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We study a Maxwell-CPð2Þmodel coupled to a real scalar field through a dielectric function multiplying
the Maxwell term. In such a context, we look for first-order rotationally symmetric solitons by means of the
Bogomol’nyi-Prasad-Sommerfield (BPS) algorithm, i.e., by minimizing the total energy of the effective
model. We perform our investigation by choosing an explicit form of the dielectric function. The numerical
solutions show regular vortices whose shapes dramatically differ from their canonical counterparts. We can
understood such differences as characterizing the existence of an internal structure.
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I. INTRODUCTION

In the context of classical models, topological solitons
are commonly described as time-independent solutions
inherent to highly nonlinear field theories [1]. For example,
in (2þ 1)-dimensional gauge theories, vortices stand for
the rotationally symmetric solutions arising from the Euler-
Lagrange equations [2]. In addition, under special circum-
stances, topological vortices can also be obtained via a
particular set of first-order differential equations (instead of
the second-order Euler-Lagrange ones). In general, such a
first-order framework can be found via a minimization
procedure of the total energy of the system, which allows us
to get a well-defined lower bound for the energy itself [3,4].
In this sense, first-order vortices were already verified to
occur not only in the usual Maxwell-Higgs scenario [4], but
also in the Chern-Simons [5] and in the composite
Maxwell-Chern-Simons-Higgs one [6].
The study of the first-order solitons arising from a

CPðN − 1Þ model is particularly important due to its
straight phenomenological connection with the Yang-
Mills model defined in four dimensions, as explained in
[7]. Under such a perspective, the existence of first-order
vortices in a gauged CPð2Þ scenario endowed with the
usual Maxwell’s action was first suggested in [8], being
explicitly demonstrated in [9]. Moreover, electrically

charged first-order vortices were also verified to occur in
a gauged CPð2Þ model in the presence of both the Chern-
Simons [10] and the composite Maxwell-Chern-Simons
actions [11], separately.
At the same time, in the context of extended field

models, it is interesting to point out that the standard
Maxwell-Higgs one was itself enlarged in order to accom-
modate an additional SOð3Þ spin group (therefore giving
rise to spin vortices), the corresponding SOð3Þ symmetry
being driven by an extra scalar sector; see Refs. [12,13]. In
view of those results, Bazeia et al. have recently demon-
strated that such an enlarged Maxwell-Higgs system sup-
ports the existence of well-behaved first-order vortices with
internal structures [14], while arguing that such solutions
may find important applications in the context of meta-
materials [15].
We now go a little bit further into such a subject by

studying the occurrence of first-order rotationally symmet-
ric solitons with internal structures in a gauged CPð2Þ
model containing an additional scalar field. We have
implemented successfully the Bogomol’nyi prescription
by obtaining an energy lower bound (Bogomol’nyi limit)
and the respective Bogomol’nyi-Prasad-Sommerfield
(BPS) equations satisfied by the fields saturating that
bound. We then solve these equations by means of a
finite-difference scheme, via which we obtain regular
vortices with finite energy. The point to be raised here is
that the resulting configurations differ from their canonical
counterparts (obtained in the absence of the additional
field), these differences being understood as internal
structures, as we clarify below.
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In order to present our results, this work is organized as
follows: in the Sec. II, we introduce the extended model in
which the complex CPð2Þ field couples minimally to the
Maxwell term and also interacts with an additional non-
charged real scalar field. This additional field also com-
poses the dielectric function multiplying the Maxwell term
and the potential of the new model. We focus our attention
on those time-independent solitons with rotational sym-
metry. In this context, we proceed with the minimization of
the effective energy, from which we obtain a set of three
first-order differential equations and a well-defined lower
bound for the total energy. In addition, in Sec. III, we split
our investigation into two different cases based on different
choices for the dielectric function. In the sequel, we solve
the corresponding first-order equations numerically, the
resulting profiles dramatically differing from the canonical
ones (obtained in the absence of the additional field). We
point out that such differences can be understood as the so-
called internal structures. In Sec. IV, we end our work by
presenting our final comments and perspectives regarding
future investigations.
In this work, we use the natural units system, for the sake

of simplicity.

