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A magnetic field independent regularization scheme (zMFIR) based on the Hurwitz-Riemann zeta
function is introduced. The new technique is applied to the regularization of the mean-field thermodynamic
potential and mass gap equation within the SU(2) Nambu-Jona-Lasinio model in a hot and magnetized
medium. The equivalence of the new and the standard MFIR scheme is demonstrated. The neutral meson
pole mass is calculated in a hot and magnetized medium and the advantages of using the new regularization
scheme are shown.
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I. INTRODUCTION

The possibility of strong magnetic fields of the order of
∼1019 G [1] or larger to be generated in noncentral heavy-
ion collisions has been a subject of great interest in the last
decades, opening the possibility for new and interesting
physical phenomena. The timescale and magnitude of such
fields have been estimated in simulations [2–5] for energies
and impact parameters accessible in collisions of the Large
Hadron Collider(LHC) and Relativistic Heavy Ion Collider
(RHIC). It is also expected that in magnetars [6,7], i.e.,
neutron stars with ultrastrong magnetic fields, magnetic
fields with magnitude as large as ∼1018 G can be found
inside the star. In this way, the study of nuclear matter
properties in a magnetized medium has attracted the
attention of many researchers nowadays. Usually these
properties are calculated within the framework of effective
theories or lattice, once the nonperturbative behavior of
quantum chromodynamics (QCD) prevents first principle
evaluations at the low energy regime. Some current
research problems of interest are the properties associated
with the charged and neutral pion decay constants [8–10],
decay width of vector modes [11,12] and the masses of
heavy mesons [13–20]. The masses of soft mesons have

been studied in several approaches in effective models
[21–42], holographic QCD models [43,44] as well as QCD
lattice simulations [45–50]. There are also some works
involving light baryons [51,52].
In some recent papers [53,54] the importance of using an

appropriate regularization scheme to describe magnetized
quark matter has been clearly demonstrated. In particular, it
is shown in these references a strong dependence on the
choice of the regularization scheme for the calculation of
physical observables and more importantly that an inap-
propriate regularization scheme may give rise to spurious
solutions. For example, for the calculation of the magneti-
zation some authors find oscillations which are unphysical,
others find imaginary meson masses [9] which are in fact
spurious solutions due to the inappropriate choice of the
regularization. This can be seen by comparing the meson
masses results of Ref. [21] where only real masses are
obtained using an adequate regularization scheme. The
problem comes out when B-dependent regularization
schemes are used. Therefore, it is important to obtain
regularization schemes where the separation between
magnetic and nonmagnetic effects are made in a clean
way, these schemes were baptized MFIR (magnetic field
independent regularization) in Ref. [53]. As discussed in
Ref. [54], some types of regularization prescriptions that do
not separate exactly the contribution of the vacuum from
the thermodynamic potential as, for instance, the Woods-
Saxon or Lorentzian method, can result in unphysical
oscillations in quantities such as the effective quark masses
or diquark condensates. In Ref. [55] the Schwinger proper
time method was used in order to regularize the NJL model
in a MFIR scheme, in Refs. [21,56] dimensional regulari-
zation was used. Both calculations obtain completely
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equivalent results. In fact, this suggests that the separation
in magnetic and nonmagnetic contributions is unique.
Although these techniques are extremely useful, there
are situations where it is not simple or inviable to use
them. For example, the calculation of meson pole masses in
a magnetized medium involves the calculation of mesonic
polarization loops with poles, which is not simple using the
standard MFIR regularization of Refs. [55,56]. Therefore,
we are going to introduce next an alternative MFIR scheme
which is more general and may be used in several situations
where the previous schemes are not applicable and in
certain cases with clear advantages. Our objective is to treat
effective models under strong magnetic fields like NJL
models, linear and nonlinear models, etc. To accomplish
our goal we adapt the formalism of Ref. [57] where a rather
comprehensive study of a magnetized relativistic electron
gas is given in terms of the Hurwitz-Riemann zeta function.
In the last paper the grand canonical potential, the mag-
netization, the density, etc., are given analytically in terms
of the Hurwitz-Riemann zeta function in a very elegant
way. In this paper a new regularization scheme based on the
Hurwitz-Riemann zeta function zMFIR is introduced. In
several situations there are advantages of this new tech-
nique compared to the usual MFIR. From the numerical
point of view the equations are easier to handle and thus
opening up the possibility of more complicated numerical
calculations. For instance, the calculation of susceptibilities
can be done in a much more efficient way by using zMFIR
since we are dealing with several Hurwitz zeta functions
instead of more complicated functions. We can use this
formalism to obtain several thermodynamical quantities
(e.g., the magnetization, sound velocity, the specific heat
and so on) through the calculation of derivatives which are
easier to handle with the new formalism. Also, the
analytical structure of the formalism presented here give
us a more transparent way to see individually the impor-
tance of the contributions from the medium and from the
external magnetic field, since the separation of the mag-
netic from nonmagnetic contributions are done in a exact
way. In this way, we can also explore certain limits, as well
as asymptotic expansions. In the study of Bose-Einstein
condensation in a magnetic field a pertinent formalism
using the Hurwitz-Riemann zeta functions has been
applied [58,59].
The work is organized as follows. In Sec. II we introduce

the zMFIR formalism and apply in the regularization of the
mean-field thermodynamic potential and quark mass gap
equation within the SU(2) Nambu-Jona-Lasinio model in a
hot and magnetized medium. In Sec. III the neutral meson
pole mass is calculated in a hot and magnetized medium
using zMFIR formalism. In Sec. IV we present our
numerical results and compare them with the recent
literature. In Sec. V we introduce thermomagnetic effects
in the NJL coupling constant [60,61] to include effects due
the inverse magnetic catalysis effects on the meson masses

at finite temperature and magnetic fields. Finally, in Sec. VI
we discuss our results and conclude. We leave for the
Appendix the explicit calculations of some important
quantities.

II. zMFIR—A REGULARIZATION SCHEME
BASED ON THE HURWITZ-RIEMANN

ZETA FUNCTION

In order to motivate and adapt the formalism of the
authors of Ref. [57] to be used in effective models of QCD
we discuss in a rather different way the development of
these authors in what follows. We are especially interested
in the study of the thermodynamics of effective models. It is
well known that all the thermodynamical properties can be
obtained from the partition function or the grand canonical
potential Ω:

Z ¼ Tre−βðĤ−μN̂Þ; Ω ¼ −
1

β
logZ ð1Þ

where Ĥ is the Hamiltonian operator of the system, β is the
inverse of the temperature and μ is chemical potential.
Here, we restrict our discussion to the case where there is
only one chemical specie, the generalization for several
species is trivial and for our line of reasoning it is an
unnecessary and irrelevant complication. The partition
function may be calculated through several techniques,
like second quantization, Feynman functional integration,
etc. For the calculation of Z one of the approximations
most used in the literature is the large N (or mean field
approximation (MFA)). In a large class of models, the
grand canonical potential and the thermodynamical proper-
ties derived from it, can be written as:

I ¼
X
f

X
s¼�1

Z
d3p
ð2πÞ3 fðEfÞ; Ef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
; ð2Þ

where the summation is realized over the flavor and the
spin projection in direction-3, fðEfÞ is a function of the
energy, Ef, and often the integral I contains divergent parts
that have to be regularized by an appropriate method, like
Pauli-Villars, sharp covariant or noncovariant cutoff, form
factors, etc. Our aim here is to consider fermionic physical
systems consisting of a charged particle immersed in a hot
and magnetized medium. Assuming without any loss of
generality the magnetic field B in the z-direction, it is well
known [62–64] that the motion is quantized in the plane
perpendicular to the z-axis resulting in a sum over Landau
levels and a dimensional reduction. From an heuristic point
of view one can pass from nonmagnetized to magnetized
systems through the prescription:
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Ifð0Þ¼ IfðB¼ 0Þ¼
X
s¼�1

