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The plasma of quarks and gluons created in ultrarelativistic heavy-ion collisions turns out to be
paramagnetic. In the presence of a background magnetic field, this paramagnetism thus leads to a pressure
anisotropy, similar to anisotropies appearing in a viscous fluid. In the present paper, we use this analogy,
and develop a framework similar to anisotropic hydrodynamics, to take the pressure anisotropy caused, in
particular, by the nonvanishing magnetization of a plasma of quarks and gluons into account. We consider
the first two moments of the classical Boltzmann equation in the presence of an electromagnetic source in
the relaxation-time approximation, and derive a set of coupled differential equations for the anisotropy
parameter &, and the effective temperature 4, of an ideal fluid with nonvanishing magnetization. We also
extend this method to a dissipative fluid with finite magnetization in the presence of a strong and dynamical
magnetic field. We present a systematic method leading to the one-particle distribution function of this
magnetized dissipative medium in a first-order derivative expansion, and arrive at analytical expressions for
the shear and bulk viscosities in terms of the anisotropy parameter £ and effective temperature 4. We then
solve the corresponding differential equations for (&y, 4y) and (&, 1) numerically, and determine, in this
way, the proper time and temperature dependence of the energy density, directional pressures, speed of
sound, and the magnetic susceptibility of a longitudinally expanding magnetized quark-gluon plasma in

and out of equilibrium.

DOI: 10.1103/PhysRevD.99.056021

I. INTRODUCTION

The past decade has witnessed enormous progress in the
field of relativistic hydrodynamics, which finds important
applications in the modern ultrarelativistic heavy-ion col-
lision (HIC) experiments at the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC).
The aim of these experiments is to produce a plasma of
quarks and gluons, and to study its evolution from an early
out of equilibrium stage, immediately after the collision, to
a late hadronization stage, where the system is approx-
imately thermalized. It is widely believed that in the early
stage after the collision, the quark-gluon plasma (QGP)
produced at the RHIC and LHC possesses a high degree of
momentum-space anisotropy, which mainly arises from the
initial state spatial anisotropies of the collision [1-3]. These
anisotropies are then converted into large pressure anisot-
ropies in the transverse and longitudinal directions with
respect to the beam direction. The question of how fast
these anisotropies evolve during the hydrodynamical
expansion of the QGP, in other words, how fast the
isotropization process occurs, is extensively studied in
the literature (see [3] and references therein). In particular,
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in the framework of anisotropic hydrodynamics (aHydro)
[4,5], the small but nonvanishing ratio of the shear viscosity
over entropy density of the QGP, /s, is assumed to be the
main source for the evolution of pressure anisotropies in
this medium (for recent reviews of aHydro, see [2,3]). In
this framework, the momentum-space anisotropy is
intrinsically implemented in an anisotropic one-particle
distribution function f(x, p;¢&,4), including an anisotropy
parameter £ and an effective temperature A [5]. Taking the
first two moments of the Boltzmann equation, satisfied by
f, and using an appropriate relaxation time approximation
(RTA), two coupled differential equations are derived for &
and A. The numerical solution of these equations leads
directly to the proper time dependence of £ and A, and
indirectly to the evolution of thermodynamic quantities,
which are, in particular, expressed in terms of f(x, p; ¢, 1)
via kinetic theory relations. Choosing the relaxation time
proportional to the shear viscosity of the medium, the effect
of dissipation is considered, in particular, in the evolution
of transverse and longitudinal pressures [5]. It turns out
that, in the local rest frame (LRF) of the fluid, the transverse
pressure is larger than the longitudinal pressure, and that in
the center of the fireball, the system needs many fm/c to
become approximately isotropic [3]. Subsequently, many
efforts have been undertaken to study the effect of
dissipation on the evolution of the ratio of longitudinal
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to transverse pressure in a more systematic manner (see
e.g., [6]).

However, apart from finite dissipative corrections, the
finite magnetization of the QGP created at the RHIC and
LHC may be considered as another source of the afore-
mentioned pressure anisotropies. It is the purpose of the
present paper to focus on anisotropies caused, in particular,
by the nonvanishing magnetization of a uniformly expand-
ing QGP in and out of equilibrium. One of the main
motivations for this study is the wide belief that the QGP
produced in the early stages of noncentral HICs is the
subject of an extremely large magnetic field [7-9] (see also
[10] and the references therein). Assuming the magnetic
field to be aligned in a fixed direction, an anisotropy is
naturally induced in any magnetized medium including
charged fermions. This kind of anisotropy is previously
studied, e.g., in [11-19]. One of the consequences of this
anisotropy is the difference between the longitudinal and
transverse pressures with respect to the fixed direction of
the magnetic field. This difference turns out to be propor-
tional to the magnetization of the medium, and leads, in
particular, to an anisotropic equation of state (EoS) for
the magnetized QCD matter. The latter is studied, e.g., in
[13-16] in different contexts. In [17], the EoS of the
magnetized QCD is determined in the hadron resonance
gas model. It is, in particular, shown that the magnetization
of the QCD matter is positive. Several other results from
lattice QCD [18,19] agree qualitatively with this result,
indicating that the QGP produced in HIC experiments is
paramagnetic, and that the magnetic susceptibility of the
medium increases with increasing temperature [18]. In
[19], it is argued that because of this paramagnetism, the
“QGP produced in noncentral HICs becomes elongated
along the direction of the magnetic field,” and this para-
magnetic squeezing may thus have a finite contribution to
the elliptic flow wv,. The latter is one of the important
observables in HIC experiments. Let us again emphasize
that in all these computations, the magnitude and the
direction of the background magnetic field are mainly
assumed to be constant. Moreover, the quark matter
produced in HICs is assumed to be static.

In reality, however, the QGP created at the RHIC and
LHC is expanding, and the relativistic hydrodynamics is
one of the main tools to describe this specific expansion [1].
On the other hand, it is known that the magnetic field
produced in noncentral HICs decays very fast [7-10]. As
concerns the aforementioned pressure anisotropies, it is
thus necessary to consider the effect of the evolution of the
QGP and the magnetic field on the paramagnetic squeezing
of the QGP. Recently, a number of attempts have been
made to study the evolution of the magnetic field in ideal
and nonideal fluids in the framework of magnetohydrody-
namics (MHD) [20-24]. The idea in all these papers is to
combine hydrodynamic equations with the Maxwell equa-
tions, and to solve them simultaneously using a number of

assumptions. In [20], it is assumed that (i) the external
magnetic field is transverse to the fluid velocity (transverse
MHD), (ii) the system is invariant under a longitudinal
boost transformation, and (iii) the evolution of the system
occurs longitudinally with respect to the beam direction.
The last two assumptions are necessary for the 1+ 1
dimensional Bjorken flow to be applicable [25]. Using
Bjorken’s velocity profile, it is found that in an ideal fluid
with infinitely large conductivity, the magnitude of the
magnetic field evolves as B(z) « z~!, with 7 being the
proper time, and, moreover, the direction of the magnetic
field is frozen, and thus unaffected by the expansion of the
fluid [20]. In [21,22], using the same assumptions as in
[20], the deviation from the frozen flux theorem in a
magnetized fluid with finite conductivity is studied within a
1 4+ 1 dimensional ultrarelativistic nonideal and nondissi-
pative MHD.'

In the present paper, we use the analogy between the
energy-momentum tensor of an ideal paramagnetic fluid in
the presence of a magnetic field and the energy-momentum
tensor of a longitudinally expanding fluid in the framework
of aHydro [3,5], and study paramagnetic squeezing of a
uniformly expanding QGP with and without dissipation.
To do this, we make the same three assumptions as is used
in the 1+ 1 dimensional transverse MHD (see above).
Moreover, we assume that the system includes massless
particles (conformal symmetry). Using the above-
mentioned analogy, we identify the unit vector in the
direction of the magnetic field, »#, with the anisotropy
direction that appears in aHydro. Similar to aHydro, we
introduce an anisotropic one-particle distribution function,
f».> which is expressed in terms of b,, an anisotropy
parameter and an effective temperature. We then consider
the Boltzmann equation in the presence of an electromag-
netic source in the RTA. Taking the first two moments of
this equation, we arrive, similar to aHydro, to two differ-
ential equations whose solutions lead to the proper time
evolution of the anisotropy parameter and effective temper-
ature in the nondissipative and dissipative cases. The only
free parameter here is the relaxation time, which is chosen
to be different in these two cases. Using the kinetic theory
relations, it is then possible to determine numerically the
ratio of transverse to longitudinal pressures with respect
to b”. This ratio can be regarded as a measure for the
anisotropy caused by the magnetization of the fluid in the
nondissipative case, and by the magnetization together with
the dissipation in the dissipative case. In the latter case, we
combine the method used in [26,27] to determine the
dissipative part of the one-particle distribution function in

"Tn a nonideal and nondissipative fluid, because of the
finite electric conductivity of the medium, the electric field
cannot be neglected. Moreover, the system is assumed to be
nondissipative.

In the rest of this paper, we refer to f;, as magneto-anisotropic
one-particle distribution function.
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the first-order derivative expansion around f,. We hereby
use a number of results from [26-30]. Let us notice that in
both nondissipative and dissipative cases, apart from the
aforementioned ratio of transverse to longitudinal pressures,
the proper time evolution of the energy density and, in
particular, the magnetic susceptibility y,, of the paramag-
netic QGP can be determined. To have a link to the
previously found temperature dependence of y,, from lattice
QCD [18], we combine our results for the = dependence of
the effective temperature and the magnetic susceptibility of
the QGP, and determine the effective temperature depend-
ence of y,,. We show that, as in [18], y,, increases up to a
maximum value with increasing temperature. After reaching
the maximum, it decreases with increasing temperature. This
is in contrast to the lattice QCD results from [18]. This
specific feature is, however, expected in our setup, bearing in
mind that in [18], in contrast to our case, the magnetic field is
constant, and the quark matter is assumed to be static. Apart
from the above-mentioned thermodynamic quantities, we
determine, as by-products, the proper time evolution and the
effective temperature dependence of the shear and bulk
viscosities, and compare the results with the existing results
in the literature [31,32].