II. THE MODEL

We begin our manuscript by introducing the Lagrange
density which defines the (2þ 1)-dimensional field model
under investigation, i.e.,

L ¼ −
1

4
GðχÞFμνFμν þ ðPabDμϕbÞ�PacDμϕc

þ 1

2
∂μχ∂μχ − Vðχ; jϕ3jÞ; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the usual electromagnetic
field strength tensor and Pab ¼ δab − h−1ϕaϕ

�
b stands for

a projection operator defined conveniently. Also, the scalar
CPð2Þ field ϕaðxμÞ (with a ¼ 1, 2, 3) is constrained to
satisfy ϕ�

aϕa ¼ h. The CPð2Þ field is minimally coupled to
the gauge one via the covariant derivative defined by

Dμϕa ¼ ∂μϕa − igAμQabϕb; ð2Þ

where g is the electromagnetic coupling constant and Qab
represents the charge matrix (real, diagonal, and trace-
less) [8].
Here, it is important to highlight the presence of an

additional scalar field (neutral and real) χðxμÞ in the
Lagrange density (1). This field couples to the gauge sector
via an a priori arbitrary dielectric function GðχÞ multiply-
ing the Maxwell’s term. It is also supposed to interact
with the original CPð2Þ field via the potential function
Vðχ; jϕ3jÞ which spontaneously breaks the original SUð3Þ
symmetry into the SUð2Þ one, as expected (given that

topologically nontrivial configurations are known to be
formed as a consequence of such a phase transition).
In fact, as we demonstrate later below, the presence of an

additional scalar field introduces interesting changes in the
shape of the final first-order vortex solutions in comparison
to their canonical counterparts already studied in [9]
(obtained in the absence of such a neutral field).
It is now instructive to write down the Euler-Lagrange

equation for the gauge sector coming from the model (1). It
reads

∂βðGFλβÞ ¼ Jλ; ð3Þ

where

Jλ

ig
¼ PacDλϕcðPabÞ�Qbfϕ

�
f − ðPabDλϕbÞ�PacQcbϕb ð4Þ

stands for the current four-vector.
In particular, the Gauss law for time-independent fields

can be written as (latin indices mean summation over
spatial coordinates only)

∂iðG∂iA0Þ ¼ −J0; ð5Þ

in which

J0

ig
¼ PabD0ϕbðPacQcdϕdÞ� − ðPabD0ϕbÞ�PacQcdϕd; ð6Þ

with D0ϕb ¼ −igQbcϕcA0. Here, given that A0 ¼ 0 sati-
sfies the static Gauss law identically, one concludes that in
the time-independent solutions the theory (1) supports, at
present, no electric field.
In such a context, we look for vortex configurations via

the usual rotationally symmetric ansatz:

Ai ¼ −Ai ¼ −
1

gr
ϵijnjAðrÞ; ð7Þ

0
B@

ϕ1

ϕ2

ϕ3

1
CA ¼ h

1
2

0
B@

eim1θ sin ðαðrÞÞ cos ðβðrÞÞ
eim2θ sin ðαðrÞÞ sin ðβðrÞÞ

eim3θ cos ðαðrÞÞ

1
CA; ð8Þ

together with χ ¼ χðrÞ. Here, ϵij (with ϵ12 ¼ þ1) and nj ¼
ðcos θ; sin θÞ are the bidimensional antisymmetric tensor
and the unit vector, respectively. Also,m1,m2 andm3 stand
for the winding numbers rotulating the final structures.
The rotationally symmetric magnetic field is given by

BðrÞ ¼ −
1

gr
dA
dr

: ð9Þ

Now, regarding the combination between the real charge
matrix Qab and the winding numbers ðm1; m2; m3Þ, it is
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already known that there is only one effective scenario
supporting the existence ofwell-behaved first-order vortices;
see the discussion in [8]. Therefore, in what follows, we
choose towork withm1 ¼ −m2 ¼ m (withm ∈ Z),m3 ¼ 0
and

Qab ¼
1

2
diagð1;−1; 0Þ; ð10Þ

for the sake of simplicity.
In addition, given the choices stated above, one gets two

different solutions for the profile function βðrÞ, i.e.,

βðrÞ¼ β1¼
π

4
þπ

2
k or βðrÞ¼ β2¼

π

2
k; ð11Þ

with k ∈ Z. However, it was also demonstrated in [9] that
the field equations arising from these two a priori different
cases simply mimic each other, the resulting contexts being
then phenomenologically equivalent (at least regarding
topological solitons at the classical level). In this sense,
in the remainder of the present manuscript, we consider the
case βðrÞ ¼ β1 only.

