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We study the coupled system consisting of a complexmatter scalar field, a U(1) gauge field, and a complex
Higgs scalar field that causes spontaneously symmetrybreaking.We showbynumerical calculations that there
are spherically symmetric nontopological soliton solutions. Homogeneous balls solutions, all fields take
constant values inside the ball and in the vacuum state outside, appear in this system. It is shown that the
homogeneous balls have the following properties: the charge density of thematter scalar field is screened by a
counter charge cloud of the Higgs and gauge field everywhere; an arbitrarily large size is allowed; the energy
density and pressure of the ball behave as a homogeneous nonrelativistic gas; a large ball is stable against
dispersion into free particles and against decay into two smaller balls.
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I. INTRODUCTION

Aclassof interesting excitations in field theories is solitons,
i.e., nonlinear solutions localized in finite spatial regions. The
solitons are classified into two types: topological and non-
topological solitons. The former are field configurations with
a topological charge that is invariant under continuous
deformations of the field with fixed boundary conditions.
The topological solitons cannot relax to zero energy con-
figurations due to conserved topological quantities. The latter
represent field configurations with the lowest energy for a
fixed conserved charge in global U(1)-invariant theories,
where the symmetry of the systems guarantee the stability.
Friedberg et al. [1] introduced nontopological solitons in a
coupled systemof a complex scalar field and a self-interacting
real scalar field. Coleman [2] showed the simplest example of
nontopological solitons, so-called Q balls,1 can appear in a
system of a self-interacting single complex scalar field.
The Q balls attract much attention because the Q balls

generally appear in theories with potentials inspired by
supersymmetric theories that include global U(1) sym-
metries [3–5]. Furthermore, in a cosmological context, the
Q ball is a candidate of the dark matter of the Universe
[6–10] and a source for baryogenesis [11–13].

Generalizations of the Q balls in local U(1)-invariant
theories by introduction of a gauge field are also studied
[14–18]. There are significant differences between gauged
and ungauged Q balls. For example, an ungauged Q ball
with an arbitrarily large charge is allowed while an upper
bound of the charge appears for a gauged Q ball [14–16].
Otherwise, a complicated form of the potential should be
assumed for the existence of large Q balls [17,18].
In this paper, we consider a gauge theory with sponta-

neous symmetry breaking, which is a fundamental frame-
work of modern physics. We study the system consisting
of a complex scalar field as matter, a U(1) gauge field, and
a complex Higgs scalar field that causes spontaneous
symmetry breaking: a local Uð1Þ × global U(1) symmetry
breaks to a global U(1) symmetry. While models with a
single scalar field are assumed to have complicated self-
interactions, e.g., third or sixth order potentials, or non-
polynomial potentials, for the existence of Q balls, we show
the existence of Q balls in the model that has simple natural
interaction terms. Then, this work would suggest Q balls
can appear in a wide class of gauge theories.
We assume stationary and spherically symmetric con-

figurations of the fields, and reduce the system into a
coupled ordinary differential equations. We show Q balls
exist in this theory by using a numerical method.2 The all
fields are nonvanishing in a finite region while the matter
scalar field and the gauge field vanish, and the Higgs field
takes the vacuum expectation value outside the region.
Phase rotation of the complex Higgs scalar field is absorbed
by the gauge field, and phase rotation of the complex matter
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1Hereafter, we call a spherically symmetric nontopological
soliton a Q ball, in short.

2This was reported briefly in Ref. [19].
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scalar field, which represents charge, characterizes the
solutions. There are two types of solutions classified by
the shape: Gaussian balls, expressed by the Gaussian-like
functions, and homogeneous balls, expressed by steplike
functions. In this paper, we concentrate on the homo-
geneous balls, which are described by bounce solutions that
connect two stationary points of the ordinary differential
equations and clarify their properties.
We show that the homogeneous balls in the present