Z
d3p
ð2πÞ3fðEfÞ

→ IfðBÞ¼ βf
X∞
n¼0

gn

Z
∞

−∞

dp3

ð2πÞ2fðEnÞ;

Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2þM2

f

q
→En ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3þM2

fþ2βfn
q

; ð3Þ

where s ¼ �1, n ¼ 0; 1; 2;… stand for the spin and the
Landau levels respectively, gn ¼ 2 − δn0 is the degeneracy
factor, βf ¼ jqfjB with jqfj the absolute value of the
electric charge of the particle f and Mf its mass. In
particular, in the present work we consider only situations
where the latter prescription can be used. Here, we
introduce the key ingredient that will allow us to formulate
the new regularization scheme, i.e., the non-normalized
density of states, gfðE;BÞ,

gfðE; BÞ ¼
βf

ð2πÞ2
X∞
n¼0

gn

Z
∞

−∞
dp3δðE − EnÞ: ð4Þ

The main idea is to use integrals involving the density of
states instead of momentum integrals. After substituting the
last expression in the following integral:

IfðBÞ ¼
Z

∞

Mf

dEgfðE;BÞfðEÞ; ð5Þ

one straightforwardly recovers IfðBÞ from the Eq. (3).
Next, using the following property of the Dirac delta
function:

Z
∞

−∞
dxδðhðxÞÞ ¼

X
i

1

jh0ðxiÞj
; ð6Þ

where xi are the roots of hðxÞ, i.e., hðxiÞ ¼ 0, i ¼ 1; 2;…

and h0ðxÞ ¼ dhðxÞ
dx , we are able to perform in Eq. (4) the

integral in p3 resulting in:

gfðE;BÞ ¼
2βf
ð2πÞ2

Xnmax

n¼0

gn
E

ðE2 −M2
f − 2βfnÞ1=2

; ð7Þ

where nmax ¼ ½E
2−M2

f

2βf
� with [x] being the floor function, i.e.,

the function which gives the largest integer less than or

equal x. Defining, qE ≡ E2−M2
f

2βf
, we rewrite Eq. (7) as:

gfðE;BÞ ¼
ð2βfÞ1=2
ð2πÞ2 E

X½qE�
n¼0

gn
1

ðqE − nÞ1=2 : ð8Þ

In order to obtain a convenient representation of gfðE;BÞ
we substitute in the summation of Eq. (8) the explicit form
of the degeneracy factor gn yielding:

X½qE�
n¼0

gn
1

ðqE − nÞ1=2 ¼
X½qE�
n¼0

2

ðqE − nÞ1=2 −
1

q1=2E

: ð9Þ

The last sum may be done using the Hurwitz-Riemann zeta
function [57,65]

ζðz; qÞ ¼
X∞
k¼0

1

ðqþ kÞz ð10Þ

and its property:

XN
n¼0

1

ðqþ nÞz ¼ ζðz; qÞ − ζðz; qþ N þ 1Þ ð11Þ

Thus, after some straightforward manipulations one obtains
the following expression [57] for qfðE;BÞ:

gfðE;BÞ ¼ E
ð2βfÞ1=2
ð2πÞ2

×

�
2

�
ζ

�
1

2
; fqEg

�
− ζ

�
1

2
; qE þ 1

��
−

1

q1=2E

�
;

ð12Þ

where fqEg≡ qE − ½qE� is the fractional part of qE, the last
expression can be written in a simplified way using the
Hurwitz-Riemann zeta function property [65]:

ζðz; qþ 1Þ ¼ ζðz; qÞ − 1

qz
;

resulting in:

gfðE;BÞ ¼ E
ð2βfÞ1=2
2π2

×

�
ζ

�
1

2
;fqEg

�
− ζ

�
1

2
; qE

�
þ 1

2q1=2E

�
: ð13Þ

The last expression does not involve anymore the explicit
sum over Landau levels, however, the magnetic and non-
magnetic contributions are still entangled. In order to
separate the magnetic from the nonmagnetic contribution
we take the limit (B → 0) or equivalently (βf → 0 and
qE → ∞) in Eq. (13). This limit can be calculated using the
Hurwitz-Riemann zeta function asymptotic limit [57]

ζ

�
1

2
;qE

�
¼−2q1=2E þ1

2
q−1=2E þ 1

24
q−3=2E þOðq−7=2E Þ; ð14Þ
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and noting that ζð1=2; fqEgÞ is a periodic and limited
function of qE, therefore, one obtains:

lim
βf→0

gfðE; BÞ ¼ E
ð2βfÞ1=2
2π2

2q1=2E ¼
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

f

q
π2

:

In the latter expression the density of states of the non-
magnetized system is recovered. Of course, this result
should be expected since taking the limit B → 0 in the
density of states one has to recover the B ¼ 0 expression.
At this point we write for future convenience:

gfðE; BÞ ¼ gfðEÞ þ ḡfðE;BÞ; ð15Þ

where gfðEÞ is the nonmagnetic contribution,

gfðEÞ ¼
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

f

q
π2

ð16Þ

and ḡfðE;BÞ is the corresponding purely magnetic
contribution:

ḡfðE;BÞ≡
�
gfðE;BÞ−E

ð2βfÞ1=2
2π2

2q1=2E

�

¼ E
ð2βfÞ1=2
2π2

×

�
ζ

�
1

2
;fqEg

�
− ζ

�
1

2
; qE

�
− 2q1=2E þ 1

2q1=2E

�
:

ð17Þ

The density of states written in the form of Eq. (15)
separates in an exact way the magnetic from the non-
magnetic contribution. Therefore, to calculate any physical
expression, we use gfðE;BÞ together with Eq. (5). Of
course, divergences may still be present and have to be
regularized using any appropriate regularization scheme.
From Eq. (14) one easily notices that ḡfðE;BÞ goes to zero
when B → 0 as expected. In conclusion, we have achieved
through Eq. (15) our objective, i.e., to separate in the
calculation of any physical expression the magnetic
from the nonmagnetic contribution. We name the present
approach (zMFIR), i.e., a zeta function based magnetic
field independent regularization scheme. For the practical
use of Eq. (5) we write:

IfðBÞ ¼ Ifð0Þ þ ĨfðBÞ; ð18Þ

where from Eq. (16) the nonmagnetic contribution is given

in terms of the momentum variable, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

f

q
, by:

Ifð0Þ ¼
Z

∞

Mf

dEgfðEÞfðEfÞ ¼
X
s¼�1

Z
d3p
ð2πÞ3 fðEfÞ: ð19Þ

Analogously, the magnetic contribution can be obtained in
terms of the variable qE as:

ĨfðBÞ ¼
Z

∞

Mf

dEḡfðE;BÞfðEÞ

¼
Z

∞

0

dqEg̃fðqE; BÞfðEðqEÞÞ; ð20Þ

with

EðqEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ 2βfqE
q

; ð21Þ

and the corresponding density of states as a function of qE:

g̃fðqE; BÞ ¼
ð2βfÞ3=2
ð2πÞ2 × H̃1=2ðqEÞ; ð22Þ

where

H̃1=2ðqEÞ ¼
�
ζ

�
1

2
;fqEg

�
− ζ

�
1

2
; qE

�
− 2q1=2E þ 1

2q1=2E

�
:

ð23Þ

Some comments are in order, with the present formalism
we have summed over the Landau levels and obtained
expressions which are integrals in terms of zeta functions.
When considering the numerical calculation of such
integrals some care has to be done since the ζð1

2
; fqEgÞ

is a periodic function of qE with period 1. In some cases,
like in the calculation of the NJL thermodynamic potential
the periodic function can be treated in very efficient way,
however, in general, there are efficient numerical algo-
rithms to perform quadrature of periodic functions [66]. In
the next section we consider the regularization of the two
flavor NJL mean-field thermodynamic potential using the
zMFIR formalism.