The organization of the paper is as follows: In Sec. II, we
present a brief review on ideal MHD and the 1+ 1
dimensional Bjorkenian solution to the ideal transverse
MHD (see also [33,34] for a new systematic formulation of
relativistic MHD). In Sec. III, we first introduce the
magneto-anisotropic one-particle distribution function of
an ideal magnetized fluid, and then, using the first two
moments of the Boltzmann equation in the RTA, we derive
the corresponding differential equations for the anisotropy
parameter and effective temperature. In Sec. IV, we extend
our method to a dissipative magnetized fluid. In Sec. IVA,
the dissipative part of f, is determined, and analytical
expressions for the shear and bulk viscosities of a dis-
sipative and magnetized fluid are presented. Recently,
nonresistive and resistive dissipative MHD are formulated
via kinetic theory in the 14-moment approximation in
[35,36]. However, the effects of magnetization, which are
of particular interest in the present paper, are not discussed
in these papers. In Sec. IV B, the corresponding differential
equations for the anisotropy parameter and the effective
temperature are derived. In Sec. V, choosing appropriate
initial values for the anisotropy parameter at the initial
proper time, we numerically solve the two sets of differ-
ential equations arising in Secs. III and IV for nondissi-
pative and dissipative fluids. We then present numerical
results for the proper time dependence of anisotropic
pressures, the energy density, speed of sound, and magnetic
susceptibility of a longitudinally expanding magnetized
fluid. We discuss the effect of paramagnetic squeezing on
these observables, and compare the results with the existing
results in the literature. Section VI is devoted to concluding
remarks.

II. REVIEW MATERIAL
A. Ideal MHD

Ideal relativistic hydrodynamics is a useful tool to
describe the evolution of an ideal and locally equilibrated
fluid, which is mainly characterized by its long-wavelength
degrees of freedom, the four-velocity u#(x) and the temper-
ature  T(x). Here, wu’=y(l,v) is derived from
w' = dx*/dr, with x* = (t,x) being the four-coordinate
of each fluid parcel in a flat Minkowski space and 7 =

V* —x? is the proper time. It satisfies u,u* = 1. In the
absence of external electromagnetic fields, the ideal fluid is
described by the local entropy density s# and fluid energy-

momentum tensor 7 ;”0,3

st=su', and T =euu’ — pA*, (2.1
where the transverse projector A* = ¢** — y#u”, and the
spacetime metric ¢** = diag(1,—1,—1,—1). In the ideal
case, they satisfy

dys* =0, and 0,7%;=0. (2.2)
In the presence of external magnetic fields, an ideal
magnetized fluid is described by a total energy-momentum
tensor

Ty = T’}’jo + Thm, (2.3)

including the fluid and electromagnetic energy-momentum
tensors, 7, and T¢,,. They are given by

1
T;”O = eu'u’ — pA* — E(M”’lFf + MY F 1),

1
T = FFMFY + 19 FE . (2.4)

The total energy-momentum tensor (2.3) satisfies the
conservation relation

2,Ty =0. (2.5)

In (2.4), the field strength tensor F** and a magnetization

tensor M* are expressed in terms of the magnetic field as*

F" = —Bb*", and

M® = —Mb¥,  (2.6)

In this paper, quantities with subscripts 0 are defined in
nondissipative magnetized fluid, which is described by ideal
MHD.

“In this paper, we focus on fluids with infinitely large electric
conductivity. We thus neglect the electric field (see [28] for a
similar treatment and [22,23,29] for more details).
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where 0" = e *¥b,us, and b =5 Here, B'=
1e"PF,ug. This leads to B,B' = —B2. In (2.6), B is
the strength of the magnetic field and M is the magneti-
zation of the fluid. In the LRF of the fluid with u* = (1,0),
the magnetic field B* = (0,B). Using B* = Bb* with
B = |B|, we thus obtain b*b, = —1. Similarly, the anti-
symmetric polarization tensor M"*, which describes the
response of the fluid to an applied electromagnetic field
strength tensor F**, defines the magnetization four-vector
M+ =L e P M, us. In the LRF of the fluid, M* = (0, M)
with M*M, = —M?* and M = |M|. The magnetic suscep-
tibility of the fluid y,, is then defined by M = y,,B.

Plugging F** and M* from (2.6) into T and T¢p
from (2.4), we arrive after some work at [28,29]

T;I,/O = eutu” — pJ_EIéI/ + pr"b”,

™ — %B%m b, (2.7)
Here, p, =p—BM, py=p and Ej = A" 4 bD".
Transverse and longitudinal directions, denoted by the
, are defined with respect to the direction
of the external magnetic field. Contracting first (2.5)
together with T?’O and T%,, from (2.7), with u,, we arrive

at the energy equation

De+6(e+p,)—B*(1—y,,)u,b*0,b* + B(DB+6B) =0,

(2.8)

where D = u,0" and 6 = J,u*. Contracting then (2.5) with

A, , we arrive at the Euler equation

1
(€ + PL + BZ)DM/) - v/} <pj_ +§Bz>

+ B*(1 = Xm)U,u,b"0,b" —0,[(1 —;(m)sz”bp] =0,

(2.9)

with V, = A, 0.

Apart from the energy and Euler equations, (2.8) and
(2.9), the magnetized fluid is described by homogeneous
and inhomogeneous Maxwell equations,

8”177”” =0, and O, F" =J", (2.10)
where the dual field strength tensor and the electromagnetic
current are given by

" = B'u’ — B'u*, (2.11)

and

JH = put + 0,MP". (2.12)

Here, p, is the electric charge density, and 0,M"* is the
magnetization current. It is given by contracting the
inhomogeneous Maxwell equation J,F*" =J* from

(2.10) with u,,
pe=2(1=xu)(B- ), (2.13)

where o* = 3§ u,0,uy; is the vorticity of the fluid.

Contracting the homogeneous Maxwell equation
0,(B*u* — B*'u!) = 0 with b*, we also obtain
DInB + 60— u"b"0,b, = 0. (2.14)

In what follows, we use these relations to determine the
evolution of the magnetic field in transverse 1 + 1 dimen-
sional MHD.

B. Bjorken flow and the ideal transverse MHD

In the present paper, we mainly focus on the effect of
magnetic fields on the plasma of quarks and gluons created
in the early stages of HICs. It is believed that they are
created in a plane perpendicular to the reaction plane. For
later convenience, let us assume the beam line to be in the
longitudinal y direction, and the magnetic field B in the
LREF of the fluid being directed in the transverse z direction
perpendicular to the reaction plane in the x-y (see the sketch
in Fig. 1).6 In this setup, the transverse MHD [20-23] is
characterized by

(1) translational invariance in the transverse x-z plane,

(2) a uniform expansion of the fluid in the longitudinal

beam direction, leading to a nonaccelerated flow,

(3) boost invariance along the beam line in the y

direction, and

(4) boost invariance of the pressure p.
Using the above assumption, and replacing v,
y(1,0, vy, 0) with v, = y/t, we arrive after an appropriate
parametrization of the four-coordinate x* in terms of the

Milne variables, the proper time 7= \/f> —y* and the

boost variable 7 =1In ’+y_, at the 1+ 1 dimensional

in u' =

Bjorken flow:

w" = (coshn,0,sinhn,0). (2.15)

5We use the notation a - b = a,b".

®This choice is in contrast to the common practice where the
beam line is assumed to be in the longitudinal z direction and
the magnetic field B aligned in the transverse y direction. In the
framework of 1 + 1 dimensional approximation, it is assumed
that the QGP expands uniformly in the longitudinal z direction,
and the system remains translational invariant in the transverse
x-y plane. Its expansion is then described by the Bjorken flow
ut = y(l 0,0, v,) with v, = z/t. In the Milne parametrization u/
is thus given by u* = (cosh 1,0,0, sinh#) (see e.g., [22] for more
details).
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FIG. 1. Creation of magnetic fields in HIC experiments. The
beam line is in the y direction, and the magnetic field is aligned in
the z direction, perpendicular to the x-y reaction plane. A uniform
expansion of the QGP (the fluid droplet) occurs in the longi-
tudinal y direction. This system is described by a 1 4+ 1 dimen-
sional transverse MHD.

Using this parametrization, we obtain

a/d = (aﬁoa ayyo)a (216)
with
0 o 1. 0
E——Fcoshna—;smhna—n,
0 0 1 0
-~ = —sinhnp_—+ —coshn—. 2.1
By sin naT+Tcos ”811 (2.17)

These specific features of #* and 0, lead, in particular,
to vanishing vorticity @* in transverse MHD. Plugging
o' =0 into (2.13), the electric charge density p, in
transverse MHD vanishes. To determine the evolution of
the magnetic field, we combine, at this stage, u-B =0
with v - B = 0, which is valid in 1 + 1 dimensional trans-
verse MHD, and arrive at B¥ = (0, B,, 0, BZ).7 Using then
these relations together with B-9 =0 and 0 B = 0, the
homogeneous Maxwell equation 0,(B*u* — B'u*) = 0 in
transverse MHD reads

or DB+0B=0.

0,(Bu) =0, (2.18)

Using D = % and 6 :% arising from 0, from (2.17), we
then arrive at a simple differential equation for B = |B|,

OB B
—+—=0. 2.1
ot + T 0 (2.19)

"In the specific setup, demonstrated in Fig. 1, the magnetic
field is aligned in the third direction. We thus have B, = 0.

This leads immediately to the evolution of B in the ideal
transverse MHD,
B:B<

Here, B = B(7) and 7 is initial time of the hydrodynamic
expansion. Bearing in mind that in transverse MHD
B -0 =0, the differential equation (2.19) is consistent
with (2.14). We emphasize at this stage that the above 7
dependence of B(z) is also valid in dissipative MHD. This
is mainly because (2.20) arises from the homogeneous
Maxwell equation, which is unaffected by dissipative terms
in the energy-momentum tensor of the fluid.

Using DB + 6B = 0 from (2.18), B-0=0and 0- B =0
in transverse MHD, it turns out that the electromagnetic
part of the energy-momentum tensor 7%, from (2.7) is

12

conserved. Plugging u,0,T%,, = 0in (2.5), we are therefore
left with

N |«

). (2.20)

u,,&‘,,T?’fo =0, (2.21)
with T% given in (2.7). Using DB + 6B = 0 from (2.18)
and b-0 =0 as well as - b = 0 in transverse MHD, the
energy equation (2.8) is modified as

De+0(e+ p—BM) =0. (2.22)
As concerns the Euler equation, we use the fact that in
the Bjorken setup the fluid is nonaccelerated, and obtain
Du, = 0. Plugging this relation into (2.9), the Euler
equation in ideal transverse MHD reads

2(p—BM):O.

