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We studied a QED analog of the Franz-Keldysh effect, and the interplay between the nonperturbative
(the Schwinger mechanism) and the perturbative particle production mechanism from the vacuum in the
presence of a strong slow field superimposed by a weak field. We found that the Franz-Keldysh effect
significantly affects the particle production: (i) the perturbative particle production occurs even below the
threshold energy; (ii) the perturbative production becomes the most efficient just above the threshold
energy; and (iii) an oscillating behavior appears in the production number above the threshold energy.
These nontrivial changes are suppressed only weakly by powers of the critical field strength of QED.
A relation to the dynamically assisted Schwinger mechanism and implications to experiments are also
discussed.
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I. INTRODUCTION

It was Dirac who first discovered a relativistic wave
equation for electron, which is known as the Dirac equation
today [1]. The Dirac equation admits infinitely negative
energy states. This looks problematic because any state
may fall into lower and lower energy states by emitting
photons and thus there seem no stable states. This problem
was resolved by Dirac himself by reinterpreting that
negative energy states are all occupied in our physical
vacuum (Dirac sea picture) [2]. Dirac’s interpretation
suggests that our vacuum is not vacant space, but can be
regarded as something like a semiconductor with gap
energy characterized by the electron mass scale. This
implies that our vacuum exhibits nontrivial responses when
exposed to external fields whose characteristic physical
scale is larger than the gap energy, as semiconductors do.
One of the most interesting responses is particle pro-

duction from the vacuum in the presence of external electric
fields. Roughly, there are two kinds of production mecha-
nism, whose interplay is controlled by strength and
frequency of the external field (or the Keldysh parameter)
[3–6].
Namely, the first mechanism is the perturbative produc-

tion mechanism, which occurs when the external field is
weak but has high frequency (i.e., energetic). This is an

analog of the photoabsorption effect in semiconductors.
In this mechanism, the external field perturbatively kicks an
electron filling the Dirac sea, and supplies energy. If the
supplied energy (i.e., the frequency of the external field) is
larger than the gap energy, the electron is kicked out to the
positive energy band leaving a hole in the original negative
energy state. Thus, a pair of an electron and a positron is
produced. This mechanism is suppressed only weakly by
powers of the coupling constant e. Thus, it is not difficult to
study the perturbative production mechanism with actual
experiments (e.g., SLAC E144 experiment [7]).
The other mechanism is the nonperturbative production

mechanism, which is the so-called Schwinger mechanism
[8–10]. This can be understood as an analog of the
electrical breakdown of semiconductors (or the Landau-
Zener transition [11–14]) [15]. This mechanism occurs
when the external field is strong but has low frequency.
In the presence of strong electric field, the energy bands are
tilted nonperturbatively, and a level crossing occurs. An
electron filling the Dirac sea is now able to tunnel into the
positive energy band, which results in spontaneous pair
production of an electron and a positron. If the external
field is slow enough, one may approximate the external
field as a constant electric field. For this case, one can
analytically derive a formula for the number of produced
electrons (the Schwinger formula [10]) as

nðSchÞp;s ¼ V
ð2πÞ3 exp

�
−π

m2
e þ p2⊥
eE

�
; ð1Þ

where p⊥ is transverse momentum with respect to the
direction of the electric field. As apparent from Eq. (1), the
Schwinger mechanism depends on the coupling constant e

*h_taya@fudan.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 056006 (2019)

2470-0010=2019=99(5)=056006(16) 056006-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.056006&domain=pdf&date_stamp=2019-03-15
https://doi.org/10.1103/PhysRevD.99.056006
https://doi.org/10.1103/PhysRevD.99.056006
https://doi.org/10.1103/PhysRevD.99.056006
https://doi.org/10.1103/PhysRevD.99.056006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


inversely in the exponential. This clearly shows the non-
perturbative nature of the Schwinger mechanism.
Experimental verification of the Schwinger mechanism

is very important and interesting because it opens up a
novel way to unveil nonperturbative aspects of quantum
electrodynamics (QED), which are one of the most unex-
plored areas of modern physics. Nevertheless, this has not
been done yet. This is because the Schwinger mechanism is
strongly suppressed by the exponential factor in Eq. (1).
Thus, it requires extremely strong electric field eEcr ≡
m2

e ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1028 W=cm2

p
to be manifest. Unfortunately, such a

strong electric field is not available within our current
experimental technologies. For example, HERCULES
laser holds the present world record for highest-intensity
focused laser, whose strength is eE ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1022 W=cm2

p
[16].