A. BPS formalism: The case βðrÞ= β1 = π
4 +

π
2 k

As a consequence of the choice βðrÞ ¼ β1, the profile
functions αðrÞ and AðrÞ are supposed to obey the standard
boundary conditions, i.e.,

αðr ¼ 0Þ ¼ 0 and Aðr ¼ 0Þ ¼ 0; ð12Þ

αðr → ∞Þ → π

2
and Aðr → ∞Þ → 2m; ð13Þ

which give rise to regular (nonsingular) configurations with
finite energy.
It is important to say that all the equations we present

from this point on describe the effective scenario defined by
the conventions argued above.
We focus our attention on those time-independent

solutions satisfying a given set of first-order differential
equations. Here, we find these equations by proceeding the
implementation of the usual Bogomol’nyi algorithm, i.e.,
by minimizing the total energy of the overall system, the
starting point being the energy-momentum tensor coming
from (1)

T λρ ¼ −GFμλFμ
ρ þ ðPabDλϕbÞ�PacDρϕc

þ ðPabDρϕbÞ�PacDλϕc þ ∂λχ∂ρχ − ηλρL; ð14Þ

where ηλρ ¼ ðþ − −Þ stands for the metric signature of the
flat spacetime.
The energy density ε ¼ T 00 can then be written in the

form

ε ¼ −GFμ0Fμ
0 þ 2ðPabD0ϕbÞ�PacD0ϕc

þ ∂0χ∂0χ − η00L; ð15Þ

its rotationally symmetric version reading

ε ¼ 1

2
GB2 þ 1

2

�
dχ
dr

�
2

þ Vðχ; αÞ

þ h

��
dα
dr

�
2

þ
�
A
2
−m

�
2 sin2α

r2

�
: ð16Þ

After some algebraic manipulations, the energy density
(16) can be rewritten as

ε ¼ 1

2
G

�
B ∓

ffiffiffiffiffiffiffi
2U
G

r �
2

þ h

�
dα
dr

∓
�
A
2
−m

�
sin α
r

�
2

þ 1

2

�
dχ
dr

∓ 1

r
dW
dχ

�
2

þ V −U −
1

2r2

�
dW
dχ

�
2

� B
ffiffiffiffiffiffiffiffiffiffi
2GU

p
� hðA − 2mÞ sin α

r
dα
dr

� 1

r
dW
dr

; ð17Þ

where we have introduced both the non-negative function
U≡ Uðχ; αÞ and W ≡WðχÞ.
Now, given the expression (9) for the magnetic field, it is

possible to transform the first and second terms of the third
row in (17) in a total derivative by imposing the constraint

d
dr

ð
ffiffiffiffiffiffiffiffiffiffi
2GU

p
Þ ¼ gh

d
dr

ðcos αÞ; ð18Þ

which leads to a relation between Uðχ; αÞ and the dielectric
function GðχÞ, i.e.,

Uðχ; αÞ ¼ g2h2

2GðχÞ cos
2 α; ð19Þ

where we have chosen a null integration constant.
In this sense, by putting all the previous results in (17),

we get

ε ¼ 1

2
G

�
B ∓ gh

G
cos α

�
2

þ h

�
dα
dr

∓
�
A
2
−m

�
sin α
r

�
2

þ 1

2

�
dχ
dr

∓ 1

r
dW
dχ

�
2 ∓ 1

r
d
dr

½hðA − 2mÞ cos α −W�

þ V −
g2h2

2GðχÞ cos
2α −

1

2r2

�
dW
dχ

�
2

; ð20Þ

from which we immediately choose the potential to be

Vðχ; αÞ ¼ g2h2

2GðχÞ cos
2 αþ 1

2r2

�
dW
dχ

�
2

; ð21Þ

or
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Vðχ; jϕ3jÞ ¼
g2h

2GðχÞ jϕ3j2 þ
1

2r2

�
dW
dχ

�
2

; ð22Þ

when written in terms of jϕ3j.
We have therefore obtained that the rotationally sym-

metric expression for the energy distribution can be written
according the Bogomol’nyi idea, from which Eq. (20)
becomes