3 (2.23)

Here, V, = —1(sinh#,0, - cosh#,0) a% is used. Using

then the assumed boost invariance (y independence) of
p, the boost invariance of B arising from (2.20), and
M = y,,B, we arrive at the boost invariance of the magnetic
susceptibility y,,.

Using the same method, it is also possible to determine
the evolution of the entropy. To do this, let us consider the
conservation equation of the entropy current 0, (su*) = 0
from (2.2) leading to Ds + @s = 0. In the Milne coordi-
nates, we thus arrive at

Js s
22 2.24
or 1 o ( )
whose solution reads
5= s<f>. (2.25)
T
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Here, 5 = s(7). As concerns the evolution of the energy
density e, let us consider the energy equation (2.22). In the
case of vanishing magnetic susceptibility, one usually uses
the ideal gas EoS, € = kp, with k = const, to write (2.22)
with vanishing magnetic susceptibility as

Ip \p
- 14+-)==0, 2.26
or * ( * K') T (2:26)
whose solution is given by
7\ 1+1/x
p=7D (—) , fory, =0. (2.27)
T
Here, p = p(7). Using ¢ = kp, we have
7\ I+1/x
€= é(—) , fory, =0, (2.28)
T

with € = kp. Combining the EoS € = kp, (2.24), (2.27),
and the thermodynamic relation € 4+ p = T's, the evolution
of the temperature 7 is given by

_ [T\ V/k
T = T<> , fory,, =0, (2.29)
T

with 7= (1 +x) L.

In the next section, we determine the evolution of €, p
and T in the case of nonvanishing and z dependent y,, in
ideal MHD.® As a by-product, the evolution of the magnetic
susceptibility is also found. To do this, we use the method
used in [5] in the framework of aHydro (see also [3] and
references therein).

III. PARAMAGNETIC ANISOTROPY IN A
NONDISSIPATIVE MAGNETIZED QGP

A. Boltzmann equation and ideal transverse MHD

Let us start by considering the fluid part of the energy-
momentum tensor T’}'fo from (2.7), which can also be

given as

Ty = (e+puwu’ —pig” + (py—pL)b"b*.  (3.1)

This relation is in many aspects comparable with the
energy-momentum tensor;

T = (e + pr)u'u” — prg” + (pL — pr)Y'Y*, (3.2)

$The evolution of thermodynamic functions for constant y,, is
studied in [21].

appearing, e.g., in [3] in the context of aHydro. Here, Y* is
the beam direction.” Let us emphasize at this stage that
whereas subscripts 7 and L in (3.2) correspond to trans-
verse and longitudinal directions with respect to the beam
direction, L and || in (3.1) correspond to transverse and
longitudinal directions with respect to the direction of the
magnetic field in the z direction (see Fig. 1). Hence, {||, L}
correspond to {7, L} in [3,5], respectively.

Using the analogy between (3.1) and (3.2), we identify
Y#, appearing in (3.2), with b* = B*/B. Here, b* satisfies
b,b* = —1, and, in the LRF of the fluid, we have
b* = (0,0,0,1). Physically, the main difference between
T* from (3.2) and T’]ﬁ'jo from (3.1) lies in the difference

between the longitudinal and the transverse pressures.
Whereas p; — py in (3.2) is brought in connection with
the dissipative nature of the fluid, in particular, its shear
viscosity [3], py — p1 in (3.1) is related to the magneti-
zation of the fluid through py — p, = BM =y B2 It is
therefore possible to follow the method presented in [3,5],
and to determine the evolution of the energy density, the
pressure and the effective temperature in the ideal non-
dissipative case, in order to focus on the effect of non-
vanishing magnetization of the fluid on the evolution of
anisotropies arising in the early stages of HICs. Similar to
aHydro, the anisotropy induced by nonvanishing magneti-
zation of the QGP is intrinsically implemented in the
momentum distribution of the system, and can be consid-
ered as a new source for the pressure anisotropy appearing
in the QGP created in HICs. In this section, we consider the
anisotropy caused by the nonvanishing magnetization of a
nondissipative fluid. We use the same method of moments
of Boltzmann equation in the RTA as in [3,5], and derive, in
this way, two differential equations whose solutions lead to
the proper-time dependence of the anisotropy parameter
and effective temperature.

To do this, we introduce, as in aHydro, the one-particle
distribution function,

fo = exp (—\/k”E,(g)k”//lo), (3.3)
with 1, being the effective temperature, and
2 = w,u, + Eb,b,. (3.4)

Here, &, is the anisotropy parameter that is induced by the
magnetization of the fluid. In transverse MHD, 4, and &,
depend, in general, on 7 and 7. However, by the assumption
of boost invariance, they depend only on 7. In the presence

°Let us notice that in [3,5], the beam line is chosen to be in the
z direction. Hence, (3.2) is formulated in terms of Z¥, the unit
vector in this direction, instead of Y*. In the present paper,
however, we take the beam line in the y direction, perpendicular
to the magnetic field. The latter is chosen to be in the z direction.
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of an external magnetic field described by the field strength
tensor F*, f, satisfies the Boltzmann equation,

K0, o+ areFrk, 00 — Clfy).

o (35)

with g being the number of flavors. Using the RTA, we set,
as in [3],

qmz—wu(ﬁgfﬂ, (3.6)
with
feq = eXp (_(ku)/T)’ (37)

and 7, the relaxation time. In [3], the relaxation time is
brought in connection with the shear viscosity over the
entropy density ratio. In ideal MHD, however, the fluid is
dissipationless. The relaxation time 7, is thus only related
to the magnetization of the fluid, that, because of the
induced anisotropy, affects f,,.
Contracting, at this stage, 7/ from (3.1) with w,u,,
b,b,, and using b-b = —1 and u - b = 0, we obtain
eo = w,u, Ty, and py=b,b,T;,.  (3.8)
Using,

moreover, T?”O G =
arrive at'’

€y —3p0+ZBMO, we

AMDT% = —3po + 2BM,. (3.9)
Using the standard definition of the energy-momentum
tensor in terms of the one-particle distribution function,

Ty = / dkk kY fo(x, k), (3.10)

with dk = %, the energy density, the pressure and the
magnetization of the fluid including massless particles,

satisfying k* = 0, read

€ = /dfc(k- u)*fo,
m—/&wm%,

1 7 2 2
Moz—ﬁ/dk[(k-u) S3k-bPfe. (1)

We replace €, p and M from (3.1) with ¢y, py and M, to
denote that these quantities are computed with anisotropic f
through standard definitions (3.11).

Plugging f, from (3.3) into these expressions, and perform-
ing the integrations, we arrive after some computation at

€0:3ﬂ—/¥)R(§o),
m—%%(ﬂ%%T{g)
o= o[- R -] G2
where
R(5)52(11+§)[)”d6sin9 1+ &sin’

_l( 1 +arctan\/§)
2\1+¢e VE )

In (3.12), 4y and &, satisfy differential equations that can be
determined by making use of the Boltzmann equation (3.5).

(3.13)

B. Differential equations leading to &, and A,

We start by considering the zeroth moment of the
Boltzmann equation (3.5),

- 0 -
/ dk<k”8ﬂfo+qfeF””k,,8]I:2> - / dkClfy).  (3.14)
with C[f,] given in (3.6). Using
nt = nout = /dfck”fo = Luﬂ, (3.15)
0 ﬂ'z\/ 1 + 50
and
T v afo T Y _
/dkF” ko = /dkF/‘ Gufo=0, (3.16)
as well as
[t == tm-ny.  Ga7)
Tro
with
. T3
Rty = negut = /dkk/‘feq — S, (3.18)
b3
we arrive at
1
Dngy + 0ng = ——— (ng — n,,). (3.19)
Tr0
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=or 7’
(3.19), we arrive first at

3
%_%_%_i(l_ G) \/1+§0>. (3.20)
0 0

1+¢& T 7,

Using D =0, =2, 6 =1 and plugging n, and e, into

The relation between T and the effective temperature A
arises from the first moment of the Boltzmann equa-
tion (3.5),

/ dkk? (kﬂaﬂ fo+qreF™k, g{l?) = / dkk C[f o).
(3.21)

with C[f,] given in (3.6). Using (3.10), the first term on the
left-hand side (lhs) of (3.21) is given by O”T;f'o. Using
nout = [ dkk"fo and F*u, = E*, the second term on the
lIhs of (3.21) reads

o _

qreF" / dkkPk, —-!

i —qreF?,ng = —qrengE’ = 0.

We thus arrive at

. 1 l
@ﬁ%:/@w%ﬂd:—nﬁgﬁ%—ﬂgx (3.22)
where 7'/, is defined by (3.10) with f, replaced with f.,
from (3.7). Using, at this stage, 9,77 = GﬂTf;fO = 0 from
(2.21), we arrive at

w, Ty = uw, T, (3.23)
which leads to

€) = €oqs (3.24)

upon multiplying (3.23) by u,. Here, €, is defined in
(3.11) and

- 3Tt
%:/MhWsza (3.25)
7
Plugging ¢, and ¢, from (3.12) and (3.25) into (3.24), we
arrive at

T = 24RV4(&). (3.26)
with R(&) given in (3.13). Plugging this expression into
(3.20), we obtain

0.8y 604y 2 2

— LS Z (1R VTG, (327)

I+& 4 7 7,0

Let us now consider the energy equation (2.22). Plugging
€y, po and BM, from (3.12) into (2.22), we arrive at
the second differential equation leading to the evolution of
Ao and &,

87?’(&0) 8’[50 48‘:}'0
9% R(&) Ao
1

1
T (35‘) U fom(fo))‘ (3-28)

In Sec. V, we solve the above differential equations (3.27)
and (3.28) numerically for a given relaxation time 7, , and
determine the evolution of 4, and &, in terms of the proper
time 7. The resulting solutions of 4, and &; are then used to
determine the evolution of thermodynamic quantities €y, p
and M. Using then the relation M, = y,, (B and the
evolution (2.20) of B in terms of 7, the evolution of the
magnetic susceptibility y,, o in a nondissipative QGP is
determined.

IV. PARAMAGNETIC ANISOTROPY IN A
DISSIPATIVE MAGNETIZED QGP

In this section, we extend the method described in the
previous section to a dissipative QGP in the presence of a
strong but fast decaying magnetic field. To do this, we first
use the method described in [26], and determine the
dissipative part of the one-particle distribution function
in a magnetized fluid in the first-order derivative expansion.
Then, using the same method as in the previous section, we
determine the differential equations corresponding to the
anisotropy parameter ¢ and the effective temperature 4 in
the RTA. Choosing appropriate initial values, these equa-
tions are then solved numerically for various relaxation
times. The = dependence of £ and 4, arising from this
procedure, leads eventually to the = dependence of thermo-
dynamic quantities e, p and M in a dissipative and
magnetized QGP.