Upcoming intense laser facilities such as ELI [17] and
HiPER [18] may reach eE ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024 W=cm2

p
, which is still

weaker than the critical field strength Ecr by several orders
of magnitude.
In recent years, there has been an increasing interest in a

“cooperative” particle production mechanism between the
perturbative and the nonperturbative mechanism. Namely,
the dynamically assisted Schwinger mechanism [19–23]
is attracting much attention. The dynamically assisted
Schwinger mechanism claims that the nonperturbative
particle production (the Schwinger mechanism) by a strong
slow electric field should be dramatically enhanced if one
superimposes a weak fast (i.e., perturbative) electric field at
the same time onto the vacuum. Note that it is usually
assumed that the perturbative electric field is fast but with a
frequency that is still below the electron mass scale. An
intuitive explanation of this mechanism is the following:
Firstly, a perturbative interaction kicks up an electron in the
Dirac sea into the gap. Then, the electron inside of the gap
is able to tunnel into the positive energy band easier
because the tunneling length is reduced compared to the
original length from the negative energy band. One of the
striking results of the dynamically assisted Schwinger
mechanism is that the critical field strength Ecr is reduced
by several orders of magnitude by the perturbative kick. It
is, thus, expected that this mechanism might be detectable
even within the current experimental technologies.
Although experimental verification of the dynamically
assisted Schwinger mechanism is not equivalent to direct
verification of the original Schwinger mechanism, it is still
very interesting and important because it clearly involves
nonperturbative aspects of QED.
Is there any other cooperative particle production mecha-

nism? If there is, it should serve as another powerful tool to
investigate nonperturbative aspects of QED just like the
dynamically assisted Schwinger mechanism does. In the
area of semiconductor physics, there is. This is the Franz-
Keldysh effect [24–27]. The Franz-Keldysh effect states
that optical properties of bulk semiconductors are signifi-
cantly modified in the presence of a strong slow electric

field. Namely, photoabsorption rate (i.e., the perturbative
particle production rate) under a strong slow electric field
becomes finite even below the gap energy, and exhibits an
oscillating behavior above the gap energy. These nontrivial
changes are caused by nonperturbative interactions
between valence-band electrons and the strong electric
field (which will be explained later in more detail in the
language of QED). One of the most important features of
the Franz-Keldysh effect is that its suppression is not so
strong although it involves nonperturbative physics, which
is usually strongly suppressed and is hard to study with
experiments. Thanks to this advantage, the Franz-Keldysh
effect in semiconductors has been tested extensively by
numerous experiments since 1960s [28–32], and has many
applications ranging from physics to industry (e.g., electro-
absorptionmodulator, photodetector, optical switching, etc).
Since semiconductors are quite analogous to QED

according to Dirac’s interpretation, it may be natural to
ask if there is an analog of the Franz-Keldysh effect in
QED. To the best of our knowledge, there exists no clear
answer to this question. The purpose of this paper is to
answer this question. Namely, we consider a situation such
that a weak field with arbitrary frequency is applied onto a
strong slow field, and discuss how the perturbative particle
production by the weak field is modified by the strong field.
We shall show that a QED analog of the Franz-Keldysh
effect actually takes place, and nontrivial changes in the
perturbative production number appear such as excess
below the gap energy, and an oscillating behavior above
the gap energy. These changes are found to be suppressed
only weakly by powers of the critical field strength. We
shall also clarify a relation between the Franz-Keldysh
effect and the dynamically assisted Schwinger mechanism,
whose physical setups are similar to each other. In addition
to these, we shall study the interplay between the pertur-
bative and the nonperturbative particle production mecha-
nism to clarify the cooperative nature of the Franz-Keldysh
effect.
Note that the weak field is not necessarily on shell here.

Thus, the weak field alone is able to produce particles from
the vacuum by the perturbative mechanism. This situation
is in contrast to stimulated pair production processes by an
on-shell photon in the presence of strong fields (e.g.,
nonlinear Breit-Wheeler process [33]). An on-shell photon
alone is not able to produce particles from the vacuum
because of the energy-momentum conservation. Hence,
such stimulated pair production processes cannot be
regarded as a cooperative particle production mechanism
between the perturbative and the nonperturbative produc-
tion mechanism, in which we are interested.
This paper is organized as follows: In Sec. II, we explain

a theoretical framework of this work. To be concrete, we
consider a general situation, where a weak field with
arbitrary frequency is superimposed onto a strong slow
field. We derive a general expression for the number of
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produced particles from the vacuum under those fields by
developing a perturbation theory, in which interactions due
to the weak field are treated perturbatively but those due to
the strong field are treated nonperturbatively. Note that a
similar perturbative approach was recently developed in
Ref. [34] in the context of the dynamically assisted
Schwinger mechanism.1 In Sec. III, we consider a specific
field configuration to quantitatively discuss the particle
production mechanism in the presence of both strong and
weak fields. Namely, we consider a constant homogeneous
strong electric field and a monochromatic weak electric
field. Based on our perturbation theory, we derive an
analytical formula (without any approximations such as
the WKB approximation) for the number of produced
particles for this particular field configuration. With this
formula, we explicitly demonstrate how a QED analog of
the Franz-Keldysh effect and the interplay between the
nonperturbative and the perturbative particle production
occur. We also clarify a relation between the Franz-Keldysh
effect and the dynamically assisted Schwinger mechanism.
Section IV is devoted to summary and discussion.

