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Apartado Postal 50-542, Ciudad de México 04510, Mexico
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Avenida Rancho Seco S/N, Col. Impulsora Popular Avícola,
Nezahualcóyotl, Estado de México 57130, Mexico

(Received 19 October 2018; revised manuscript received 15 February 2019; published 22 March 2019)

In this work, we explore the effects of a weak magnetic field on the decay process of a neutral scalar
boson into a pair of charged fermions in vacuum. Since the analytical computation of the decay width needs
some approximation, following two different approaches, we study the low and high transverse momentum
limits. Our findings indicate that the magnetic field effect depends on the kinematics of the scalar particle.
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I. INTRODUCTION

Scalar fields appear in several branches of physics, in
different ways, as fundamental or composite fields. At
different energy scales, they can be present in condensed
matter (superconductors [1]), compact astrophysical objects
(color superconductivity [2] and superfluidity [3]), high
energy physics (Higgs physics and heavy ion collisions
[4–6]), and cosmological events (where the scalar field can be
a matter [7] and energy [8] component of the dark sector, or
the inflaton; see e.g., [9]).
On the other hand, in all these processes, we can also

expect the presence of a magnetic field. Thus, the following
is a natural question that emerges: how does this magnetic
field change the physics in the phenomena driven by the
scalar field? Several authors have addressed this question,
finding different answers and eventually discovering new
phenomena, such as direct and inverse magnetic catalysis
[10,11]. Some of these works have been developed in
inflation [12], electroweak phase transition and baryogen-
esis [13], and QCD phase diagrams in high density [14] and
temperature [15] regions (for recent reviews, see [16]).
Other answers have also come from the study of the

effect of a magnetic field on the particle decay process. This
effect has been studied in different situations: high intensity

laser experiments [17], heavy ion collisions [6,18,19],
compact objets [20,21], and early universe events [22–24].
In all these contexts, the decay processes take place in

external conditions with different temperature, density,
electromagnetic field strength, and type of progenitor
and decay products [25].
In the cases presented in the literature, two limits are

typically considered: strong magnetic fields, in which case
only the lowest Landau level (LLL) is taken into account,
and weak magnetic fields, that allow us to perform some
kind of expansion series in B (with B the magnetic field)
and keep only the leading terms. In addition, the methods
followed to calculate the decay rate and the approximations
necessary to the calculations vary from one work to
another. Even though all these differences are expected
to have consequences for the process, it is nonetheless
remarkable that different results can be found in the
literature for the same physical process.
In addition to the first works on decay processes in

the presence of an external magnetic field [26–32], there
is once again intense activity around this subject
[18,19,24,33–39]. It is nonetheless important to further
explore this area in order to discern which are the relevant
physical ingredients and to make the results converge when
they describe the same physical situation. Moreover, it is
crucial to delimit the magnetic field effect on the collected
data in experiments since any deviation from the expected
result could be misinterpreted as new physics.
In a recent publication [22], we have shown that the

kinematics of the progenitor particle plays an important
rôle in the decay process. This ingredient should be taken
into account since, depending on the kinematic region of
interest, the decay width can be enhanced or inhibited by
the external magnetic field. In the present work, we extend
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these ideas by exploring another important aspect on the
decay process: the spin.
In order to explore the effect of external magnetic fields

on the decay process and its possible relation with spin, in
this work we shall study a heavy scalar boson decay
into two charged fermions, in vacuum, with different
approaches. In particular, we are interested in the weak
field limit, in such a way that our study could be applied to
particle production during late stages of peripheral heavy
ion collisions [40] and in the inflaton decay process in a
warm inflation scenario [41–43], considering that cosmic
magnetic fields observed at all scales in the Universe
[44,45] could be primordial [46–48].
The outline of this work is as follows: in Sec. II, we

present the model and calculate the scalar self-energy in the
presence of an external homogeneous magnetic field by
considering the interaction of a neutral scalar with a pair of
charged fermions, up to one loop; in Sec. III, we get the
heavy boson self-energy in the weak field limit through two
different approximations that take care of the kinematic
along the transverse direction with respect to the magnetic
field and obtain the decay width by invoking the optical
theorem; results are presented in Sec. IV, together with a
discussion on the physical differences between these two
approaches. Finally, Sec. V contains our conclusions.

