinal speed of sound. Replacing, at this stage, the
proper time τ arising in the corresponding expressions to
cs0;i and cs;i, i ¼ ⊥; k, with τ ¼ τ̄ðT̄=TÞ3 from (2.29) with
the initial time τ̄ ¼ 0.2 fm=c and the initial temperature
T̄ ¼ 400 MeV,16 we arrive at the T dependence of cs0;i and
cs;i, i ¼ ⊥; k. This is demonstrated in Fig. 9. In Fig. 9(a)
[Fig. 9(b)] the transverse (longitudinal) speed of sound is
plotted for the relaxation times τr;0 (red solid curves) and τr
(black dashed curves) equal to 0.5 fm=c. Assuming that the

(a) (b)

FIG. 7. The τ dependence of the transverse speed of sound cs0;⊥ and cs;⊥ in a nondissipative (red solid curves) and dissipative (black
dashed curves) fluid is plotted for the relaxation times τr;0 and τr equal to 0.3 fm=c (panel a), and τr;0 as well as τr equal to 0.5 fm=c
(panel b). The evolution of cs0;⊥ and cs;⊥ reflects the dynamics of ξ0 and ξ (see Fig. 2).

(a) (b)

FIG. 8. The τ dependence of the longitudinal speed of sound cs0;k and cs;k in a nondissipative (red solid curves) and dissipative (black
dashed curves) fluid is plotted for the relaxation times τr;0 and τr equal to 0.3 fm=c (panel a) and τr;0 and τr equal to 0.5 fm=c (panel b).
In contrast to cs0;k and cs;k from Fig. 7, cs0;k and cs;k increase first to a maximum in the early stages after the collision and then decrease
to a constant value at late time.

16In (2.29), κ ¼ 3 is chosen.
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QCD phase transition occurs at a critical temperature
Tc ∼ 200 MeV, and focusing on the results for cs;i, i ¼
⊥; k of a dissipative fluid (black dashed curves) in
Figs. 9(a) and 9(b), it turns out that the transverse
(longitudinal) speed of sound decreases (increases) before
the transition, and increases (decreases) after the transition
as the fluid slowly cools. We have also plotted the λ0 (λ)
dependence of cs0;⊥ and cs0;k (cs;⊥ and cs;k), with λ0 and λ
being the effective temperatures. The resulting plots do not
differ qualitatively from the plots demonstrated in Fig. 9.
The only difference is the position of the minimum
(maximum) appearing for cs0;⊥ and cs;⊥ (cs0;k and cs;k)
in Fig. 9(a) [Fig. 9(b)], which is shifted to a smaller value
of effective temperatures in nondissipative and dissipative
cases. This is because of the difference between T and λ0

and λ at early τ ∈ ½∼0.5;∼4� fm=c, where T ∼
150–200 MeV [see Fig. 4]. The question whether the
position of the maximum appearing in cs;k for a fixed
relaxation time is related to the temperature of the QCD
phase transition cannot be answered at this stage (see in the
description of Fig. 14, for more details).
To study the effect of increasing relaxation time on the

qualitative behavior of the speed of sound, the τr depend-
ence of cs;⊥ and cs;k is plotted in Figs. 10(a) and 10(b) for
fixed proper times τ ¼ 2, 4, 6 fm=c (red circles, blue
rectangles and green squares). As expected from Figs. 7
and 8, for each fixed value of τ, cs;⊥ (cs;k) decreases
(increases) with increasing relaxation time τr.
Using, at this stage, the combinations BM0 from (3.11)

for the nondissipative case and BMb from (4.47) for the

(a) (b)

FIG. 9. The T dependence of cs0;⊥ and cs;⊥ (panel a) as well as cs0;k and cs;k (panel b) is plotted for the relaxation times τr;0 (red solid
curves) and τr (black dashed curves) equal to 0.5 fm=c in a nondissipative and dissipative fluid. Assuming that the QCD phase transition
occurs at a critical temperature 200 < Tc ∼ 250 MeV, the cs;⊥ (cc;k) decreases (increases) before the transition, and increases
(decreases) after the transition as the fluid cools.