ε ¼ εbps þ h

�
dα
dr

∓ 1

r

�
A
2
−m

�
sin α

�
2

þ 1

2
G

�
B ∓ gh

G
cos α

�
2

þ 1

2

�
dχ
dr

∓ 1

r
Wχ

�
2

; ð23Þ

where

εbps ¼∓ 1

r
d
dr

½hðA − 2mÞ cos α −W�: ð24Þ

It is important to comment about the explicit dependence of
the potential Vðχ;ϕÞ on the radial coordinate r [the last
term in (21)]. Indeed, such a term should not represent a
dramatic novelty: it was already considered in [16] in order
to successfully circumvent the Derrick-Hobart theorem
[17]; it was also used in [14] itself in order to study those
first-order solitons with internal structures arising from the
simplest Maxwell-Higgs scenario.
We now return to the expression for the energy density in

(23), via which we write the corresponding total energy as

E ¼ 2π

Z
∞

0

rεðrÞdr ¼ Ebps þ E1 ≥ Ebps; ð25Þ

where Ebps defining the energy lower bound (i.e., the
Bogomol’nyi one) is given by

Ebps ¼ 2π

Z
∞

0

εbpsrdr

¼∓ 2π½2hmþWð0Þ −Wð∞Þ�; ð26Þ

which is always positive whether we consider the
lower (upper) sign for m > 0 ðm < 0Þ and Wð0Þ >
Wð∞ÞðWð0Þ < Wð∞ÞÞ. Also, the term E1 is given by

E1 ¼ 2π

Z
∞

0

�
h

�
dα
dr

∓ 1

r

�
A
2
−m

�
sin α

�
2

þ 1

2
G

�
B ∓ gh

G
cos α

�
2

þ 1

2

�
dχ
dr

∓ 1

r
Wχ

�
2
�
rdr: ð27Þ

Now, from the total energy as it appears in (25), one
concludes that whether E1 ¼ 0, i.e., if the fields satisfy the
first-order equations (the Bogomol’nyi ones)

dα
dr

¼ � 1

r

�
A
2
−m

�
sin α; ð28Þ

−
1

gr
dA
dr

¼ � gh
G

cos α; ð29Þ

dχ
dr

¼ � 1

r
Wχ ; ð30Þ

the resulting rotationally symmetric configurations saturate
the well-defined lower bound (26) for the total energy [in
Eq. (29), we have used (9) to represent the magnetic field].
We summarize the resulting scenario as follows: given a

potential (21) constructed by choosing adequately the
dielectric function GðχÞ and the superpotential WðχÞ,
the rotationally symmetric fields, αðrÞ, AðrÞ, and χðrÞ
satisfy the Bogomol’nyi equations, (28), (29), and (30),
therefore giving rise to time-independent nonsingular
configurations with total energy equal to (26).
In addition, it is important to observe that the solution of

Eq. (30) depends on the form of the superpotential WðχÞ.
Despite of the fact that Eq. (30) seems uncoupled of the
other two BPS equations, its solution χðrÞ affects the ones
for both AðrÞ and αðrÞ via the dielectric function GðχÞ. In
fact, as we demonstrate in the next section, such influence
introduces significant changes in the internal structure of
the first-order vortices that the model (1) supports.

III. FIRST-ORDER SOLUTIONS
WITH INTERNAL STRUCTURES

It is interesting to highlight that in the absence of the
additional field χðrÞ and for GðχÞ ¼ 1, the model (1)
reduces to the gauged CPð2Þ one whose first-order solitons
were studied in [9]. On the other hand, when both the gauge
and scalar CPð2Þ sectors vanish, the theory (1) leads us
back to the scalar self-dual scenario considered in [16].
We now return to the complete model (1), for which we

proceed with the explicit construction of those BPS vortices
presenting internal structures by using the first-order
equations introduced in the previous section.
We begin to solve the BPS scenario through the first-

order equation (30) for the real field χ. In this sense, we
choose the superpotential WðχÞ as

WðχÞ ¼ χ −
1

3
χ3; ð31Þ

which was previously used in [18] in order to study
bidimensional skyrmionlike solitons, and also in [19] as
an attempt to understand the behavior of massless Dirac
fermions in a planar skyrmionlike background.
Then, given the expression in (31), one gets that the first-

order equation (30) reduces to
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dχ
dr

¼ � 1

r
ð1 − χ2Þ; ð32Þ

whose exact solution is given by

χðrÞ ¼ � r2 − r20
r2 þ r20

; ð33Þ

where r0 stands for an arbitrary positive constant such that
χðr ¼ r0Þ ¼ 0. Here, it is important to point out that solution
(33) satisfies χðr ¼ 0Þ ¼∓ 1 and χðr → ∞Þ → �1.
With this information in mind, we calculate the BPS

energy (26), i.e.,

E ¼ Ebps ¼ 4πhjmj þ 8π

3
; ð34Þ

which stands for the total energy of the first-order
configurations we introduce below (i.e., the effective
Bogolmol’nyi bound).
In the sequel, we split our investigation into two different

cases based on the mathematical forms we choose for the
dielectric function GðχÞ.