system have the following properties. The charge density of
the matter scalar field of a homogeneous ball is screened
everywhere by a counter charge cloud of the Higgs and
gauge fields, namely, perfect screening occurs [20]. A
homogeneous ball has constant energy density and pressure
inside the ball, and the pressure is much smaller than the
energy density; i.e., the homogeneous ball is like a ball of
nonrelativistic gas. A homogeneous ball with an arbitrarily
large size is allowed in contrast to a gauged Q ball without a
Higgs field has an upper limit of size. A large homogeneous
ball is stable against dispersion into free particles and
decays into two smaller Q balls.
The paper is organized as follows. In Sec. II, we present

the basic model investigated in this paper and show that the
model is described by a coupled system of ordinary
differential equations. In Sec. III, we obtain numerical
solutions that represent Q balls, and we see charge screen-
ing. We analyze properties of the homogeneous ball
solutions in Sec. IV and the stability of Q balls in the
present system in Sec. V. Section VI is devoted to a
summary and discussions.

II. BASIC MODEL

We consider the action given by

S ¼
Z

d4x

�
−ðDμψÞ�ðDμψÞ − ðDμϕÞ�ðDμϕÞ

− VðϕÞ − μψ�ψϕ�ϕ −
1

4
FμνFμν

�
; ð1Þ

where ψ is a complex matter scalar field, ϕ is a complex
Higgs scalar field with the potential,

VðϕÞ ≔ λ

4
ðϕ�ϕ − η2Þ2; ð2Þ

where λ and η are positive constants, and Fμν ≔ ∂μAν −
∂νAμ is the field strength of a U(1) gauge field Aμ. The
covariant derivative Dμ in (1) is defined by

Dμψ ≔ ∂μψ − ieAμψ ; Dμϕ ≔ ∂μϕ − ieAμϕ; ð3Þ

where e is a gauge coupling constant. This model is a
generalization of the Friedberg-Lee-Sirlin model by intro-
ducing a complex Higgs scalar field and a U(1) gauge field.

The action (1) is invariant under the local U(1) times the
global U(1) gauge transformations,

ψðxÞ → ψ 0ðxÞ ¼ eiðχðxÞ−γÞψðxÞ; ð4Þ

ϕðxÞ → ϕ0ðxÞ ¼ eiðχðxÞþγÞϕðxÞ; ð5Þ

AμðxÞ → A0
μðxÞ ¼ AμðxÞ þ e−1∂μχðxÞ; ð6Þ

where χðxÞ and γ are an arbitrary function and a constant,
respectively. Owing to the gauge invariance, there are the
conserved currents,

jνψ ≔ iefψ�ðDνψÞ − ψðDνψÞ�g; ð7Þ

jνϕ ≔ iefϕ�ðDνϕÞ − ϕðDνϕÞ�g; ð8Þ

satisfying ∂μj
μ
ψ ¼ 0 and ∂μj

μ
ϕ ¼ 0. Consequently, the total

charge of ψ and ϕ defined by

Qψ ≔
Z

ρψd3x; ð9Þ

Qϕ ≔
Z

ρϕd3x; ð10Þ

are conserved, where ρψ ≔ jtψ and ρϕ ≔ jtϕ.
The energy of the system is given by3

E¼
Z

d3x

�
jDtψ j2þðDiψÞ�ðDiψÞþjDtϕj2þðDiϕÞ�ðDiϕÞ

þVðϕÞþμjψ j2jϕj2þ1

2
ðEiEiþBiBiÞ

�
; ð11Þ

where Ei ≔ Fi0, Bi ≔ 1=2ϵijkFjk, and i denotes a
spatial index. In the vacuum state, which minimizes the
energy (11), the fields ψ , ϕ, and Aμ should satisfy

ψ ¼ 0; ϕ�ϕ¼ η2; Dμϕ¼ 0; and Fμν ¼ 0; ð12Þ

equivalently,

ψ ¼ 0; ϕ ¼ ηeiθðxÞ; and Aμ ¼ e−1∂μθ; ð13Þ

where θ is an arbitrary continuous regular function. We
exclude topologically nontrivial case in this paper. The
Higgs scalar field ϕ has the vacuum expectation value η,
then the Ulocalð1Þ × Uglobalð1Þ symmetry is broken into a
global U(1) symmetry, so that the gauge field Aμ and the

complex scalar field ψ acquire the mass mA ¼ ffiffiffi
2

p
eη and

mψ ¼ ffiffiffi
μ

p
η, respectively. The real scalar field that denotes a

3See the Appendix.
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fluctuation of the amplitude of ϕ around η acquires the
mass mϕ ¼ ffiffiffi