A. The dissipative part of the magneto-anisotropic
one-particle distribution function, shear
and bulk viscosities

To determine the dissipative part of the one-particle
distribution function, we start by plugging f = f, + 6f4
including the nondissipative and dissipative one-particle
distribution functions, f, and Jf, into the Boltzmann
equation

of
kﬂaﬂf‘queFlkaW:C[f} (41)
Here, as in the previous section, f is given by
f, = exp (— k”E,wk”//{), (4.2)
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with

= u,u, +Eb,b,. (4.3)

B
In (4.2) and (4.3), 1 and ¢ are the effective temperature and
anisotropy parameter, receiving, in contrast to 4, and &,
from the previous section, dissipative contributions.
Keeping the dissipative part up to the first-order derivative

expansion, and using F*¥ = —Bb* and the RTA ansatz
(f - fe )
Clf) = (- u) T2, (44)

we arrive at

vy O v, 98fa
kﬂaﬂfb - qfeBb” ky W - qfeBb” kl/ 6kﬂ
= —(k- M)M’ (4.5)

where the relaxation time 7z, and the equilibrium one-
particle distribution function f,, are defined in (4.4) and
(3.7). Let us notice, at this stage, that in the dissipative case
7, is different from 7, , which appeared in (3.6). In what
follows, we consider 7, as a free parameter, and study
qualitatively the effect of different choices of 7, > 7, and
7, <7, on the evolution of thermodynamical quantities,
which are separately affected by the anisotropy induced by
the magnetization and the first-order dissipation."'

Plugging f, from (4.2) into (4.5), and using u,b"” = 0,
b,b" =0, as well as 9, =V, +u D, we arrive after a
stralghtforward computation at

Aﬁb (k"k” (k- b2DE— (k- u)H? Df)

— qseBb*k, aa(slg 4— _(k-u) (f_fif") (4.6)
Here, w,, =% (V,u, + V,u,), and
_ (k- b)?
Hy(k) = 1+§(k-u)2' (4.7)

Let us consider, at this stage, f — f,, with f = f;, + 6f; on
the right-hand side (rhs) of (4.6). Bearing in mind that 6f
may include terms consisting of derivatives with respect to
A, € and u*, we introduce

"The exact determination of 7,0 and 7, in the presence of
external magnetic fields and in terms of magnetization and
dlss1patlve coefficients is beyond the scope of this paper.

“In a nonaccelerating system Du, =0 is assumed. For a
boost invariant system V, &~ 5 Q—’f =0and V,A~ ‘?—'1 0 are also

assumed.

5fa=58F"" 4 8L = (s = feq): (4.8)

with § fﬁl‘” and of Elb) including derivatives with respect to 4,
£and u*. Plugging (4.8) into (4.6), and comparing the terms
including 4, & and u#, we arrive at an algebraic equation,

satistied by 5f.":

5 = vy ((k -b)’DE~ (k- u)’Hj, D%) . (49)

w1th Vn = 7 uf> iR and a differential equation satisfied by
13} f P ).

(b) (b)
Jb 0f 4 9éf
—(k'k¥ =(k- . 4.10
S k) = (k) 2 S (410)

Let us first consider (4.9). Defining three second rank
tensors

Uy =4, UW=bb, U =b,, (“11)
expanding 5f‘(1“) in terms of U,(Z), n=0,1,2 as
2
sfy =" e,k U (4.12)
n=0
and plugging (4.12) into (4.9), we obtain
Di
il
0= Vn 7
DE Di
7y _UH§<§_/I>’

This determines the final form of § fﬁ,a). As concerns § f((jw,
which satisfies (4.10), we follow the method presented
recently in [26]. We start with the ansatz

1Y) = vkt kWP C,yp

(4.14)
Plugging (4.14) into (4.10), and using u,b** = 0, we arrive
first at

Kkw,, = (kk°C

poaff — 2)(Hbﬂykukpc paﬁ) ﬂ

(4.15)

»

with y 5 = q{ ke Iz; . Defining then the basis tensor of rank four

(see also [27-29] for similar bases)
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1
Eho =D A,

Erhe =AM A e+ A A,
5}(3/276 = Aﬂl/bpbd + Apabﬂbw
&b =Db,b,b,b,,

e = Ayby byt Ayybuby + Ab,by, + b

Hop P

b

vp=u H

&= Ayybro+ Dyybyo+ Dyobyy+ Dby,

Eho=Dbypbyby+b,,buby+ bbb, +byob

b (4.16)

PP

where A,, and b, are defined in previous sections, it is
straightforward to check that (4.15) is given by

5/(3/,)00' = (ffj,)aﬂ + ){Hffg)aﬂ) Caﬂ/)o" (4 1 7)

Expanding, at this stage, C in terms of 5,(,'2,6 from (4.16)

uvpo
as

7
Cupe = 3 Culiho. (4.18)
n=1

and plu%ging (4.18) into (4.17), we arrive after some
work at'

&® =260 ey +4ypee) +26@) (ca = 4rncs)
+2€9(es + 4xmee) + 289 (es = dyner)
+2E0)(es = 3ypce = xuer) + 289 (ce + xuca)
+ 260 (eq + ypes). (4.19)
Comparing both sides of this relation, and solving the set of

algebraic equations that arises from this comparison, the
coefficients ¢, from (4.18) are determined as

2k 6xh
TTIv4 YT U0 1an)

+4xn (1 + i) (1 +4xp)
P S oo 3k

2(1+4y3)’ 200+ x3) (1 + 4y
o 2 N
T4y T 21+ 4%)
3 3

¢ = Y (4.20)

2014 i) (1 +4xg)

wpe frOm (4.18) into (4.14), 577 is
determined. In the next step, we express & fg’) in terms
of traceless and traceful bases Vi, n =0,....4 and

Wi, n =0, 1, defined by"

Plugging then C

SIn (4.19), the indices uvpo of EM) are skipped.
“In (4.21) and (4.22), the indices uvpo of £ are skipped.

V) — &), (4.21)

and

WO =D and W = £6), (4.22)

with f,(f;;m, n=1,...,7 given in (4.16). The aim is to
determine the shear and bulk viscosities of the magnetized
fluid. To do this, we first introduce

Vi = v owe, and W = Wihowee,  (4.23)

with Vi), n =0,....4 and Wi, m =0, 1 from (4.21)
and (4.22). We then use

4 1
b vy (n vr(n
3t =" gt p Vi + 3 haprprwi) . (4.24)
n=0 n=0

The coefficients g, and h,, appearing in (4.24) are
determined by comparing o f&b) from (4.24) with o fflb) that
arises by plugging (4.18) with ¢, from (4.20) into (4.14).
They are given by

_ +] 4 _I/H
9o =VH| C2 304 305 =5
(405 - c4> vy,
=l = — N
A (1+422)
G =v <05—6‘4>__ Vi
A 20+ 27)"
P
O 2y
VHXH
= - =" 4.25
g4 UH(C7 c6) 2(1 +Z%_1) ( )
and
2 1 4 v
ho—UH<C|+§C2—§C4+§C5>—?H,
1 4
h] =Uly C3—§C4 +§C5 :O (426)
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This determines & f<db> in terms of traceless and traceful
bases Vo, n =0, ....4 and Wiy, m = 0, 1 from (4.21)
and (4.22). Plugging finally 5f" from (4.12) and &f"
from (4.24) into (4.8), the dissipative part of the magneto-
anisotropic one-particle distribution function is given by

2 4
3fa=_ CkRUL + 3 g kR Vi)
n=0 n=0

(4.27)

1
+ 3 h KW = (fy = feg).
n=0

with Z,, g, and h, from (4.13), (4.25) and (4.26).
Combining finally §f,; with f, from (4.2), we arrive at
the one-particle distribution function of the magnetized
QGP up to first-order derivative expansion.

Let us notice, at this stage, that §f, from (4.27) can be
used to determine the dissipative part 7#¥ of the energy-
momentum tensor 7 = T" + 7#*, defined by

T = / dkk‘ kU f . (4.28)

Using f = f), + 6f4 plugging 6f, from (4.27) into

™= / dkk"k*Sf . (4.29)
and comparing the resulting expression with
1 4 1
=Y U + Y Vi + S wi
n=0 n=0 n=0
= (T = Ti). (4.30)
we arrive after some work at
a = [ dit, K,
3
M = 15 di(gn|k|4,
& =§/d7<hn|k4, (4.31)

where 7, is the shear viscosity of the medium. An
appropriate combination of £, and a, is then identified
with the bulk viscosity of the medium (see below). In
(4.30), T and T%; are defined by (4.28) with f replaced
with f;, and f,,, respectively.