II. FORMALISM

In this section, we shall derive a formula for the number
of particles produced from the vacuum in the presence of a
strong slow field and a small perturbation on top of it. We
first use the retarded Green function technique to solve the
Dirac equation perturbatively with respect to the perturba-
tion, while we treat interactions due to the strong field
nonperturbatively (Sec. II A). Then, we canonically quan-
tize the field operator (Sec. II B), and directly compute the
in-vacuum expectation value of the number operator
(Sec. II C).
Note that we use the mostly minus metric

gμν ¼ diagðþ1;−1;−1;−1Þ. Also, we work in the
Heisenberg picture throughout this paper.

A. Perturbative solution of the Dirac equation

We consider a situation such that an external gauge field
Aμ can be separated into two parts, i.e., a strong and slow

field Āμ and a weak field Aμ, which is applied as a
perturbation on top of the strong field Āμ, as

Aμ ¼ Āμ þAμ: ð2Þ

We assume that the weak field Aμ vanishes at the infinite
past and future (adiabatic hypothesis) as

Aμ⟶
x0→�∞

0: ð3Þ

For simplicity, we adopt the temporal gauge fixing con-
dition, i.e.,

Āμ ¼ ð0;−ĀÞ; Aμ ¼ ð0;−AÞ; ð4Þ

where we introduced the three-vector potential Ā;A as the
spatial component of the corresponding gauge field.
Under the external field, the Dirac equation for a fermion

field operator ψ̂ reads

0 ¼ ½i=∂ − e=A −m�ψ̂
¼ ½i=∂ − e=̄A −m�ψ̂ − e=Aψ̂ ; ð5Þ

where e > 0 is the coupling constant and m is mass. Now,
we shall solve the Dirac equation (5) perturbatively with
respect to Aμ, while interactions between Āμ and ψ̂ are
treated nonperturbatively. To this end, we introduce a
retarded Green function SR such that

½i=∂ðxÞ − e=̄AðxÞ −m�SRðx; yÞ ¼ δ4ðx − yÞ;
SRðx; yÞ ¼ 0 for x0 − y0 < 0: ð6Þ

Notice that SR is fully dressed by the strong field Āμ (Furry
picture [36]). With the Green function SR, one can write
down a formal solution of the Dirac equation (5) as

ψ̂ðxÞ¼
ffiffiffiffi
Z

p
ψ̂ inðxÞþe

Z
d4ySRðx;yÞ=AðyÞψ̂ðyÞ

¼
ffiffiffiffi
Z

p �
ψ̂ inðxÞþe

Z
d4ySRðx;yÞ=AðyÞψ̂ inðyÞþOðe2Þ

�
;

ð7Þ

where we used Eq. (3) and imposed a boundary condition
for the field operator ψ̂ (Lehmann-Symanzik-Zimmermann
asymptotic condition [37]) as2

1There are several differences between Ref. [34] and our
perturbation theory. Reference [34] computes a matrix element
for a single pair production process from the vacuum on the basis
of the standard S-matrix formalism. Reference [34] also uses the
WKB approximation and a weak field approximation in evaluating
the first order perturbative correction to the matrix element, in
which the Bogoliubov transformation between in- and out-state
annihilation/creation operators is approximated to be an identity
matrix (i.e., αp → 1; βp → 0). On the other hand, we shall directly
compute the expectation value of the number operator by using the
retarded Green functionmethodwithout any approximations. Note
that the expectation value of the number operator and the (square
of) the matrix element for a single production process are, strictly
speaking, not the same quantity because the former gives the
inclusive production number, which includes not only a single
production process but also multiple production processes [35].

2Strictly speaking, the equality in Eq. (8) should be interpreted
in a weak sense, i.e., the equality holds only after (products of)
operators are sandwiched by states. This difference is not
important in the following discussion since we are basically
interested in the expectation value of number operator.
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0 ¼ lim
x0→−∞

½ψ̂ −
ffiffiffiffi
Z

p
ψ̂ in�: ð8Þ

Here, Z ¼ 1þOðeÞ is a field renormalization constant and
ψ̂ in is a solution of the Dirac equation without the weak
field Aμ such that

0 ¼ ½i=∂ − e=̄A −m�ψ̂ in: ð9Þ

B. Annihilation/creation operators

One can define an annihilation/creation operator at
in-state x0 → −∞ by canonically quantizing the asymptotic
field operator ψ̂ in. To be more concrete, we first expand the
asymptotic field operator ψ̂ in in terms of a mode function

�ψ
in
p;s as

ψ̂ inðxÞ ¼
X
s

Z
d3p½þψ in

p;sðxÞâinp;s þ −ψ
in
p;sðxÞb̂in†−p;s� ð10Þ

with p and s being a label of canonical momentum and
spin, respectively. Here, we normalize the mode function