A. The su(2)-NJL regularized
thermodynamic potential

The NJL model lagrangian [67–69] is given by:

L ¼ ψ̄ðiD − m̃Þψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�

−
1

4
FμνFμν; ð24Þ

where Aμ is the electromagnetic gauge field, Fμν ¼
∂μAν − ∂νAμ, τ⃗ is the isospin matrix, G is the coupling
constant, Q ¼ diagðqu ¼ 2e=3; qd ¼ −e=3Þ is the charge
matrix, Dμ ¼ ði∂μ −QAμÞ is the covariant derivative, ψ is
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the quark fermion field and m̃ represents the bare quark
mass matrix,

ψ ¼
�
ψu

ψd

�
; m̃ ¼

�
mu 0

0 md

�
; ð25Þ

where we take m ¼ mu ¼ md and adopt the Landau gauge,
i.e., Aμ ¼ δμ2x1B, thus B⃗ ¼ Bê3. In the mean field approxi-
mation the NJL Lagrangian is given by [68]:

L ¼ ψ̄ðiD −MÞψ þGhψ̄ψi2 − 1

4
FμνFμν; ð26Þ

M ¼ m − 2Ghψ̄ψi; ð27Þ

where hψ̄ψi is the quark condensate. The mean-field
thermodynamic potential with B ¼ 0 is given [68,69]:

ΩðT;μ;MÞ¼ΩvacþΩMðT;μÞþðM−mÞ2
4G

þ const:; ð28Þ

with

Ωvac ¼ −Nc

X
f¼u;d

X
s¼�1

Z
d3p
ð2πÞ3 E: ð29Þ

ΩMðT; μÞ ¼ −2NfNc

Z
d3p
ð2πÞ3 ½T lnð1þ e−βðE−μÞÞ

þ T lnð1þ e−βðEþμÞÞ�; ð30Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, Nf ¼ 2 and Nc ¼ 3. In a magnet-

ized medium the corresponding mean-field thermodynamic
potential can be obtained through the prescription, Eq. (3):

Ωvac ¼ −Nc

X
f¼u;d

βf
X∞
n¼0

gn

Z
∞

−∞

dp3

ð2πÞ2 En; ð31Þ

ΩMðT;μÞ ¼ −Nc

X
f¼u;d

βf
X∞
n¼0

gn

Z
∞

−∞

dp3

ð2πÞ2

× ½T ln ð1þ e−βðEn−μÞÞ þ T ln ð1þ e−βðEnþμÞÞ�;
ð32Þ

where En¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3þM2

fþ2βfn
q

with βf ¼ jqfjB, f ¼ u; d.

This latter expression has also been derived in an alternative
way in Ref. [56]. From Eqs. (18), (19), (20) the thermo-
dynamic potential in a magnetized medium can be
written as:

ΩðT; μ;M; BÞ ¼ ΩðT; μ;MÞ þ Ω̃vacðBÞ þ Ω̃MðT; μ; BÞ;
ð33Þ

where ΩðT; μ;MÞ, i.e., the B ¼ 0 term is given in Eq. (28)
and

Ω̃vacðBÞ ¼ −Nc

X
f¼u;d

Z
∞

0

dqEg̃fðqE; BÞEðqEÞ; ð34Þ

Ω̃MðT; μ; BÞ ¼ −NcT
X
f¼u;d

Z
∞

0

dqEg̃fðqE; BÞ

× ½lnð1þ e−ðEðqEÞ−μÞ=TÞ
þ lnð1þ e−ðEðqEÞþμÞ=TÞ�: ð35Þ

Now, we proceed with the zMFIR regularization scheme,
the only divergent terms of the thermodynamic potential are
the vacuum terms given by Eqs. (29) and (34). The term
Ωvac is the usual ultraviolet divergent NJL vacuum and we
use a 3D noncovariant cutoff Λ for its regularization. The
magnetic vacuum Ω̃vacðBÞ is also ultraviolet divergent and,
hence, we discuss its regularization in Appendix A, where
it is shown that the finite magnetic vacuum contribution is

Ω̃vacðBÞ ¼ −Nc

X
f¼u;d

ð2βfÞ2
ð2πÞ2

�
1

24
ln xf þ

2

24

−
Z

1

0

dqEζ

�
−
1

2
; qE

�
ζ

�
1

2
; xf þ qE

�

þ
Z

∞

0

dqE

�
ζ

�
−
1

2
; qE

�
þ 2

3
q3=2E

−
1

2
q1=2E þ 1

24
q−1=2E

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xf þ qE
p

�
; ð36Þ

where xf ¼ M2
f

2βf
. This last magnetic vacuum term was also

calculated using MFIR and dimensional regularization in
Ref. [56] where the following expression was obtained:

Ω̃vacðBÞ ¼ −Nc

X
f¼u;d

ðβfÞ2
2π2

�
ζ0ð−1; xfÞ

−
1

2
½x2f − xf� ln xf þ

x2f
4

�
: ð37Þ

Of course, in this particular situation the latter expression is
much simpler for numerical calculations. Nevertheless, in
Table I are shown the FORTRAN numerical results using
both expressions and the respective relative error. A
constant term which drops out when physical observables
[56] are calculated was added for the comparison. It is clear
from the numerical calculation the equivalence between the
two methods. The mass gap expression for the nonmagne-
tized NJL model is given by [68,69]:

M −m
2MG

¼ IG þ IGðT; μÞ: ð38Þ
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with

IG ¼ 2NcNf

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p ð39Þ

IGðT; μÞ ¼ −2NcNf

Z
d3p
ð2πÞ3

nðEÞ þ n̄ðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p ; ð40Þ

with the Fermi distribution functions of particles, nðEÞ, and
antiparticles, n̄ðEÞ, given by:

nðEÞ ¼ 1

1þ eðE−μÞ=T
; n̄ðEÞ ¼ 1

1þ eðEþμÞ=T : ð41Þ

The magnetized gap equation was obtained in Refs. [21,56]
and is given by:

M−m
2MG

¼Nc

X
f¼u;d

βf
X∞
n¼0

gn

×
Z

∞

−∞

dp3

ð2πÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3þM2þ2βfn

q ð1−nðEnÞ− n̄ðEnÞÞ:

ð42Þ

Note that the latter expression may be obtained directly
from Eqs. (39), (40) using the prescription given in Eq. (3).
Thus, from the zMFIR scheme, Eqs. (18)–(20), one
obtains:

M −m
2MG

¼ IG þ IGðT; μÞ þ IGðBÞ þ IGðT; μ; BÞ; ð43Þ

where the vacuum term, Eq. (39), is the only divergent term
which we regularize through a noncovariant 3D cutoff
obtaining as usual:

IG ¼ Nc

π2

�
ΛϵΛ −M2 ln

�
Λþ ϵΛ
M

��
;

where ϵΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
and IGðT; μÞ is the finite non-

magnetic temperature (or medium) dependent term given in
Eq. (40). The finite magnetic contributions are given by:

IGðBÞ ¼ Nc

X
f¼u;d

X∞
n¼0

gnβf

Z
∞

−∞

dp3

ð2πÞ2
1

En

¼ Nc

X
f¼u;d

Z
∞

0

dqE
ð2βfÞ3=2
ð2πÞ2 × H̃1=2ðqEÞ

1

EðqEÞ
;

ð44Þ

IGðB; T; μÞ ¼ −Nc

X
f¼u;d

X∞
n¼0

gnβf

×
Z

∞

−∞

dp3

ð2πÞ2
ðnðEnÞ þ n̄ðEnÞÞ

En

¼ −Nc

X
f¼u;d

Z
∞

0

dqE
ð2βfÞ3=2
ð2πÞ2 × H̃1=2ðqEÞ

×
ðnðEðqEÞÞ þ n̄ðEðqEÞÞÞ

EðqEÞ
: ð45Þ

Therefore,we haveobtained an exact separation between the
magnetic and nonmagnetic terms. To our knowledge this
complete separation for the gap and thermodynamic poten-
tial has not yet been obtained elsewhere in the literature. The
term IGðBÞ has also been derived using dimensional
regularization in Ref. [56] andwe have checked numerically
that the latter calculation and the present one coincides. Note
that Eq. (44) may also be obtained directly from the
derivative of the thermodynamic potential with respect to
the effective mass M, ∂ΩðT; μ;M; BÞ=∂M ¼ 0 yielding
after some simple manipulations, exactly the same expres-
sion. This demonstrates the consistency of the zMFIR
scheme. In the Appendix B we show analytically the
equivalence between the zMFIR and the MFIR formalisms
for the gap equation.

III. THE π0 POLE MASS IN
A MAGNETIZED MEDIUM

Next, we will give a brief discussion of the π0 mass
[67,69] calculation within the context of the zMFIR. This is
an example where the usual dimensional regularization
(MFIR) performed in Ref. [21] for the zero temperature and
chemical potential case, present problems. In particular,
when one considers the system in a magnetized medium

TABLE I. Comparison between the vacuum results obtained according to Eq. (37), Evac1, and Eq. (36),
Evac2 and their relative errors, Error ¼ jEvac1 − Evac2j=Evac1 for the su(2)-NJL model at eB ¼ 0.1 GeV2 and several
effective masses.

Meff Evac1 (GeV) Evac2 (GeV) Error

408.93 −0.9664340125 × 10−4 −0.9664338550 × 10−4 1.63 × 10−7

368.82 −0.8239054256 × 10−4 −0.8239052680 × 10−4 1.91 × 10−7

118.43 0.5487198936 × 10−4 0.5487200511 × 10−4 2.87 × 10−7

43.19 0.1163457449 × 10−3 0.1163457607 × 10−3 1.35 × 10−7

10.95 0.1369580943 × 10−3 0.1369581101 × 10−3 1.15 × 10−7
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due to the existence of a real pole in the polarization
function the formalism for temperatures above the Mott
temperature is tricky. In the next section, we hope to make
clear the advantage of using the new regularization scheme
in the present case, since using zMFIR the analytical
structure of the polarization function will be clearly
exposed and the manifest effect of dimensional reduction
will be seen in a transparent way. We use the RPA
approximation, which formally consists in summing the
geometric series diagrammatically represented in Fig. 1.
The left-hand side of the equality in Fig. 1 can be calculated
by representing the quark-pion interaction with the follow-
ing Lagrangian [69]:

Lπqq ¼ igπqqψ̄γ5τ⃗ · π⃗ψ ; ð46Þ

where π⃗ stands for the pion field while gπqq represents the
coupling strength between pions and quarks. Both sides of
the equality in Fig. 1 can be calculated using standard
Feynman rules and the quark (dressed), Sqðk2Þ, as well as
the meson, Dπ0ðk2Þ, propagators [70,71]:

Dπ0ðk2Þ ¼
1

k2 −m2
π0
; ð47Þ

Sfðx; x0Þ ¼ eiΦfðx;x0Þ
X∞
n¼0

Sf;nðx − x0Þ; f ¼ u; d; ð48Þ

the above propagator is given by the product of a gauge
dependent factor, Φfðx; x0Þ, called Schwinger phase, times
a translational invariant term and its explicit expression can
be found in [71]. Selecting the quantum numbers associated
to the neutral pion, π0, and noting that in this case the phase
factors cancel out, one can show that the effective inter-
action is given by the relation:

ðigπ0qqÞ2iDπ0ðk2Þ ¼
2iG

1 − 2GΠpsðk2Þ
; ð49Þ

where the pseudoscalar polarization loop reads:

1

i
Πpsðk2Þ ¼ −

X
f¼u;d

Z
d4p
ð2πÞ4 Tr

�
iγ5iSf

�
pþ k

2

�
iγ5

× iSf

�
p −

k
2

��
: ð50Þ

Proceeding analogously one obtains for the scalar channel,

1

i
Πsðk2Þ ¼ −

X
f¼u;d

Z
d4p
ð2πÞ4 Tr

�
iSf

�
pþ k

2

�
iSf

�
p −

k
2

��
:

ð51Þ

From Eq. (49) one can obtain the π0 mass pole as:

1 − 2GΠpsðk2Þjk2¼m2

π0
¼ 0: ð52Þ

In Ref. [21] the pseudoscalar polarization loop and the π0
pole mass have been calculated using the MFIR scheme.
Next, we use the zMFIR regularization scheme to rewrite
the expressions of the latter reference for the calculation of
the π0 pole mass. We start from the non-magnetized
expression for the π0 pole mass [69]:

m2
π0

¼ −
m
M

1

4GNcNfIðm2
π0
Þ ; ð53Þ

where in previous equation k ¼ ðk0 ¼ m2
π0
; k⃗ ¼ 0⃗Þ and

Iðk2Þ ¼ i
Z

d4p
ð2πÞ4

1

½ðpþ k
2
Þ2 −M2�½ðp − k

2
Þ2Þ −M2� : ð54Þ

Here, after using the Matsubara formalism in the latter
integral, one obtains:

Iðk20Þ ¼
Z

d3p
ð2πÞ3

1

Eðk20 − 4E2Þ ð1 − nðEÞ − n̄ðEÞÞ; ð55Þ

where the integration with respect to the variable p0

was done by using the residue method [72]. The magnet-
ized version of the latter equation is obtained through the
use of the prescription given in Eq. (3) and it can be written
as a sum of two terms, i.e., the vacuum and medium
contribution:

Iðk20Þ → Iðk20; B; TÞ ¼ Ivacðk20; BÞ þ IT;μðk20; BÞ; ð56Þ

where

Ivacðk20; BÞ ¼
X
f¼u;d

βf
X∞
n¼0

gn

Z
∞

−∞

dp3

ð2πÞ2
1

4Enðk20 − 4E2
nÞ
;

ð57Þ

FIG. 1. Diagrammatic representation of the RPA approximation.
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IT;μðk20; BÞ ¼ −
X
f¼u;d

βf
X∞
n¼0

gn

Z
∞

−∞

dp3

ð2πÞ2

×
1

4Enðk20 − 4E2
nÞ
ðnðEnÞ þ n̄ðEnÞÞ: ð58Þ

The vacuum part of the previous expression was obtained in
Ref. [21] using the MFIR scheme. It was shown that it can
be separated in two terms, one the usual B ¼ 0 vacuum
contribution and another due to the pure magnetic con-
tribution:

Ivacðk20; BÞ ¼ Ivacðk20Þ þ Iðk20; BÞ; ð59Þ

Ivacðk02Þ ¼
Z

d3p
ð2πÞ3

1

Eðk20 − 4E2Þ ; ð60Þ

Iðk20;BÞ¼−
π

4ð2πÞ3
X
f¼u;d

Z
1

0

dx

�
−ψðx̄fþ1Þþ 1

2x̄f
þ ln x̄f

�
;