B. Differential equations leading to £ and 4

We start, as in Sec. III B, with the zeroth moment of the
Boltzmann equation (4.1),

/ di%(kﬂa,, f+qfeFﬂvky%> = / dkC[f], (4.32)

with f = f, + 6f, and C[f] given in (4.4). Here, f;, and
of 4 are given in (4.2) and (4.27). Whereas the second term
on the lhs of (4.32) vanishes because of the same argument
as in (3.16), the first term on the lhs of (4.32) leads to

/ dkk*0,f = 0,n*, (4.33)

with n, = n}, + én/; consisting of two terms defined by

- yE
M= | dkk'f, = ————uF, 4.34
ny / fb ﬂzmu ( )
only = / dkA* k,5f ;. (4.35)

The expression arising in (4.34) is similar to (3.15) with
(€0, Ao) replaced by (&, 4). Plugging, on the other hand, 6f,;
from (4.27) into (4.35), and comparing the resulting
expression with [30]

2 2 3
ony = Z% paUWE+ Z; PRUM A+ Z; o, T\ W,
(4.36)

where Uf,'Z),nzo, 1, 2 are given in (4.11) and Tffll,),
n=20,...,3 are defined by [30]

0) _ (2) _
Clop = b,byby. Crop = balp, + bphyy,

)

— (3)
yap = bJ’Aaﬂ’ C

yaf = bdbﬂ)’ + bﬂba}”

(4.37)
it turns out that éng‘ vanishes, as expected [6]. We are
therefore left with d,n* = 0,n}, with nj given in (4.34).
Plugging, at this stage, C[f] from (4.4) into the rhs of
(4.32), the equation arising from the zeroth moment of the
Boltzmann equation reads

1
Dny, + 0n;, = - (np = ngy). (4.38)

Here, we used n/, = n,u*. Using, as in Sec. [lI B, D = 9,,
0 = 1/7, and plugging n,, and n,, from (4.34) and (3.18),
we arrive at

0:f _60:4_2 2 <1 _ G>3\/ﬁ> (4.39)

1+¢ A T T,

Similar to the nondissipative case in Sec. III B, the relation
between T and A arises from the first moment of the
Boltzmann equation,
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/ dkk? (kﬂaﬂ [+ qreF*k, %) = / dkk?C[f]. (4.40)

Using (4.28), we arrive first at

) 1
9, — / ARk Clf) = ——u, (T = T2),  (4.41)

Tr
where 77} is defined in (4.28) with f replaced with f,,.
Using then the energy-momentum conservation 9, 7" = 0,

we obtain u, T = u,T¢,. Moreover, using the definition
T" =T’ + 7" and the fact that u,7* = 0, we obtain

€p = €ogs (4.42)
as in the nondissipative case [see (3.24)]. Here,
~ ) 324
€, = | dk(k-u)*f, = ?R(.f) (4.43)

and €,, = 3 is given in (3.25). In (4.43), R(¢) is defined

in (3.13). Using (4.42) thus leads to the Landau matching
condition

T = ARV4(&). (4.44)

Plugging, at this stage, (4.44) into (4.39), we obtain the first
differential equation leading to the = dependence of £ and 4,

08 604 2 2 o
B T_Tr<1 R4 (E)V/1 5). (4.45)

The second differential equation arises from 9,7 = 0,
leading to the energy equation

D€b + (€b + Py — BMb)g = ’w‘[ﬂ’/‘ (446)

Here, ¢, is given in (4.43), p, and M, are given by
= [k vrr, =2 (RO -1
o= T 1+¢)

My = - [ dk{(k-u)? =3k b)),

2B
3 3
~ |- or@ -] (447

[see also (3.11) and (3.12) for similar expressions]. The
dissipative part of the energy-momentum tensor is given by

(4.30). Plugging U, n=0,1,2, V%, n=0,....4 and

Wi, n=0,1,2 from (4.11), (4.21) and (4.22) into (4.30),
and using

T/el; = (eeq + peq)uﬂuy - pquuu’
T, = (ep + pp)u'u” — (p, — BM,) ¢ + BM,b*b",
(4.48)

we arrive first at

1 -
Ty = 2770 <W/w - g 9A;w> +m (Zwﬂl/ - 0:"51/)

+ 2773(Aupbvo' + Azpr/w)wlm + ZOHA}UJ + Zlabybu
+ apA,, + aib,b, + ayb,, — BM,ES,

+ (pb - peq)Auw (449)

where B, = A,, + b,
%" = z—f with €,, defined in (4.25). To arrive at (4.49), we
mainly used b*w,,, = 0, which is valid in transverse MHD.
Multiplying 7, from (4.49) with w**, and using a number
of algebraic relations like WA, = wh, we arrive after
some work at

Py 1s given in (4.47) and p,, =

2 ~
W, = 2(n0 + 1 )W Wy, — <§’70 +m - Co) 6>

+ g8 + (pp — Peg — BM),)0. (4.50)

The relevant transport coefficients ag, 70, 17, and C can be

determined using (4.31) and the assumption of large

magnetic field, leading to yy = q(f:ﬁ;" > 1. Defining the

relaxation frequency w, = 1/7,, the limit y; > 1 can be
interpreted as o, < w; with the Larmor frequency

w; = %. Plugging 7 from (4.13) into ay from (4.31),
and performing the corresponding integration, we obtain

Mz, 1 D
w0 (R ) T

(4.51)

Similarly, plugging go = “% and g, ~ —* for y; > 1 from
(4.25) into n;, i =0, 1 from (4.31), and performing the
integration over k, we arrive at

At

, 1
Mo="m=733 (373(5) +—(1 n 5)2)

Finally, plugging hy = %! from (4.26) into £, and perform-
ing the integration, we obtain

(4.52)

A
gO - 371_2

(37%(5) + (4.53)

(1 +1§)2)'
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Plugging all these results into (4.46), the second differential
equation leading to £ and A reads

40,4 L
37

i Al R
27,

s <3+R<5><1+s>> -

Equations (4.45) and (4.54) build a set of coupled differ-
ential equations, whose solution leads to 4 and ¢ for the case
of dissipative QGP. In Sec. V, we solve these differential
equations numerically, and compare the corresponding
results with those arising from (3.27) and (3.28) in the
case of nondissipative QGP.

)} ,6872 )+4

(4.54)

V. NUMERICAL RESULTS

In this section, we present the numerical solutions of two
sets of coupled differential equations (3.27) and (3.28) for
nondissipative, as well as (4.45) and (4.54) for dissipative
fluids. They are determined by using the analogy between
the energy-momentum tensor in ideal MHD with nonzero
magnetization and the energy-momentum tensor of an
anisotropic fluid. The only free parameter in these differ-
ential equations is the relaxation time 7,y and 7, appearing
in (3.27) and (4.54) for nondissipative and dissipative QGP,
respectively. Bearing in mind that the onset of hydrody-
namical expansion occurs approximately at 7 ~ 0.2 fm/c,
we set, in what follows, 7, and 7, equal to 0.3, 0.5 fm/c,
and compare the corresponding results for the proper time
evolution of &, £ as well as 4, 4, separately. These results
are then used to determine the evolution of longitudinal and
transverse pressures p| and p, that, together with the
expressions for the energy density e, lead to the transverse
and longitudinal speeds of sound, ¢, ; = in
nondissipative and dissipative cases. Moreover, combining

(a)
0 L
]

-0.2
-04 &o for 1.0 = 0.3 fm/c
--- & forr, =0.3fm/c

-0.6
0 2 4 6 8 10

T (fm/c)

these results with the corresponding results to the mag-
netization M, and M, the evolution of the magnetic
susceptibilities y,,o and y,, is determined in these two
cases for fixed values of eB = 5m2 and eB = 15m2. These
are the values of magnetic fields that are believed to be
created in noncentral HICs at the RHIC and LHC,
respectively. In order to compare our results with the
results arising from lattice QCD, we use the proper time
evolution of the temperature (2.29), and plot y,, o and y,, as
a function of 7. The corresponding results are in good
agreement with lattice QCD results from [18] in the regime
T <T,., where T, ~200 MeV is the critical temperature of
the QCD phase transition. We discuss the apparent dis-
crepancy for 7 > T, and argue that it may lie on the effect
of dynamical magnetic field created in HICs. We perform
the same analysis for transverse and longitudinal speeds of
sound, and present the temperature dependence of these
velocities in the interval T € {100,400} MeV. To study
the effect of the relaxation time z, on the evolution of
thermodynamic quantities, we plot the 7, dependence of y,,
for fixed eB = 5m2, and c,; = p;/e, , L at fixed
proper times 7 =2, 4, 6 fm/c. We also focus on the
position of the maxima appearing in y,,(T) and ¢ (7T),
and study their dependence on the relaxation time z,. We
finally present the 7 as well as T dependence of shear and
bulk viscosities 775 and {,. As aforementioned, the latter is
given as a linear combination of ¢, and a, whose analytical
expressions are presented in the previous section.

To start, let us consider the differential equations (3.27)
[(4.45)] and (3.28) [(4.54)], whose solution yields the
anisotropy parameter and the effective temperature &,
and 4 (¢ and A) for nondissipative (dissipative) magnetized
fluid. In Fig. 2, the proper time evolution of &, and &
is plotted for 7, (blue solid curves) and 7, (black dashed
curves) equal to 0.3 fm/c [Fig. 2(a)] and 0.5 fm/c

[Fig. 2(b)]. To solve the corresponding differential
(b)

0,

-0.2
-0.4 &o for 1.0 = 0.5 fm/c
--- & fortr, =0.5fm/c

-0.6¢
0 2 4 6 8 10

7 (fm/c)

FIG. 2. The 7 dependence of the anisotropy function &, (nondissipative case) and & (dissipative case) is plotted for relaxation times 7,
(blue solid curves) and 7, (black dashed curves) equal to 0.3 fm/c (panel a) and 0.5 fm/c (panel b). For a comparison see the main text.
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- 300 Ao fort,=03fmic
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FIG. 3.

(b)
4001
- 300y _ Ao for 1,0 = 0.5 fm/c
) \
= A fort, =0.5fmlc
200} —
100k i i i : ‘
0 2 4 6 8 10

T (fm/c)

The 7 dependence of the effective temperature in a magnetized fluid 4, (nondissipative case) and A (dissipative case) is plotted

for relaxation times 7, (blue solid curves) and z, (black dashed curves) equal to 0.3 fm/c (panel a) and 0.5 fm/c (panel b). It turns out
that, independent of the value of the relaxation time, the effect of dissipation on the effective temperature of a magnetized fluid is

negligible.

equations, the initial values of &;, £ and 4, 4 in the initial
time 7 = 0.2 fm/c are chosen to be &(7) = £(7) = 1077
and Ao(7) = A(7) = 400 MeV. The comparison between
&y and & for each fixed 7, o and 7, shows that, qualitatively,
nonvanishing dissipation does not change the = depend-
ence of the anisotropy function &, and &. They sharply
decrease in the early stages of the evolution, and then
increase, and approach asymptotically a fixed value. The
corresponding minimum of &; is however deeper. This
specific feature, which does not obviously depend on the
choice of the relaxation time, may show that the effect of
pressure anisotropies arising from the magnetization
of the fluid is diminished by the dissipation. The two
plots demonstrated in Fig. 2 have the same scale. It is
thus possible to compare &, (blue solid curves) for
7,0 = 0.3 fm/c in Fig. 2(a) and &, for 7, = 0.5 fm/c
in Fig. 2(b). As it turns out, the minima of &, and ¢
become deeper with increasing 7z, and z,. Moreover, &,
and £ need longer to reach their asymptotic value ~ — 0.1
at =~ 10 fm/c.