(a) (b)

FIG. 10. The τr dependence of cs;⊥ (panel a) and cs;k (panel b) for fixed proper times τ ¼ 2, 4, 6 fm=c (red circles, blue rectangles
and green squares). As expected from Figs. 7 and 8 for each fixed value of τ, cs;⊥ (cs;k) decreases (increases) with increasing
relaxation time τr.
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dissipative case, together with relations M0 ¼ χm;0B and
Mb ¼ χmB for these two cases, the τ dependence of
magnetic susceptibilities χm;0 and χm are determined. In
Fig. 11, the τ dependence of χm;0 and χm is plotted for
relaxation times τr;0 and τr equal to 0.3 fm=c (red solid
curves) and 0.5 fm=c (black dashed curves) and an initial
magnetic field eB̄ ¼ 5m2

π with mπ ∼ 140 MeV. It turns out
that for larger values of relaxation time, the magnetic
susceptibility is larger. Moreover, independent of τr, a finite
dissipation diminishes the value of the magnetic suscep-
tibility. According to the results demonstrated in Fig. 11,
the magnetic susceptibility increases with a relatively large
slope at early stages of the expansion. It reaches a

maximum at a certain τmax, and decreases slowly to a
certain constant value at τ ∼ 0 fm=c. For larger values of
relaxation times τr, the position of τmax is slightly shifted to
larger τ. The fact that the initial value of χm is very small is
related to vanishing initial value of the anisotropy param-
eter ξ ∼ 0 at the initial time τ̄ ¼ 0.2 fm=c.
Using the same method which is used to determine

the T dependence of the speed of sound in Fig. 9, the T
dependence of χm;0 and χm is determined, and the result is
plotted in Fig. 12 for relaxation times τr;0 (red solid curves)
and τr (black dashed curves) equal to 0.3 fm=c [Fig. 12(a)]
and 0.5 fm=c [Fig. 12(b)], and an initial magnetic field
eB̄ ¼ 15m2

π with mπ ∼ 140 MeV. In comparison to the

(a) (b)

FIG. 11. The τ dependence of the magnetic susceptibility χm;0 (nondissipative fluid) and χm (dissipative fluid) is plotted for relaxation
times τr;0 ¼ 0.3 fm=c (panel a) and τr;0 ¼ 0.5 fm=c (panel b) (red solid curves) and τr ¼ 0.3 fm=c and τr ¼ 0.5 fm=c (panel b) (black
dashed curves) and eB̄ ¼ 5m2

π with mπ ∼ 140 MeV. It turns out that for larger values of relaxation time, the magnetic susceptibility is
larger. Moreover, independent of τr, a finite dissipation decreases the value of magnetic susceptibility, and the position of the maximum
value of χm is shifted slightly to later times.

(a) (b)

FIG. 12. The T dependence of χm;0 and χm is plotted for relaxation times τr;0 (red solid curves) and τr (black dashed curves) equal to
0.5 fm=c in a nondissipative and dissipative fluid. Here, eB̄ ¼ 15m2

π with mπ ¼ 140 MeV. Assuming that the QCD phase transition
occurs at a critical temperature 200 < Tc ∼ 250 MeV, χm;0 and χm increase before the transition (T > Tc), and decrease after the
transition as the fluid cools to T < Tc.
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results arising for χm;0 and χm, appearing in Fig. 11,
magnetic susceptibilities arising for eB̄ ¼ 15m2

π are 1 order
of magnitude smaller than those for eB̄ ¼ 5m2

π. According
to results presented in Fig. 12, χm;0 and χm increase after the
collision at T ¼ 400 MeV. After reaching a maximum at
T ∼ 220 MeV for a nondissipative fluid and Tmax ∼
180–200 MeV for a dissipative fluid, they decrease as
the fluid cools. For larger value of τr, Tmax is slightly
shifted to smaller values of T. As in the case of cs, we have
also plotted χm;0 and χm in terms of λ0 and λ, respectively.
Because of the slight difference between T; λ0 and λ in the
regime τ ∈ ½0.5; 4� fm=c, demonstrated in Fig. 4, a shift of
λ0;max and λmax to even smaller values of temperature occurs
once χm;0 and χm are plotted as functions of λ0 and λ.
Assuming the critical temperature of the QCD phase
transition to be at Tc ∼ 180–200 MeV, it is possible to
identify Tmax with Tc. We show, however, that this
interpretation depends strongly on the relaxation time τr
(see Fig. 14).
In Fig. 13, the τr dependence of χm is plotted for fixed