II. MODEL

Let us consider a model in which a neutral scalar boson ϕ
interacts with two charged fermions ψ̄ψ . The simplest form
for a Lagrangian to account for this process is

L ¼ gϕψ̄ψ : ð1Þ

This interaction term gives rise to the Feynman diagram
shown in Fig. 1, whose analytical expression reads

ΣBðx; yÞ ¼ ig2tr½SBFðx; yÞSBFðy; xÞ�: ð2Þ

To consider the effect of an external magnetic field, we use
the Schwinger’s proper-time method [49], that incorporates
the full magnetic contribution into the momentum-
dependent propagators. In such a way, the propagator
has the form

SBFðx; yÞ ¼ Ωðx; yÞ
Z

d4k
ð2πÞ4 S

B
FðkÞe−ikðx−yÞ; ð3Þ

where

SBFðkÞ ¼
Z

∞

0

ds
cosðeBsÞ e

−isðm2−k2k−k
2⊥
tanðeBsÞ
eBs Þ

×

�
ðmþ =kkÞe−ieBsΣ3 þ =k⊥

cosðeBsÞ
�
; ð4Þ

and

Ωðx0; x00Þ ¼ exp

�
−ie

Z
x0

x00
AμðxÞdxμ

�
ð5Þ

is the well-known Schwinger’s phase which encodes the
gauge dependence of the external magnetic field, and
e and m denote the charge and mass of the fermion field
ψ , respectively; B is the external magnetic field, and
Σ3 ¼ iγ1γ2, with γ’s the Dirac gamma matrices. Notice
that this particular form for the propagator implies that
we have considered an external uniform magnetic field
along the z direction, allowing us to adopt the notation
a · b≡ ða · bÞjj þ ða · bÞ⊥, with ða · bÞjj ≡ a0b0 − a3b3

and ða · bÞ⊥ ≡ −a1b1 − a2b2.
In the momentum space, the self-energy reads

ΣðpÞ ¼ ig2
Z

d4k
ð2πÞ4 tr½S

B
FðkÞSBFðk − pÞ�; ð6Þ

where p and k denote the decaying and product particles
momenta, respectively. Note that the phase has canceled
identically, due to a close loop of charged fermions. Once
we replace the propagators from Eq. (4) in Eq. (6), the
scalar self-energy dressed with a magnetic field reads

ΣBðpÞ¼ ig2
Z

d4k
ð2πÞ4

Z
∞

0

ds1

Z
∞

0

ds2
e−im

2ðs1þs2Þ

cosðeBs1ÞcosðeBs2Þ
×eis1ðk

2
kþk2⊥

tanðeBs1Þ
eBs1

Þeis2ððk−pÞ
2
kþðk−pÞ2⊥

tanðeBs2Þ
eBs2

Þ

×tr

��
ðmþ=kkÞe−ieBs1Σ3 þ =k⊥

cosðeBs1Þ
�

×

�
ðmþ=kk− pkÞe−ieBs2Σ3 þ =k⊥− p⊥

cosðeBs2Þ
��

: ð7Þ

Now, by using the change of variables,

s ¼ s1 þ s2 and v ¼ s1 − s2
s1 þ s2

; ð8Þ

and performing the trace over Dirac’s gamma matrices, as
well as the Gaussian integrals over the momenta k, we
finally arrive at

FIG. 1. Leading-order contribution to the neutral scalar ϕ boson
self-energy in a magnetic field background. ψ 0s are charged
fermions and the double dashed lines represent their propagators
dressed with the magnetic field.
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ΣBðpÞ¼g2eB
8π2

Z
∞

0

ds
Z

1

−1
dve−ism

2

ei
sð1−v2Þ

4
pk2e

i
eB

cosðeBsvÞ−cosðeBsÞ
2sinðeBsÞ p⊥2

×

�
1

tanðeBsÞ
�
m2þ i

s
−
1−v2

4
pk2

�
þ ieB
sin2ðeBsÞ

−
cosðeBsvÞ−cosðeBsÞ

2sin3ðeBsÞ p⊥2

�
; ð9Þ

which accounts for the effect of a magnetic field on the
scalar self-energy due to a loop of charged fermions.
Equation (9) is an exact result, since we have not made
any approximation on the magnetic field strength.
However, the remaining integrals cannot be calculated
analytically because of the involved form of the self-energy.
To gain some insight about the magnetic field effect on the
analytical structure of the self-energy, in what follows we
shall explore two approximations.