λ
p

η.
By varying (1) with respect to ψ�, ϕ�, and Aμ, we obtain

the equations of motion,

DμDμψ − μϕ�ϕψ ¼ 0; ð14Þ

DμDμϕ −
λ

2
ϕðϕ�ϕ − η2Þ − μϕψ�ψ ¼ 0; ð15Þ

∂μFμν ¼ jνϕ þ jνψ : ð16Þ

We assume that the fields are stationary and spherically
symmetric in the form,

ψ ¼ eiωtuðrÞ; ð17Þ

ϕ ¼ eiω
0tfðrÞ; ð18Þ

At ¼ AtðrÞ; and Ai ¼ 0; ð19Þ

where ω and ω0 are constants, and uðrÞ and fðrÞ are real
functions of r. Using the gauge transformation (4), (5),
and (6), we fix the variables as

ϕðrÞ → fðrÞ; ð20Þ

ψðt; rÞ → eiΩtuðrÞ ≔ eiðω−ω0ÞtuðrÞ; ð21Þ

AtðrÞ → αðrÞ ≔ AtðrÞ − e−1ω0; ð22Þ

where we assume Ω ≔ ω − ω0 > 0 without the loss of
generality.
Substituting (20), (21), and (22) into (14), (15), and (16),

we obtain a set of the ordinary differential equations,

d2u
dr2

þ 2

r
du
dr

þ ðeα −ΩÞ2u − μf2u ¼ 0; ð23Þ

d2f
dr2

þ 2

r
df
dr

þ e2fα2 −
λ

2
fðf2 − η2Þ − μfu2 ¼ 0; ð24Þ

d2α
dr2

þ 2

r
dα
dr

þ ρtotal ¼ 0; ð25Þ

where ρtotal is defined by

ρtotalðrÞ ≔ ρψðrÞ þ ρϕðrÞ: ð26Þ

The charge densities ρψ and ρϕ are given by the variables
u, f, and α as

ρψ ¼ −2eðeα −ΩÞu2; ð27Þ

ρϕ ¼ −2e2αf2: ð28Þ

We seek configurations of the fields with a nonvanishing
value of Ω that characterizes the solutions.
We require boundary conditions for the fields so that the

fields should be regular at the origin. Then, we impose the
conditions for the spherically symmetric fields as

du
dr

→ 0;
df
dr

→ 0;
dα
dr

→ 0 as r → 0: ð29Þ

On the other hand, fields should be in the vacuum state at
the spatial infinity. Therefore, from (13), we impose the
conditions

u → 0; f → η; α → 0 as r → ∞: ð30Þ

III. NUMERICAL CALCULATIONS

In this section, we present numerical solutions of the Q
ball by using the relaxation method. In numerics, hereafter,
we set η as the unit and scale the radial coordinate r as
r → ηr and scale the functions f, u, α as f → η−1f,
u → η−1u, α → η−1α, respectively, and scale the parameter
Ω as Ω → η−1Ω. We set λ ¼ 1, μ ¼ 1.4 and e ¼ 1, as an
example, in this paper.
In Fig. 1, we plot uðrÞ, fðrÞ, and αðrÞ as functions of r

with four values of Ω. In the all cases of Ω, the functions,
whose shapes depend on Ω, have finite support, namely,
solitary solutions are obtained.
In the case of Ω ¼ 1.183 and Ω ¼ 1.178, the field

profiles are Gaussian function like. On the other hand,
for Ω ¼ 1.171, Ω ¼ 1.170, the field profiles are step
function like. The solutions in the latter cases represent
homogeneous balls, namely, the functions u, f, and α take
constant values inside the ball, and they change the values
quickly in a thin region of the ball surface, r ¼ rs, and u, α
vanish, and f takes the vacuum expectation value η outside
the ball.
By numerical calculations, we depict the charge densities