τ ¼ 2, 4, 6 fm=c (red circles, blue rectangles, and green
squares). The initial value of the magnetic field is chosen to
be eB̄ ¼ 5m2

π with the pion mass given bymπ ¼ 140 MeV.
As expected from Fig. 12, for each fixed value of τ, the
magnetic susceptibility increases with increasing relaxation
time τr. Similar results arise for eB̄ ¼ 15m2

π.
In Fig. 14, the correlation of the position of the maxima

appearing in cs;kðλÞ with those appearing in χmðλÞ for
various relaxation times τr is studied. To do this, we
consider the λ dependence of cs;k and χm, and determine
the position of their maxima for a number of fixed
relaxation times, τr. Let us denote these positions by
ðλmaxÞcs;k and ðλmaxÞχm , respectively. In Fig. 14, ðλmaxÞχm

is then plotted versus ðλmaxÞcs;k for τr ∈ ½0.2; 2� fm=c in

Δτr ¼ 0.1 fm=c steps (see the red points in Fig. 14). For
the latter, we choose the initial magnetic field eB̄ ¼ 5m2

π

with mπ ¼ 140 MeV. The green down-triangle ð▾Þ at
ððλmaxÞcs;k ; ðλmaxÞχmÞ ¼ ð234; 203Þ MeV corresponds to

τr ¼ 0.2 fm=c, and the green up-triangle ð▴Þ at
ððλmaxÞcs;k ; ðλmaxÞχmÞ ¼ ð125; 103Þ MeV corresponds to
τr ¼ 2 fm=c. The blue solid line is characterized by
ðλmaxÞcs;k ¼ ðλmaxÞχm . The deviation of our result from this
line indicates that ðλmaxÞcs;k > ðλmaxÞχm for all values of

τr ∈ ½0.2; 2� fm=c. According to these results, for larger
relaxation times ðλmaxÞcs;k and ðλmaxÞχm are shifted to

smaller effective temperatures. Moreover, as it turns out,
the relation between the position of the maxima appearing
in χm and csk and the temperature of the QCD phase
transition at Tc ∼ 180–200 MeV strongly depend on the
relaxation time τr.
We finally focus on the proper time evolution of the

transport coefficients η0 and ξ0. In Figs. 15(a) and 16(a), the
τ dependence of the viscosities η0ðτÞ=η0ðτ̄Þ and ζ0ðτÞ=ζ0ðτ̄Þ
is plotted for a fixed relaxation time τr ¼ 0.5 fm=c. Here,
the initial time is τ̄r ¼ 0.2 fm=c. The corresponding
expression for the shear viscosity η0 is given in (4.52).
The bulk viscosity ζ0 arises by combining α0 and ζ̃0 from
(4.51) and (4.53) as ζ0 ¼ α0τ þ ζ̃0. According to these
results η0 (ζ0) decreases (increases) with increasing τ. To
determine the temperature dependence of η0 and ζ0, we use,

FIG. 13. The τr dependence of χm is plotted for fixed proper
times τ ¼ 2, 4, 6 fm=c (red circles, blue rectangles and green
squares) and eB̄ ¼ 5m2

π with mπ ¼ 140 MeV. For fixed value
of τ, the magnetic susceptibility increases, in general, with
increasing relaxation time τr.