III. MAGNETIC FIELD EFFECT ON
SCALAR DECAY INTO FERMIONS

Taking into account that in Eq. (9) the physical scales are
the progenitor particle momentum p, the daughter particle
mass m and the magnetic strength interaction eB, the
approximations that can be done depend on the hierarchy of
scales among these quantities. In particular, as we men-
tioned in the Introduction, we are interested in weak
magnetic fields with respect to the mass m, i.e.,
eB ≪ m2. In this regime, we still have two possibilities
depending on the third physical scale involved in the self-
energy, the transverse momentum. As can be seen in
Eq. (9), there is an exponential factor that involves the
combination of the transverse momentum and the magnetic
field. In this way, we should be careful with the expansion
of this term. In what follows, we study two different
approximations depending on the progenitor particle
kinematics.

A. Weak magnetic field and low
transverse momentum limit

Let us start by considering the limit in which both the
magnetic field and the decaying particle transverse momen-
tum are low and of the same order of magnitude. In this
case, all the factors in the integrand of Eq. (9) can be
expanded up to ðeBÞ2 terms and the self-energy can be
written as

ΣBðpÞ ≃ Σð0Þ þ Σ̃ðpÞ þ Σ̃BðpÞ; ð10Þ

where the first two terms correspond to the self-energy in
vacuum and are given by

Σð0Þ ¼ g2

4π2

Z
∞

0

ds
s
e−im

2s

�
2i
s
þm2

�
; ð11Þ

which is the contribution that contains the divergencies
associated with the massm and the coupling constant g, and

Σ̃ðpÞ ¼ g2

8π2

��
p4

2
− 2m2p2

�Z
1

−1
dv

v2

ð1− v2Þp2 − 4m2

þp4

2

Z
1

−1
dv

v4

ð1− v2Þp2 − 4m2
−p2

Z
∞

0

ds
s
e−ism

2

�
;

ð12Þ

that is composed by two finite terms (the first two terms)
and a divergent term (the last one) related to the wave
function. Since these divergencies are related with physical
scales, all of them are real quantities and will not affect the
imaginary part, in which we are interested here.
Finally, the magnetic contribution in Eq. (10) is

Σ̃BðpÞ ¼ g2

8π2

�
16

3
ðeBÞ2m2

Z
1

−1

dv
ðð1 − v2Þp2 − 4m2Þ2 −

4

3
ðeBÞ2pk2

Z
1

−1
dv

1 − v2

ðð1 − v2Þp2 − 4m2Þ2

þ 8

3
ðeBÞ2p⊥2m2

Z
1

−1
dv

ð1 − v2Þ2
ðð1 − v2Þp2 − 4m2Þ3 −

2

3
ðeBÞ2p2p⊥2

Z
1

−1
dv

ð1 − v2Þ3
ðð1 − v2Þp2 − 4m2Þ3

þ 1

3
ðeBÞ2p⊥2

Z
1

−1
dv

ð1 − v2Þð7 − 3vÞ
ðð1 − v2Þp2 − 4m2Þ2

�
: ð13Þ

Note that by doing this expansion we have taken into
account that the main contribution to the integral comes
from the region eBs ≪ 1 [26,27]. In Eqs. (11), (12), and
(13), the integrals over v or s have been performed when
the operation became trivial.
In order to calculate the decaying rate, we invoke the

optical theorem that relates the imaginary part of the self-
energy and the decay rate as [50]