ρψ ðrÞ and ρϕðrÞ in Fig. 2 as functions of r. We find that
the charge density ρψ is compensated by the counter
charge density ρϕ. Then, ρtotal almost vanishes everywhere,
namely, perfect screening occurs [20].
As the parameter Ω varies, the total charge of ψ , Qψ ,

defined by (9) varies as shown in Fig. 3. The solution exists
for Ω in the range

Ωmin < Ω < Ωmax; ð31Þ

where the values of Ωmin and Ωmax are discussed later. As
seen in Fig. 3,Qψ diverges atΩ ¼ Ωmin andΩ ¼ Ωmax. For
Ω near Ωmin in the range (31), the solutions represent
homogeneous balls, where the radius of the ball increases
as Ω approaches to Ωmin, while the constant values of u, f,
and α are independent of Ω.
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Here, we estimate the value of Ωmax. Since u is small at a
large distance, and f − η and α are smaller than u there (see
Fig. 1), then solving the linearized equations of (23), we have

uðrÞ ∝ 1

r
exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψ −Ω2

q
r
�
: ð32Þ

If we require the solutions are localized in a finite region,
the parameter Ω should satisfy

Ω2 < Ω2
max ≔ m2

ψ ¼ μη2: ð33Þ

IV. HOMOGENEOUS BALL SOLUTIONS

For the parameter Ω very close to Ωmin, the homo-
geneous ball solutions with a large radius appear. We
inspect the homogeneous ball solutions in detail.
The set of Eqs. (23), (24), and (25) can be derived from

the effective action in the form,

Seff¼
Z

r2dr

��
du
dr

�
2

þ
�
df
dr

�
2

−
1

2

�
dα
dr

�
2

−Ueffðu;f;αÞ
�
;

ð34Þ

FIG. 1. Numerical solutions fðrÞ, uðrÞ, and αðrÞ are drawn for Ω ¼ 1.183, 1.178, 1.171, and 1.170.

FIG. 2. The charge densities ρψ , ρϕ, and ρtotal ≔ ρψ þ ρϕ normalized by the central value of ρψ are shown forΩ ¼ 1.183, 1.178, 1.171,
and 1.170.
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Ueffðu;f;αÞ≔−
λ

4
ðf2−η2Þ2−μf2u2þe2f2α2þðeα−ΩÞ2u2:

ð35Þ

If we regard the coordinate r as a “time”, the effective
action (34) describes a mechanical system of 3 degrees of
freedom (d.o.f.), u, f, and α, where the “kinetic” term of α
has the wrong sign. In the case of the homogeneous ball
solution with a large radius, the damping terms that are
proportional to 1=r in (23), (24), and (25) are negligible. In
this case,

Eeff ≔
�
du
dr

�
2

þ
�
df
dr

�
2

−
1

2

�
dα
dr

�
2

þUeffðu;f;αÞ ð36Þ

is conserved during the motion in the fictitious time r.
There are stationary points of the dynamical system on

which

∂Ueff

∂u ¼ 0;
∂Ueff

∂f ¼ 0 and
∂Ueff

∂α ¼ 0 ð37Þ

are satisfied. Two stationary points exist in the region
u ≥ 0, f ≥ 0, and α ≥ 0. One stationary point, say Pv, exists
at ðu; f; αÞ ¼ ð0; η; 0Þ, that is the true vacuum. The other
stationary point, say P0, exists at ðu; f;αÞ ¼ ðu0; f0; α0Þ,
where u0, f0, and α0 are given by solving (37) as

α0¼
1

eð4μ−λÞððμ−λÞΩþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μð2λþμÞΩ2−μλð4μ−λÞη2

q
Þ;

f0¼
1ffiffiffi
μ

p ðΩ−eα0Þ;

u0¼
1ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eα0ðΩ−eα0Þ

p
: ð38Þ

We note that 0 < eα0 < Ω should hold for a real value
of u0. This condition with (33) requires