FIG. 14. In this plot, λmax corresponding to χm is plotted versus
λmax corresponding to cs;k for a number of relaxation times τr ¼
0.2;…; 2 fm=c in Δτr ¼ 0.1 fm=c steps. The initial magnetic
field eB̄ ¼ 5m2

π . The green down-triangle at ððλmaxÞcs;k ;
ðλmaxÞχmÞ ¼ ð234; 203Þ MeV corresponds to τr ¼ 0.2 fm=c,
and the green up-triangle at ððλmaxÞcs;k ; ðλmaxÞχmÞ ¼ ð125;
103Þ MeV corresponds to τr ¼ 2 fm=c. The blue solid line is
the line ðλmaxÞcs;k ¼ ðλmaxÞχm . The deviation of our result from

this line indicates that ðλmaxÞcs;k > ðλmaxÞχm for each fixed value of

τr ∈ ½0.2; 2� fm=c. Moreover, it turns out that for larger relaxation
times, ðλmaxÞcs;k and ðλmaxÞχm are shifted to smaller temperatures.
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as in previous cases, τ ¼ τ̄ðT̄=TÞ3 from (2.29). The result-
ing T dependence of η0ðτÞ=η0ðτ̄Þ and ζ0ðτÞ=ζ0ðτ̄Þ is plotted
in Figs. 15(b) and 16(b). As it turns out, η0 (ζ0) decreases
(increases) with decreasing T. Bearing in mind that shear
viscosity is proportional to the mean free path of quarks in
the fluid, λmfp [37,38], the fact that η0 increases with
increasing temperature indicates that λmfp also increases
with increasing temperature. We also notice that the result
arising in Fig. 15(b) for the temperature dependence of
η0ðTÞ=η0ðT̄Þ is in good agreement with the expected
η0ðTÞ=η0ðT̄Þ ∼ ðT=T̄Þ3 from [31] with the initial temper-
ature T̄ ¼ 400 MeV. As concerns the temperature depend-
ence of ζ0ðTÞ=ζ0ðT̄Þ from Fig. 16(b), however, it does not
coincide with ζðTÞ ∝ ηðTÞð1

3
− c2sÞ from [32], arising from

gauge/gravity duality. Whereas, plugging cs ¼ cs;k from
Fig. 9(b) into this expression ζ0ðTÞ=ζ0ðT̄Þ turns out to be
always positive, for cs ¼ cs;⊥ the resulting negative values

for ζ0ðTÞ=ζ0ðT̄Þ were several orders of magnitude larger
than the result presented in Fig. 16(b). Despite this
discrepancy in the anisotropic case, in the isotropic limit,
the expression ζ0 ¼ α0τ þ ζ̃0 includes the expected factor
ð1
3
− c2sÞ, as expected. To see this, let us combine, α0 and ζ̃0

from (4.31) with l0 ¼ νH
Dλ
λ from (4.13) and l0 ¼ νH

3
from

(4.26) to arrive at

ζ0 ¼
1

3

Z
dk̃νH

�
Dλ

λ
τ þ 1

3

�
jkj4: ð5:2Þ

Setting, in the isotropic limit, the ratio Dλ
λ ¼ DT

T , and bearing

in mind that in this case DT
T ¼ −c2s∂μuμ ¼ − c2s

τ with c
2
s ¼ ∂p

∂ϵ
[39],17 ζ0 from (5.2) becomes proportional to ð−c2s þ 1

3
Þ, as

(a) (b)

FIG. 15. (a) The τ dependence of the shear viscosity η0ðτÞ normalized by its value at the initial time τ̄ ¼ 0.2 fm=c is plotted for
τr ¼ 0.5 fm=c. (b) The T dependence of the shear viscosity η0ðTÞ normalized by its value at the initial temperature T̄ ¼ 400 MeV is
plotted for τr ¼ 0.5 fm=c.

(a) (b)

FIG. 16. (a) The τ dependence of the bulk viscosity ζ0ðτÞ normalized by its value at the initial time τ̄ ¼ 0.2 fm=c is plotted for
τr ¼ 0.5 fm=c. (b) The T dependence of the shear viscosity ζ0ðTÞ normalized by its value at the initial temperature T̄ ¼ 400 MeV is
plotted for τr ¼ 0.5 fm=c.