Γ ¼ −
ℑðΣðpÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

p ; ð14Þ

where the imaginary part of the self-energy, up to one loop,
is represented by cutting the Feynman diagram, as shown
in Fig. 2.
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Replacing Eq. (10) into Eq. (14) and bearing in mind that
the mass m has an iϵ term that warrants the causality in the
propagator in Eq. (4), the calculation of the imaginary part
can be easily done by using the identities [51,52]

lim
ϵ→0

ℑ
�

1

ðxþ iϵÞn
�

¼ ð−1Þnþ1

n!
dnδðxÞ
dxn

; ð15Þ

and

Z
∞

−∞

dmδðx − aÞ
dxm

fðxÞdx ¼ ð−1Þm dmfðxÞ
dxm

				
x¼a

: ð16Þ

In such a way, we obtain for the decay rate

ΓB ¼ 2g2

16π

�ðp2 − 4m2Þ3=2
p

−
24ðeBÞ2m4p⊥2

p5ðp2 − 4m2Þ3=2

−
16ðeBÞ2m2p⊥2

3p5

12m4 − 7m2p2 þ p4

ðp2 − 4m2Þ5=2

þ 4ðeBÞ2
3p3

4m2p2 þ 2m2p⊥2 þ 2p2p⊥2 − p4

ðp2 − 4m2Þ3=2
�

×
Θðp2 − 4m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2 þM2
p : ð17Þ

In Appendix, we show an alternative way to calculate the
magnetic contribution in the above equation.
In particular, for an on-shell scalar particle in its rest

frame (p2 ¼ M2), the decay width reads

ΓB¼ 2g2

16π

�ðM2−4m2Þ3=2
M2

−
4ðeBÞ2

3M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−4m2

p
�
ΘðM2−4m2Þ:

ð18Þ

The apparent divergencies near the threshold p ¼ 2m in
the second term of this equation, as well as in several terms
of Eq. (17), are in fact not present since, in order to be
consistent with the weak field limit expansion, it is required
that the magnetic field strength goes to zero faster than the
terms that contain the threshold information. This statement
comes from the fact that in the expansion shown in
Eq. (17), the expansion parameter is eB=ðp2 − 4m2Þ.
This, in turn, goes back to Eq. (9), which, in the absence
of a magnetic field, has two different physical scales: m2

and ðp2 − 4m2Þ, which correspond to the extreme values in
the argument of the exponential. The last one is the relevant
scale for the development of the self-energy imaginary part
(see also [24]).

B. Weak magnetic field and high transverse
momentum limit

Let us now explore the other weak field limit:
eB ≪ m2 ≪ p2⊥. In this case we must carry out a Taylor
expansion with care [26]: the argument in the exponential
that involves the magnetic field is expanded up to ðeBsÞ2,
however, since there are terms that contain a factor p2⊥ that
can be large (known as crossed field approximation), then,
the exponential itself cannot be expanded in powers of eBs.
Bearing this in mind, we get

ΣBðpÞ ≃ g2

8π2

Z
∞

0

ds
Z

1

−1
dv e−ism

2

ei
sð1−v2Þ

4
p2

eis
3ðeBÞ2

48
ð1−v2Þ2p⊥2

×

�
m2

s
þ 2i
s2

−
1 − v2

4s
p2 −

m2ðeBÞ2s
3

þ ðeBÞ2s
12

ð1 − v2Þpk2

−
ðeBÞ2s
48

ð1 − v2Þð5 − v2Þp⊥2

�
: ð19Þ

In a similar way as we proceeded in the previous section,
we can decompose the self-energy as

ΣBðpÞ ≃ Σð0Þ þ Σ̃BðpÞ; ð20Þ

with Σð0Þ the same term as in Eq. (11), and

Σ̃BðpÞ¼ g2

8π2

�
−p2

Z
∞

0

ds
s
e−ism

2 −
ðeBÞ2
3

�
m2−

pk2

4
þ5p⊥2

16

�
V0S1þ

i
2

�
m2p2−

p4

4

�
V2S0−

ðeBÞ2
12

�
pk2þ

p⊥2

2

�
V2S1

þ i
ðeBÞ2
12

p⊥2

�
m2−

p2

4

�
V2S2− i

p4

8
V4S0þ

7ðeBÞ2
48

p⊥2V4S1− i
m2ðeBÞ2

12
p⊥2V4S2þ i

ðeBÞ2
48

p2p⊥2V6S2

�
; ð21Þ

FIG. 2. Schematic representation of the imaginary part of the
self-energy, obtained by cutting the one-loop Feynman diagram.
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where, for simplicity, we have introduced the notation