λ < μ: ð39Þ
A homogeneous ball solution with a large radius is

described by a bounce solution from P0 to Pv. Consider a
point in the three-dimensional space ðu; f; αÞwhose motion
is governed by the equations of motion (23), (24), and (25).
The point that starts in the vicinity of the stationary point P0
spends much “time”, r, near P0, and traverses to the
stationary point Pv in a short period, and finally stays on
Pv. In Fig. 4, the homogeneous ball solution for Ω ¼ 1.170
is shown as a trajectory in the ðu; f; αÞ space.
If Ω approaches to Ωmin, the radius of the homogeneous

ball diverges. It means that the solution with an infinitely
large radius starts from P0. Since Eeff is conserved for the
homogeneous ball solution with a large radius, the bounce
solution that describes the homogeneous ball connects the
two stationary points with equal potential heights; i.e.,

UeffðPvÞ ¼ UeffðP0Þ: ð40Þ
We see that this occurs for

Ω ¼ Ωmin ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
λμ

p
− λ

q
η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕð2mψ −mϕÞ

q
: ð41Þ

Then, for the parameters satisfying (39), we see

Ωmin < Ωmax: ð42Þ

FIG. 3. The total charge of ψ , Qψ , is plotted as a function of Ω.
Qψ diverges at Ω ¼ Ωmin, dot-dashed line (left), and Ω ¼ Ωmax,
dot-dashed line (right). The value ofΩmin andΩmax are defined by
Eqs. (33) and (41), respectively. The circle, square, triangle, and
diamond marks in the figure correspond to the cases of
Ω ¼ 1.183, 1.178, 1.171, and 1.170 that are shown in Fig. 1
and Fig. 2, respectively.

FIG. 4. Trajectory of the numerical solution for Ω ¼ 1.170 in
the ðu; f; αÞ space. It starts from a point in a vicinity of P0 and
ends at Pv. Dots on the trajectory denote laps of the fictitious
time r.

HOMOGENEOUS BALLS IN A SPONTANEOUSLY BROKEN U(1) … PHYS. REV. D 99, 056019 (2019)

056019-5



Then, the nontopological soliton solutions exist for the
model parameters with (39).
We can estimate the value of Ωmax and Ωmin given by

(33) and (41) using the parameters λ, μ, and η in the
numerical calculations as Ωmax ∼ 1.1832 and
Ωmin ∼ 1.1689. We see in Fig. 3 that numerical calculations
reproduce these values.
Using the ansatz (20), (21), and (22), we rewrite the

energy (11) for the symmetric system as

ENTS ¼ 4π

Z
∞

0

r2ϵðrÞdr; ð43Þ

ϵ≔ ϵψKinþ ϵϕKinþ ϵψElastþ ϵϕElastþ ϵIntþ ϵPotþ ϵES;

ð44Þ

where

ϵψKin ≔ jDtψ j2 ¼ ðeα − ΩÞ2u2;
ϵϕKin ≔ jDtϕj2 ¼ e2f2α2;

ϵψElast ≔ ðDiψÞ�ðDiψÞ ¼
�
du
dr

�
2

;

ϵϕElast ≔ ðDiϕÞ�ðDiϕÞ ¼
�
df
dr

�
2

;

ϵPot ≔ VðϕÞ ¼ λ

4
ðf2 − ηÞ2;

ϵInt ≔ μjϕj2jψ j2 ¼ μf2u2;

ϵES ≔
1

2
EiEi ¼ 1

2

�
dα
dr

�
2

ð45Þ

are densities of the kinetic energy of ψ and ϕ, the elastic
energy of ψ and ϕ, the potential energy of ϕ, the interaction
energy between ψ and ϕ, and the electrostatic energy,
respectively. For the homogeneous ball solutions, these
components of energy density are shown in Fig. 5. The
dominant components of the energy density ϵ are ϵψKin and
ϵInt, and subdominant components are ϵϕKin and ϵPot for
the present cases. The densities of the elastic energy and
the electrostatic energy, which appear near the surface
of the ball, are negligibly small, then, they are not plotted.

