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The theory of confinement based on the stochastic field mechanism, known as the field correlator
method (FCM) is discussed in detail. Experimental and lattice data have accumulated a vast amount of
material on the properties of confinement in QCD.We enumerate all these properties as (1)–(7), and discuss
beyond FCM two existing approaches: monopole based dual Ginzburg-Landau (DGL) theory, and Gribov-
Zwanziger model, from this point of view. It is shown that the FCM satisfies all required criteria. We also
prove its self-consistency; in particular, it is shown that the string tension σ is the only scaleful parameter in
the theory beyond fermion masses, and ΛQCD is calculated explicitly to the lowest order in terms of σ. We
also formulate physical consequences of confinement, such as string breaking, Regge trajectories, role of
confinement in the perturbation theory, chiral symmetry breaking, confinement in the boosted systems etc.
It is demonstrated that the FCM is a suitable tool for the solution of these problems.
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I. INTRODUCTION

The problem of confinement and its internal structure
remains an important issue nowadays, while this topic is
studied in numerous papers for the last 45 years, starting
from the first papers [1–4]. It was generally assumed at
first, that the most important role in confinement must play
topologically nontrivial configurations, e.g., like magnetic
monopoles [2–5] or else other classical solutions:
(multi) instantons, dyons, etc. The corresponding effective
Lagrangians, establishing the form of dual Abrikosov
fluxes [6,7], have soon been found [8,9] and demonstrated
possibility of the dual Ginzburg-Landau (DGL) theory.
This topic is effectively elaborated on till now, see [10,11]
for reviews.
Since the first definition of confinement via the area law

of the Wilson loop [1], the lattice analysis of confinement
plays the most important role, which allows to define the
most important properties of confinement and study this
phenomenon quantitatively, see [12]. These studies allowed
us to analyze the QCD vacuum configurations and to search
for monopolelike degrees of freedom (d.o.f.), as it is done
in the Abelian projection method (APM) [13], in the center
vortex model [14], and the thick vortex model [15].
Meanwhile another approach to confinement, based on

the field correlator method (FCM), was formulated in [16],
see [17–19] for reviews, which allowed us to connect

confinement directly to the (Gaussian) bilocal field corre-
lator hFðxÞFðyÞi, created in the QCD vacuum, and there-
fore sometimes called the stochastic confinement (SC).
One of the most crucial tests of this method is the
analysis of confinement between sources in different group
representations—the so-called Casimir scaling (CS), which
was done on the lattice [20–22] and compared to the FCM
predictions [23,24]. In [22] the agreement was around 5%
for all 8 studied representations, which strongly supported
the FCM approach.
At the same time the analysis of CS in the DGL model

[8,25] has shown that the SU(3) Casimir ratios cannot be
reproduced for the fixed parameters of the model, i.e., for
fixed values of the monopole mass mχ and dual gauge field
mass mB, so that each representation requires its own set of
masses. Till now this discrepancy has not been resolved and
a reasonable modification of the DGL type or any other
connected model, satisfying Casimir scaling for SU(3) or
SU(N) groups, has not yet been found, which sets some
limits on the presence of DGL configurations in the QCD
vacuum.
This analysis can be prolonged to take into account the

simple groups F4, E6, and G2, where linear confinement is
present only up to some distance, see [26–32]. Here the aim
is to find the connection between the group structure and
spatial and Casimir properties of confinement. As a basic
point one can use here also the bilocal field correlators of
the exceptional groups, which provide Casimir scaling.
One of the most important issues of the CS is the proof of

the dominance of the bilocal correlator, which ensures CS,
and the estimates of higher correlators, hFFFFi etc. This
analysis was first done in [33,34], where it was shown
that all properties of the correlators and, moreover, the
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quantitative expression for bilocal correlator, i.e., the most
part of the confinement dynamics, can be derived from the
gluelump Green’s functions, which were found analytically
in [35] and on the lattice in [36].
In this way the theory of confinement has found its

quantitative basis and can be called the FCMof confinement.
In this theory theonly parameter is the string tensionσ (which
may be expressed via ΛQCD) and the field correlators are
expressed in terms of σ, which finally yields self-consistent
connection σðσÞ [33]. We consider this fact as the most
important property of our approach, which is missed in the
DGL type ofmodels,wheremassesmB andmχ and their ratio
are not introduced till now self-consistently.
All this and additional physical properties, taken from

lattice and hadron properties, can be formulated as neces-
sary properties of the QCD confinement mechanism,
listed below.
(1) Confinement is linear in the SUðNÞ field theory for

all measured distances, R≲ 1 fm as found on the
lattice [12,22], whereas for QCD with nf > 0 at
large distances linear confinement is flattening. Field
correlators in QCD are exponentially damped at
large distances [37–41], hFFi ∼ c

x4 þ d expð−μxÞ.
(2) Casimir scaling is found for all charge representa-

tions of SUð3Þ with O(5%) accuracy in the range up
to 1 fm [22].

(3) Flux tubes are observed between the charges, with
the radius, which is slowly changing with distance
between charges, see [12,42]. A circular color-
magnetic current is observed around flux tubes,
asymptotically satisfying the dual London equation
[17,19]. The excited flux tubes have the specific
hybrid type spectrum [20]. The 3q and 3g systems
have the string configuration of the string junction
and triangular type, respectively [12].

(4) When going from static charges to finite mass
fermions, one discovers the necessity of the scalar
property of confinement, since otherwise the vector
confinement does not ensure qq̄ bound states [43,44].

(5) Since we have the only scale in QCD, σ or ΛQCD,
which defines all quantities (in addition to quark
masses), the confinement interaction should be ex-
pressed via ΛQCD ∼

ffiffiffi
σ

p
as the only scale parameter.

(6) The confinement theory should explain the inter-
action between Wilson loops, observed on the lattice
[45], in good agreement with FCM [46], and in
particular, the visible lack of interaction between the
Coulomb-like fluxes and colored flux tubes, which
ensures the nonscreening of the Coulomb interaction
at large distances, observed on the lattice [12,22] and
in the hadron spectrum [47], and explained in [48]
within the FCM.

(7) The confinement theory should be applied to all
known examples of field theory, e.g., it should yield
no confinement for QED, linear confinement for all

groups SUðNÞ, N ≥ 2. It can be also applied to other
simple groups, like G2, F4, H6, where linear con-
finement with CS is present in the region r < rmax
[26–32,49].

Below we apply these properties as criteria to three types
of confinement mechanisms, the FCM, the DGL theory,
and the Gribov-Zwanziger [50] approach. We also discuss
the center vortex models [14,15] and their possible con-
nection to the FCM.
As we demonstrate below, using the concrete gluelump

structure of the field correlators developed in [33,34], the
FCM satisfies all criteria. This has allowed to calculate the
confinement interaction at all distances, ensuring linear
confinement for r > λ ∼ 0.1 fm, where λ is the inverse
mass of the lowest gluelump,MGlp ≈ 2 GeV, calculated via
string tension σ. This theory was applied to the structure of
flux tubes, originally in [17,19] and recently in [48].
Surprisingly, our flux tubes confirm all the structure,
observed on the lattice ([12,22,42]), implying, e.g., also
the asymptotic validity of dual London equation. This
means, that the main mechanism of dual magnetic vacuum,
providing mass of propagating gluons, is present in our
“microscopic” Gaussian–Gluelump approach, resembling
in this respect the macroscopic DGL approach.
It is remarkable that starting directly from simplest

(Gaussian) field correlators and not assuming any of
DGL configurations, one arrives on the microscopic level
(i.e., on distances x ≥ λ ≅ 0.2 fm) at the field and current
distributions specific for the macroscopic DGL equations.
Indeed, as we shall show below, for the most

general form of field correlators one obtains the circular
color magnetic currents kD around flux tubes, which satisfy
asymptotically the dual London’s equation rotkD ¼
λ−2ED and there emerges picture of dual superconducting
fluxes around the dual Abrikosov string. In all this picture
no magnetic monopole d.o.f. are needed, the only micro-
scopic reason of confinement is the presence of the
scalar DðzÞ in the vacuum correlator hFμνðxÞΦFλσðyÞi∼
ðδδ − δδÞDðx − yÞ þ….
The presence of such term in the QCD vacuum with or

without quarks is proved by numerous lattice calculations
[37–41], and in FCM it is calculated in a self-consistent
way. Then one may ask oneself: why at all one should
search for magnetic-monopolelike d.o.f. in the QCD
configurations? Why one needs any topological configu-
rations, since a simple scalar term DðzÞ in the microscopic
correlator hFFi already ensures the macroscopic dual
superconducting picture?
Or in other words: what additional features of confinement

areprovidedby theDGL type of theory?Aswe shall see in the
next chapters, one still has no explicit answer to this question
inQCD, or SU(N) theories,where theFCMalone is sufficient
to explain all known details of confinement till now, but in
more complicated theories like G2, F4, H6, one may need
other instruments, like the DGL or center vortex model.

YU. A. SIMONOV PHYS. REV. D 99, 056012 (2019)

056012-2



In what follows we shall shortly derive and discuss basic
equations of our method (to be referred to as FCM),
demonstrate how it satisfies the conditions (1)–(7), and
find the points, where other approaches fail.
The plan of the paper is as follows. In Sec. II we give

the basics of the FCM and in Sec. III discuss the properties
(1)–(7) within FCM. In Sec. IV the DGL approach is
discussed with respect to the same properties. In Sec. V
the approach of center vortex model (CVM) is shortly
exposed and compared to the FCM approach. In Sec. VI
the necessary scalar property of confinement is proved for
light quarks. In Sec. VII we discuss five features of the QCD
dynamics, which are connected with confinement, and
demonstrate how the FCM is incorporated in resolving:
the IR renormalon problem, chiral symmetry breaking, string
breaking, confinement in boosted systems, spin-dependent
interaction etc. The concluding section gives the summary of
results and discussion of possible development.