A. The first case

We firstly select the dielectric function GðχÞ as

GðχÞ ¼ 1

1 − χ2
; ð35Þ

its relevance lying on the fact that, for r ¼ r0, the additional
field χðrÞ vanishes and the dielectric function G equals the
unity: in this case, as we have argued in the beginning of the
present section, the resulting solutions mimic those ones
previously studied in the context of a purely CPð2Þ model
in the presence of the Maxwell term [9]. On the other hand,
for r ≠ r0, the presence of a nontrivial solution for χðrÞ
given by (33) is expected to change the shape of the
corresponding first-order vortices in a new way.
Moreover, for r ¼ 0 and r → ∞, the term χ2 equals the

unity [see the discussion after Eq. (33)] and therefore
dielectric function (35) diverges. However, such a diver-
gence is compensated by a convenient behavior of the
magnetic field BðrÞ, which avoids the first term in the right-
hand side of the expression (16) for the energy density to be
singular. In this case, the overall energy results in the finite
value already calculated in (34).
Now, in view of the exact solution (33), the dielectric

function (35) can be written in the form

GðrÞ ¼ ðr2 þ r20Þ2
4r2r20

; ð36Þ

the first-order BPS equations (28) and (29) for the CPð2Þ
sector standing for

dα
dr

¼ � 1

r

�
A
2
−m

�
sin α; ð37Þ

1

r
dA
dr

¼∓ 4r20g
2h

ðr2 þ r20Þ2
r2 cos α: ð38Þ

These Bogomol’nyi equations must be solved numerically
by means of a finite-difference scheme according the
boundary conditions (12) and (13).
We now verify the way the profiles αðrÞ and AðrÞ

approximate the boundary values. For such an analysis, we
consider m > 0 (i.e., the lower signs in the first-order
equations) for the sake of simplicity. In this case, near the
origin, we represent the profile fields by

αðrÞ ≈ δαðrÞ and AðrÞ ≈ δAðrÞ; ð39Þ

where δαðrÞ and δAðrÞ are small fluctuations around the
boundary values. Now, substituting these representations
into the first-order equations (37) and (38), and taking into
account only the relevant contributions, one gets

d
dr

δα ¼ m
δα

r
; ð40Þ

d
dr

δA ¼ 4g2h
r20

r3; ð41Þ

whose solutions provide the behavior of αðrÞ and AðrÞ, i.e.,

αðrÞ ≈ C0rm; ð42Þ

AðrÞ ≈ g2h
r20

r4; ð43Þ

where C0 stands for a positive real constant to be deter-
mined numerically.
A similar procedure can be implemented in order to

study the behavior of the profile fields in the asymptotic
limit r → ∞. In this sense, we now represent these fields by

αðrÞ ≈ π

2
− δαðrÞ and AðrÞ ≈ 2m − δAðrÞ; ð44Þ

from which, again taking into account only the relevant
contributions, one gets

d
dr

δα ¼ −
δA
2r

; ð45Þ

d
dr

δA ¼ −4r20g2h
δα

r
; ð46Þ

whose solutions allow us to conclude that the profile
functions themselves behave as
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αðrÞ ≈ π

2
− C∞r−

ffiffiffiffi
2h

p
r0g; ð47Þ

AðrÞ ≈ 2m − 2
ffiffiffiffiffiffi
2h

p
r0gC∞r−

ffiffiffiffi
2h

p
r0g; ð48Þ

where C∞ represents an integration constant to be also
determined numerically.
We now plot the numerical solutions we have found via

the first-order equations (37) and (38) using the boundary
conditions (12) and (13). Here, we have fixed h ¼ 1, g ¼ 2,
and r0 ¼ 5, from which we have solved the equations for
m ¼ 1 (solid black line), m ¼ 2 (dashed blue line), and
m ¼ 3 (dash-dotted red line).
Figures 1 and 2 show, respectively, the numerical profiles