17For the Bjorken flow the four-divergence of uμ is given
by 1=τ.
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claimed. Let us also notice that the transport coefficients of
hot and magnetized quark matter are recently computed in
[40]. In contrast to our computation, where the evolution of
the magnetic field is implemented in the computation, the
magnetic field in [40] is assumed to be aligned in a fixed
direction, and remains constant during the evolution of
the QGP.

VI. CONCLUDING REMARKS

The main purpose of the present paper was to study the
role played by the finite magnetization of the para-
magnetic QGP in the production of pressure anisotropies,
and to quantify the possible interplay between the effects
caused by this magnetization and those arising from
nonvanishing dissipations in the isotropization of this
medium. We were motivated by the wide belief that very
large magnetic fields are produced in the early stages of
noncentral HICs [7], and that the QCD matter produced
in these collisions is paramagnetic [17]. Paramagnetic
squeezing was previously studied in [19] in the frame-
work of lattice QCD for a static QCD matter in the
presence of a constant magnetic field. We generalized
the same proposal to a uniformly expanding QGP in the
presence of a dynamical magnetic field, by making use of
standard methods from aHydro [5]. In particular, we used
the similarity between (3.1) and (3.2), the energy-
momentum tensor of an ideal paramagnetic fluid and
of a longitudinally expanding fluid in the framework of
aHydro, and introduced the magneto-anisotropic one-
particle distribution function fb in terms of the unit
vector in the direction of the magnetic field bμ, an
anisotropy parameter ξ0, and an effective temperature
λ0. In this way, the effect of the anisotropies caused, in
particular, by the magnetization of the QGP is phenom-
enologically taken into account.
Using fb, we determined, similar to the standard aHydro

method, described, e.g., in [3,5], the first two moments of
the Boltzmann equation satisfied by fb in the RTA, and
derived a set of coupled differential equations for ξ0 and λ0
in terms of the relaxation time τr;0. The latter is taken to be a
free parameter, apart from the initial proper time τ̄ and
magnetic field B̄. The uniform expansion of the fluid was
described by the 1þ 1 dimensional Bjorken flow [25],
which is only valid when (i) the fluid expands only in the
longitudinal direction with respect to the beam direction
and (ii) the system is boost invariant along this direction.
Moreover, by making the assumption that the magnetic
field is transverse to the direction of the fluid velocity (see
Fig. 1), it was possible to use the solution BðτÞ ∼ τ−1,
which arises in the framework of ideal transverse
MHD [20].
We used appropriate initial values for ξ0 and λ0, and

solved numerically the aforementioned differential equa-
tions. In this way, we first determined the proper time
dependence of ξ0 and λ0 for various fixed τr;0. Using the

dependence of various thermodynamical quantities on
fbðx; p; ξ0; λ0Þ, it was then possible to determine the
evolution of transverse and longitudinal pressures p0⊥
and p0k, the energy density ϵ0, transverse and longitudinal
speeds of sound cs0;⊥ and cs0;k, as well as the magnetic
susceptibility χm;0 for an ideal nondissipative, and longi-
tudinally expanding QGP.18 The results are presented
in Sec. V.
To take the viscous effects, apart from the magnetization

of the fluid, into account, we extended our method to a
dissipative QGP. To do this, we first derived the dissipative
correction to fb in a first-order derivative expansion by
making use of a number of results from [26–29]. Because
of the presence of an additional four-vector bμ, apart from
the velocity four-vector uμ, a large number of transport
coefficients were defined in a magnetized fluid, as
expected. Performing then the same steps that led to the
aforementioned differential equations for ξ0 and λ0, we
arrived at the corresponding coupled differential equations
for ξ and λ in the dissipative case. We numerically solved
these equations for different choices of the relaxation time
τr in the dissipative case.
According to the plots demonstrated in Figs. 2, 5,