Using the same initial values for &,, £ and Ay, 4 at
7=0.2 fm/c, the = dependence of the effective temper-
ature A, (nondissipative case) and A (dissipative case) is
plotted in Figs. 3(a) and 3(b). It turns out that neither
for small value of 7,, and 7, equal to 0.3 fm/c (blue
solid curves) nor for larger value of 7, and 7, equal to
0.5 fm/c (black dashed curves), the dissipation does affect
the effective temperature significantly. In Fig. 4, we
compare the temperature T = T(7/7)!/? from (2.29)
(green dashed curve), with the effective temperatures, A,
and A for 7,5 =7, =0.5 fm/c. Except in the interval
7 € [~0.5, ~4] fm/c, the dynamics of T, Ay, and 1 coin-
cides. Bearing in mind that 7 is the temperature for an
isotropic ideal fluid, the result presented in Fig. 4 indicates
that neither the magnetization nor the dissipation affect the

late time dynamics of the temperature in a magnet-
ized fluid.

In Fig. 5, the evolution of the ratio pg,/poy) and
Pb.1/ Py, for a nondissipative and a dissipative magnetized
fluid is plotted for relaxation times 7, (red solid curves)
and 7, (black dashed curves) equal to 0.3 fm/c [Fig. 5(a)]
and 0.5 fm/c [Fig. 5(b)]. Here, py and M, in py, =
Po,| — BMy with po | = pg are given in (3.12) in terms of
$o and 4y, and pj, as well as My, in p;, | = p;, | — BM;, with
Pb,| = Py are given in (4.47) in terms of & and 4. As it turns
out, independent of the choice of the relaxation time,
Po.1/Po, and p;, | / pp, decrease abruptly at the beginning

400
- T
300
> — Ao for 1,0 =0.5 fm/c
=
1001 L ey
0 2 4 6 8 10

T (fm/c)

FIG. 4. The 7 dependence of T from (2.29) for y,, = 0 (green
dashed curve), 4, the effective temperature for a nondissipative
magnetized fluid (black solid curve), and 4, the effective temper-
ature for a dissipative magnetized fluid (red dots) for z, =
0.5 fm/c is plotted. It turns out that, except in the interval
7 € [~0.5,~4] fm/c, the dynamics of T, Ay, and 4 coincides.
Hence, the effect of magnetization and dissipation on the proper
time evolution of the temperature is negligible.
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(a)
1.0t
0.9
0.8
0.7}
08| —  PouPoy for 1,0 =0.3fmic
05 - Poupp forz =0.3fmlc
0 2 4 6 8 10
7 (fm/c)
FIG. 5.

(b)
1.0}
0.9}
0.8}
0.7
0.6} . PpouPoy for 1.0 =0.5fm/c
0.5} <= PoubPpy forr, =0.5fm/c
0 2 4 6 8 10
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The 7z dependence of the ratio pg 1 /po, and pj 1 /py,| for a nondissipative and a dissipative magnetized fluid is plotted for

relaxation times 7, (red solid curves) and z, (black dashed curves) equal to 0.3 fm/c (panel a) and 0.5 fm/c (panel b). For a comparison

see the main text.

of the evolution. After reaching a minimum at z,,, they
increase with increasing z, and become almost constant at a
certain proper time z... The values of z,;, and 7., as well as
the values of po/po) and p,./p,) at these times,
depend on the value of the relaxation time 7, and z,.
For larger values of 7, and 7,, the minima are deeper,
and 7, is larger. A comparison between the evolution of
Po../po, and p;, 1 /pp with the evolution of & and &
shows that the dynamics of these anisotropy parameters is
strongly reflected in the dynamics of the ratio of transverse
over longitudinal pressures in a magnetized fluid with and
without dissipation. Let us notice, at this stage, that the
evolution of py | /po, and py, 1 /pp in Fig. 5 is similar to
the evolution of p; /ps, e.g., from Fig. 3 in [3], where the
difference between the longitudinal and transverse pres-
sure, p; and pr, arises from the nonvanishing ratio of the
shear viscosity to the entropy density of the fluid, 7/s. In
the case discussed in the present paper, however, the
difference between p and pg  arises because of the
finite magnetization of the QGP, which has to be consid-
ered as an additional source, apart from dissipative effects,
for the pressure anisotropy of the QGP in the early stages of
HICs. Here, it is believed that large magnetic fields are
created in noncentral collisions. The magnetization of the
medium and its evolution thus plays an important role in the
isotropization process which occurs in the early stages of
the collision. A comparison with p; | and p, | shows that,
similar to po and po |, p; < p). This result coincides
with the results presented in [3,5].15

In Fig. 6, the 7 dependence of the energy density € (green
squares) of an isotropic ideal fluid from (2.28), ¢, (black

SLet us remind that, according to our descriptions in Sec. III,
the subscripts {||, L} in the present paper correspond to {7, L}
used in [3,5].

solid curve) of a magnetized nondissipative fluid from
(3.12), and ¢, (red circles) of a magnetized dissipative fluid
from (4.43) is plotted for relaxation times 7, and 7, equal
to 0.3 fm/c. The initial value of these energy densities at
the initial proper time 7 = 0.2 fm/c is taken to be
€ =¢(7) =1 GeVIm™>. As expected from (3.24) and
(4.42), we have € = ¢; = ¢;,. In all these cases, the energy
density decreases very fast with increasing z.

Combining the results for py 1, pp 1 and po, py as
well as ¢ and ¢, the speed of sound in the transverse and
longitudinal directions with respect to the magnetic field,

Po.i Pb.i
Cs0,i = ) and Csi = )
€0 €p

i=L]. (51

for a nondissipative (subscript 0) and a dissipative
fluid (subscript b) is determined. In Figs. 7 and 8,

the 7 dependence of ¢y, and c;; with i = 1,|| in a
1.0
0.8
£ 06} = €
> — g for1,0=0.3fmlc
B 0.4}
=~ e € forr, =0.3fm/c
027
ot ‘ ‘
0 2 4 6 8 10

T (fm/c)

FIG. 6. The 7z dependence of € (green squares), ¢, (black solid
curve), and ¢, (red circles) is plotted for relaxation times 7, and
7, equal to 0.3 fm/c. As expected, € = ¢y = €.
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0.58}
0.56
0.54|
0.52} — Csy for 1,0=0.3fmic
0.50¢ --- Cs, fort, =0.3fm/c
5 3 4 6 8 10

7 (fm/c)

0.58¢}
0.56
0.54¢}
0.52 — Cso,, for1,0=0.5fmic
0.50¢+
--- Cs, forr =0.5fm/c
0 2 4 6 8 10

7 (fm/c)

FIG. 7. The 7 dependence of the transverse speed of sound ¢,y ; and ¢, ; in a nondissipative (red solid curves) and dissipative (black
dashed curves) fluid is plotted for the relaxation times 7, and 7z, equal to 0.3 fm/c (panel a), and 7, as well as 7, equal to 0.5 fm/c
(panel b). The evolution of ¢y and ¢, ; reflects the dynamics of &, and & (see Fig. 2).

()
0.725f
0.700} — Cgo, for 1,0 =0.3 fm/c
0675 --- Cgy for 1, =0.3fm/c
0.650 1
0.625}
0.600}
0.575| T
0 2 4 6 8 10
7 (fm/c)
FIG. 8.

(b)

0.725[
0.700}
0.675|
0.650|
0.625|
0.600|
0.575|

— G, for 7,0 =0.5fm/c

7 (fm/c)

The 7 dependence of the longitudinal speed of sound ¢, and ¢, | in a nondissipative (red solid curves) and dissipative (black

dashed curves) fluid is plotted for the relaxation times 7, ; and 7z, equal to 0.3 fm/c (panel a) and 7, and 7z, equal to 0.5 fm/c (panel b).
In contrast to ¢, and ¢, | from Fig. 7, ¢,o | and ¢, increase first to a maximum in the early stages after the collision and then decrease

to a constant value at late time.

nondissipative (red solid curves) and dissipative (black
dashed curves) fluid is plotted for the relaxation times 7,
and 7, equal to 0.3 fm/c [Figs. 7(a) and 8(a)] and 0.5 fm/c
[Figs. 7(b) and 8(b)]. In contrast to transverse speed of
sound from Fig. 7, whose 7 dependence is similar to the =
dependence of &, and £ from Fig. 2 as well as py | / py | and
Pb.1/ Py, from Fig. 5, nondissipative and dissipative
longitudinal speed of sound ¢y and ¢y increase very
fast at the beginning of the expansion to a maximum at
Tmax,> and then decrease slowly to certain constant values at
7. (see Fig. 8). The values of 7, and 7. depend on the
relaxation times 7, and 7,. The same is also true for the
proper time at which ¢y ; and ¢; | reach their minima, and
become approximately constant. Moreover, as it turns out,
for larger values of 7, ; and 7, the minima (maxima) of ¢ |

and ¢, | (cy, and c; ) are deeper (higher). A comparison
between the results presented in Figs. 7 and 8 shows that
the transverse speed of sound is in general smaller than the
longitudinal speed of sound. Replacing, at this stage, the
proper time 7 arising in the corresponding expressions to
g0 and ¢g;, i = L, ||, with 7 = 2(T/T)? from (2.29) with
the initial time 7 = 0.2 fm/c and the initial temperature
T = 400 MeV,'® we arrive at the T dependence of ¢, ; and
¢si» 1 =L, ||. This is demonstrated in Fig. 9. In Fig. 9(a)
[Fig. 9(b)] the transverse (longitudinal) speed of sound is
plotted for the relaxation times 7, (red solid curves) and 7,
(black dashed curves) equal to 0.5 fm/c. Assuming that the

Tn (2.29), k = 3 is chosen.
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(b)

0.725¢
0.700
0.675¢
0.650
0.625} ',' .
0.6001 A — Csou foro=05Mm/c s,
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FIG.9. The T dependence of ¢y | and ¢, | (panel a) as well as ¢ and ¢ (panel b) is plotted for the relaxation times 7, (red solid
curves) and 7, (black dashed curves) equal to 0.5 fm/c in a nondissipative and dissipative fluid. Assuming that the QCD phase transition
occurs at a critical temperature 200 < T. ~ 250 MeV, the ¢, (c.) decreases (increases) before the transition, and increases

(decreases) after the transition as the fluid cools.