to theCPð2Þ scalar and gauge functions, i.e., αðrÞ and AðrÞ,
from which we see that both solutions exhibit a well-
defined monotonic behavior, approaching the boundary
values according the approximate analytical solutions
written in (42), (43), (47), and (48).
In Fig. 3, we present the numerical solutions to the

modulus of the magnetic field BðrÞ. In this case, it is
interesting to note how a nontrivial profile to the function
χðrÞ changes the shape of the corresponding magnetic
sector: even in the presence of the standard topological
conditions (12) and (13), the resulting magnetic field stands
for a ring centered at the origin (in a dramatic contrast with
its usual counterpart, which represents a lump centered at
r ¼ 0; see Fig. 2 of Ref. [9]), therefore mimicking the
typical nontopological behavior (see Fig. 3 of Ref. [20], for
instance).

Moreover, given the approximate solutions (43) and (48)
to the profile function AðrÞ, one gets that, near the origin,
the magnetic field (9) behaves as

BðrÞ ≈ −
4g2h
r20

r2; ð49Þ

FIG. 2. Numerical solutions to AðrÞ. Conventions as in Fig. 1.
The solution approaches the boundary values in a monotonic
way, as expected.

FIG. 3. Numerical solutions to the modulus of the magnetic field
BðrÞ. Conventions as in Fig. 1. Here, even in the presence of
topological conditions, the magnetic field mimics the nontopo-
logical behavior due to the nontrivial profile to the extra field χðrÞ.

FIG. 1. Numerical solutions to αðrÞ arising from (38) and (37)
via (12) and (13) form ¼ 1 (solid black line),m ¼ 2 (dashed blue
line), and m ¼ 3 (dash-dotted red line). Here, we have chosen
h ¼ 1, g ¼ 2, and r0 ¼ 5.
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its asymptotic solution reading

BðrÞ ≈ −4ghr20C∞r−ð
ffiffiffiffi
2h

p
r0gþ2Þ; ð50Þ

which confirm that both Bðr ¼ 0Þ and Bðr → ∞Þ vanish, in
agreement to Fig. 3.
Figure 4 presents the numerical profiles to the energy

density εbpsðrÞ. Here, it is worthwhile to point out that, for
m ¼ 1, the energy distribution stands for a lump centered at
the origin (therefore mimicking the canonical result, see
Fig. 4 of Ref. [9]). In particular, in view of the approximate
expressions, (42) and (43), one gets that, near r ¼ 0, the
energy density obeys

εbpsðrÞ ≈ 2hðC0Þ2 þ
4

r20

�
4

r20
þ g4h2 −

hðC0Þ4
6

r20

�
r2; ð51Þ

from which one additionally concludes that εbpsðr ¼ 0Þ ¼
2hðC0Þ2, for m ¼ 1.
On the other hand, for m ≠ 1, the final configuration

corresponds to a ring which, near the origin, behaves as

εbpsðrÞ ≈
4

r20

�
4

r20
þ g4h2

�
r2; ð52Þ

therefore vanishing at the origin, its amplitude increasing as
the vorticity m itself increases. In this case, keeping the
standard profile in mind, one also finds an interesting
difference: in the absence of the additional terms, the

energy density’s ring does not vanish at r ¼ 0, its amplitude
decreasing as m increases; see Fig. 3 of Ref. [9].
We conclude this part by arguing that, given the solutions

(47) and (48), the asymptotic one for the energy density can
be verified to read

εbpsðrÞ ≈
16r40
r6

; ð53Þ

which saturates εbpsðr → ∞Þ → 0 (i.e., the finite energy
requirement), therefore confirming the convenience of the
finite energy boundary conditions (13).

B. The second case

We now choose the dielectric function as

GðχÞ ¼ 1

χ2
: ð54Þ

In this case, given that χ2 calculated from (33) equals the
unity at r ¼ 0 and r → ∞, it follows from (54) that
Gðr ¼ 0Þ ¼ 1 and Gðr → ∞Þ → 1. As a consequence, at
the origin and asymptotically, the corresponding rotation-
ally symmetric solitons behave as the ones arising from a
simplest gauged CPð2Þ scenario. Furthermore, at the point
r ¼ r0, the field χ in (33) vanishes and the function G in
(54) diverges: in this context, such a divergence is counter-
balanced by a null magnetic field at r ¼ r0 (therefore
introducing an internal structure to the resulting vortices),
from which one gets that the first term in (16) results are
nonsingular, the total energy then converging to the value
in (34).
We now use (33) in order to write (54) as