We see, from (38), that the dominant and subdominant
components of the energy density inside the balls are
constants with the values

ϵψKin ¼ ϵInt ¼
1

μ
eα0ðΩ − eα0Þ3;

ϵϕKin ¼
1

μ
ðeα0Þ2ðΩ − eα0Þ2;

ϵPot ¼
λ

μ2
ððΩ − eα0Þ2 − η2Þ2: ð46Þ

Then the energy density and pressure4 for the homogeneous
ball are constants given by

ϵ ≃ ϵψKin þ ϵϕKin þ ϵInt þ ϵPot

¼ 2

μ
eα0ðΩ − eα0Þ3 þ

1

μ
ðeα0Þ2ðΩ − eα0Þ2

þ λ

μ2
ððΩ − eα0Þ2 − η2Þ2;

p ¼ pr ≃ pθ

¼ pφ ≃ ϵψKin þ ϵϕKin − ϵInt − ϵPot

¼ 1

μ
ðeα0Þ2ðΩ − eα0Þ2 −

λ

μ2
ððΩ − eα0Þ2 − η2Þ2: ð47Þ

We see that the pressure is almost isotropic and p ∼ 0.05ϵ
for the homogeneous ball of Ω ¼ 1.170. The equation of
state of the homogeneous balls is like a nonrelativistic gas.
In the limit Ω → Ωmin, so that Qψ → ∞, we see

ϵψKin ¼ ϵInt →
λð ffiffiffi

μ
p −

ffiffiffi
λ

p Þ ffiffiffi
μ

p
ð2 ffiffiffi

μ
p −

ffiffiffi
λ

p Þ2 η4;

ϵϕKin → λ

� ffiffiffi
μ

p −
ffiffiffi
λ

p

2
ffiffiffi
μ

p −
ffiffiffi
λ

p
�2

η4;

ϵPot → λ

� ffiffiffi
μ

p −
ffiffiffi
λ

p

2
ffiffiffi
μ

p −
ffiffiffi
λ

p
�2

η4; ð48Þ

FIG. 5. Components of energy densities of the homogeneous balls normalized by the central value of total energy density are drawn
for Ω ¼ 1.171 (left panel) and for Ω ¼ 1.170 (right panel). The profiles of ϵψKin and ϵInt overlap each other.

4See the Appendix.
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then we have

ϵ →
2λð ffiffiffi

μ
p −

ffiffiffi
λ

p Þ
2

ffiffiffi
μ

p −
ffiffiffi
λ

p η4;

p → 0: ð49Þ

Therefore, in the large homogeneous ball limit, the ball
becomes a dust ball with a constant energy density given
by (49).

V. STABILITY

The nontopological soliton, called a Q ball, can be
interpreted as a condensate of particles of the scalar field ψ ,
where the Higgs field plays the role of glue against the
repulsive force by the Uð1Þ gauge field. We compare the
energy of the soliton, ENTS, given by (43) with mass energy
of the free particles of ψ that have the same amount of
charge of the soliton as a whole. Then, the numbers of the
particles are defined by

Nψ ≔
Qψ

e
; ð50Þ

and the mass energy of the free particles of ψ is given
by Efree ¼ mψNψ.
Figure 6 shows the energy ratio ENTS=Efree as a function

ofΩ and as a function ofNψ , respectively. We find a critical
value of Ω, Ωcr, such that if Ω < Ωcr, ENTS < Efree holds.
Therefore, a Q ball for Ω in the range

Ωmin < Ω < Ωcr ð51Þ

is energetically preferable than the free ψ particles with the
same charge of the Q ball as a whole. From the Fig. 6, there
exist stable Q balls that are condensates of large numbers
of ψ particles.
Since the energy density and charge density are constant

inside the ball, the total energy and the total charge of
matter field of the homogeneous ball are written by

ENTS ¼ ϵV; and Qψ ¼ ρψV; ð52Þ

where V is the volume of the ball. Then, the energy ratio
ENTS=Efree for the homogeneous ball is calculated as