and 7, for fixed values of τr;0 and τr, the anisotropy
induced by the magnetization in the early stages of the
evolution of a nondissipative fluid is quite large, and, as
it turns out, it is compensated by dissipative effects. As
concerns the longitudinal and transverse pressures, for
instance, the longitudinal pressure is in the absence of
dissipation larger than the transverse pressure. Here, the
terms longitudinal and transverse are with respect to the
direction of the magnetic field. Using the same terminol-
ogy as in the aHydro literature, i.e., using these two
terms with respect to the beam line, our results indicate
that the dissipation diminishes the effect of magnetization
in making pT larger than pL. We used the proper time
evolution of the energy density and transverse as well as
longitudinal pressures to determine the transverse and
longitudinal speeds of sound. The completely different
proper time dependence of these two velocities is
demonstrated in Figs. 7 and 8.
Parallel to the above results, we were interested in the

temperature dependence of the transverse and longitudinal
speeds of sound, cs;⊥ and cs;k, magnetic susceptibility χm,
shear and bulk viscosities η and ζ. We used the simple
proper time dependence of the temperature T, T ∼ τ−1=3

from (2.29), and converted the proper time dependence of
these quantities into their T dependence. This was possible
because according to our results from Fig. 4, there are
almost no differences between T, λ0 and λ. In other words,

18As described in previous sections, the symbols ⊥ and k
describe the ”transverse” and ”longitudinal” directions with
respect to the magnetic field. The latter is assumed to be
perpendicular to the beam direction.
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the finite magnetization of the fluid does not practically
affect the evolution of its temperature. The same is also
true for dissipative effects. According to the results for the
T dependence of χm from Fig. 12, χm increases with
increasing T up to a maximum value, and then decreases
with increasing T. This result may not be expected from
lattice QCD results in [18], for instance, but this may lie
on the fact that in the previous computations of χm, the
quark matter and background magnetic fields are assumed
to be static. In the present paper, however, we considered
the τ−1 decay of the magnetic field, and the results
demonstrated in Fig. 12 for the T dependence of χm
comprise this crucial difference. To describe the back-
reaction arising from the dynamical evolution of the
magnetic field, let us consider Fig. 11. Multiplying the
curve plotted in this figure with B ¼ B0ðτ0=τÞ, we arrive
at a τ dependent magnetization M, whose τ dependence is
qualitatively similar to the τ dependence of χm plotted in
this figure. The result shows that M increases with
increasing τ, reaches a maximum at an early stage
(τ ∼ 2 fm=c), and decreases then with increasing τ. The
same kind of backreaction also occurs in the T depend-
ence of the shear and bulk viscosities from Figs. 15
and 16, which are qualitatively in agreement with similar
results in the literature, as is described in the previous
section.
Despite these promising results, there is one remaining

point to be noticed. As aforementioned, there are a small
number of free parameters in our numerical computa-
tions. The value of the initial time τ̄ and initial magnetic
field B̄, which we have used, comply with the existing
numbers in the literature related to HICs. The values
of the relaxation times, τr;0 in the nondissipative case
and τr in the dissipative case, are, however, arbitrarily
chosen to be 0.3 and 0.5 fm=c. It is not clear how close
these numbers are to the real relaxation times in the
expanding QGP. In particular, their dependence on the
magnitude of a dynamical magnetic field is yet

unknown.19 It is thus necessary to separately determine
these parameters in an expanding magnetized QGP.
Notwithstanding this caveat, the magneto-anisotropic one-
particle distribution functionfb proposed in the present paper
can, in principal, be used to determine a large number of
observables in HIC experiments. Recently, using an appro-
priate anisotropic distribution function, the dilepton produc-
tion rate is computed within the aHydro framework [41]. It
would be interesting to generalize this computation for a
magnetized QGP to take, in particular, the effect of anisot-
ropies caused by its magnetization and the evolution of the
QGP as well as the dynamics of the background magnetic
field into account. The result may be then compared with
those presented in [42,43], where the QGP and the back-
ground magnetic field are assumed to be static. Another
possibility to extend the results presented in this work is to
allow the fluid to possess, apart from the longitudinal
expansion assumed in the framework of transverse MHD,
an expansion in the transverse direction with respect to the
beam line. To do this, one should replace the τ−1 solution of
BðτÞ with the recently found 3þ 1 dimensional solution to
the conformal (Gubser) MHD, presented in [24]. We post-
pone all these computations to our future publications.
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