�ψ
in
p;s by Z

d3x�ψ
in†
p;s�ψ

in
p0;s0 ¼ δ3ðp − p0Þδss0 ;Z

d3x�ψ
in†
p;s∓ψ

in
p0;s0 ¼ 0; ð11Þ

and identify the positive/negative frequency mode if it
approaches a plane wave with positive/negative frequency
at x0 → −∞ as

lim
x0→−∞�ψ

in
p;s ∝ e∓iωPinx

0

eþip·x; ð12Þ

where

ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ð13Þ

is on-shell energy, and Pin ≡ p − eĀðx0 ¼ −∞Þ is kinetic
momentum at x0 → −∞. Nextly, we impose the canonical
commutation relation onto ψ̂ in. This is equivalent to
quantize âin; b̂in† as

δ3ðp − p0Þδss0 ¼ fâin†p;s ; âinp0;s0g ¼ fb̂in†p;s ; b̂
in
p0;s0 g;

ðothersÞ ¼ 0: ð14Þ

With this commutation relation, as usual, one can interpret
âinp;s (b̂in†p;s) as an annihilation (creation) operator of one
particle (antiparticle) at in-state with quantum number
p and s.

In a similar manner, one can define an annihilation/
creation operator at out-state t → þ∞. To do this, we first
define an asymptotic field operator at out-state ψ̂out. Similar
to ψ̂ in, we define an asymptotic field operator at out-state
ψ̂out as a solution of the Dirac equation without the weak
field Aμ,

0 ¼ ½i=∂ − e=̄A −m�ψ̂out; ð15Þ

with a boundary condition at x0 → þ∞ given by

0 ¼ lim
x0→þ∞

½ψ̂ −
ffiffiffiffi
Z

p
ψ̂out�: ð16Þ

We, then, expand the operator in terms of a mode function

�ψ
out
p;s as

ψ̂outðxÞ ¼
X
s

Z
d3p½þψout

p;sðxÞâoutp;s þ −ψ
out
p;sðxÞb̂out†−p;s�; ð17Þ

where we normalize the mode function �ψ
out
p;s in the same

manner as �ψ
in
p;s [see Eq. (11)] as

Z
d3x�ψ

out†
p;s �ψ

out
p0;s0 ¼ δ3ðp − p0Þδss0 ;Z

d3x�ψ
out†
p;s ∓ψ

out
p0;s0 ¼ 0: ð18Þ

The identification of positive/negative frequency mode is
essentially the same as �ψ

in
p;s [see Eq. (12)], but is now

identified at x0 → þ∞ as

lim
x0→þ∞�ψ

out
p;s ∝ e∓iωPoutx

0

eþip·x; ð19Þ

where Pout ≡ p − eĀðx0 ¼ þ∞Þ is kinetic momentum at
x0 → þ∞. Note that �ψ

out
p;s is not necessarily identical to

�ψ
in
p;s in the presence of the strong external field. Since

�ψ
out
p;s obeys the same Dirac equation as �ψ

in
p;s does [Eqs. (9)

and (15)], �ψ
out
p;s can be written as a superposition of þψ

in
p;s

and −ψ
in
p;s. In other words, the positive and negative

frequency modes (i.e., particle and antiparticle modes)
are mixed up with each other during the time evolution
due to the nonperturbative interactions between Āμ and ψ̂ .
This is one of the important differences from the standard
perturbation theory without Āμ, in which �ψ

in
p;s and

�ψ
out
p;s are always identical. Finally, we impose the

canonical commutation relation onto ψ̂out, which quantizes
âout; b̂out† as

δ3ðp − p0Þδss0 ¼ fâout†p;s ; âoutp0;s0g ¼ fb̂out†p;s ; b̂outp0;s0g;
ðothersÞ ¼ 0: ð20Þ
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Thereby, we define an annihilation/creation operator at
out-state.
The annihilation/creation operators at the different

asymptotic times, âin; b̂in† and âout; b̂out†, are not indepen-
dent with each other. If the external fields are merely pure
gauge fields Āμ;Aμ → const. (i.e., no electromagnetic
fields), they are identical. This is a trivial situation and it
is apparent that no particles are produced for this case. In
contrast, for nonvanishing electromagnetic fields Āμ ≠
const orAμ ≠ const, they are no longer identical but related
with each other by a unitary transformation. We shall see
below that this mismatch between the in- and out-state
annihilation/creation operators results in particle produc-
tion. Note that not only the nonperturbative interactions due
to Āμ, which result in the mixing of the mode functions

�ψ
in=out
p;s , but also the perturbative interactions due to Aμ

contribute to this mismatch of the annihilation/creation
operators.