GðrÞ ¼ ðr2 þ r20Þ2
ðr2 − r20Þ2

; ð55Þ

Eqs. (28) and (29) therefore reducing to

dα
dr

¼ � 1

r

�
A
2
−m

�
sin α; ð56Þ

1

r
dA
dr

¼∓ ðr2 − r20Þ2
ðr2 þ r20Þ2

g2h cos α; ð57Þ

These equations must be also solved numerically via
conditions (12) and (13).
We proceed to the study of the differential equations (56)

and (57) near the boundaries, again form > 0. We begin by
considering, near the origin, the profiles as represented in
(39), the first-order equations satisfied by the small
functions δα and δA reading

d
dr

δα ¼ m
δα

r
; ð58Þ

FIG. 4. Numerical solutions to the energy density εðrÞ. Con-
ventions as in Fig. 1. In this case, for m ¼ 1, one gets
εbpsðr ¼ 0Þ ¼ 2hðC0Þ2.
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d
dr

δA ¼ g2hr −
4g2h
r20

r3; ð59Þ

from which one gets the solutions

αðrÞ ≈ C0rm; ð60Þ

AðrÞ ≈ g2h
2

r2 −
g2h
r20

r4; ð61Þ

in which the real positive constant C0 must be determined
numerically.
Likewise, in the limit r → ∞, we proceed with the

implementation of the profile representation (44) into
the BPS equations, (56) and (57), from which we obtain
the following linearized equations for the small functions
δα and δA:

d
dr

δα ¼ −
δA
2r

; ð62Þ

1

r
d
dr

δA ¼ −g2hδα; ð63Þ

whose solutions allow us to write the behavior of the
functions αðrÞ and AðrÞ as

αðrÞ ≈ π

2
− C∞e−Mr; ð64Þ

AðrÞ ≈ 2m − g
ffiffiffiffiffiffi
2h

p
C∞re−Mr; ð65Þ

where C∞ is an integration constant andM is real parameter
given by

M ¼ g

ffiffiffi
h
2

r
: ð66Þ

In this case, the exponential behavior of the asymptotic
solutions (64) and (65) reveals that the real constant M
defined by (66) in terms of g and h stands for the masses of
the CPð2Þ scalar and gauge bosons inherent to the
original model.
In the sequel, we depict the numerical profiles we have

obtained from the first-order equations (56) and (57) via the
boundary conditions (12) and (13). Here, we have chosen
the same values as before for the parameters appearing in
the first-order equations, i.e., h ¼ 1, g ¼ 2, and r0 ¼ 5, via
which we have studied the equations form ¼ 1 (solid black
line), m ¼ 2 (dashed blue line), m ¼ 3 (dash-dotted red
line),m ¼ 7 (long-dashed orange line), andm ¼ 10 (dotted
green line).
In Figs. 5 and 6, we present the solutions to the profile

functions αðrÞ and AðrÞ, respectively. Here, it is interesting

to note how the shape of the solutions depends on the
values of the vorticity m. In particular, as m increases, the
field AðrÞ engenders the formation of a plateau around
r ¼ r0 (it is instructive to compare such an effect with
the one identified in Fig. 5 of Ref. [14]), such an

FIG. 5. Numerical solutions to αðrÞ arising from (57) and (56)
via (12) and (13). Conventions as in Fig. 1. In addition, we also
depict the results for m ¼ 7 (long-dashed orange line) and
m ¼ 10 (dotted green line).

FIG. 6. Numerical solutions to AðrÞ. Conventions as in Fig. 5.
In this case, as m increases, AðrÞ engenders the formation of a
plateau around r ¼ r0.
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internal structure modifying the resulting magnetic field’s
profile.
Figure 7 shows the solutions to the modulus of the

magnetic field BðrÞ, the corresponding configuration stand-
ing for a double lump centered at the origin. Here, as we
have argued previously, the magnetic sector vanishes at
r ¼ r0 [such an effect being a consequence of the plateau
appearing in the solution for AðrÞ], which prevents the first
term in the energy distribution (16) to be divergent, the total
energy therefore converging to the well-defined value in
(34) (we highlight that a similar effect is shown in Fig. 5
of Ref. [14]).
In addition, in view of the approximate solutions, (61)

and (65), it can be verified that, near r ¼ 0, the magnetic
sector is given by

BðrÞ ≈ −ghþ 4gh
r20

r2; ð67Þ

its asymptotic counterpart standing for

BðrÞ ≈ −ghC∞e−Mr; ð68Þ

from which one gets that Bðr ¼ 0Þ ¼ −gh and
Bðr → ∞Þ → 0, in agreement to Fig. 7.
We end this section by discussing the numerical profiles

to the energy density εbpsðrÞ appearing in Fig. 8. In this
case, for m ¼ 1, the resulting configuration is a regular
lump whose approximate solution, near the origin, reads