ð61Þ

where

x̄f ¼ M̄2ðk20Þ
2βf

; M̄2ðk20Þ ¼ M2 − xð1 − xÞk20

and ψðx̄fÞ is the digamma function [73]. The usual (B ¼ 0)
vacuum term, Eq. (60), will be regularized through a 3D
noncovariant cutoff. The expressions given in Eqs. (53),
(58), (59) can be used for the study of the neutral meson
properties at finite T e μ. At the Mott temperature, i.e.,
when k0 ¼ mπ0 ¼ 2M a singularity appears in the denom-
inator and this pole has to be treated in a convenient way,
since the pion becomes unstable and can decay in two
quarks. It is possible to perform analytically the integration
in Eq. (60) obtaining for its real part the expression:

ReðIvacðk20ÞÞ ¼ −
1

8π2

�
ln
Λþ ϵΛ

Λ

− θð2M − k0Þz0tan−1
�

Λ
ϵΛz0

�

− θðk0 − 2MÞ z0
2

�
ln
Λþ ϵΛz0
Λ − ϵΛz0

��
; ð62Þ

with z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 4M2=k20j

p
. Analogously the real part of the

magnetic vacuum term given in Eq. (61) can also be
calculated yielding:

ReðIðk20;BÞÞ¼−
1

32π2
X
f¼u;d

�
−
Z

1

0

dxψðx̄fþ1Þ

þ ln
k20
2βf

−2þ 2βf
k20z0

ln

���� z0−1

z0þ1

����
þθðk0−2MÞ

�
ln

����1− z20
4

����þ z0 ln

����z0þ1

z0−1

����
�

þθð2M−k0Þ
�
ln

�
1þ z20
4

�
þ2z0tan−1

1

z0

��
:

ð63Þ

Notice that the latter expressions have a branch cut at k0 ¼
2M and they have to be interpreted as the Cauchy principal
value when k0 > 2M [74]. These two latter expressions
extend our previous results for the pion mass calculation
[21] including the regime where k0 > 2M.
Next, we will return to the main focus of the present

work, i.e., to use the alternative zMFIR scheme in order to
regularize the expressions for the polarization integral
given in Eqs. (57), (58). From the Eqs. (18)–(20) one
obtains:

Iðk20; B; TÞ ¼ Ivacðk20Þ þ Iðk20; BÞ þ IT;μðk20Þ þ IT;μðk20; BÞ;
ð64Þ

where

Ivacðk20Þ ¼
X
f¼u;d

Z
∞

M
dE

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p

π2
1

4Eðk20 − 4E2Þ ;

Iðk20; BÞ ¼
X
f¼u;d

ð2βfÞ1=2
2π2

Z
∞

M
dEEðqEÞH1=2ðqEÞ

×
1

4EðqEÞðk20 − 4EðqEÞ2Þ
;

IT;μðk20Þ ¼ −
X
f¼u;d

Z
∞

M
dE

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p

π2
nðEÞ þ n̄ðEÞ
4Eðk20 − 4E2Þ ;

IT;μðk20; BÞ ¼ −
X
f¼u;d

ð2βfÞ1=2
2π2

Z
∞

M
dEEðqEÞH1=2ðqEÞ

×
nðEðqEÞÞ þ n̄ðEðqEÞÞ
4Eðk20 − 4EðqEÞ2Þ

:

Therefore, we were able to separate exactly the magnetic
and nonmagnetic components of Iðk20; B; TÞ using the
zMFIR regularization scheme. The only nonfinite contri-
bution is the usual B ¼ 0 vacuum term Ivacðk20Þ. Performing

the change of variables p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p
in the latter

expression for Ivacðk20Þ one easily sees that we reobtain
exactly the expression given in Eq. (60) and as discussed
above its regularized contribution is given by Eq. (62). We
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perform the same change of variables in the nonmagnetic
medium term IT;μðk20Þ and it is straightforward to obtain:

IT;μðk20Þ ¼
1

8π2

Z
∞

0

dp
p2

Eðp2 − x20Þ
ðnðEÞ þ n̄ðEÞÞ; ð65Þ

with x20 ¼ k20=4 −M2. Here, notice that when x20 is greater
than zero (k0 > 2M) it is necessary to consider this integral
as a Cauchy principal value. In order to obtain convenient
expressions for the numerical calculation of the magnetic
terms, we perform the change of variables:

x2 ¼ qE ¼ E2 −M2

2βf
:

Thus, dEE¼2βfxdx, E¼ð2βfÞ1=2Ēf with Ēf¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xfþx2

q
and xf ≡ M2

2βf
. It is straightforward to show that:

Iðk20; BÞ ¼ −
X
f¼u;d

ð2βfÞ1=2
32π2

Z
∞

0

dxxH1=2ðx2Þ
1

Ēfðx2 − x̄20Þ
;

ð66Þ

IT;μðk20;BÞ ¼
X
f¼u;d

ð2βfÞ1=2
32π2

Z
∞

0

dxxH1=2ðx2Þ
nðEÞþ n̄ðEÞ
Ēfðx2− x̄20Þ

;

ð67Þ

where x̄20 ¼ ðk20=4 −M2Þ=ð2βfÞ. Of course, the latter
expressions also have to be interpreted as Cauchy principal
values when x̄20 is greater than zero or, equivalently, when
k0 > 2M, i. e., the Mott temperature is univocally defined
when the system is immersed in a magnetic medium. The
π0 pole mass is calculated numerically using the Eqs. (53),
(64) in terms of the Hurwitz-Riemann zeta functions as
discussed above and our results will be presented in the
next section.

IV. NUMERICAL RESULTS

In the following we present the numerical results. The set
of parameters utilized for the 3D cutoff regularization are
Λ ¼ 664.3 MeV, m0 ¼ 5.0 MeV and G ¼ 2.06

Λ2 [68]. First,
we sketch in Fig. 2 the effective quarks masses as well as
the pole-mass of neutral meson π0 at finite temperature and
zero magnetic field. At low temperatures the effective quark
mass is almost the same as calculated in the vacuum, i.e.,
MðTÞ ≈Mð0Þ, as well as the pole-mass of the π0 meson.
When the pseudocritical temperature is exceeded, the chiral
symmetry is partially restored and the effective quark mass
becomes almost the current quark masses M ≈m0. The
Mott dissociation happens when the system gets mπðTÞ ¼
2MðTÞ [75] at TMott ¼ 179.8 MeV. In the Wigner-Weyl
phase, the Eqs. (55) should be interpreted as its principal

value, due to the divergences in the denominator when

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π0

4
−M2

q
[74,76].