C. Particle production

The momentum distribution of produced particles (anti-
particles) np;s (n̄p;s) can be computed as the in-vacuum
expectation value of the number operator at out-state,

np;s ≡ hvac; injâout†p;s âoutp;s jvac; ini
hvac; injvac; ini ;

n̄p;s ≡ hvac; injb̂out†p;s b̂outp;s jvac; ini
hvac; injvac; ini ; ð21Þ

where jvac; ini is the in-vacuum state, which is a state
such that it is annihilated by the annihilation operators at
in-state as

0 ¼ âinjvac; ini ¼ b̂injvac; ini: ð22Þ

We evaluate Eq. (21) in the lowest nontrivial order
of Aμ. To do this, we first rewrite âout; b̂out† in terms of
âin; b̂in†. By using Eq. (18), one can reexpress âout; b̂out† as

 
âoutp;s

b̂out†−p;s

!
¼
Z

d3x

 
þψ

out†
p;s

−ψ
out†
p;s

!
ψ̂out: ð23Þ

Then, we use the boundary condition (16) and Eq. (7)
to find

� âoutp;s

b̂out†−p;s

�
¼ lim

x0→þ∞

1ffiffiffiffi
Z

p
Z

d3x

�
þψ

out†
p;s ðxÞ

−ψ
out†
p;s ðxÞ

�
ψ̂ðxÞ

¼ lim
x0→þ∞

Z
d3x

�
þψ

out†
p;s ðxÞ

−ψ
out†
p;s ðxÞ

��
ψ̂ inðxÞ þ e

Z
d4ySRðx; yÞ=AðyÞψ̂ inðyÞ þOðe2Þ

�
: ð24Þ

By noting that the Green function SR can be expressed in terms of the mode function �ψ
out
p;s as

SRðx; yÞ ¼ −iθðx0 − y0Þ
X
s

Z
d3p½þψout

p;sðxÞþψ̄out
p;sðyÞ þ −ψ

out
p;sðxÞ−ψ̄out

p;sðyÞ�; ð25Þ

one can evaluate Eq. (24) in the first order of Aμ as

âoutp;s ¼ âoutð0Þp;s þ âoutð1Þp;s ; b̂out−p;s ¼ b̂outð0Þ†−p;s þ b̂outð1Þ†−p;s ; ð26Þ

where

âoutð0Þp;s ¼
X
s0

Z
d3p0

��Z
d3xþψ

out†
p;s ðxÞþψ in

p0;s0ðxÞ
�
âinp0;s0 þ

�Z
d3xþψ

out†
p;s ðxÞ−ψ in

p0;s0ðxÞ
�
b̂in†−p0;s0

�
;

âoutð1Þp;s ¼
X
s0

Z
d3p0

��
−ie

Z
d4xþψ̄

out
p;sðxÞ=AðxÞþψ in

p0;s0ðxÞ
�
âinp0;s0 þ

�
−ie

Z
d4xþψ̄

out
p;sðxÞ=AðxÞ

−
ψ in
p0;s0ðxÞ

�
b̂in†−p0;s0

�
; ð27Þ

and
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b̂outð0Þ†−p;s ¼
X
s0

Z
d3p0

��Z
d3x−ψ

out†
p;s ðxÞþψ in

p0;s0ðxÞ
�
âinp0;s0 þ

�Z
d3x−ψ

out†
p;s ðxÞ−ψ in

p0;s0ðxÞ
�
b̂in†−p0;s0

�
;

b̂outð1Þ†−p;s ¼
X
s0

Z
d3p0

��
−ie

Z
d4x−ψ̄

out
p;sðxÞ=AðxÞþψ in

p0;s0ðxÞ
�
âinp0;s0 þ

�
−ie

Z
d4x−ψ̄

out
p;sðxÞ=AðxÞ

−
ψ in
p0;s0ðxÞ

�
b̂in†−p0;s0

�
: ð28Þ

An important point here is that, once interactions are switched on, the annihilation operators at out-state âout; b̂out differ from
those at in-state âin; b̂in and always contain creation operators at in-state âin†; b̂in†. Hence, the in-vacuum state is no longer
annihilated by the annihilation operators at out-state 0 ≠ âoutjvac; ini; b̂outjvac; ini. This implies that the particle number
n ∝ jâoutjvac; inij2; n̄ ∝ jb̂outjvac; inij2 become nonvanishing, i.e., particles are produced from the vacuum.
Now, we can explicitly write down a formula for the particle number. By substituting Eq. (26) into Eq. (21), we obtain

np;s ¼
X
s0

Z
d3p0

����
Z

d3xþψ
out†
p;s ðxÞ−ψ in

p0;s0ðxÞ − ie
Z

d4xþψ̄
out
p;sðxÞ=AðxÞ

−
ψ in
p0;s0ðxÞ

����2;
n̄p;s ¼

X
s0

Z
d3p0

����
Z

d3x−ψ
out†
−p;sðxÞþψ in

−p0;s0ðxÞ − ie
Z

d4x−ψ̄
out
−p;sðxÞ=AðxÞþψ in

−p0;s0ðxÞ
����2: ð29Þ

The first term in the brackets does not contain the weak
field Aμ and it is completely determined by the non-
perturbative interactions due to the strong field Āμ. Thus,
the first term is important for the nonperturbative particle
production by the strong field (the Schwinger mechanism).
On the other hand, the second term is important for the
perturbative particle production by the weak field. This is
because, for vanishing Āμ, our formalism reduces to the
standard perturbation theory without Āμ, in which only the
second term survives. However, it should be emphasized
that our perturbation theory differs from the standard one
because our fermion mode function �ψ

in=out
p;s is fully dressed

by the strong field Āμ. Thus, the second term depends on e
and Āμ nonlinearly. Note that our perturbation theory is
valid no matter how slow or fast the weak field Aμ is as
long as it is sufficiently weaker than the strong one
Aμ ≪ Āμ.