QCD phase transition occurs at a critical temperature
T, ~200 MeV, and focusing on the results for ¢, ;, i =
L,]| of a dissipative fluid (black dashed curves) in
Figs. 9(a) and 9(b), it turns out that the transverse
(longitudinal) speed of sound decreases (increases) before
the transition, and increases (decreases) after the transition
as the fluid slowly cools. We have also plotted the 4, (1)
dependence of ¢y and ¢y (¢, 1 and ¢y ), with 4y and 1
being the effective temperatures. The resulting plots do not
differ qualitatively from the plots demonstrated in Fig. 9.
The only difference is the position of the minimum
(maximum) appearing for ¢y, and ¢, (¢, and cg )
in Fig. 9(a) [Fig. 9(b)], which is shifted to a smaller value
of effective temperatures in nondissipative and dissipative
cases. This is because of the difference between T and A

(@)

0.57 = T=2fm/c
-« T=4fm/c

o 1 =6fm/c

0.56}

0.55,
& 0.54}
0.53}
0.52

03 04 05 06 07 08 09
7, (fm/c)

and 1 at early 7€ [~0.5 ~4] fm/c, where T ~
150-200 MeV [see Fig. 4]. The question whether the
position of the maximum appearing in ¢, for a fixed
relaxation time is related to the temperature of the QCD
phase transition cannot be answered at this stage (see in the
description of Fig. 14, for more details).

To study the effect of increasing relaxation time on the
qualitative behavior of the speed of sound, the 7, depend-
ence of ¢, | and ¢y is plotted in Figs. 10(a) and 10(b) for
fixed proper times 7 =2, 4, 6 fm/c (red circles, blue
rectangles and green squares). As expected from Figs. 7
and 8, for each fixed value of 7, ¢, (cy ) decreases
(increases) with increasing relaxation time ,.

Using, at this stage, the combinations BM, from (3.11)
for the nondissipative case and BM,, from (4.47) for the

(b)
0.68|
0.66|
= 0.64]
(&)
0.62 o I =6fm/c
-~ T=4fm/c
0.60¢ = T=2fm/c
03 04 05 06 07 08 09

7, (fm/c)

FIG. 10. The 7, dependence of ¢, (panel a) and ¢, | (panel b) for fixed proper times 7 = 2, 4, 6 fm/c (red circles, blue rectangles
and green squares). As expected from Figs. 7 and 8 for each fixed value of 7, ¢, (c, ) decreases (increases) with increasing

relaxation time z,.

056021-17



N. SADOOGHI and S. M. A. TABATABAEE

PHYS. REV. D 99, 056021 (2019)
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FIG. 11.

N 2
(b) eB=5m,
0.08f
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1 ~-___-
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The 7 dependence of the magnetic susceptibility y,, o (nondissipative fluid) and y,, (dissipative fluid) is plotted for relaxation

times 7,0 = 0.3 fm/c (panel a) and 7., = 0.5 fm/c (panel b) (red solid curves) and 7z, = 0.3 fm/c and 7, = 0.5 fm/c (panel b) (black
dashed curves) and eB = 5m2 with m, ~ 140 MeV. It turns out that for larger values of relaxation time, the magnetic susceptibility is
larger. Moreover, independent of 7,, a finite dissipation decreases the value of magnetic susceptibility, and the position of the maximum

value of y,, is shifted slightly to later times.

dissipative case, together with relations M, = y,, B and
M, = y,B for these two cases, the r dependence of
magnetic susceptibilities y,, o and y,, are determined. In
Fig. 11, the 7 dependence of y,,o and y,, is plotted for
relaxation times 7, and 7, equal to 0.3 fm/c (red solid
curves) and 0.5 fm/c (black dashed curves) and an initial
magnetic field eB = 5m2 with m, ~ 140 MeV. It turns out
that for larger values of relaxation time, the magnetic
susceptibility is larger. Moreover, independent of z,., a finite
dissipation diminishes the value of the magnetic suscep-
tibility. According to the results demonstrated in Fig. 11,
the magnetic susceptibility increases with a relatively large
slope at early stages of the expansion. It reaches a

(a) eB = 15 m?

— Xmo for 1.0= 0.3 fm/c

0.010¢

Xm fort, =0.3fm/c

0.008} ---

0.006¢

0.004}

0.002¢

100 200 300 200
T (MeV)

maximum at a certain 7,,, and decreases slowly to a
certain constant value at 7 ~ 0 fm/c. For larger values of
relaxation times z,, the position of 7, is slightly shifted to
larger 7. The fact that the initial value of y,, is very small is
related to vanishing initial value of the anisotropy param-
eter £ ~ 0 at the initial time 7 = 0.2 fm/c.

Using the same method which is used to determine
the 7" dependence of the speed of sound in Fig. 9, the T
dependence of y,, o and y,, is determined, and the result is
plotted in Fig. 12 for relaxation times 7, (red solid curves)
and 7, (black dashed curves) equal to 0.3 fm/c [Fig. 12(a)]
and 0.5 fm/c [Fig. 12(b)], and an initial magnetic field
eB = 15m2 with m, ~ 140 MeV. In comparison to the

(b) eB = 15 m>.

— Xmo for o= 0.5 fm/c

0.010¢

0.008} -- Xm forr. =0.5fm/c

0.0061
0.004

0.0021

100 200 300 200
T (MeV)

FIG. 12.  The T dependence of y,, o and ,, is plotted for relaxation times 7, o (red solid curves) and 7, (black dashed curves) equal to
0.5 fm/c in a nondissipative and dissipative fluid. Here, eB = 15m2 with m, = 140 MeV. Assuming that the QCD phase transition
occurs at a critical temperature 200 < 7. ~ 250 MeV, y,,o and y,, increase before the transition (7 > T.), and decrease after the

transition as the fluid cools to T < T,.
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FIG. 13. The z, dependence of y,, is plotted for fixed proper

times 7 =2, 4, 6 fm/c (red circles, blue rectangles and green
squares) and eB = 5m2 with m, = 140 MeV. For fixed value
of 7, the magnetic susceptibility increases, in general, with
increasing relaxation time ,.

results arising for y,, and y,, appearing in Fig. 11,
magnetic susceptibilities arising for eB = 15m2 are 1 order
of magnitude smaller than those for eB = 5m2. According
to results presented in Fig. 12, y,, o and y,, increase after the
collision at 7 = 400 MeV. After reaching a maximum at
T ~220 MeV for a nondissipative fluid and 7, ~
180-200 MeV for a dissipative fluid, they decrease as
the fluid cools. For larger value of z,, T, is slightly
shifted to smaller values of 7. As in the case of ¢, we have
also plotted y,, o and y,, in terms of 4, and 4, respectively.
Because of the slight difference between T, 4; and 4 in the
regime 7 € [0.5,4] fm/c, demonstrated in Fig. 4, a shift of
A0.max and A, to even smaller values of temperature occurs
once y,,o and y,, are plotted as functions of 4, and A.
Assuming the critical temperature of the QCD phase
transition to be at 7.~ 180-200 MeV, it is possible to
identify T, with T.. We show, however, that this
interpretation depends strongly on the relaxation time z,
(see Fig. 14).

In Fig. 13, the 7z, dependence of y,, is plotted for fixed
t=2,4, 6 fm/c (red circles, blue rectangles, and green
squares). The initial value of the magnetic field is chosen to
be eB = 5m?2 with the pion mass given by m, = 140 MeV.
As expected from Fig. 12, for each fixed value of z, the
magnetic susceptibility increases with increasing relaxation
time 7,. Similar results arise for eB = 15m2.

In Fig. 14, the correlation of the position of the maxima
appearing in c, (1) with those appearing in y,,(4) for
various relaxation times 7, is studied. To do this, we
consider the 4 dependence of ¢ and y,,, and determine
the position of their maxima for a number of fixed
relaxation times, 7,. Let us denote these positions by
(lmax)cx,u and (Apay), > respectively. In Fig. 14, (A )

Xm

125 oo
100 ’
100 125 150 175 200 225
(Amax)e,, (MeV)
FIG. 14. In this plot, 4, corresponding to y,, is plotted versus

Amax corresponding to ¢ for a number of relaxation times 7, =
0.2,...,2 fm/c in Az, =0.1 fm/c steps. The initial magnetic
field eB =5m2. The green down-triangle at ((Ap) e’
(Amax), ) = (234,203) MeV  corresponds  to 7, = 0.2 fm/c,
and the green up-triangle at (()”m‘dx)c\._u’ (Amax),, ) = (125,
103) MeV corresponds to 7, = 2 fm/c. The blue solid line is
the line (}Lmax)c&H = (max),,,- The deviation of our result from
this line indicates that (A,

7, € [0.2,2] fm/c. Moreover, it turns out that for larger relaxation
times, (}Lmax)crH and (Amay),, are shifted to smaller temperatures.

> (Amax ), foreach fixed value of

Cs|

Xn

is then plotted versus (Amax)%H for 7z, € 0.2,2] fm/c in
Az, = 0.1 fm/c steps (see the red points in Fig. 14). For
the latter, we choose the initial magnetic field eB = 5m2
with m, = 140 MeV. The green down-triangle (v) at
((Amax)e,, » (Amax)y, ) = (234,203) MeV  corresponds  to
7, =0.2 fm/c, and the green up-triangle (A) at
((ﬂmax)%”, (Amax),, ) = (125,103) MeV  corresponds  to
7, =2 fm/c. The blue solid line is characterized by
(/Lm,()%H = (Amax),, - The deviation of our result from this

line indicates that (Apax). > (Amax),, for all values of

Sl
7, € 10.2,2] fm/c. According to these results, for larger
relaxation times (/Imax)%H and (Ap,), —are shifted to

smaller effective temperatures. Moreover, as it turns out,
the relation between the position of the maxima appearing
in y, and Cs and the temperature of the QCD phase

transition at 7. ~ 180-200 MeV strongly depend on the
relaxation time t,.

We finally focus on the proper time evolution of the
transport coefficients 77 and &,. In Figs. 15(a) and 16(a), the
7 dependence of the viscosities 17o(7) /1y (7) and £y (7) /Lo (7)
is plotted for a fixed relaxation time z, = 0.5 fm/c. Here,
the initial time is 7, = 0.2 fm/c. The corresponding
expression for the shear viscosity 7, is given in (4.52).
The bulk viscosity ¢, arises by combining @, and £, from
(4.51) and (4.53) as ¢y = ayr + &p. According to these
results 7, ({,) decreases (increases) with increasing z. To
determine the temperature dependence of % and ¢, we use,

056021-19



N. SADOOGHI and S. M. A. TABATABAEE

PHYS. REV. D 99, 056021 (2019)

(@) 1, =0.5fm/c

0 2 4 6 8 10
7 (fm/c)

FIG. 15.
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(a) The 7 dependence of the shear viscosity 7o(7) normalized by its value at the initial time 7 = 0.2 fm/c is plotted for

7, = 0.5 fm/c. (b) The T dependence of the shear viscosity 1,(7) normalized by its value at the initial temperature 7 = 400 MeV is

plotted for 7z, = 0.5 fm/c.
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FIG. 16.