VnSm ≡
Z

1

−1
dv vn

Z
∞

0

ds smeisð1−v
2

4
p2−m2þs2ðeBÞ

2

48
ð1−v2Þ2p⊥2Þ:

ð22Þ

It is worth to notice that in this case it was not
possible to identify the Σ̃ðpÞ, like in Eq. (10), due
to the fact that the integrals include a new exponential
factor.
Once we replace Eq. (20) in Eq. (14), we arrive at

ΓB ¼ g2

16π

8
ffiffiffi
23

p

ðeBÞ2=3p⊥2=3

�
−
p2

2

Z
1 ffiffiffiffiffiffiffiffiffi
1−4m2

p2

q dvð1− v2Þ−2=3v2
�
1þ v2

4
p2 −m2

�
AiðxÞ

þ 4

3

Z
1 ffiffiffiffiffiffiffiffiffi
1−4m2

p2

q dvð1− v2Þ−5=3v2
�
1þ v2

4
p2 −m2

��
1− v2

4
p2 −m2

�
AiðxÞ

þ 2
ffiffiffi
23

p ðeBÞ4=3
3p⊥2=3

Z
1 ffiffiffiffiffiffiffiffiffi
1−4m2

p2

q dvð1− v2Þ−4=3
�
1− v2

4
pk2 −

ð1− v2Þð7v2 − 5Þ
16

p⊥2 −m2

�
Ai0ðxÞ

�
Θðp2 − 4m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2 þM2
p ; ð23Þ

where the terms that involved the integration over s have
been identified with the integral representation of the first
kind Airy functions

AiðxÞ ¼ 1

π

Z
∞

0

cos

�
xtþ t3

3

�
dt ð24Þ

and its derivatives [53], with

x ¼ m2 − 1−v2
4

p2

ð−p2⊥ðeBÞ2ð1−v2Þ2
16

Þ1=3
: ð25Þ

Note that the zero magnetic field limit can be recovered
by using the Dirac delta representation [53]

δðxÞ≡ lim
ε→0

1

ε
Ai

�
x
ε

�
with ε≡

�ðeBÞ2
m4

�1
3

:

It is worth keeping in mind that this approximation does
not allow us to study the decay process in the particle rest
frame since, by construction, p⊥ is large. In the next
section, we present our results and discuss the rôle played
by the decaying particle kinematics: p⊥ ∼m and p⊥ ≫ m.

IV. RESULTS AND DISCUSSION

The decay rate as a function of the magnetic field
normalized with the fermion mass m, in the regime of
low transverse momentum eB ∼ p2⊥ ≤ m2 < p2, Eq. (17),
presents a slight suppression as the magnetic field
increases. In order to quantify the magnetic field effect
on the decay process it is convenient to compare it with the
decay rate in vacuum,

ΔΓðp; p⊥; m; eBÞ≡ ΓBðp; p⊥; m; eBÞ
Γvacðp; p⊥; mÞ ; ð26Þ

where Γvacðp; p⊥; mÞ corresponds to the first term in
Eq. (17). For definiteness, we call this expression the
decay response to the external magnetic field. In this way,
we also eliminate the relativistic effect due to dilatation of
time and the dependence on eB can more easily be seen. To
have an idea of the suppression strength, with the param-
eters p=m ¼ 5 and p⊥=m ¼ 0.1 for eB=m2 within (0,0.2),
the response of the decay to the external magnetic field
goes like