II. BASICS OF THE FIELD
CORRELATOR APPROACH

One starts with the expression of the Wilson loop [1],
which can be also rewritten in terms of the field strength
operators Fμν, using the non-Abelian Stokes theorem [51]
for the minimal surface Smin inside the contour C

WðCÞ ¼ 1

Nc

�
trP exp

�
ig
Z
C
dzμAμðzÞ

��

¼ 1

Nc

�
trP exp

�
ig
Z
Smin

dσμνFμν

��
: ð1Þ

One can apply to (1) the operator cluster expansion [52],
which allows us to expand in the exponent the connected
terms, producing connected correlators ⟪⟫.
Before doing this one should define the gauge-covariant

quantity, F̂ðxÞ ¼ ΦðX; xÞFðxÞΦðx; XÞ, where Φðx; yÞ ¼
P exp ig

R
x
y AμðzÞdzμ is a parallel transporter (pt), and we

have chosen x ¼ X as an arbitrary common point to make all
construction gauge invariant. Thus each F̂ðxÞ is connected to
X by a pair of pt. Further on, in doing the vacuum averaging
of products hF̂ð1ÞF̂ð2Þ…F̂ðnÞi, one is exploiting the mini-
mal action principle, which ensures that the main contribu-
tion to the average is given by the configuration where all
points 1; 2; ...n are connected by pt’s of minimal length, so
that hF̂ð1ÞF̂ð2Þ ¼ hΦð2; 1ÞFð1ÞΦð1; 2ÞFð2Þi and so on. As
a result the vacuum averaging due to [52] yields

WðCÞ ¼ 1

Nc
tr exp

�
−
g2

2

Z
dσμνdσλρ⟪FμνFλρ⟫

þ g4

4!

Z
dσð1Þdσð2Þdσð3Þdσð4Þ

× ⟪F̂ð1ÞF̂ð2ÞF̂ð3ÞF̂ð4Þ⟫þOðg6Þ
�
: ð2Þ

We shall keep the first term in the exponent Oðg2Þ as the
basic approximation and later estimate other terms, follow-
ing the discussion in [18,23,24]. From [19,51,52] one can
deduce that one can organize the connected clusters
⟪Fð1Þ…FðnÞ⟫ in such a way, that all points 1;…n are
connected by interaction, averaged in the vacuum averag-
ing process. Assuming the correlation length λ for this
interaction, one obtains the estimate

In ≡
ZZ

⟪Fð1Þ…FðnÞ⟫dσð1Þ…dσðnÞ

≈ fRT4ðλ2fÞn−1; ð3Þ

where f is the order of magnitude estimate of the
operator F.
The basic point of the FCM is the expression for

the vacuum field correlator, which in the color-electric
case is [16]

g2Dð2Þ
i4k4ðx − yÞ

≡ g2

Nc
htrfðFi4ðxÞΦðx; yÞFk4ðyÞΦðy; xÞi

¼ ðδikÞDEðx − yÞ þ 1

2

� ∂
∂xi ½hk þ perm�

�
DE

1 ðx − yÞ;

hλ ¼ xλ − yλ; ðx − yÞ2 ¼
X4
λ¼1

ðxλ − yλÞ2: ð4Þ

Insertion of (4) into (2) yields the area law of the Wilson
loop

WðCÞ ¼ expð−σRT4Þ; σ ¼ 1

2

Z
d2zDEðzÞ: ð5Þ

Comparing (4) with (3), one can see that the estimate holds

σ ≈ f2λ2; In ∼
RT4

λ2
ðσλ2Þn=2; I4

I2
∼ σλ2 ð6Þ

In the Appendix A we estimate in detail the quartic
correlator, supporting validity of Eq. (6).
We now turn to the calculation of static potentials

generated by DE, DE
1 .

We start with the Wilson loop, WðCÞ ¼
exp ð− g2

2

R
dσ
R
dσhFFiÞ ¼ exp ð− R ðVR

DÞ þ V1ðRÞÞdt4Þ
and consider an interval Δt4 > λ in both integralsR
dt4 and

R
dσðuÞ R dσðvÞ, which yields (see Fig. 1),

dσðuÞ ¼ du4du1.
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VDðRÞΔt4
¼ 2

Z
R

0

du1

Z
Δt4

0

du4

Z
R

0

dv1

Z
Δt4

0

dv4DEðu−vÞ

¼ 2

Z
d
u1þv1

2

Z
dðu1−v1Þ

Z
d
u4þv4

2

×
Z

dðu4−v4ÞDEðu−vÞ

¼Δt42
Z

R

0

ðR−w1Þdw1

Z
Δt4

0

dw4DE
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1þw2

4

q 

: ð7Þ

As a result for Δt4 ≫ λ, one obtains the static potential
VDðRÞ for the fundamental charges

VDðRÞ ¼ 2

Z
R

0

ðR − w1Þdw1

Z
∞

0

dw4DE
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1 þ w2

4

q 

¼ VconfðRÞ þ Vsat

D ðRÞ; ð8Þ

where Vsat
D ðRÞ is negative and saturates at large R.

For the charge representation D the Gaussian correlator
DE defines the interaction between static charges in the
representation D ¼ 3; 8; 6;…

VDðRÞ ¼ CD

Z
R

0

ðR − w1Þdw1

Z
∞

0

dw4DEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

4

q
Þ;

ð9Þ

where CD ¼ 2
C2ðDÞ
C2ðfÞ , and C2ðDÞ is the quadratic Casimir

coefficient for the representation D [16,18].
In a similar way one obtains static potential V1ðRÞ,

generated by DE
1 ðzÞ, [17,18]

V1ðRÞ ¼
Z

R

0

w1dw1

Z
∞

0

dw4DE
1 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

4

q
Þ ð10Þ

As it is shown in Appendix B, after regularization one
arrives at the final form of V1ðRÞ in (10)

V1ðRÞ ¼ −C2

αs
R
þ Vsat

1 ðRÞ: ð11Þ

Since all components of VD, V1 are proportional to the
quadratic field correlator, the potential for any representa-
tion D ¼ f, adj, … are proportional to the coefficient
C2ðDÞ, where C2ðDÞ is the Casimir factor.
The most important step was done in [33,34], where DE

1

and DE were expressed via the one- and two-gluon
gluelump Green’s function, as shown in Figs. 2 and 3,
respectively.
Indeed, writing Fμν in (4) as Fμν ¼ ∂μAν − ∂νAμþ

ig½Aμ; Aν�, one obtains for g2Dð2Þ
μν;λσ in (4) the derivative

terms, denoted as D1;μνλσ and Oðg4Þ terms proportional to
h½Aμ; Aν�Φðx; yÞ½Aλ; Aσ�i≡Gð2gÞ. It is clear, that D1μνλσ

contain the term hAμðxÞΦðx; yÞAλðyÞi ¼ Gð1gÞðx; yÞ which
is the one-gluon-gluelump Green’s function, while Gð2gÞ is
the two-gluon gluelump Green’s function, calculated
in [35,36]. A more detailed derivation is discussed in
Appendix B. As a result one can associate DE

1 with the
derivative terms in correlator hFΦFi, namely,

D1μν;λσðx; yÞ ¼
g2

2N2
c

� ∂
∂xμ

∂
∂yλ htraAνðxÞΦðx; yÞAσðyÞi

þ perm

�
; ð12Þ

and D1 is expressed via the one-gluon gluelump Green’s
function with the asymptotics found in [33,34]

DE
1 ðxÞ ¼ −

2g2

N2
c

dGð1gÞðxÞ
dx2

; DE
1 ðxÞ ≈

A1

jxj e
−M1jxj; ð13Þ

where A1 ¼ 2C2αsσadjM1.

FIG. 2. The one-gluon gluelump Green’s function.

FIG. 1. Calculation of the static potentials VD, V1 from field
correlators.

FIG. 3. The two-gluon gluelump Green’s function.

YU. A. SIMONOV PHYS. REV. D 99, 056012 (2019)

056012-4



One can see that ggΦ is the bound state of two gluons
with a static gluon from Φðx; yÞ, so that in the transverse
plane the ggΦ configuration looks like a triangle, where
straight lines of its sides represent confining strings
between adjoined charges. A similar consideration for
the Oðg4Þ terms yields DEðx − yÞ.

DEðx − yÞ ¼ g4ðN2
c − 1Þ
2

Gð2gÞðx; yÞ
¼ g4NcC2ðfÞGð2gÞðx; yÞ: ð14Þ

The spectrum of Gð2gÞ was found both analytically [35]
and on the lattice [36], and in [33,34] the asymptotics was
found as

Gð2gÞðxÞ ≈ 0.108σ2fe
−Mð2gÞ

0
jxj; x≳ ðMð2gÞ

0 Þ−1 ð15Þ

while Mð2gÞ
0 ≈ 2 GeV, ðMð2gÞ

0 Þ−1 ≡ λ0 ¼ 0.1 fm. The mix-
ing of Mð2gÞ and Mð1gÞ and the account of color Coulomb
interaction imply the lowering of Mð2gÞ, and hence the

increasing of λ; λ≲ 0.2 fm. Note here, that Mð2gÞ
0 is

expressed via σ, namely, according to [35,36].