The behavior of the effective quark masses at finite
temperature at eB ¼ 0.1 GeV2 can be seen in panel (a) in
the Fig. 3. As in the previous case, the pole-mass of the
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FIG. 2. Masses as a function of the temperature for eB ¼ 0.
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FIG. 3. Masses as a function of the temperature for different
values of magnetic field.
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neutral collective excitation is showed in the same figure as
well. For the effective quark masses evaluated in both
formalisms in the present paper, i.e., Eqs. (42) and (44),
almost no difference can be seen in the numerical results as
we already mentioned and the well-known behavior is
sketched. At low temperatures, the magnetic field enhances
the breaking of the chiral symmetry and the effective
quark masses becomes stronger (magnetic catalysis
[64]). When the temperature is greater than the pseudoc-
ritical temperature, the chiral symmetry partially restores,
and the effective quark masses becomes weaker. For
completeness, we mention that in this scenario, it is well
established that the pseudocritical temperature Tc increases
with eB [60,61].
For the pole-mass of the neutral collective excitation, the

analysis becomes more complicated. For low temperatures
(T < Tc) the behavior of the neutral meson is almost as
expected, the mπ0ðB; TÞ ≈mπ0ðBÞ. We can understand this
in terms of the chiral symmetry restoration. In this phase,
these mesons are protected by the Goldstone phase, and the
magnetic field is strengthening the break of the partially
chiral symmetry. When the temperature is sufficient to
partially restore the chiral symmetry, the neutral mesons
enters in the Wigner-Weyl phase. In this phase, the π0
meson is a thermal excitation with a finite decay width, but
the increase of the magnetic field causes the thermal
excitations to become more energetic when compared with
the zero magnetic field case. The π0 mass suddenly jumps
to a more energetic solution at the dissociation temperature.
Following the previous analysis, for the eB ¼ 0.1 GeV2,
we found TMott ¼ 195 MeV.
In panel (b) of Fig. 3 we sketch the results with

eB ¼ 0.2 GeV2, and as expected, at low temperatures
the previous analysis can still be used, where we have
mπ0ðB; TÞ ≈mπ0ðBÞ. The interpretation slightly changes if
we look beyond the Mott temperature TMott ¼ 200.2 MeV,
where the magnetic field enhances the resonant excitations
to more energetic states. We show that using zMFIR
regularization scheme that the effect of the magnetic field
is catalyze the Mott temperature, a result that is the opposite
found in recent literature [77].Another point inRef. [77] that
is not clear is the position of the jump on the pion mass, the
authors claim that the jumphappens in theMott temperature,
but we do not observe this in Fig. 2 of Ref. [77], e.g., the
jump for eB ¼ 10m2

π happens when mπ ¼ M, and the
definition for Mott temperature is mπ ¼ 2M.

A. The nature of the sudden jump
on the pion mass

In [77] the author use Pauli-Villars regularization in NJL
model to study the behavior of the neutral pion mass as a
function of the temperature for different values of magnetic
fields. The author presents a good explanation for the
sudden jump on the pion mass at the Mott temperature, he
argued that these more energetic thermal excitations appear

due the divergence at the lowest Landau level (LLL) that is
associated with the dimensional reduction caused by the
strong magnetic fields.
The dimensional reduction of fermionic systems at

strong magnetic field has been explored by several authors
[70,78] and plays a fundamental role to explain these more
energetic resonances. In the MFIR formalism we can
clearly see in a more transparent way that we have a
physical dimensional reduction of our system when we
compare with the eB ¼ 0 equations. The LLL dominance
at strong magnetic field makes our system go in a naively
way to 3þ 1 D → 1þ 1 D, e.g., see Eq. (31) when n → 0
in comparison with Eq. (29). But, if our system is going to
the high temperature limit, the highest Landau levels
become populated again, because of the weakening of
the interaction of the fermions in the chiral condensate.
For the collective excitations, the idea becomes the same.

The high temperature(T > TMott) is not sufficient to excite
all possible states in the phase space, as we have in the
eB ¼ 0 case, that allow the resonant pair q − q̄ to occupy.
Due to the dimensional reduction associated with the
magnetic field, the number of states for the excited pair
is reduced, and the momentum integration is not sufficient
to guarantee some solution to the resonant state of the π0 at
energy states right aftermπ0 ≈ 2M. That is, the dimensional
reduction of the system enforces the system to have less
states than the eB ¼ 0 case. On the other hand, the
condition 1 − 2GΠpsðk20 ¼ m2

π0
Þ ¼ 0 is the RPA equation

for the pole-mass, that ensures to us that the conservation of
the external momenta in the RPA bubbles should be on
shell. Therefore, we can expect that the π0 mass jump to
another more energetic state at the Mott temperature. This
jump is just the π0 mass going to its lowest possible energy
state, when all other states are not accessible anymore.
At the Wigner-Weyl phase, we should mention an

interesting phenomenon. If we look at the top of Fig. 3,
we can see a decrease of the energy of the resonant q̄ − q
state (or the π0 mass) at finite magnetic field eB ¼
0.1 GeV2 and high temperature (say T ¼ 250 MeV) when
compared to the same situation at eB ¼ 0 of the Fig. 2. On
the other hand, if we increase the magnetic field (in our case
we see this for eB ¼ 0.2 GeV2 at the bottom of the Fig. 3),
the energy of the resonant state increases above the eB ¼ 0
situation and this effect can be understood as an oscillatory
behavior. The main reason for this to happen is that at
eB ¼ 0 most of the energy of the neutral resonance is
generated thermally. At finite magnetic field the dimen-
sional reduction that takes place softens the thermal energy.
At a certain small magnetic field the dimensional reduction
and the magnitude of the magnetic field are not sufficiently
strong to increase the energy of the resonant pair above the
energy associated with eB ¼ 0 case. If we increase the
magnetic field to eB ¼ 0.2 GeV2 (as we see in the Fig. 3),
we will have more energy from the magnetic field con-
tributing to the resonant q̄ − q pair overcoming at a certain

AVANCINI, FARIAS, and TAVARES PHYS. REV. D 99, 056009 (2019)

056009-10



point the weakening due to the dimensional reduction,
increasing for this reason the energy of the state.

V. EFFECTS DUE INVERSE
MAGNETIC CATALYSIS

Inverse magnetic catalysis is a remarkable phenomena
that was discovered by lattice QCD simulations [79,80].
Recently was shown that IMC can be reproduced in
Nambu–Jona-Lasinio model if thermo-magnetic effects
are include in the coupling constant GðeB; TÞ [60,61].
In order to see how the inverse magnetic catalysis can

influence our results, we improve the calculations using the
same GðeB; TÞ fitted to the lattice data for the average of
the quark condensates [79]. In [61] this fit was obtained by
using the following interpolation formula for GðeB; TÞ:

GðB; TÞ ¼ cðBÞ
�
1 −

1

1þ eβðBÞ½TaðBÞ−T�

�
þ sðBÞ: ð68Þ

The values of the parameters c, s, β and Ta are shown in
Table II1 and for the parametrization of the model we take
standard values, Λ ¼ 0.650 GeV andm ¼ 5.5 MeV. In the
Fig. 4 we show the effect of the inverse magnetic catalysis
in the effective quark masses as well as the pole-mass of
the neutral meson. The Mott temperature in this case suffers
a inverse magnetic catalysis in the same way, passing
by TMott ¼ 166.84 MeV at eB ¼ 0.1 GeV2 to TMott ¼
164.9 MeV at eB ¼ 0.2 GeV2. The resonances as we
can see are still more energetic as we grow the mag-
netic field.
The physical analysis involving the chiral symmetry

restoration at strong magnetic fields is the same as the one
discussed in the previous section. The magnetic field
enhances the binding of the condensate and the broken
chiral symmetry is even more evident. As we increase the
temperature the weakening of the chiral condensate hap-
pens and the chiral symmetry can be partially restored at
high temperatures. At this point, the difference from our
previous section is that the coupling constant G is sub-
stituted by a thermomagnetic dependent coupling G →
GðeB; TÞ that mimics the inverse magnetic catalysis in our
results for the effective quark masses. For the neutral meson
mass the broken chiral symmetry preserves at low temper-
ature mπ0ðB; TÞ ≈mπ0ðB; 0Þ the pole mass approximately
as a pseudo-Goldstone boson. If we increase the temper-
ature with the coupling GðeB; TÞ our results show that the
Mott temperature decreases compared to the constant
coupling G case, in agreement with what is expected by
the inverse magnetic catalysis. The oscillatory behavior in
the Wigner-Weyl phase, illustrated in the last section, also
occurs in the present case as we can see from the results of

the Fig. 4. The physical analysis of this behavior is the same
as pointed out in the last section, since we have just
modified the field dependent coupling GðeB; TÞ.