ΔΓðp; p⊥; m; eBÞ ≈ 1 − 0.003

�
eB
m2

�
2

: ð27Þ

In particular, for a magnetic field strength of eB=m2 ¼ 0.2,
it represents a suppression of 0.012%. The corresponding
dependence is so weak that it can hardly be detected in
experiments; nonetheless, we present it for its theoretical
interest and to show the tendency of the decay process
under the influence of the magnetic field and contrast the
behaviors at low and large momenta.
In the large transverse momentum regime, the magnetic

field effect is more remarkable, and can be appreciated in
the following figures. The behavior of the decay rate with
the magnetic field, for the high momentum approximation,
can be seen in Fig. 3, where the factor g2=16π was ignored.
We plotted a log-graph, in order to remark the variation of
the decay rate, which is highly affected by the Lorentz
factor in this regime. Here, we can notice that the decay
process follows a different behavior: the increase of the
magnetic field enhances the decay width and this is
magnified as the transverse momentum grows. To separate
the relativistic effects on the decay width and highlight the
pure magnetic field contribution, in Fig. 4, we plot ΔΓ as a
function of eB=m2 by using the high momentum approxi-
mation given by Eq. (23), for different values of the
transverse momentum.
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In order to explore the rôle played by the spin of
the particle products in the decay process, in Fig. 5, we
compare the ΔΓ for fermions, our Eq. (26) for the decay
width in the highmomentumapproximation,with theΔΓ for
scalars in the same approximation, obtained in a previous
work [22], for p⊥=m ¼ 103. The behavior in Fig. 5 seems to
indicate that, as the magnetic field grows, the progenitor
scalar particle prefers to decay to a pair of charged fermions
than to a pair of scalars, for large momenta. More work is
needed, in the different kinematical regimes, in order to
define the rôle of the statistics of the decay products in the
presence of an external magnetic field. This work is in
progress and will be published elsewhere.

V. CONCLUSIONS

In this work we have studied the magnetic field effects
on the decay process in vacuum of a neutral scalar boson
into two charged fermions. Focusing on a weak magnetic
field, we carried out a perturbative approach and found that,
depending on the progenitor particle kinematics, the
response is inhibited or enhanced by the magnetic field.
In the low transverse momentum approximation, which
allows us to explore the decaying particle rest frame, we
observe that the external field suppresses the decay width,
meanwhile, for the high transverse momentum approxi-
mation, the effect is the opposite: as the field strength
increases, the pair creation rate is enhanced.
In the lowmomentum approximation, we found that, for a

fixed transverse momentum, the decay width ΓB, as well as
the response ΔΓ, decreases as the magnetic field strength
grows. This effect could be associated with the phase space
reduction of the charged fermions which is caused by the
increasing separation of the Landau levelswith themagnetic
field strength.
On the other hand, in the highmomentumregime,we found

that ΓB increases with the magnetic field intensity, for a fixed
transverse momentum. Themagnetic field effect on the decay
process was emphasized by considering the ratio between the
full expression (containing both the vacuum and magnetic
contribution) and the pure vacuum expression (Fig. 4). In this
way, the relativistic effect related to the dilatation of timewas
also avoided. The magnetic field rôle on this kinematical
regime could have an interesting effect in the context of Higgs
physics decaying into fermionic channels [54].
As we mentioned in the Introduction, many different

results can be found in the literature for the effect of the
magnetic field on the decay process. Since an ingredient that
could be important is the spin, in order to shed some light on
its rôle, we compared the response of the system to the
magnetic field in two different channels: ϕ → ψ̄ þ ψ and
ϕ → φþ φ, whereψ andφ are charged fermions and scalars,
respectively. This was done, in the high momentum regime,
by taking the ratio between the findings in the present work
and the results in Ref. [22], and shown in Fig. 5.We observed
that, in this case, themagnetic field impact is more important

FIG. 4. Decay response to the external magnetic field as a
function of the magnetic field strength, for different values of the
transverse momentum, in the high momentum approximation,
taking p=m ¼ 5.

FIG. 3. Decay width (in units of energy) as a function of the
magnetic field for different values of the transverse momentum,
for the high momentum approximation, taking p=m ¼ 5.