III. CONSTANT HOMOGENEOUS ELECTRIC
FIELD + PERTURBATION

In this section, we consider a specific field configuration
and discuss details of the particle production based on the
perturbation theory developed in Sec. II. In Sec. III A, we
first consider a case, in which the external fields Āμ;Aμ are
homogeneous in space, and the strong field Āμ is suffi-
ciently slow so that it is well approximated by a constant
electric field. For this case, one can analytically perform the
integrations in Eq. (29) without any approximations to
obtain a closed expression for the particle number. This
enables us to better understand qualitative aspects of the
particle production. In Sec. III B, we furthermore assume
that the weak field is given by a monochromatic wave with
frequency Ω, and discuss details of the particle production

quantitatively. In particular, we explicitly demonstrate that
the interplay between the nonperturbative particle produc-
tion (the Schwinger mechanism) and the perturbative one
occurs with changing Ω. Also, we explicitly demonstrate
that the Franz-Keldysh effect takes place as a cooperative
effect between Aμ and Āμ, and it significantly modifies the
perturbative particle production.

A. General perturbations

We assume that the external field is homogeneous in
space. This assumption is equivalent to assume that the
external field is purely electric. By defining the direction of
the electric field as the x3 direction, we may write the
external fields Āμ;Aμ as

ĀμðxÞ ¼ ð0; 0; 0;−Āðx0ÞÞ ¼
�
0; 0; 0;

Z
x0

dx0Ēðx0Þ
�

AμðxÞ ¼ ð0; 0; 0;−Aðx0ÞÞ ¼
�
0; 0; 0;

Z
x0

dx0Eðx0Þ
�
;

ð30Þ

where Ē; E denote the electric field strength for the strong
field and the weak field, respectively. Furthermore, we
assume that Ē is sufficiently slow so that it is well
approximated by a constant electric field as

Ēðx0Þ ¼ Ē; Āðx0Þ ¼ −Ēx0: ð31Þ

For simplicity, we assume Ē > 0 in the following.
For this case, one can analytically solve the Dirac

equation, and find that the mode functions �ψ
as
p;s

(as ¼ in; out) are given by [38,39]
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þψ
as
p;sðxÞ ¼

�
Aas
p ðx0ÞþBas

p ðx0Þγ0
mþ γ⊥ · p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þ p2⊥
p �

Γs
eip·x

ð2πÞ3=2 ;

−ψ as
p;sðxÞ ¼

�
Bas�
p ðx0Þ−Aas�

p ðx0Þγ0mþ γ⊥ · p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ p2⊥

p �
Γs

eip·x

ð2πÞ3=2 :

ð32Þ

Here, Γs (s ¼ ↑;↓) are two eigenvectors of γ0γ3 with
eigenvalue one such that

γ0γ3Γs ¼ Γs; Γ†
sΓs0 ¼ δss0 ; ð33Þ

and the scalar functions Aas
p ; Bas

p are

8>><
>>:

Ain
p ¼ e−

iπ
8 e−

π
8

m2⊥
eĒ

m⊥ffiffiffiffiffiffi
2eĒ

p D
i
2

m2⊥
eĒ
−1

�
−e−iπ

4

ffiffiffiffi
2
eĒ

q
ðeĒx0 þ pkÞ

	

Bin
p ¼ eþ

iπ
8 e−

π
8

m2⊥
eĒ D

i
2

m2⊥
eĒ

�
−e−iπ

4

ffiffiffiffi
2
eĒ

q
ðeĒx0 þ pkÞ

	 ;

8>><
>>:

Aout
p ¼ e−

iπ
8 e−

π
8

m2⊥
eĒ D

−i
2

m2⊥
eĒ

�
e
iπ
4

ffiffiffiffi
2
eĒ

q
ðeĒx0 þ pkÞ

	

Bout
p ¼ eþiπ

8 e−
π
8

m2⊥
eĒ

m⊥ffiffiffiffiffiffi
2eĒ

p D
−i
2

m2⊥
eĒ
−1

�
e
iπ
4

ffiffiffiffi
2
eĒ

q
ðeĒx0 þ pkÞ

	 ;