Mð2gÞ
0 ≅ ð4–4.5Þ ffiffiffiffiffi

σf
p ð16Þ

and it is the large ratio 4 ≫ 1, that ensures the small ratio of
In
I2
in (6), e.g.,

I4
I2

∼
σ

ð4.5 ffiffiffi
σ

p Þ2 ∼
1

20
: ð17Þ

This result will be basic for the properties (1) and (2),
listed in the Introduction.
One can compare this result for λ with direct lattice

measurements of field correlators [37–41], which yield
λ ≈ 0.2 fm.
We are now coming to the most important property

of the FCM mechanism of confinement—the scale self-
consistency. Indeed, in FCM (and in QCD with massless
quarks in general) one has the only nonperturbative scale,
which defines 99% of mass in the visible part of the
universe. It can be chosen as a scale since confinement and
σ explain the nucleon masses. Now from the definition of σ
(to the lowest order in αs) σf ¼ 1

2

R
DEðxÞd2x, and the

asymptotic expressions (14), (15) forDEðxÞ one obtains the
self-consistency condition

σf ≲ πλ2 · 0.0108 · 8π2 · α2sðN2
c − 1Þσ2f: ð18Þ

(The sign < is due to overestimating DEðxÞ using asymp-
totics (15), since DE is smaller for x → 0, and has a
minimum at x ¼ 0, as shown in Appendix C). Here λ ¼
1=M and we can associate the momentum scale of αs with

the gluelump mass M ≅ 2 GeV ≅ 5
ffiffiffi
σ

p
, and from (18) one

finds the dependence αsðMÞ

α2sðMÞ≡ ðα�sÞ2 ¼
M2 · 0.037
σfðN2

c − 1Þ ≅ 0.104;

ðNc ¼ 3; α�s ¼ 0.322;M ¼ 2 GeVÞ ð19Þ

on the other hand one can use the one-loop approximation
for αsðMÞ with the IR correction found earlier (see
Appendix C for details).

αsðMÞ ¼ 4π

β0 ln
	
M2þM2

B
Λ2


 ; MB ≅ 2πσf ≈ 1 GeV ð20Þ

which yields [taking into account the sign < in (18)] for
Nc ¼ 3

Λσ ≳
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þM2

B

q
exp

�
−

4π

β0α
�
s

�
≅ 270 MeV: ð21Þ

As one can see in (21) the Nc dependence in α�sβ0 is
compensated at large Nc, and the limiting value of
ΛσðNc ¼ ∞Þ is equal to 340 MeV, and as discussed in
Appendix C, Eq. (C5) should be divided by 1.3 to compare

favorably with ΛMS
QCD. The resulting values of αsð2 GeVÞ

and ΛMS
QCD are well within the PDG limits.

In this way we have expressed to the lowest order the
ΛQCD via the string tension, which can be now considered
as the only scale constant in QCD beyond the fermion
masses.
We turn now to the phenomenon of flux tubes and their

internal structure. It is a widespread notion that flux tubes
are a necessary and unique result of the DGL theory,
producing a dual magnetic flux in the medium filled by the
Higgs-like monopole condensate. However one obtains the
similar picture of a flux tube directly from the quadratic
field correlators and without any additional parameters
except σ and λ ¼ 1

c
ffiffi
σ

p ; c ≈ 4.
Indeed, following [19,48], one can measure the field Fμν

produced in the contour C, as shown in Fig. 4 (the so-called
connected probe) and write

FμνðxÞ ¼
Z
S
dσαβðyÞg2Dð2Þ

αβμνðx − yÞ; ð22Þ

where Dð2Þ is given in (4). Writing DEðzÞ for simplicity as

DEðzÞ ¼ σ

πλ2
exp

�
−
jzj
λ

�
; ð23Þ

[which satisfies both (15) with αs ≈ 0.2 and (5)], the mixing
of Mð2gÞ and Mð1gÞ and the account of color Coulomb
interaction imply the lowering of Mð2gÞ and increasing of
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λ ¼ 1
Mð2gÞ. In all applications to flux tubes it is convenient to

choose λ around the value of λ ¼ 0.2 fm. From (22) one
obtains the color-electric field in the flux tube [19,48]

ED ¼ n
2σ

π

Z
R=λ

0

du





un −
r
λ





K1

�



un −
r
λ






�

ð24Þ

where n is along the flux tube. In a similar way one defines
the magnetic current kD ¼ rotED, and at the midpoint
between charges and at distance r⊥ from the axis it is
equal to

k2
Dðr⊥Þ ¼

4σ2r2

π2λ4

 Z R
2λ

−R
2λ

dxK0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2⊥

λ2

s !!
: ð25Þ

As was shown in [19] the dual London equation: rotk ¼
λ−2E is satisfied by (24), (25) asymptotically at r⊥ → ∞,
see Fig. 5.

To complete this picture one also calculates color-electric
fields due to correlator DE

1 , as it is done in the Appendix B,
with the resulting field E1, depending on the same
parameter λ. As a result one obtains the profiles of the
flux tube for different distances R between charges, shown
in Figs. 6–9.
One can see in Figs. 6–9 a rather stable profile, only

weakly depending on R, in good agreement with lattice
data [42].
As was shown above, at the basis of FCM is the property

of the Wilson loop, and hence one can immediately derive
the effects of confinement, writing any amplitude in terms
of Wilson loops. Above we have considered only the
simplest case, when all interaction inside WðCÞ is of np
character. In the Appendix B we have shown that the
correlator DE

1 generates the instantaneous Coulomb inter-
action VcðrÞ plus vectorlike interaction VE

1 , entering the

Polyakov loop, Lf ¼ exp ð− VðEÞ
1

ð∞Þ
2T Þ.

In this way the color Coulomb and confinement inter-
action enter additively the total instantaneous potential, as it
is supported by lattice data [12,21,22].
However, one should consider these “dynamical”

valence gluons in the confining film. In this case the main
point is, how it interacts with the confining film and
whether it produces the screening effect in the gluon-
exchange interaction. This point was studied in [47], where
it was shown that the resulting screening is small, with
μscr ≲ GeV for light quarks and screening is not seen in
heavy quarkonia up to distances ∼1.2 fm. The situation,

FIG. 4. The connected probe for measuring color field in the
flux tube.

FIG. 5. The transverse radius dependence of the CM current.

FIG. 6. E3 ¼ E3ðr⊥; R ¼ 0.76 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 0.76 fm. The dots with error bars are from the lattice
measurements in [42].
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when gluon exchange is considered within the confining
film, is shown in Fig. 10, and in [48] it was explained why
the screening is strongly damped.
The principle of the minimal area for the surface of the

Wilson loop operates also for the more complicated objects,

like 3q baryons and 3g glueballs, which accordingly have
the Wilson loops based on string junction and triangle
forms, shown in Fig. 11, see [19] for details and the full
theory of 3q baryons in [53].
Finally we touch on the important point of excited QCD

strings, which can be treated in the lattice measurements of
hybrid states [54], lattice measurements of flux tube
excitations [55], and finally in the FCM theory [56]. In
the last case the FCM theory predicts excitations of the
QCD string in the form of an additional gluon, “sitting on
the string,” i.e., in the form of local excitation leading to the
vibration of the string, with an explicit probability ampli-
tude for the space-time position of the gluon, while in the
standard string theory one considers the string as a whole.

FIG. 7. E3 ¼ E3ðr⊥; R ¼ 0.95 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 0.95 fm. The dots with error bars are from the lattice
measurements in [42].

FIG. 8. E3 ¼ E3ðr⊥; R ¼ 1.14 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 1.14 fm. The dots with error bars are from the lattice
measurements in [42].

FIG. 9. E3 ¼ E3ðr⊥; R ¼ 1.33 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 1.33 fm. The dots with error bars are from the lattice
measurements in [39].

FIG. 10. The minimal area surface for the gluon exchange
interaction.
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From this point of view the analysis and comparison of the
results of [54–56] is of vital importance.

III. THE FCM THEOR VS PROPERTIES (1)–(7)

1. We start with the property (1), stating the observation
of the linear confinement in the whole measured
region, 0.1 fm < R < 1 fm, [12,21,22]. As it is clear from
(9), (14), (15), taking into account that DEðu; vÞ ¼
DEðz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ is essentially nonzero only in the

region r≲ λ ≈ 0.2 fm, that the potential VDðrÞ has a linear
behavior for all r≳ λ in agreement with all lattice data
[12,21,22] and the results in quarkonium structure [57].
This refers to all groups SUðNcÞ; Nc ≥ 2, however, one
should have in mind that in the higher OðgnÞ; n ≥ 4 orders
or in the nonperturbative (np) string breaking mechanism
the adjoint string may break. This phenomenon of string
breaking into two gluelumps brings in the flattening of the
confining potential for adjoint and higherD charges, which
starts at larger values of r r≳ rmax because of larger
gluelump mass. Indeed, since the adjoint string breaks
into two gluelumps with mass ∼2 GeV, one can estimate
rmax ∼ 2Mð2gÞ

σadj
≈ 4 GeV

0.189
4
GeV2 ≅ 2 fm. A similar situation can

occur in the G2 group theory, and other special groups
[26–32,49].
In FCM the behavior of field correlator clearly agrees

with that found on the lattice [37–41], since both DE

and DE
1 contain perturbative terms Oð 1x4Þ and np terms

expð−μjxjÞ, with μ ≈Oð1 GeVÞ, corresponding to the
gluelump mass. Finally, one should address the important
point of numerical compensation of saturation terms
Vsat
D ðRÞ and Vsat

1 ðRÞ in (14) and (17), which otherwise
would spoil the linearity of confinement. Indeed both

potentials have opposite signs and similar magnitude,
and one can easily check, that they compensate each other
at the order of Oð10%Þ, when Mð1gÞ ≲Mð2gÞ.
2. The accuracy of the Casimir scaling in QCD and

SU(N) theory is associated with the magnitude of higher
terms 1

n! In in the cluster expansion of WðCÞ, Eq. (2).
Indeed, using Eqs. (3) and (6) one can conclude that I4I2 ≲ 1

20

and the accuracy of the CS should be aroundOð5%Þ, which
is supported by lattice data [21,22], in particular, in [22] the
accuracy of CS is around 5%. One should stress that this
result is directly connected to the smallness of λ, i.e., the
large value of the gluelump mass as compared to

ffiffiffi
σ

p
. This

can be explained as a high stochasticity of the vacuum,
where the mean value of the field strength hFi ¼ f satisfies
the condition fλ2 ≪ 1.
At this point one can associate the quantity fλ2 with

the elementary flux on the surface of the Wilson loop
and compare it with the corresponding flux of the
instanton, fλ2 ¼ 2π, while the flux of a magnetic mono-
pole, placed on the surface, is fλ2mm ¼ π [58], which
explains intuitively the range of the magnetic monopole
mechanism of confinement, since in this case WðCÞ ¼
exp

P∞
n¼1

ðifλ2mmÞn
n!