ENTS

Efree
¼ ϵV

mψNψ
¼ ϵQψ=ρψ

mψQψ=e
¼ eϵ

mψρψ
: ð53Þ

In the limit Ω → Ωmin, so that Qψ → ∞, we obtain
ENTS=Efree as

ENTS

Efree
→ ðð2 −

ffiffiffiffiffiffiffiffi
λ=μ

p
Þ

ffiffiffiffiffiffiffiffi
λ=μ

p
Þ1=2: ð54Þ

It is clear that ENTS=Efree < 1 for λ < μ in the limit
Ω → Ωmin. Therefore, the large limit of the homogeneous
ball solution is stable.
We show ENTS=Efree for various Qψ in Table I. We see

the inequality

ENTSðQψ1Þ þ ENTSðQψ2Þ > ENTSðQψ1 þQψ2Þ ð55Þ

FIG. 6. The energy ratio ENTS=Efree is plotted as a function of Ω (left panel), and as a function of Nψ (right panel). The circle, square,
triangle, and diamond marks in the figure correspond to the cases ofΩ ¼ 1.183, 1.178, 1.171, and 1.170 that are shown in Figs. 1 and 2,
respectively.

TABLE I. The total charge of ψ , Qψ , and total energy, ENTS, of
Q balls for various values of parameters Ω.

Ω Qψ ENTS

1.17771 2000 2363.4
1.17559 4000 4716.3
1.17465 6000 7066.4
1.17407 8000 9415.1
1.17368 10000 11762.8
1.17262 20000 23493.5
1.17213 30000 35217.0
1.17182 40000 46936.7
1.17161 50000 58653.7
1.17103 100000 117217
1.17059 200000 234295
1.17037 300000 351342
1.17024 400000 468373
1.17015 500000 585392
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holds for any Qψ1 and Qψ2 in the table. It means that one
large Q ball is energetically preferable to two small Q balls.
Therefore, two Q balls can merge into a Q ball, but a Q ball
does not decay into two Q balls.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have studied the coupled system of a
complex matter scalar field, a U(1) gauge field, and a
complex Higgs scalar field with a potential that causes
spontaneous symmetry breaking. This is a generalization of
the Friedberg-Lee-Sirlin model [1]. In this system, a local
Uð1Þ × global U(1) symmetry is broken spontaneously into
a global U(1) symmetry by the Higgs field. We have shown
numerically that there are spherically symmetric nontopo-
logical soliton solutions, Q balls, that are characterized by a
phase rotation of the complex matter scalar field, Ω. The Q
balls can exist for a finite range of Ω, and there are two
types of solutions: Gaussian balls and homogeneous balls.
In the homogeneous ball solutions, the fields take

constant values inside the ball, and they change the values
quickly at the ball surface to the vacuum values outside the
ball. The charge density of matter scalar field that arises
inside the ball is canceled out everywhere by the counter
charge cloud of the Higgs and the gauge fields, namely,
perfect screening occurs [19,20]. Inspecting the energy-
momentum tensor of the fields, we have shown that the
energy density and pressure inside the balls take constant
values. The pressure is almost isotropic, and the value is
much less than the energy density. Then, a homogeneous
ball is like a ball of homogeneous nonrelativistic gas.
Homogeneous ball solutions appear as “Qmatters” in the

system of a self-coupling single complex scalar field
studied by Coleman [2]. These solutions are interpreted
as bounce solutions that connect two stationary points of
the potential of 1 d.o.f. In the extended system by
introducing a U(1) gauge field, the homogeneous ball
solution does not appear. In the gauged system, since a
repulsive force acting between charges pushes them out-
ward to the surface of the ball, then the solution has a radial
inhomogeneity [14–16]. In contrast, in the gauged system
with the spontaneous symmetry breaking investigated in
this paper, the perfect screening of charge occurs, then no
repulsive force acts inside the ball. Therefore, the homo-
geneous ball solutions can exist. This is suggested in the
work [21]. The homogeneous ball solutions are interpreted
as bounce solutions that connect two stationary points
of the potential of 3 d.o.f. Then, the homogeneous ball
solutions obtained in this paper are extensions of
Coleman’s Q matters.
By comparison of the energies, it was shown that if the

charge of the matter field is greater than a critical value, a Q
ball is stable against dispersion into free particles and
against decay into two smaller Q balls. In addition to the
analysis in this paper, it is important to investigate the
stability in various viewpoints [22–27].