TABLE II. Values of the fitting parameters in Eq. (68). Units
are in appropriate powers of GeV.

eB c Ta s β

0.0 0.900 0.168 3.731 40.000
0.2 1.226 0.168 3.262 34.117
0.4 1.769 0.169 2.294 22.988
0.6 0.741 0.156 2.864 14.401
0.8 1.289 0.158 1.804 11.506
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FIG. 4. Masses as a function of the temperature for different
values of magnetic field using the thermomagnetic dependence
on the coupling constant GðeB; TÞ.

1Note that the parameters c, s, β and Ta depend only on the
magnetic field.
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However, we should pay attention to the fact that the
physical mechanism behind the inverse magnetic catalysis
(IMC) is still under debate, for more discussions [64].
Also, we have to mention that, some works evaluating

the neutral mesons masses at finite magnetic fields and
temperatures have not obtaining any jump in the π0 pole-
mass at the dissociation temperature, and this can cause
some misunderstanding. As explained in [23,24], there are
some approximations in the formalism, a special is the
integral Iðk20Þ ≈ Ið0Þ. Another feature that can be explored
is the role of the regularizations that are used and are not
fully exploited, since the choice of some regularizations can
produce significant nonphysical results [53,54,81], differ-
ently of the case of the regularization adopted in this work.

VI. CONCLUSIONS

In this work we have presented a study of the NJL SU(2)
at finite temperatures and magnetic fields in the MFIR
scheme. In an analogous way, we show an equivalent and
helpful formalism that we call zMFIR, applicable in several
future applications.
The new formalism presented in this work has the

advantage of separating in an exact way the magnetic from
nonmagnetic contributions for the expressions of physical
interest, i.e., the thermodynamic potential, gap equation,
polarization loops, etc. As an example of a direct application
of the zMFIR, we expand the formalism for the RPA
framework, and we evaluate the pole-mass of π0 meson at
finite magnetic field and temperatures. Again, both formal-
isms agree almost exactly in their numerical results, though
the zMFIR showed to be more efficient to work in the
numerical evaluations. The first dramatic result is the more
energetic resonances that we obtain as we increase the
magnetic field. As we explained, this is a direct result from
the dimensional reduction of the system at strong magnetic
fields that enforces the system to go to another state, sincewe
have less states to the creationof the thermalq − q̄ excitation.
As mentioned in [53,54,81], the MFIR scheme avoids

some unphysical results, and this choice of regularization
provides us with some different results from most of the
regularizations prescriptions of the current literature. The
Mott dissociation temperature is catalyzed with the increase
of the magnetic field as well as the pseudocritical temper-
ature. This behavior of the Mott temperature goes in a
inverse way of the Ref. [77]. We believe that some
differences associated with the regularization adopted in
that work can be affecting theway the mesons are becoming
resonances. Also, the fact thatwe areworking in amean field
approximation strengthens the idea that in this approxima-
tion, we have to see the catalyzed Mott Temperature.
To recover the expected result from Lattice [79] we also

employed the GðeB; TÞ from [61]. The inverse magnetic
catalysis in the NJL SU(2) model as discussed in the main
text is recovered, and in the same way we obtain a inverse
magnetic catalysis of the Mott temperature.

As a supplementary result, the magnetic vacuum polari-
zation integral of Ref. [21] has been extended by using the
analytic continuation technique. These analytical expres-
sions are useful for the validation of more complicated
numerical calculations.
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APPENDIX A: REGULARIZATION OF THE
MAGNETIC EFFECTIVE POTENTIAL TERM

Next, we will discuss how to identify and separate the
divergent contribution to the vacuum magnetic effective
potential term Ω̃vacðBÞ. This latter term can be obtained by
substituting the explicit form of g̃fðqE; BÞ, Eq. (22), in
Eq. (34):

Ω̃vacðBÞ¼−Nc

X
f¼u;d

ð2βfÞ2
ð2πÞ2

Z
∞

0

dqE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xfþqE

p

×

�
ζ

�
1

2
;fqEg

�
−
�
ζ

�
1

2
;qE

�
þ2q1=2E −

1

2q1=2E

��
;

ðA1Þ

where xf ¼ M2
f

2βf
. From the asymptotic limit of the zeta

function ζð1=2; qEÞ [57],

ζ

�
1

2
;qE

�
¼−2q1=2E þ 1

2q1=2E

þ 1

24
q−3=2E þOðq−7=2E Þ; ðA2Þ

we see that the integrand in Eq. (A1) is logarithmically
divergent. Hence, we will sum and subtract the term
− 1

24
q−3=2E in the integrand, since this term forces the

convergence of the integral. Therefore, one obtains:

Ω̃vacðBÞ ¼−Nc

X
f¼u;d

ð2βfÞ2
ð2πÞ2

�
−
Z

∞

0

dqE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þqE

p
24q3=2E

þ
Z

∞

0

dqEζ

�
1

2
;fqEg

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þqE

p

−
Z

∞

0

dqE

�
ζ

�
1

2
;qE

�
þ2q1=2E −

1

2q1=2E

−
1

24q3=2E

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þqE

p �
: ðA3Þ
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The first integration in the latter equation is trivial:

Z
∞

0

dqE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þ qE

p
q3=2E

¼ −2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xf þ qE
p

q1=2E

þ ln½q1=2E þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þ qE

p �
�����

∞

0

: ðA4Þ

The integral involving the periodic function, ζð1
2
; fqEgÞ, in

Eq. (A3) can be rewritten by noting that:

Z
∞

0

dxfðxÞgðxÞ ¼
Z

1

0

dxfðxÞgðxÞ þ
Z

2

1

dxfðxÞgðxÞ

þ
Z

3

2

dxfðxÞgðxÞ þ…

¼
Z

1

0

dxfðxÞ
X∞
k¼0

gðxþ kÞ; ðA5Þ

where f(x) is a periodic function with period 1 and g(x) an
arbitrary function. Notice that a change of variables was
done to set the limits of integration of all integrals from
0 to 1. Then, it follows that:

Z
∞

0

dqEζ
�
1

2
; fqEg

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þ qE

p

¼
Z

1

0

dqEζ

�
1

2
; qE

�X∞
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þ qE þ k

q
: ðA6Þ

From the definition of the Hurwitz-Riemann zeta function,
Eq. (10), the latter integral may be written as:

Z
1

0

dqEζ

�
1

2
; fqEg

�X∞
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þ qE þ k

q

¼
Z

1

0

dqEζ

�
1

2
; qE

�
ζ

�
−
1

2
; xf þ qE

�
: ðA7Þ

At this point, we substitute Eqs. (A4), (A7) in Eq. (A3).
Finally, aiming at a more suitable expression for numerical
calculations, we use the following property of the
Riemann-Hurwitz zeta function [65]

∂
∂y ζðz; yÞ ¼ −zζðzþ 1; yÞ; ðA8Þ

in order to perform an integration by parts in Eq. (A3).
Then, the final regularized finite magnetic vacuum term is
given by:

Ω̃vacðBÞ ¼ −Nc

X
f¼u;d

ð2βfÞ2
ð2πÞ2

�
2

24
þ 1

24
ln xf

−
Z

1

0

dqEζ

�
−
1

2
; fqEg

�
ζ

�
1

2
; qE þ xf

�

þ
Z

∞

0

dqE

�
ζ

�
−
1

2
; qE

�
þ 2

3
q3=2E

−
1

2
q1=2E þ 1

24
q−1=2E

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xf þ qE
p

	
: ðA9Þ

This integral is adequate for numerical calculations and
we have discarded all the unphysical divergent terms. As
discussed in Sec. II. A, the latter regularized magnetic
vacuum expression numerically coincides with the one
obtained by using other formalisms.