RT4

λ2
¼ exp ðRT4

λ2
expðifλ2ÞÞ ≈ exp ð− RT4

λ2mm
Þ,

σmm ∼ ðλ2mmÞ−1 ∼ 0.18 GeV2, λmm ∼ 0.5 fm.
However, in the FCM case fλ2 ∼ σλ2 ∼ σ

ðMð2gÞ
0

Þ2 ∼Oð5%Þ
and hence one has the picture of stochastic small fluxes in
QCD. This picture agrees very well with the lattice
measurements in Refs. [21,22].
3. In FCM the flux distributions, given by (24), (25),

describe the flux tubes of constant radius which are stabilized
at large distance R between charges, as shown in Figs. 6–9,
taken from [48]. One can see a good agreement with lattice
data of [42], where the distance between chargesR belongs to
the interval 0.76 fm ≤ R ≤ 1.33 fm.
In this first step of flux tube theory, given by (24), (25)

(see [48] for details), one neglects the perturbative excita-
tions of the string and the width of the flux tube stabilizes at
large R. In the next order one should take into account an
additional gluon in the flux tube, which corresponds to the
hybrid state of ðQGQ̄Þ. The physics of this static hybrid
and the corresponding eigenstates were given in [56] in the
framework of FCM. On the lattice these excited states were
examined in [54,55].
The formation of the flux tube is often considered in

analogy with the Abrikosov fluxes in superconductors and
therefore it is one of the main arguments in favor of the
DGL picture of confinement in QCD. As a consequence,
one tries to find the color magnetic monopole d.o.f. in the
QCD vacuum.
However, as shown in [19,48], the flux tube picture

occurs naturally in the FCM, as it is demonstrated
by Eqs. (24), (25). Indeed, the correlation length λ is

provided by the gluelump mass Mð2gÞ
0 , which is created by

FIG. 11. A distribution of the field E⃗ðBÞ in GeV/fm with the
only correlator D contribution considered in the quark plane for
equilateral triangle with the side 1 fm. Coordinates are given in
fm, positions of quarks are marked by points.
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confinement, i.e., by nonzero σ, and again σ is given by the
2g gluelump Green’s function DEðzÞ. This mass creation
fixed the size of flux tube and its stability, and leads to
asymptotic verification of the dual London equation.
One may call it the “microscopic” magnetic monopole

mechanism, based on microscopic fluxes f2λ ≪ 1 in
contrast to macroscopic DGL mechanism, implying the
existence of massive and large magnetic monopole with
mass mχ and dual gauge field with mass mB, and their
relation k ¼ mχ

mB
, which are not predicted by theory. It is very

important that in FCM the mass creation process refers to
the gluon, connected to another gluon on the given surface
of the area law (in the parallel transporter), or to another
propagating gluon in the gg glueball, but never refers to one
gluon separately. This is important for the problem of color
Coulomb screening due to confinement, which is not still
observed on the lattice [22] and in the heavy quarkonium
spectrum [57].1

Indeed the total potential between static charges both in
FCM and on the lattice has the form

VðjÞ
staticðRÞ ¼ constj þ VðjÞ

CoulðRÞ þ σðjÞR ð26Þ

with

VðjÞ
CoulðRÞ ¼ −C2ðjÞ

αs
R

ð27Þ

with no appreciable screening mass MCoul and in FCM at
zero temperature constj can be put equal to zero. At the
same time in the field distribution of the flux tube
the Coulomb field contribution to the total color-electric
field EðR

2
Þ at the midpoint R

2
between static charges is equal

to [48].

Eð1Þ
�
R
2

�
¼ 8C2ðjÞ

αsR
R3

ζ

�
R
2λ1

�
; ζðxÞ ¼ ð1þ xÞe−x;

ð28Þ

which screens with the screening massMð1gÞ
0 ¼ 1=2λ1, and

this behavior is well supported by the lattice data [42].
Thus the FCM theory explains both properties: (1) addi-

tivity of color Coulomb and confinement fields in the total
E and (2) the absence of screening in the VCoulðRÞ, while
the screening is present in the flux tube probes.
Indeed, the additivity is based on the additive form of the

field correlator (4), which for the total color-electric field E
yields [48]

Eiðr;RÞ ¼ nk

Z
R

0

dl
Z

∞

−∞
dt
�
δikDEðzÞ þ 1

2

∂ðziDE
i ðzÞ

∂zk
�
;

ð29Þ

where n ¼ R=R. Calculating (29) with D1, given by
the one-gluon gluelump Green’s function with mass

Mð2gÞ
0 ¼ 1=λ1, where one can approximate λ1 ≈ λ, one

obtains the screening factor ζð R
2λ1
Þ for large distances.

This refers to the color-electric field, measured as a probe
in the Fig. 4.
However, another result obtains if the static potential

VCoulðRÞ is calculated via DE
1 ðzÞ (see Appendix B). One

can attribute this difference to different Wilson loop
constructions in these cases: it is of type of the Fig. 4
for the Eðr;RÞ in the probe plaquette and of the Fig. 10 for
the VCoulðRÞ. In last case the screening mass is strongly
suppressed due to small change in the area of the covering
surface of Wilson loop, lifted by a propagating gluon.
An opposite situation occurs in the interaction of Wilson

loops, studied within the FCM theory in [46] and on the
lattice in [45]. A particular case of this analysis is the so-
called disconnected probe of the field distributions of the
static QQ̄ system, which was measured in [12].
Finally, the FCM analysis of flux tubes for three static

charges in fundamental and adjoint irreducible representa-
tion (irrep) leads to the pictures of 3 quarks with a central
string junction in the first case and the triangular configu-
ration in the second case, as shown in Fig. 11 taken from
[19], in agreement with lattice and other data.
4. Till now we have discussed the case of static charges,

when scalar or vector type of the confining interaction
VDðRÞ is not important. When going to the finite mass
quarks, let us consider a light quark in the field of an
infinitely heavy antiquark, where the Lorentz nature of
VDðRÞ becomes crucial. Indeed, as shown in [43,44], in the
case of the vector confinement the bound state spectrum of
the Dirac equation does not exist and it excludes the
possibility to use the vector confinement of the Gribov-
Zwanziger approach [50] (an exception takes place in the
d ¼ 2 QCD, if some special transformation of the
Bogolyubov-Valatin type is done, see [59]).
The scalar nature of the FCM confining interaction can

be directly deduced from the form of VD, expressed via
DEðzÞ, see Appendix B. Then one can see the two-gluon-
line exchange form for VD in contrast to the one-gluon-line
form for VE

1 , which presupposes the scalar nature for VD

and the vector nature for VE
1 potential. An additional

analysis, done in [60,61], supports this conclusion.
5. In all previous analysis we have used the only

parameter σ, while another parameter, λ, is expressed
numerically via 1=

ffiffiffi
σ

p
, λ ¼ 1

Mð2gÞ
0

≅ 1
4
ffiffi
σ

p . This situation

was checked in [33,34] by calculating the resulting

αsðMð2gÞ
0 Þ and ΛQCD from the self-consistency equation

1The highly excited states of charmonium and bottomonium
may be sensitive to the color Coulomb screening, which strongly
decreases the dielectron width [47].
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σf ¼ 1
2

R
DEðzÞd2zwithDEðzÞ, expressed via σ and αs as in

(14), (15). In this way one indeed has the only scale in the
confinement mechanism [neglecting the quark mass modi-
fication of the confinement, which occurs in higher orders
of OðgnÞ].
7. The confinement mechanism described above is

applicable both to QED and all SUðNÞ theories, where
one explicitly introduces the field correlatorsDEðzÞ,DE

1 ðzÞ,
as in (4). In the QED case, however, as shown in [17], one
can apply to the correlator Diαkβðx; yÞ in (4) the operator
∂
∂xγ εiαγδ and take into account the Abelian Bianchi iden-

tities, ∂αF̃αβ ¼ 0, which yields DQEDðzÞ≡ 0, and hence no
confinement. One can use the same technique of Gaussian
correlators plus gluelump Greens function to other groups,
like G2, F4 etc. and obtain confinement at intermediate
distances, as it was observed on the lattice [26–32,49]. As it
was discussed above, a screening of VDðRÞ due to string
breaking may happen in the adjoint loops in SUðNÞ.

IV. THE DGL APPROACH AS THE THEORY
OF CONFINEMENT

The DGL approach, suggested in [2–4] and developed in
numerous papers, is reviewed in [8,10,11]. In the DGL the
original Lagrangian can be written in the Abelian Higgs
form (the dual form of it is finally used).