(b) 7, = 0.5 fm/c
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(a) The 7 dependence of the bulk viscosity {,(7) normalized by its value at the initial time 7 = 0.2 fm/c is plotted for

7, = 0.5 fm/c. (b) The T dependence of the shear viscosity {,(7) normalized by its value at the initial temperature T = 400 MeV is

plotted for 7z, = 0.5 fm/c.

as in previous cases, 7 = 7(T/T)? from (2.29). The result-
ing T dependence of 17y(7)/10(7) and {y(7) /{o(7) is plotted
in Figs. 15(b) and 16(b). As it turns out, 7y ({,) decreases
(increases) with decreasing 7. Bearing in mind that shear
viscosity is proportional to the mean free path of quarks in
the fluid, g [37,38], the fact that n, increases with
increasing temperature indicates that A, also increases
with increasing temperature. We also notice that the result
arising in Fig. 15(b) for the temperature dependence of
no(T)/no(T) is in good agreement with the expected
1o(T) /no(T) ~ (T/T)? from [31] with the initial temper-
ature T = 400 MeV. As concerns the temperature depend-
ence of o(T)/¢o(T) from Fig. 16(b), however, it does not
coincide with {(T) o n(T)(3 — ¢3) from [32], arising from
gauge/gravity duality. Whereas, plugging ¢, = ¢, from
Fig. 9(b) into this expression ,(T)/{y(T) turns out to be
always positive, for ¢; = c; | the resulting negative values

for £o(T)/¢o(T) were several orders of magnitude larger
than the result presented in Fig. 16(b). Despite this
discrepancy in the anisotropic case, in the isotropic limit,
the expression ¢, = ay7 + £ includes the expected factor
(3 — ¢2), as expected. To see this, let us combine, a, and %o
from (4.31) with £, = I/H% from (4.13) and £, = ”7” from
(4.26) to arrive at

1 [ - (DA 1\, ,

Setting, in the isotropic limit, the ratio 2* = 27, and bearing
in mind that in this case % = —cgaﬂu" = — = with 2 = %

[39],17 o from (5.2) becomes proportional to (—cf + %) as

(5.2)

YFor the Bjorken flow the four-divergence of u* is given
by 1/z.
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claimed. Let us also notice that the transport coefficients of
hot and magnetized quark matter are recently computed in
[40]. In contrast to our computation, where the evolution of
the magnetic field is implemented in the computation, the
magnetic field in [40] is assumed to be aligned in a fixed
direction, and remains constant during the evolution of
the QGP.

VI. CONCLUDING REMARKS

The main purpose of the present paper was to study the
role played by the finite magnetization of the para-
magnetic QGP in the production of pressure anisotropies,
and to quantify the possible interplay between the effects
caused by this magnetization and those arising from
nonvanishing dissipations in the isotropization of this
medium. We were motivated by the wide belief that very
large magnetic fields are produced in the early stages of
noncentral HICs [7], and that the QCD matter produced
in these collisions is paramagnetic [17]. Paramagnetic
squeezing was previously studied in [19] in the frame-
work of lattice QCD for a static QCD matter in the
presence of a constant magnetic field. We generalized
the same proposal to a uniformly expanding QGP in the
presence of a dynamical magnetic field, by making use of
standard methods from aHydro [5]. In particular, we used
the similarity between (3.1) and (3.2), the energy-
momentum tensor of an ideal paramagnetic fluid and
of a longitudinally expanding fluid in the framework of
aHydro, and introduced the magneto-anisotropic one-
particle distribution function f, in terms of the unit
vector in the direction of the magnetic field b*, an
anisotropy parameter £;, and an effective temperature
Ao- In this way, the effect of the anisotropies caused, in
particular, by the magnetization of the QGP is phenom-
enologically taken into account.

Using f,, we determined, similar to the standard aHydro
method, described, e.g., in [3,5], the first two moments of
the Boltzmann equation satisfied by f, in the RTA, and
derived a set of coupled differential equations for &, and 4
in terms of the relaxation time 7, . The latter is taken to be a
free parameter, apart from the initial proper time 7 and
magnetic field B. The uniform expansion of the fluid was
described by the 1+ 1 dimensional Bjorken flow [25],
which is only valid when (i) the fluid expands only in the
longitudinal direction with respect to the beam direction
and (ii) the system is boost invariant along this direction.
Moreover, by making the assumption that the magnetic
field is transverse to the direction of the fluid velocity (see
Fig. 1), it was possible to use the solution B(z) ~77!,
which arises in the framework of ideal transverse
MHD [20].

We used appropriate initial values for &, and A,, and
solved numerically the aforementioned differential equa-
tions. In this way, we first determined the proper time
dependence of &, and A, for various fixed 7z, . Using the

dependence of various thermodynamical quantities on
Fp(x, p3&p,Ag), it was then possible to determine the
evolution of transverse and longitudinal pressures pg |
and p|, the energy density ¢, transverse and longitudinal
speeds of sound ¢y | and ¢, as well as the magnetic
susceptibility y,, o for an ideal nondissipative, and longi-
tudinally expanding QGP."® The results are presented
in Sec. V.

To take the viscous effects, apart from the magnetization
of the fluid, into account, we extended our method to a
dissipative QGP. To do this, we first derived the dissipative
correction to f, in a first-order derivative expansion by
making use of a number of results from [26-29]. Because
of the presence of an additional four-vector b#, apart from
the velocity four-vector u#, a large number of transport
coefficients were defined in a magnetized fluid, as
expected. Performing then the same steps that led to the
aforementioned differential equations for &, and 4,, we
arrived at the corresponding coupled differential equations
for £ and 4 in the dissipative case. We numerically solved
these equations for different choices of the relaxation time
7, in the dissipative case.

According to the plots demonstrated in Figs. 2, 5,
and 7, for fixed values of 7,, and 7,, the anisotropy
induced by the magnetization in the early stages of the
evolution of a nondissipative fluid is quite large, and, as
it turns out, it is compensated by dissipative effects. As
concerns the longitudinal and transverse pressures, for
instance, the longitudinal pressure is in the absence of
dissipation larger than the transverse pressure. Here, the
terms longitudinal and transverse are with respect to the
direction of the magnetic field. Using the same terminol-
ogy as in the aHydro literature, i.e., using these two
terms with respect to the beam line, our results indicate
that the dissipation diminishes the effect of magnetization
in making p; larger than p;. We used the proper time
evolution of the energy density and transverse as well as
longitudinal pressures to determine the transverse and
longitudinal speeds of sound. The completely different
proper time dependence of these two velocities is
demonstrated in Figs. 7 and 8.

Parallel to the above results, we were interested in the
temperature dependence of the transverse and longitudinal
speeds of sound, ¢, ; and ¢ |, magnetic susceptibility y,,
shear and bulk viscosities # and {. We used the simple
proper time dependence of the temperature T, T ~7~!/3
from (2.29), and converted the proper time dependence of
these quantities into their 7 dependence. This was possible
because according to our results from Fig. 4, there are
almost no differences between T, 1 and A. In other words,

"As described in previous sections, the symbols L and ||
describe the “transverse” and “longitudinal” directions with
respect to the magnetic field. The latter is assumed to be
perpendicular to the beam direction.
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the finite magnetization of the fluid does not practically
affect the evolution of its temperature. The same is also
true for dissipative effects. According to the results for the
T dependence of y,, from Fig. 12, y, increases with
increasing 7" up to a maximum value, and then decreases
with increasing 7. This result may not be expected from
lattice QCD results in [18], for instance, but this may lie
on the fact that in the previous computations of y,,, the
quark matter and background magnetic fields are assumed
to be static. In the present paper, however, we considered
the 77! decay of the magnetic field, and the results
demonstrated in Fig. 12 for the 7 dependence of y,,
comprise this crucial difference. To describe the back-
reaction arising from the dynamical evolution of the
magnetic field, let us consider Fig. 11. Multiplying the
curve plotted in this figure with B = By(zy/7), we arrive
at a 7 dependent magnetization M, whose 7 dependence is
qualitatively similar to the 7 dependence of y,, plotted in
this figure. The result shows that M increases with
increasing 7, reaches a maximum at an early stage
(r ~2 fm/c), and decreases then with increasing 7. The
same kind of backreaction also occurs in the 7" depend-
ence of the shear and bulk viscosities from Figs. 15
and 16, which are qualitatively in agreement with similar
results in the literature, as is described in the previous
section.

Despite these promising results, there is one remaining
point to be noticed. As aforementioned, there are a small
number of free parameters in our numerical computa-
tions. The value of the initial time 7 and initial magnetic
field B, which we have used, comply with the existing
numbers in the literature related to HICs. The values
of the relaxation times, 7, in the nondissipative case
and 7, in the dissipative case, are, however, arbitrarily
chosen to be 0.3 and 0.5 fm/c. It is not clear how close
these numbers are to the real relaxation times in the
expanding QGP. In particular, their dependence on the
magnitude of a dynamical magnetic field is yet

unknown.'” It is thus necessary to separately determine
these parameters in an expanding magnetized QGP.
Notwithstanding this caveat, the magneto-anisotropic one-
particle distribution function f, proposed in the present paper
can, in principal, be used to determine a large number of
observables in HIC experiments. Recently, using an appro-
priate anisotropic distribution function, the dilepton produc-
tion rate is computed within the aHydro framework [41]. It
would be interesting to generalize this computation for a
magnetized QGP to take, in particular, the effect of anisot-
ropies caused by its magnetization and the evolution of the
QGP as well as the dynamics of the background magnetic
field into account. The result may be then compared with
those presented in [42,43], where the QGP and the back-
ground magnetic field are assumed to be static. Another
possibility to extend the results presented in this work is to
allow the fluid to possess, apart from the longitudinal
expansion assumed in the framework of transverse MHD,
an expansion in the transverse direction with respect to the
beam line. To do this, one should replace the 7~! solution of
B(7) with the recently found 3 + 1 dimensional solution to
the conformal (Gubser) MHD, presented in [24]. We post-
pone all these computations to our future publications.
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“In [40], the thermal relaxation time in a static QGP in the
presence of a constant magnetic field is computed in the lowest
Landau level approximation.
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