ð34Þ

where DνðzÞ is the parabolic cylinder function,3 and

m⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q
ð35Þ

is transverse mass. pk; p⊥ are longitudinal and transverse
momentum with respect to the direction of the electric field,
respectively. Note that �ψ

in
p;s and �ψ

out
p;s are not linearly

independent with each other, but are related with each
other by

�
þψ

in
p;s

−ψ
in
p;s

�
¼
�
αp −β�p
βp α�p

��
þψ

out
p;s

−ψ
out
p;s

�
; ð36Þ

where

αp ≡ m⊥ffiffiffiffiffiffiffiffi
2eĒ

p
ffiffiffiffiffiffi
2π

p
exp

h
− π

4

m2⊥
eĒ

i
Γ
�
1 − i

2

m2⊥
eĒ

	 ;

βp ≡ exp

�
−
π

2

m2⊥
eĒ

�
: ð37Þ

It should be stressed that jαpj ≠ 1 and jβpj ≠ 0 if Ē ≠ 0.
αp; βp can be understood as an analog of the reflectance and
the transmission coefficient in a barrier scattering problem
in quantum mechanics, respectively. Thus, intuitively
speaking, jαpj ≠ 1 (jβpj ≠ 0) implies that particles in the
Dirac sea are reflected by (tunneled into) the tilted gap in
the presence of the strong electric field. This point plays an
important role in the appearance of the Franz-Keldysh
effect as we shall explain later.4

With the use of Eqs. (32) and (34), one can evaluate the
integrals in Eq. (29) analytically as

Z
d3x−ψ

out†
p;s þψ

in
p0;s0 ¼−

�Z
d3xþψ

out†
p;s −

ψ in
p0;s0

��

¼ δss0δ
3ðp−p0Þ×exp

�
−
π

2

m2⊥
eĒ

�
; ð38Þ

and

− ie
Z

d4x−ψ̄
out
p;s=Aþψ

in
p0;s0

¼ −
�
−ie

Z
d4xþψ̄

out
p;s=A−

ψ in
p0;s0

��

¼ δss0δ
3ðp − p0Þ × 1

2

m2⊥
eĒ

exp

�
−
π

2

m2⊥
eĒ

�

×
Z

∞

0

dω
ẼðωÞ
Ē

exp

�
−
i
4

ω2 þ 4ωpz

eĒ

�

× 1F̃1

�
1 −

i
2

m2⊥
eĒ

; 2;
i
2

ω2

eĒ

�
: ð39Þ

Here, 1F̃1 is the regularized hypergeometric function, and
we introduced the Fourier transformation of the weak
electric field as

ẼðωÞ≡
Z

dx0e−iωx
0

Eðx0Þ: ð40Þ

Note that the off-diagonal matrix elements with different
momentum p ≠ p0 in the integrals are vanishing because of
the spatial homogeneity. Different spin labels s ≠ s0 also
give vanishing contributions because there are no magnetic
fields and electric fields do not couple to spins. By plugging
these expressions into Eq. (29), one finally obtains

3In nonrelativistic systems, the mode function in the presence
of a constant electric field is expressed by the Airy function, not
by the parabolic cylinder function. This is a slight difference
between the Franz-Keldysh effect in QED and in semiconductors.

4In general, if there exists a “genuine” strong electric field
which cannot be eliminated by any Lorentz transformations,
jαpj ≠ 1 and jβpj ≠ 0 hold. This implies that the Franz-Keldysh
effect is a genuinely electrical effect. For example, strong plane
waves, strong crossed fields, or strong magnetic field alone
always gives jαpj ¼ 1 and jβpj ¼ 0 no matter how strong it is, and
hence the Franz-Keldysh effect never occurs.
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np;s ¼ n̄−p;s ¼
V

ð2πÞ3 exp
�
−π

m2⊥
eĒ

�����1þ 1

2

m2⊥
eĒ

Z
∞

0

dω
ẼðωÞ
Ē

exp

�
−
i
4

ω2 þ 4ωpk
eĒ

�
1F̃1

�
1 −

i
2

m2⊥
eĒ

; 2;
i
2

ω2

eĒ

�����2; ð41Þ

where the use is made of δ3ðp ¼ 0Þ ¼ V=ð2πÞ3 with V
being the whole spatial volume. Equation (41) does not
depend on s because electric fields do not distinguish spins.
np ¼ n̄−p holds because a particle and an antiparticle are
always produced together as a pair from the vacuum, whose
momentum and charge are zero. Note that we did not use
any approximations (such as the WKB approximation) in
deriving Eq. (41).

1. Nonperturbative limit

The particle production becomes nonperturbative (i.e.,
the Schwinger mechanism occurs) if the weak electric field
E is so slow that Ẽ is dominated by low-frequency
modes ω=

ffiffiffiffiffiffi
eĒ

p
≪ 1.