L ¼ −
1

4
F2
μν − jDμφj2 −

λ

4
ðjφj2 − φ2

0Þ; Dμ ¼ ∂μ − ieAμ

which obeys the classical solutions—the Abrikosov–
Nielsen–Olesen (ANO) strings, and to describe confine-
ment one needs a region of large λ, when one has a
condensate of electric charges φ ¼ φ0. It is clear, that in
this case the field Aμ acquires the mass m2

B ¼ 2e2φ2
0,

while the Higgs field has its own mass m2
χ ¼ 2λφ2

0. One
can easily follow the appearance of London’s equations
ΔB −m2

0B ¼ 0, implying the stability of magnetic strings
with the string tension σANO ¼ πm2

B ln
mχ

mB
. Note the possible

difficulty in detecting two different mass scales: mχ , mB

wheremχ should be much larger thanmB in the proper dual
Abrikosov scenario, whereas as we discussed above, one
can see on the lattice the only mass scale around 1 GeV.
Now we consider the properties (1)–(7), presented in the
Introduction, with respect to the results of the DGL theory.
(1) The linear behavior of confinement can be ensured by

DGL mechanism with a good accuracy (see, e.g., [8,28]
and Refs. in [11]) in limited region, which depends on
λ ∼ 1

mB
, and the linear behavior is violated in the region

r ∼ λ.
In DGL the behavior of the quadratic field correlators,

G2ðxÞ ¼ hFΦFi, as a function of x was investigated

in [10,62], with the result: G2ðxÞ ¼ c1
x2 e

−μx þ c2 expð−μjxjÞ
x4 ,

which differs from the lattice data [37–41].

(2) The Casimir scaling is strongly violated for fixed
values of model parameters mχ , mB and k ¼ mχ

mB
. Indeed, to

reach an agreement with the CS values for higher repre-
sentations J one needs large values of k≳ 6 changing with
J [8,25].
As we have discussed above in the previous section, the

probable reason for this behavior lies in the large values of
elementary fluxes fλ2 ¼ Oð1Þ, which bring into action the
quartic and higher order correlators, I4 ≈ I2 according to
Eq. (6). Large values of k imply the Abrikosov vortex
mechanism of the second kind, however, the flux tube
profiles require lower k values in the domain of dual
superconductors of the first kind [42].
(3) The description of the flux tubes in terms of the DGL

theory is rather successful, as shown in [42], however, to
reproduce the actual change of the flux tube profile, in [42]
it was used the flux tube ansatz [63], based on the type I
superconductor model, with three parameters dependent
on the charge separation R. E.g., the parameter k for
R ¼ 0.76 fm, R ¼ 0.95 fm, and R ¼ 1.33 fm in Figs. 6–9
should be chosen as k ¼ 0.348, 0.170, and 0.236,
respectively.
At the same time, as shown in Figs. 6–9, the FCM

produces distributions for all R with the only parameter
λ ¼ 0.2 fm, which is connected to the gluelump mass,
calculated via string tension.
One can conclude, that the DGL model corresponds to

general picture of flux tubes, at it was expected, however,
the microscopic structure of flux tubes is not yet described
by a unique theory of the DGL type.
There are also attempts to describe the flux tube as

the quantized Nambu-Goto string in the form of the
Arvis potential [64] and the induced so-called Lüscher
term. However, the latter violates Casimir scaling
[21,22]. As it is known, the structure of string excita-
tions is associated with an additional gluon d.o.f., as
found on the lattice [54,55] and in the FCM [56], while
in the standard string theory [65,66] the excitations have
different structure.
Summarizing, one can conclude that in the DGL model

the flux tube structure is resemblant to that obtained on
the lattice for SUð3Þ theory, but agrees with the latter
qualitatively, since there was not found a unique set of
parameters describing the lattice data.
(4) It seems natural that in the DGLmodel one can obtain

the scalar confinement, however, corresponding analysis is
not known to the author.
(5) The scales and self-consistency of the DGL model

was not treated systematically. One clearly defines the
scales of dual gauge fieldmB ¼ 1=λ and the dual monopole
field mχ ¼ 1=ζ, and their ratio k ¼ mχ

mB
, but their connection

to the only SUð3Þ parameter, σ, also depends on other
parameters, (dual “Higgs” coupling constant λh, and its
vacuum average v), so that as in [8], one obtains σf ¼ 4πv2

in the Bogomol’nyi limit. There are no examples of
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self-consistency checks, where all parameters are deduced
from σ or ΛQCD.
(6) Within the DGL model the Wilson loop-loop or

string-string interaction was investigated in the form of the
disconnected probes [12]. The point of the color Coulomb
nonscreening was not raised in the published literature, to
the knowledge of the author.
(7) It is clear that the DGL model can be formulated for

any theory, where the gauge d.o.f. are made massive using
the dual Higgs field, taken from outside; therefore the main
problem is to identify both gauge and dual Higgs d.o.f. This
kind of separation and identification is done, e.g., via the
Abelian projection method [13], the center vortex model
[14], thick vertex model [15], etc. These ideas can be
equally well applied to other groups, like it was done in
[29] for the groups G2 and SUðNÞ. It is difficult to judge
whether the DGL explanation is successful unless one
derives all parameters directly from the field Lagrangian
itself and its renormalization constants. Unfortunately,
existing DGL applications are based on the parametrization
of given theories in terms of assumed dominant d.o.f. and
dominant structure.

V. THE ABELIAN PROJECTION AND THE
CENTER VORTEX MODEL

One of the most popular version of the confinement-
connected studies is the Abelian projection models.
Here one can use the maximally Abelian gauge to

separate the field configurations which are believed to
contribute maximally to the phenomenon of confinement,
see reviews [10,11,14,67]. Ideologically this direction is
connected to the idea of monopole dominance, since the
necessary gauge transformations might include singular
gauge configurations reminiscent of magnetic monopoles.
The main idea of the Abelian projection is to extract from
the non-Abelian field monopole d.o.f. and to this end one
can write in maximally Abelian gauge (MAG) in the
SU(2) case the gauge-transformed plaquette Uμν as Uμν ¼P

i expðiθðiÞμνσ3Þ, with the separation θμν ¼ θ̄μν þ 2πnμν,
where −π ≲ θ̄μν ≲ π is the Abelian part and nμν is the
“monopole part.” The resulting contribution of both parts to
the static potential is shown in Fig. 12 [68], where one can
see the dominance of the “monopole part” in the string
tension and the nonconfining Abelian “photon” contribu-
tion. In the lattice studies [69,70] are presented accurate
calculations of static quark potential in the maximal
Abelian gauge (MAG) in comparison to the exact lattice
data for QQ̄ and 3Q configurations. One can see in [69] a
very good agreement between MAG and exact values of σ
with accuracy of the order of 5%. At the same time the
color Coulomb part of the interaction disappears in the
MAG version.
How one can understand these results from the point of

view of FCM? To this end one must remember that the field

correlators hFFi, responsible for confinement, are pro-
duced by the gluelump Green’s function, where the color
links can be considered as diagonal in the color space in the
lowest (nonperturbative) approximation, whereas the color
change is provided by the perturbative vertex gfabcAb

μAc
ν.

Hence one can expect that the color diagonalization would
keep all the confinement effects up to Oðαsπ Þ and the color
exchange potential, generated by perturbative vertices,
should be absent in the color diagonal approximation.
In this way the results of the Abelian projection method

can be connected to and explained by the FCM.
There appears another question: what are the physical

contents of the Abelian projection method (APM)? It is
clear that for any physical mechanism of confinement, e.g.,
for the FCM, the resulting field distributions can be
analyzed via the APM, and the only way to explain the
confining result is the presence of the nμν piece in the
plaquette, which however has nothing to do with the real
monopole admixture, but rather with the fact, that purely
Abelian d.o.f. do not ensure confinement, and one needs
the “elementary monopole d.o.f.” at each point.
The center vortex model (CVM) [14] and its extension—

the thick center vortex model (TCVM) [15]—have
attracted a serious attention during last 20 years (see
[26–31] and references therein). The main idea of these
models, as well as in the DGL approach, is to represent the
QCD vacuum as stochastic ensemble of color magnetic
fluxes in terms of the nontrivial center elements of the
gauge group, and these vortices are thickened in the
TCVM, [15] which allowed us to build up the linear
potential for all representations at the intermediate dis-
tances. As one can see, fundamentally the CVM (TCVM) is
based on the notion of the stochasticity of field fluxes
connected to center vortices in their total number and
orientation. From this point of view there is a similarity
between CVM (TCVM) and the FCM approach, since in
FCM one has a stochastic ensemble of field fluxes
F̂μνðzÞdσμνðzÞ inside the Wilson loop, where F̂μνðzÞ is
the gauge covariant field strength defined in Eq. (2). The
stochasticity of the ensemble fF̂μνðznÞ; n ¼ 1; 2;…g on the
plane of the Wilson loop follows from the short correlation
length λ ¼ 1

MGlp
≲ 0.2 fm, and as was discussed above

[Eq. (6)], the quartic and higher correlators violate the
Casimir scaling by less than 5%. Note, that the topological
or group structural properties are not necessary for the
resulting confinement.
A more detailed group theoretical structure is assigned to

the independent field fluxes in CVM (TCVM), where each
flux is connected to a center element.
A detailed numerical analysis of the SU(2) Yang-Mills

theory in the framework of TCVM was performed in [15],
and the linear potentials of static sources have been
obtained at intermediate distances. As one can see in
Figs. 1, 2 of [15] the linearity of potentials, especially
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for higher representations is indeed achieved in the inter-
mediate region, however there is a problem with the
Casimir scaling in this linear region, which is violated
for higher representation up to 25%, in contrast to the
accurate ð<5%Þ scaling in direct lattice calculations.
Another interesting problem in this approach is the

significance of the center of group, which can be trivial
as in the case of the Gð2Þ group, while SU(2) and SU(3)
subgroups are present in Gð2Þ. This topic was discussed in
[28,31,71]. It was found in particular in [31] that in Gð2Þ
there are two linear regimes at lower R=a ≈ 5 and R

a ∼ 25,
and for the fist one the Casimir scaling is qualitatively valid.
It is clear, that the FCMmethod can be directly applied to

the simple group theories, e.g., to the Gð2Þ Yang-Mills
model and these results can be compared to those in [28]
and [31], which can establish a link between the two
approaches, in particular it wood be interesting to
connect vortex probabilities with the corresponding field
correlators.
Here the criterion of the linear confinement between static

charges in theGð2Þ (or any other field theorywithout quarks)
is that all field correlators hF̂aðx1ÞF̂ðx2Þ…F̂cðxnÞi should
have exponential asymptotics expð−mijjxi − xjj;…Þ with
mij > 0, and the linear confinement occurs in FCM for
R > 1=mij.
As it is, the comparison between the two methods

can reveal additional properties of the confinement
phenomenon.