FIG. 5. Ratio of the decay responses to the external magnetic
field for two different channels, ϕ → ψ̄ þ ψ and ϕ → φþ φ,
where ψ and φ are charged fermions and scalars, respectively. We
plot this ratio as a function of the magnetic field in the high
momentum approximation, for p⊥=m ¼ 103, and, as usual, we
take p=m ¼ 5.
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on the decay process to charged fermions than to charged
scalars. These results may indicate that the spin-magnetic
field interaction increases the pair production in the fer-
mion case.
The situation studied in this work could be relevant in

different physical scenarios, especially in dilepton production
in heavy-ion collisions, direct URCA processes in neutron
stars, or during an early stage of the Universe’s evolution.
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APPENDIX: ALTERNATIVE WEAK
FIELD APPROXIMATION IN THE LOW
TRANSVERSE MOMENTUM REGIME

In the literature, it is common to find a different weak field
approximation that consists of expanding the full charged
particle propagators, givenbyEq. (4), in powers ofeB, which
differs from the weak field approach done in this work in
Sec. III A. In order to show that these two approaches give the
same result, in this Appendix we calculate the scalar decay
width resorting to the first approach. With this goal in mind,
let us start by performing a Taylor’s expansion in powers of
eB up to OððeBÞ2Þ in Eq. (4), that is

SBFðkÞ ≈
Z

∞

0

ds e−isðm2−k2Þ
�
=kþm − iΣ3ð=kk þmÞeBs

þ 1

3
ðisk2⊥ð=kþmÞ þ 3=k⊥ÞðeBsÞ2

�
: ðA1Þ

Note that, in the above equation, the integration over the
Schwinger’s proper time becomes trivial and once this is
done, the fermion propagator coincides with Eq. (48) in
Ref. [55]. Nonetheless, to keep track of the logic worked out
in this paper, we are going to work with the propagator in its
form in Eq. (A1).
Using Eq. (A1) in Eq. (6), and after some algebraic

manipulation, the scalar self-energy reads

ΣBðpÞ ¼ 4

Z
d4k
ð2πÞ4

Z
ds1ds2eis1ðk

2−m2Þþis2ððk−pÞ2−m2Þ

×

�
ðk2 − k · pþm2Þ þ eB2

�
ðk2 − k · pþm2Þ

×
�
i
1

3
s31k

2⊥ þ i
1

3
s32ðk − pÞ2⊥ − s1s2

�

þ ðk2⊥ − ðk · pÞ⊥Þðs21 þ s22 þ s1s2Þ
��

; ðA2Þ

where the trace has been done.

Now, by using the change of variable in Eq. (8) and
performing the Gaussian integration over the internal
momenta, the above equation takes the form

ΣBðpÞ¼ g2

8π2

Z
∞

0

ds
Z

1

−1
dve−isðm2−1−v2

4
p2Þ

�
2i
s2
þm2− 1−v2

4
p2

s

þðeBÞ2
3

��
1−v2

4
p2−m2

��
s− is3

�
1−v2

4

�
2

p2⊥
�

−
s
16

ð3v4−14v2þ11Þp2⊥
��

; ðA3Þ

where the first two terms correspond to the vacuum scalar
self-energy, meanwhile the rest of the terms account for
the magnetic field effect. Focussing our attention on the
magnetic contribution, it is not hard to see that, once
the integration over s and v are done, its imaginary part
reads

ℑðΣ̃BðpÞÞ ¼ g2

8π

4ðeBÞ2
3pðp2 − 4m2Þ1=2

×

�
1þ 2p2⊥ð3m4 − p2ðp2 −m2ÞÞ

p4ðp2 − 4m2Þ
�
; ðA4Þ

which coincides with the magnetic contribution inside the
square brackets in Eq. (17), once it is simplified. We also
obtained this result by using the propagator in Eq. (48) of
Ref. [55], following the standard procedure with Feynman
parametrization.
In this way, we have checked that the order of the

expansion and the integration does not affect the result,
indicating that the magnetic field does not affect the self-
energy analytical structure.
Nevertheless, it is important to note that using the full

propagators we can explore any kinematical region, includ-
ing the low and high transverse momentum regions,
meanwhile, if we use the expanded propagators, we are
restricted to the low momentum region. Furthermore, note
that the Schwinger’s proper time procedure allows us to
incorporate the whole magnetic field effect in the propa-
gators, which cannot be done using the Feynman param-
eter. Note that when using the approximated propagators,
the loop internal momenta are assumed to be small
compared with the mass and the magnetic field, which
is the main difference with our approximation, since in our
approach the internal loop momenta are completely arbi-
trary. However, both approaches lead to the same result for
the self-energy imaginary part within this kinematical
regime.
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