APPENDIX B: THE EQUIVALENCE
BETWEEN MFIR AND ZMFIR

Here, we will present the main steps for proving the
equivalence between the zMFIR and MFIR formalisms for
obtaining the gap equation.
Starting from Eq. (43) at T ¼ 0:

M −m
2MG

¼ IG þ IGðBÞ; ðB1Þ

where IG is the vacuum contribution and IGðBÞ is given by:

IGðBÞ ¼ Nc

X
f¼u;d

Z
∞

0

dqE
ð2βfÞ3=2
ð2πÞ2

H̃1=2ðqEÞ
EðqEÞ

ðB2Þ

and EðqEÞ and H̃1=2ðqEÞ are given in Eqs. (21), (23)
respectively. We can split Eq. (B2) in two contributions:

IGðBÞ ¼ Nc

X
f¼u;d

½IðxfÞz þ IðxfÞdiv�; ðB3Þ

in the last equation:

IðxfÞz ¼
ð2βfÞ
ð2πÞ2

Z
∞

0

dqE
ðζð1

2
; fqEgÞ − ζð1

2
; qEÞÞ

ðxf þ qEÞ1=2
; ðB4Þ

IðxfÞdiv ¼
ð2βfÞ
ð2πÞ2

Z
∞

0

dqE
ð−2q1=2E þ 1

2q1=2E

Þ
ðxf þ qEÞ1=2

: ðB5Þ

These two integrals can be evaluated by using an
integration by parts and the Eq. (A8), yielding

IðxfÞz¼
ð2βfÞ
ð2πÞ2

Z
∞

0

dqE
ðζð−1

2
;fqEgÞ−ζð−1

2
;qEÞÞ

ðxfþqEÞ3=2
; ðB6Þ
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IðxfÞdiv ¼
ð2βfÞ
ð2πÞ2

Z
∞

0

dqE
ð− 2

3
q3=2E þ q1=2E

2
Þ

ðxf þ qEÞ3=2
: ðB7Þ

Next, we use the same procedure of Appendix A in order
to rewrite the first of these two integrals. First, we use
Eq. (A5) to obtain:

Z
∞

0

dqEζ

�
−
1

2
; fqEg

�
1

ðxf þ qEÞ3=2

¼
Z

1

0

dqEζ

�
−
1

2
; qE

�X∞
k¼0

1

ðxf þ qEÞ3=2
: ðB8Þ

From the definition of the Hurwitz-Riemann zeta function,
Eq. (10), the last sum of integrals may be written as:

Z
1

0

dqEζ

�
−
1

2
; fqEg

�X∞
k¼0

1

ðxf þ qEÞ3=2

¼
Z

1

0

dqEζ

�
−
1

2
; qE

�
ζ

�
3

2
; xf þ qE

�
: ðB9Þ

Returning to Eq. (B6), we can rewrite IðxfÞz:

IðxfÞz ¼
ð2βfÞ
ð2πÞ2

�Z
1

0

dqEζ
�
−
1

2
; qE

�
ζ

�
3

2
; xf þ qE

�

−
Z

∞

0

dqE
ζð− 1

2
; qEÞ

ðxf þ qEÞ3=2
�
: ðB10Þ

We will now make use of the following mathematical
identities(all of them are valid for qE > 1) [82]:

ζ

�
3

2
; xf þ qE

�
¼ 1

Γð3=2Þ
Z

∞

0

dy
y1=2e−yðxfþqEÞ

1 − e−y
; ðB11Þ

ζ

�
−
1

2
; qE

�
¼ Γð3=2Þ

2πi

Z
C
dz

z−3=2ezqE

1 − ez
; ðB12Þ

1

ðxf þ qEÞ3=2
¼ 1

Γð3=2Þ
Z

∞

0

dyy1=2e−yðqEþxfÞ; ðB13Þ

where the integral in identity Eq. (B12) is defined over the
Hankel contour C. Applying these identities to Eq. (B11),
we can perform the integrations with respect to qE getting
the result:

IðxfÞz ¼
ð2βfÞ
ð2πÞ2

1

2πi

Z
∞

0

dy
y−1=2e−yxf

ey − 1

Z
C
dz

z−3=2

1 − z
y

: ðB14Þ

On the contour C we will use the parametrizations z ¼
re−iπ below the negative real axis and z ¼ reiπ above the
real axis with 0 < r < ∞. As the first argument of the
Riemann-Hurwitz zeta function Eq. (B12) is negative, we

can explore its analytic continuation. With these defini-
tions, one obtains for the contour integration:

Z
C
dz

z−3=2

1 − z
y

¼ −
Z

∞

0

dre−iπðe−iπrÞ−3=2
�
1 −

e−iπr
y

�
−1

þ
Z

∞

0

dreiπðeiπrÞ−3=2
�
1 −

eiπz
y

�
−1
;

¼ 2i sin

�
−
π

2

�
y−1=2Bð−1=2; 3=2Þ; ðB15Þ

where Bða; bÞ is the Beta function [65] given by

Bða; bÞ ¼
Z

∞

0

ta−1ð1þ tÞ−a−b: ðB16Þ

where the latter expression can be written in terms of

gamma functions as Bða; bÞ ¼ ΓðaÞΓðbÞ
ΓðaþbÞ . Afterwards, using

the results of Eqs. (B15), (B16) in Eq. (B14), one obtains:

IðxfÞz ¼
ð2βfÞ
ð2πÞ2

Z
∞

0

dy
e−yxfy−1

ey − 1
: ðB17Þ

This quantity diverges at the origin. We can use the series
expansion 1

ey−1 ≈
1
y −

1
2
þOðyÞ to separate the divergent part

of the latter expression. By adding and subtracting the first
terms of the series in Eq. (B17) one obtains:

IðxfÞz ¼
ð2βfÞ
ð2πÞ2

Z
∞

0

dy
e−yxf

y

�
1

ey− 1
−
1

y
þ 1

2

�

þð2βfÞ
ð2πÞ2

�Z
∞

0

dy
e−yxf

y2
−
Z

∞

0

dy
e−yxf

2y

�
: ðB18Þ

The quantity IðxfÞdiv cancels out the last two integrals in
Eq. (B18). This can be seen using the identity, Eq. (B13), in
IðxfÞdiv. Noticing that 1

ey−1 ¼ − 1
2
þ 1

2
cothðy

2
Þ and perform-

ing the change of variables y
2βf

¼ μ → y
2βf

¼ dμ, we can

rewrite Eq. (B3) as:

IGðBÞ ¼ Nc

X
f¼u;d

½IðxfÞz þ IðxfÞdiv�;

¼ Nc

X
f¼u;d

βf
ð2πÞ2

Z
∞

0

dμ
e−μM

2
f

μ2

�
μ cothðβfμÞ −

1

βf

�
:

¼ Nc

X
f¼u;d

βf
2π2

�
logΓðxfÞ −

�
xf −

1

2

�
logð2πÞ

þ xf −
1

2
log 2π

�
:

If we substitute the last result in Eq. (B1), the usual
expression for the gap equation calculated within the
MFIR scheme [56] will be reobtained.
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