VI. SCALAR OR VECTOR
CONFINEMENT IN QCD

Our consideration above has to do with static potentials,
where the scalar or vector character of interaction is not
important (as will be also seen below). Here we study the
case of quarks of any mass and start with the case of a quark
of an arbitrary mass m in the field of a static charge.
Following [43,44] we write the Dirac Hamiltonian

H ¼ αpþ βmþ βUðrÞ þ VðrÞ; Hψ ¼ Eψ ð30Þ

whereU and V are scalar and vector potentials respectively.

In the standard bispinor formalism Ψ ¼ 1
r

	
GðrÞΩ

iFðrÞΩ0


, one

arrives at the system of equations

dG
dr

þ κ

r
G − ðEþmþ U − VÞF ¼ 0 ð31Þ

dF
dr

þ κ

r
F þ ðE −m −U − VÞG ¼ 0: ð32Þ

Assuming U ¼ σsr; V ¼ σvr, we shall consider three
possibilities (i) U ≠ 0, V ¼ 0, (ii) U ¼ 0, V ≠ 0, (iii) both
U;V ≠ 0.

Introducing notations x ¼ ffiffiffiffiffi
σs

p
r; ε ¼ E=

ffiffiffiffiffi
σs

p
, in the case

(i) one obtains solutions with the asymptotic

G;F ∼ exp

�
−
1

2
ðx2 þ bxÞ

�
; G00 − x2G ≈ 0; ð33Þ

implying a reasonable bound state problem even for
m → 0. In the case (ii) replacing σs → σv, one arrives at
the equation

G00 þ x2G ¼ 0; G ∼ exp

�
ix2

2

�
: ð34Þ

Thus one cannot have bound states in the vector
potential.
In the case (iii) with definition σs ¼ cuσ0; σv ¼ cvσ0;

x ¼ ffiffiffiffiffi
σ0

p
r, one finally obtains asymptotically at x → ∞,

G00 −
��

cuxþ
mffiffiffi
σ

p
�

2

− cvx2
�
G ≈ 0: ð35Þ

From (35) one can deduce that (1) the necessary
condition for the bound state spectrum is cu > cv, and
(2) for m → ∞ the bound states exist for any type of
confinement.
Comparing this situation with the Gribov-Zwanziger

model of confinement [50] one can conclude that the
linear vector confinement of this model is not compatible
with QCD, unless some additional vacuum transformation
of the Bogolyubov-Valatin type is possible, producing
finally the scalar confinement, as it happens in the
D ¼ 2 QCD [59].

VII. ADDITIONAL TESTS AND CONSEQUENCES
OF THE CONFINEMENT MECHANISM

When applying the confinement mechanism to real
hadron physics, one meets with numerous applications,
which serve as a serious test of its nature. Below we shortly
discuss several important applications, which should be
present in any approach to confinement.
(1) QCD string and Regge trajectories;
(2) confinement in the fast moving hadrons;
(3) the role of confinement in the IR regime and the

convergence of the perturbative series;
(4) confinement and chiral symmetry breaking;
(5) confinement and deconfinement at finite temperature.

Below we shortly consider all these topics comparing
results of confinement mechanisms with real phenomena
in hadron physics.

A. QCD string and Regge trajectories

There are two main approaches to the definition
of string spectrum: the first one considers the QCD string,
created by confinement, as an example of the string
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theory [65,66] renormalizable in higher dimensions, with
its characteristic spectrum of excitations, where each point
of string is a dynamical variable and the spectrum is the
collective excitation. This type of dynamics was used to
calculate contribution of excited string states to the
so-called Arvis potential [64] and Nambu-Goto type
strings [65,66].
Another approach to the QCD string and the

QCD spectrum in general follows from the FCM and
can be called the FCM string, where the motion of string
is defined by its boundary, i.e., by the ends of the string
in the mesons, baryons, and glueballs, q̄q; 3q; 3g and
will be called configuration A; in other case there are
extra gluons “string on the string in the excited states”,
i.e., q̄gq; q̄ggq;… i.e., hybrids, which will be called
configuration B.
In the FCM string the parts of the string between the

ends or internal gluons can be considered as inert and
their motion is defined by the endpoints. This is clearly
demonstrated by the Nambu-Goto form of the action,
exploited in the basic papers of this direction for Regge
trajectories [72–74].
Using the relativistic Hamiltonian dynamics [75], one

obtains the well-known form of the QCD string
Hamiltonian [72–74], describing orbital Regge trajectories
of mesons [73], radial meson Regge trajectories [74],
Regge trajectories for baryons [76]. There it was demon-
strated that this theory works very well for all orbital
(proper) Regge trajectories, while for radial Regge trajec-
tories one needs to take into account the flattening of
confining potential at large distances—as it is known in
QCD with light quarks. The similar trajectories for glue-
balls are calculated in [77,78], where also the connection
with the Pomeron trajectory was studied [78].
The QCD string excitations as hybrid states, introduced

in FCM [56], have been compared there with lattice data
[54], displaying a reasonable agreement, the same can be
said about Regge trajectories in [72–74], where comparison
was done with experimental hadron masses. Summarizing
this part, one can say that the QCD string picture based on
FCM, where the string pieces are treated as inert objects
without dynamical d.o.f., is in reasonable agreement with
experiment.

B. Confinement in the fast moving hadrons

It is widely known that in the high-energy collisions fast
partons are considered as free particles, not subject to any
confinement interaction. This seemingly universal proposal
is in contradiction with the relativistically invariant picture,
where the transverse d.o.f. can be independent of the (fast)
motion of the object.
Indeed, recently in [79] the author has constructed the

relativistical invariant Hamiltonian of a fast moving hadron
with the resulting solution for the boosted wave function,
where the transverse coordinate (momentum) dependence

was independent of the motion and coincided with behavior
of the wave function in the rest frame. E.g., for the S-wave
qq̄ hadron the boosted wave function can be written as [79]

φðp⊥; xÞ ¼ φ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ

�
x1 −

1

2

�
2

M2
0

s �
; ð36Þ

where M0 is the rest mass of the hadron.
As a result, one obtains the valence pdf (the parton

distribution function) in the hadron

Dq
nðx; p⊥Þ ¼

M2
0

ð2πÞ3 jφðp⊥; xÞj2: ð37Þ

In the total pdf one should take into account all other
Fock components, which in the standard formalism [80] are
given by free sea quarks etc., while in this “boosted
confinement” picture they are represented by fast hadron
and hybrid states. The corresponding picture was devel-
oped in [81] and is in good agreement with the DIS
experiment.
As an additional point the account of the contracted wave

functions (36) in the process of eþe− → hh allows us to
predict the asymptotics of form factors of mesons and
baryons (the famous “power law” but without gluon
exchanges)

FhðQ0Þ ∼
�
M2

0

Q2
0

�
nh
; nM ¼ 1; nB ¼ 2 ð38Þ

where Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ p2
p

.
This topic is of crucial importance for our understanding

of high energy (HE) processes and is to be developed
further.
In our confinement treatment one can conclude that in

the fast moving object the transverse part of confinement is
kept intact, so that in all HE collisions, where deconfine-
ment does not occur, all processes are proceeding with
confined quarks and gluons in the form of (also) highly
excited hadrons, i.e., multihybrids.
Thus confinement strongly affects the standard picture

[80] also in the HE process. For considerations, concerning
the role of confinement in HE processes and the HE
momentum sum rule, see [82].

C. Confinement, IR divergence, and the
convergence of perturbative series

The perturbation series in QCD is subject to serious
internal difficulties, as it is known in the textbooks [83], and
we will consider those in the following order.

(a) The factorial divergence due to IR renormalons [84].
(b) Landau ghost problem for αs in the IR region [85].
(c) IR divergencies in QCD, being treated as in QED,

neglecting confinement [80].
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(d) The “Euclidean character” of the perturbation theory
(PTh) due to absence of hadron thresholds in the
analytic dependence αsðQÞ etc.