εbpsðrÞ ≈ g2h2 þ 2hðC0Þ2 þ C2r2; ð69Þ

the real parameter C2 being given by

C2 ¼ 2

�
8

r40
−
h
3
ðC0Þ4 − g2h2

�
2

r20
þ ðC0Þ2

��
; ð70Þ

via which we conclude that εbpsðr ¼ 0Þ ¼ g2h2 þ 2hðC0Þ2,
for m ¼ 1.
Moreover, for intermediate values of the vorticity, the

solutions stand for well-behaved rings centered at r ¼ 0.
However, as m increases, these intermediate rings trans-
mute to nonsingular double lumps whose intersection
occurs around r ¼ r0 (at this point, the energy distribution
vanishes). Here, it is important to highlight that such a
transmutation seems to be a new phenomenon inherent to
the gauged CPð2Þ scenario presently considered.
Finally, the reader can verify that, for m ≠ 1, the energy

distribution, near the origin, behaves as

εbpsðrÞ ≈ g2h2 þ 4

r20

�
4

r20
− g2h2

�
r2; ð71Þ

which gives εbpsðr ¼ 0Þ ¼ g2h2. In addition, for any value
of the vorticity m, the asymptotic solution for the energy
density can be verified to be the very same one appearing in
(53), therefore satisfying the finite energy requirement and
the convenience of the conditions in (13).

FIG. 7. Numerical solutions to the modulus of the magnetic
field BðrÞ. Conventions as in Fig. 5. The magnetic sector vanishes
at r ¼ r0, which prevents the corresponding energy distribution
to be divergent.

FIG. 8. Numerical solutions to the energy density εðrÞ.
Conventions as in Fig. 5. In this case, one gets
εbpsðr ¼ 0Þ ¼ g2h2 þ 2hðC0Þ2, for m ¼ 1.
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IV. FINAL COMMENTS

We have considered a gauged CPð2Þ model containing
an additional real scalar field which couples to the
electromagnetic one via a dielectric function multiplying
the usual Maxwell’s term. The stationary Gauss law tells us
that the time-independent configurations have no electric
charge. We have particularized our investigation by choos-
ing well-established conventions supporting the existence
of rotationally symmetric solitons with finite energy.
We then have developed the corresponding first-order

framework by means of the Bogomol’nyi prescription (i.e.,
by minimizing the total energy of the effective model).
Consequently, we have obtained the corresponding set of
first-order differential equations (the Bogomol’nyi ones)
engendering genuine field solutions saturating a lower
bound for the resulting energy (the Bogomol’nyi bound).
It is interesting to point out that the first-order equations
depend on two a priori arbitrary functions, i.e., the super-
potential WðχÞ for the additional field χ and the dielectric
function GðχÞ. In view of such a dependence, we have split
our investigation into two different cases based on different
choices for the dielectric function GðχÞ.
We have then explored such a freedom in order to

construct regular first-order vortices whose shapes dra-
matically differ from their canonical counterparts (obtained
in the absence of the additional field), the new details being
understood as internal structures, as argued in the previous
work [14].
It is important to say that the results we have presented in

this manuscript hold a priori only for those rotationally
symmetric configurations defined by the ansatz, (7) and (8),
being therefore not possible to ensure that the original
theory supports such a first-order framework outside the

rotationally symmetric scenario, such a question lying
beyond the scope of this work.
Interesting ideas regarding future investigations include

the search for electrically charged first-order vortices with
internal structures arising from both the Chern-Simons
and the Maxwell-Chern-Simons versions of the original
model (1). It is also worthwhile to consider the connection
between these configurations (with internal structures) and
the dynamics of the gauged CPð2Þ vortices in the presence
of terms representing the effect of magnetic impurities (as
studied for the Maxwell-Higgs case in Ref. [21]), both
scenarios presenting an explicit dependence of the
Lagrange density on the radial coordinate r. These issues
are presently under consideration, and we hope positive
results for an incoming contribution.
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