In the extended systems by the gauge field without
the Higgs field, the size of a stable charged Q ball has
an upper bound [14–16]. In contrast, a stable charge
screened homogeneous ball has no limit of mass. Of
cause, this is true as far as the gravity can be neglected. If
the mass of the homogeneous ball becomes too large so
that the pressure fails to sustain the gravity, the ball would
collapse to a black hole. Then, there exists an upper
bound of mass for the stable homogeneous ball if the
gravity is taken into account. It is an interesting issue
to study the gravitational effects on the Q balls [28–32].
We would report this issue on the present system in a
forthcoming paper.
The Q balls obtained in this paper would have applica-

tions in cosmology and astrophysics. The perfect screening
of the charge is a preferable property for the gauged Q balls
to be dark matter [6–10]. It is an important issue how much
amount of the Q balls are produced in the evolution of the
Universe [33–38]. It would be an interesting problem to
clarify the mass distribution spectrum of the Q balls, which
would evolve by a merging process of Q balls, in the
present stage of the Universe.
In the model studied in this paper, we assumed that

matter is described by a complex scalar field, for simplicity.
It is interesting to consider fermionic matter fields that form
Q balls. Indeed, fermionic Q balls are already studied
[39–42], but a large fermionic soliton is hardly produced
because of the Pauli exclusion principle. If two fermions
make a bosonic bound state as in a superconductor, it is
expected that the charge screened large Q ball as was
discussed in this paper, would be possible. To clarify this
possibility would be a challenging work.
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APPENDIX: ENERGY-MOMENTUM
TENSOR OF THE SYSTEM

The energy-momentum tensor Tμν of the present system
is given by

Tμν ¼ 2ðDμψÞ�ðDνψÞ − gμνðDαψÞ�ðDαψÞ
þ 2ðDμϕÞ�ðDνϕÞ − gμνðDαϕÞ�ðDαϕÞ
− gμνðVðϕÞ þ μψ�ψϕ�ϕÞ

þ
�
FμαFν

α −
1

4
gμνFαβFαβ

�
: ðA1Þ

Energy density and pressure components are given by
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ϵ ¼ −Tt
t ¼ jDtψ j2 þ ðDiψÞ�ðDiψÞ þ jDtϕj2 þ ðDiϕÞ�ðDiϕÞ þ VðϕÞ þ μjψ j2jϕj2 þ 1

2
ðEiEi þ BiBiÞ; ðA2Þ

pr ¼ Tr
r ¼ ðDrψÞ�ðDrψÞ þ jDtψ j2 − ðDθψÞ�ðDθψÞ − ðDφψÞ�ðDφψÞ þ ðDrϕÞ�ðDrϕÞ þ jDtϕj2 − ðDθϕÞ�ðDθϕÞ

− ðDφϕÞ�ðDφϕÞ − VðϕÞ − μjψ j2jϕj2 þ 1

2
ð−ErEr þ EθEθ þ EφEφ − BrBr þ BθBθ þ BφBφÞ; ðA3Þ

pθ ¼ Tθ
θ ¼ ðDθψÞ�ðDθψÞ þ jDtψ j2 − ðDrψÞ�ðDrψÞ − ðDφψÞ�ðDφψÞ þ ðDθϕÞ�ðDθϕÞ þ jDtϕj2 − ðDrϕÞ�ðDrϕÞ

− ðDφϕÞ�ðDφϕÞ − VðϕÞ − μjψ j2jϕj2 þ 1

2
ð−EθEθ þ ErEr þ EφEφ − BθBθ þ BrBr þ BφBφÞ; ðA4Þ

pφ ¼ Tφ
φ ¼ ðDφψÞ�ðDφψÞ þ jDtψ j2 − ðDrψÞ�ðDrψÞ − ðDθψÞ�ðDθψÞ þ ðDφϕÞ�ðDφϕÞ þ jDtϕj2 − ðDrϕÞ�ðDrϕÞ

− ðDθϕÞ�ðDθϕÞ − VðϕÞ − μjψ j2jϕj2 þ 1

2
ð−EφEφ þ ErEr þ EθEθ − BφBφ þ BrBr þ BθBθÞ: ðA5Þ
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