To introduce confinement in the PTh one can use the
background perturbation theory (BPTh), as formulated in
[86] and developed further in [87,88] with the help of
confinement.
As a result one arrives at the PTh, where for all gauge

invariant amplitudes, in the higher orders containing closed
loops, one takes into account the area law due to confine-
ment. This property strongly changes the behavior at low
momenta and, e.g., for the IR renormalon series of
amplitudes one arrives at the resulting sum, which does
not contain factorial growth at all [89], thus solving the
long-standing IR renormalon problem (a).
(b) In a similar way, taking into account the confining

loops in the renormalization of αs in the next orders, one
arrives at the IR finite form of αs [85], namely, for the one
loop one obtains

αsðQÞ ¼ 4π

β0
ln

�
Q2 þM2

B

Λ2
QCD

�
; ð39Þ

where M2
B ¼ 2πσ;MB ≅ 1 GeV. This result is in a good

agreement both with αsðQ2Þ for Q2 ≳ 3 GeV2, as well as
with lattice expectations [90–92].
(c) In the HE evolution theory there is a standard

agreement that the IR divergence of the QCD amplitudes
can be treated similarly to QED, i.e., introducing the gluon
mass or the lower limit of the gluon energy wmin to make
the divergent amplitudes finite [80].
However confinement precludes the free motion of quark

and gluons, placing those on the confining film of the
Wilson loop. As a consequence any amplitude of the QCD
PTh is IR finite at nonzero σ (for examples of IR
regularization due to confinement see [93] and Appendix
therein). This fact must modify the standard PTh and pdf
evolution equations, see [81] for recent results.
(d) The inclusion of confinement in PTh automatically

introduces hadron spectra and hadron thresholds Mth, and
usually in αsðQÞ the matching procedure at the current
quark masses is used [80,83]. Note, that σ in SUðNÞ plays
the same role as ΛQCD and one can be expressed via
another, as it was shown in [33]. The same role of σ retains
in QCD with quarks, so that the QCD PTh with confine-
ment contains the same number of RG parameters as the
standard PTh, namely σ and quark masses mq.

D. Confinement and chiral symmetry breaking

Confinement and the CSB are internally connected,
since the CSB is known only in the systems, where
confinement is operating. Moreover, at the growing temper-
ature T the chiral condensate is vanishing just in the region,
where the presence of confinement cannot be substantiated.

As was discussed in Sec. V, the resulting confinement for
light quarks should be of scalar character (it was argued in
[43,44]). As a result the presence of the scalar term q̄Mq in
the effective Lagrangian signals about the CSB. The
whole point now is to provide the formalism which
ensures both confinement and CSB, and yields all known
relations (e.g., GMOR), derived earlier without connection
to confinement.
This formalism was created in [94] and generalized

in [95], where the effective Lagrangian for quarks with
account of confinement and CSB is written in the form

Leff ¼ −Nctr logði∂̂ þ m̂þMðxÞÛÞ; Û ¼ expðiϕ̂γ5Þ:
ð40Þ

Here Û contains standard Goldstone pseudoscalar mes-
ons, andMðxÞ ≈ σjxj takes into account confinement of the
quark with the antiquark (it is convenient to associate x ¼ 0
with the midpoint between q and q̄). It is also important that
at the vertex of the qq̄ Green’s function, jxj ¼ 0 however at
x≲ λ the simple linear behavior is replaced by a more
complicated form, to simplify the matter we impose the
boundary condition Mð0Þ → MðλÞ ¼ σλ ≃ 0.15 GeV.
The Lagrangian (40) allows to obtain all known CSB

relations [94,95], where Mð0Þ does not enter, but in
addition many new relations, e.g., the effective chiral
Lagrangian (ECL) was derived with known coefficients
not only in Oðp2Þ order, but also in Oðp4Þ; Oðp6Þ [95].
Moreover, the quark coupling constants of π; K − −fπ, and
fK have been calculated in good agreement with lattice and
experimental data [96]. The most important point here is
that the new chiral-confinement (CC) Lagrangian takes into
account both q, q̄, and the chiral ðπ; ππ; K; KK̄; ...Þ d.o.f.
This is important in the case of external fields, where, e.g.,
magnetic fields (MF) act directly on the quark d.o.f. and
indirectly on the chiral d.o.f. (e.g., on π0; 2π0::). This
important check was done in the MF dependence of quark
condensate, hq̄qðBÞi in [97]. Both results are in good
agreement with lattice calculations, which, however, differ
from earlier pure chiral d.o.f. results [98].
It is important that in all these cases confinement

enters only via string tension σ and sometimes via
Mð0Þ ¼ σλ, where λ is the same as in the gluelump mass,
λ ¼ 1

Mglp
≈ 0.2 fm.

In calculations of the π and K masses in MF via σ [99],
one finds again the dominance of the qq̄ over purely
chiral d.o.f.
Finally, it is very interesting what happens with CSB

with growing quark masses and at which value of mq the
chiral properties are lost. This analysis was done in the
FCM [100] and compared with lattice and other data. As
one can see in [100], the spectra of PS mesons approach the
non-CSB form atmq ≳ 150 MeV, in agreement with lattice
data [101].
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E. Confinement and deconfinement at growing T

Both SUðNÞ and QCD with nf > 0 are subject to the
deconfinement process at (or around) some transition
temperature Tc, and at higher T on the lattice one observes
the quark-gluon medium, called the quark-gluon plasma
(qgp). While in SU(3) this is the weak first order transition
[102], in the case of QCD, nf ¼ 3 the thermodynamic
mechanism is not yet determined. These transitions can be
understood qualitatively from the principle of the minimal
free energy (maximum pressure), if one neglect artificial
Hagedorn states.
The interesting point is that confinement is T dependent

and in SU(3) σ decreases before the transition, as shown
in [103], which helps to describe well the whole T
dependence [102]. The same happens in QCD with
nf ¼ 3, and here the visual phenomenon is the disappear-
ance of the chiral condensate hq̄qðTÞi at T ∼ 0.16 GeV
[104], since in the FCM at small mq, hq̄qðTÞi ∼ ðσðTÞÞ3=2.
Since FCM is Oð4Þ invariant, it contains both color-

electric (CE) and color-magnetic (CM) correlators, which
imply CE and CM confinement (CMC). At T ¼ 0 both CE
and CM correlators coincide, while with growing T the
correlators behave in a different way.
The effect of CMC is dominant for the gluon plasma in

SU(3) and for the qgp, as shown in [102,105], where the
CM dynamics was explicitly formulated and the results
compared with lattice data. One can expect that CMC is
also important for qq̄ and gg correlations in the decon-
fined phase.
The CMC plays an especially important role in the

temperature perturbation theory, where it prevents IR
divergencies and allows us to solve the Linde problems,
by summing a converging infinite set of finite perturbative
diagrams [106].
Thus the deconfinement process helps to understand

confinement and its structure in detail, and this analysis is
becoming more and more informative.

VIII. CONCLUSIONS

Thewhole discussion above is aimed at the understanding
confinement not as a special interesting phenomenon, but
rather stressing the point that in QCD confinement is a
central property of the whole physical world, which estab-
lishes its existence. Indeed, confinement via the baryon
masses creates 99% of the visible energy in the Universe.
Therefore all properties of confinement, listed as (1)-(7) in
the Introduction and all five consequences in Sec. VII, are
intimately connected to each other.
We have shown above that the FCM satisfies all these

criteria and is intimately connected to the bilocal field
correlator, which provides confinement (the area law of
Wilson loops) yielding mass to the gluons inside a hadron.
In this respect FCM is similar to the DGL approach, but the
FCM mechanism of the gluon mass creation is different.

Indeed, for FCM the quadratic correlator is dominant and
this dominance is self-consistent and is supported by the
Casimir scaling, while in DGL the confinement mechanism
evidently includes higher order correlators. It is interesting
to search for the effects, connected to the quartic and higher
correlators, possibly associated with the DGL configura-
tions and justifying its presence (at least partial) in the QCD
vacuum.
The simplicity of the FCM confinement and its capabil-

ity to satisfy all criteria, makes it reasonable theory, which
can be successfully used in all nine directions, as it was
demonstrated above.
With all that, there are still unsolved issues of confine-

ment theory: (1) the mechanism of deconfining temperature
transition in full QCD, (2) the temperature variation of field
correlators, yielding the decreasing string tension σðTÞ,
(3) the role of higher correlators in QCD. The latter can be
illustrated by the relation obtained in [17,57]

dDEðzÞ
dz2

¼ g
8
fabchFa

αβð0ÞFb
βγð0ÞFc

γαð0Þi: ð41Þ

These topics are presently studied in the framework of
the FCM approach.
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APPENDIX A: THE CONTRIBUTION
OF THE CORRELATOR ⟪F̂ F̂ F̂ F̂⟫

The quartic correlator is equal to I4
4!
, where

I4 ¼ g4
Z
S
dσð1Þ

Z
S
dσð2Þ

Z
S
dσð3Þ

×
Z
S
dσð4Þ⟪F̂ð1ÞF̂ð2ÞF̂ð3ÞF̂ð4Þ⟫: ðA1Þ

Since the correlator is self-connected, i.e., it does not
depend on position for large area S, one can separate one
integral, say

R
dσð1Þ ¼ areaðSÞ ¼ RT4, and estimate the

rest as follows. The typical construction for the 4- point
connected correlatorGð1; 2; 3; 4Þ≡ ⟪F̂ð1ÞF̂ð2ÞF̂ð3ÞF̂ð4Þ⟫
with 2g vertices g½AðiÞAðiÞ� at each point i, is made with 1g
propagators connecting neighboring points and the cover-
ing film over all construction, so that an upper limit is

Gð1; 2; 3; 4Þ≲ g4hGð1gÞð1; 2ÞGð1gÞð2; 3Þ
×Gð1gÞð3; 4ÞGð1gÞð4; 1Þi;

where Gð1gÞ
μν ðx; yÞ ¼ hTraAμðxÞΦðx; yÞAνðyÞi. Using the

asymptotics of Gð1gÞ in [13]

FIELD CORRELATOR METHOD FOR THE CONFINEMENT IN QCD PHYS. REV. D 99, 056012 (2019)

056012-15



Gð1gÞðx; yÞ ∼ ðN2
c − 1ÞNc

σadj
4π

e−M
ð1gÞjx−yj

¼ ae−M
ðigÞjx−yj; ðA2Þ

one arrives at the estimate

I4 ¼ areaðSÞ
Z

d2xd2yd2za4e−M
ð1gÞP

ij
rij ðA3Þ

with a ¼ gNcðn2c−1Þσadj
4π .

The integral yields the factor const
ðM1gÞ6, with const ≈Oð1Þ,

so that the final estimate is

I4 ¼ areaðSÞ
�
gNcðn2c − 1Þ

4π

�
4

σadj
σ3adj

ðMð1gÞÞ
≈ σadjareaðSÞðσλ2Þ3: ðA4Þ

Since σλ2 ≈ 0.05, one can see a strong suppression
factor, ensuring the Casimir scaling at the order OðF4Þ.

APPENDIX B

We start with the standard definition of quadratic
correlator [13]

Dμν;λσðx;0Þ ¼
g2

Nc
htrFμνðxÞΦðx;0ÞFλσð0Þi

¼ ðδμλδνσ − δμσδνλÞDðxÞ

þ 1

2

� ∂
∂xμ ðxλδνσ − xσδνλÞþ ðμλ→ νσÞ

�
D1ðxÞ:

ðB1Þ

To express static potential VðRÞ via Fi4 one can use the
representation

WðR; T4Þ ¼ exp

�
−
g2

2

Z
hFΦFidσdσ0

�
¼ expð−V̂dt4Þ

and express the correlator hFðxÞFðyÞi ∼D as in (B1). As a
result one obtainsZ

V̂dt4 ¼
1

2

Z
D14;14ðu − vÞd2ud2v

¼ 1

2

Z
d
�
u4 þ v4

2

�
dðu4 − v4Þd

�
u1 þ v1

2

�
× dðu1 − v1ÞD14;14ðu − vÞ

¼ 2

Z
dt4

Z
∞

0

dν
Z

R

0

dηðR − ηÞðDðν; ηÞ

þ 1

2

d
dη

ðηD1ðν; ηÞÞ ðB2Þ

where t4 ¼ u4þv4
2

; ν ¼ ju4 − v4j; η ¼ ju1 − v1j, one finally
obtains

V ¼ VDðRÞ þ V1ðRÞ;

VD ¼ 2

Z
∞

0

dν
Z

R

0

dηðR − ηÞDðν; ηÞ ðB3Þ

VDðRÞ ¼ V linðRÞ þ VðsatÞ
D ðRÞ ðB4Þ

and consider the color-electric correlator DE
1 ðxÞ putting

ν ¼ σ ¼ 4, which produces the potential V1ðrÞ.

V1ðrÞ ¼
Z

r

0

λdλ
Z

∞

0

dτDE
1 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ τ2

p
Þ: ðB5Þ

As a new step one must express D1ðxÞ via the gluelump
Green’s function to the lowest order in background per-
turbation theory. To this end one can extract from
FμνðxÞ ¼ ∂μAν − ∂μAμ − ig½Aμ; Aν�, the part with deriva-
tives, which contributes to D1

Dð0Þ
1μν;λσðx;yÞ

¼ g2

2N2
c

� ∂
∂xμ

∂
∂yλ htraAνðxÞΦðx;yÞAσðyÞiþperm

�
ðB6Þ

and denoting as Gð1gÞ the structure in the angular brackets,
one obtains for μ ¼ λ ¼ 4.

∂
∂x4

∂
∂y4G

ð1gÞ
νσ ðx − yÞ ¼ ∂

∂x4 ðx4 − y4ÞD1ðx − yÞδνσ þ perm:

ðB7Þ

As a result one obtains that Gð1gÞ
νσ ðzÞ ¼ δνσGð1gÞðzÞ and

DE
1 is connected to Gð1gÞ as

DE
1 ðxÞ ¼ −

2g2

N2
c

dGð1gÞ

dx2
: ðB8Þ

Here Gð1gÞðx − yÞ is the Green’s function of the gluon
gluelump, i.e., the gauge invariant combination of the gluon
propagator augmented with the parallel transporterΦðx; yÞ,
as shown in Fig. 1.
This function and the corresponding gluelump spectrum

was found analytically [35], being in a good agreement
with the lattice data [36].
Inserting (3) into (2), one obtains the relation between

V1ðrÞ and Gð1gÞ, namely

V1ðrÞ¼−
g2

N2
c

Z
∞

0

dτ
	
Gð1gÞ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þτ2

p 

−Gð1gÞðτÞ



: ðB9Þ

Since Gð1gÞðx → ∞Þ → 0 one obtains
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V1ð∞Þ ¼ g2

N2
c

Z
∞

0

dτGð1gÞðτÞ: ðB10Þ

V1ðrÞ ¼ Vcoul þ VðsatÞ
1 ðB11Þ

Therefore to define properly the perturbative Coulomb
interaction one can write,

VðpertÞ
1 ðrÞ ¼ 8αs

3π

Z
∞

0

dν

�
1

ν2
−

1

ν2 þ r2

�

¼ VðpertÞ
1 ð∞Þ − 4αs

3r
ðB12Þ

and to renormalize (24) one can put VðpertÞ
1 ð∞Þ ¼ 0.

In a similar way one introduces the two-gluon gluelump,
as it was done in [33–35]

Diklmðx; yÞ ¼ Dð0Þ
ik;lm þDð1Þ

ik;lm þDð2Þ
ik;lm: ðB13Þ

Dð2Þ
ik;lmðx; yÞ ¼ −

g4

2N2
c
htrað½ai; ak�Φ̂ðx; yÞ½al; am�Þi: ðB14Þ

½ai; ak� ¼ iaai a
b
kf

abcTc ðB15Þ

Gik;lm ¼ trahfabcfdefaai ðxÞabkðxÞTcΦ̂ðx; yÞTfadl a
e
mi:

ðB16Þ

Gik;lmðx; yÞ ¼ N2
cðN2

c − 1Þðδilδkm − δimδklÞGð2glÞðx; yÞ;
ðB17Þ

Dðx − yÞ ¼ g4ðN2
c − 1Þ
2

Gð2glÞðx; yÞ: ðB18Þ

Gð2glÞð0Þðx; yÞ ¼ 1

ð4π2ðx − yÞ2Þ2 þO
ðαs lnðx − yÞÞ

ðx − yÞ4 ;

ðB19Þ

σ ¼ 1

2

Z
d2xðDðxÞ þ higher correlatorsÞ: ðB20Þ

Gð2glÞðTÞ ¼
X

jΨð2glÞ
n ð0Þj2e−Mð2glÞ

n T : ðB21Þ

APPENDIX C: SELF-CONSISTENCY OF σf

The behavior of Gð2gÞðzÞ; DEðzÞ for z → 0 was analyzed
in [33,34], where it was shown that at z ≪ λ, DE

npðzÞ≡
DEðzÞ, after subtraction of the divergent term,
G2gÞðzÞ ¼ const

z4

G2gÞðzÞ ¼ G2gÞ
pertðzÞ þ G2gÞ

np ðzÞ

G2gÞ
pertðzÞ ¼

1

ð4π2z2Þ2 þO

�
αs ln z
z4

�

has a minimum at z ¼ 0, namely

DEð0Þ ≅ Nc

2π2

�
2π

β0

�
2

DEðλÞ;

which however does not change appreciably the integral
(5), so that one can write

σf ¼
1

2

Z
d2zDEðzÞ; DEðzÞ ≅ ae−Mjzj; M≡Mð2gÞ

0 ;

ðC1Þ

where a according to (15) is

a ¼ 16π2α2sðMÞ · 0.4σ2f: ðC2Þ

From (C1) and (C2) one obtains the self-consistency
condition

σf ≥ 16π2 · 0.4σ2fα
2
sðMÞ π

M2
; ðC3Þ

where one should take into account the relation

αsðMÞ ¼ 4π

β0ln
	
M2þM2

B
Λ2


 ðC4Þ

with MB ≅
ffiffiffiffiffiffiffiffiffiffi
2πσf

p
≈ 1 GeV, M ¼ 2 GeV, where we

take into account the IR regularization of αs [85]. As a
result one obtains from (C3) and (C4) the connection of Λσ

and σ

Λ2
σ ¼ ðM2 þM2

BÞ exp
�
−

ffiffiffiffiffi
σf

p
M

17.7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=N2

c

p
ð1 − 2

11

nf
Nc
Þ
�
; ðC5Þ

and for σf¼0.18GeV, M¼2GeV, MB¼1GeV, Nc → ∞
one obtains Λσ ¼ 0.342 GeV. Here one must take into
account the difference between the space constant Λσ and
the momentum space ΛQCD, see [91,92] for the analysis,
Λσ ≈ 1.3ΛQCD, yielding ΛQCD ¼ 0.29 GeV.
One can check that for σ ¼ 0.18 GeV2,M ¼ 2 GeV one

obtains αsð2 GeVÞ ≈ 0.33, which is within the PDG limits,
and both relations (C3) and (C4) are satisfied. In this way
the self-consistency check shows the reliability of the
obtained gluelump string tension.
In addition one check the behavior of DEðzÞ in (C1) vs

lattice data for DEðzÞ and DE
1 ðzÞ, obtained in [37–41].

The general structure of these correlators on the lattice
can be approximated as DE ∼ a

z4 þ be−z=λ, with λ ∼ 0.2 fm
in reasonable agreement with (C1). As it is discussed in
Sec. IV, this lattice behavior contradicts the field correlators
obtained in DGL, DE, DE

1 ∼Oðe−z=λz4 Þ, see [10,62] for more
detail.
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