Indeed, by taking a limit of ω=
ffiffiffiffiffiffi
eĒ

p
→ 0 in the integrand

of Eq. (41), we obtain

np;s ¼ n−p;s

∼
V

ð2πÞ3 exp
�
−π

m2⊥
eĒ

�����1þ 1

2

m2⊥
eĒ

Z
∞

0

dωe−iω
pk
eĒ
ẼðωÞ
Ē

����2

∼
V

ð2πÞ3 exp
�
−π

m2⊥
eĒ

�����1þ π

2

m2⊥
eĒ

Eð−pk=eĒÞ
Ē

����2: ð42Þ

In the last line, we used a mathematical trickR
∞
0 dωe−iωt ∼ πδðtÞ. In Eq. (42), the coupling constant e
appears inversely in the exponential. This fact ensures that
the particle production is actually nonperturbative for slow E.
Note that the distribution depends onpk ifE depends on time.
Intuitively, the particle production occurs most efficiently at
the instant when the longitudinal kinetic momentum Pk ¼
pk þ eĒx0 becomes zero, at which the energy cost to
produce a particle is the smallest. Thus, the value of the
weak field at x0 ¼ −pk=eĒ becomes important.
Equation (42) is consistent with the Schwinger formula

for the nonperturbative particle production from a constant
electric field. In fact, the Schwinger formula reads [10]

nðSchÞp;s ¼ n̄ðSchÞ−p;s

¼ V
ð2πÞ3 exp

�
−π

m2⊥
eE

�

¼ V
ð2πÞ3 exp

�
−π

m2⊥
eĒ

�����1þ π

2

m2⊥
eĒ

E
Ē
þO

��
E
Ē

�
2
�����2;
ð43Þ

where E ¼ Ēþ E is the total electric field strength. Thus,
our formula (42) reproduces the Schwinger formula (43)
up to OððE=ĒÞ1Þ if one regards Eð−pk=gĒÞ as a constant.

To reproduce OððE=ĒÞnÞ corrections (n ≥ 2) correctly
within our perturbation theory, one has to expand the
annihilation operators (24) up to nth order in Aμ.

2. Perturbative limit

The perturbative particle production takes place if the
weak electric field Ẽ is dominated by high-frequency
modes. Indeed, by taking ω=

ffiffiffiffiffiffi
eĒ

p
→ ∞ limit of the

integrand in Eq. (41), we obtain

np;s¼ n̄−p;s∼
V

ð2πÞ3
����exp

�
−
π

2

m2⊥
eĒ

�
þ1

2

m⊥
ωp

eẼð2ωpÞ
ωp

����2: ð44Þ

Equation (44) is a superposition of the nonperturbative and
the perturbative particle production. In fact, the second term
does not contain the exponential factor, but just depends on
e linearly. Hence, it gives the perturbative particle produc-
tion. The perturbative particle production does not depend
on Ē, but solely determined by E. The strong field Ē
separately contributes to the scattering amplitude, and gives
rise to the nonperturbative particle production. This is the
first term in Eq. (44), which is independent of E.
If Ē is smaller than the critical field strength eĒ≲m2⊥,

the first term in Eq. (44) may be neglected because it is
exponentially suppressed. Thus, Eq. (44) becomes purely
perturbative as

np;s ¼ n̄−p;s ∼
V

ð2πÞ3
1

4

m2⊥
ω2
p

jeẼð2ωpÞj2
ω2
p

: ð45Þ

Note that Eq. (45) reproduces the textbook formula for the
perturbative particle production from a classical electric
field [6,40].
On the other hand, if Ē is supercritical eĒ≳m2⊥, the first

term in Eq. (45) becomes Oð1Þ, which is superior to the
second term OðeE=ω2

pÞ. Then, Eq. (45) gives

np;s ¼ n̄−p;s ∼
V

ð2πÞ3 exp
�
−π

m2⊥
eĒ

�
: ð46Þ

This implies that the perturbative particle production by E is
buried in the nonperturbative one by Ē, and the particle
production always looks nonperturbative no matter how
slow or fast the weak field is. In other words, the interplay
between the perturbative and the nonperturbative particle
production becomes less manifest if Ē is supercritical.

B. Monochromatic wave as a perturbation

In this section, we consider an explicit example, in which
the weak field is given by a monochromatic wave
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Eðx0Þ ¼ E0 cosΩx0: ð47Þ

With this configuration, we compute the momentum
distribution np;s and the total particle number N ≡P

s

R
d3pnp;s to explicitly demonstrate how the interplay

between the nonperturbative and the perturbative particle
production occurs with changing the frequency Ω. We also
demonstrate that a QED analog of the Franz-Keldysh effect
occurs. The Franz-Keldysh effect significantly lowers the
threshold frequency for the perturbative particle produc-
tion, and results in a characteristic oscillating pattern in Ω
dependence.

1. Momentum distribution

By noting that the Fourier component Ẽ is sharply
peaked at ω ¼ �jΩj as

ẼðωÞ ¼ πE0½δðω − jΩjÞ þ δðωþ jΩjÞ�; ð48Þ

the formula for the number distribution (41) can be
simplified as

np;s ¼ n̄−p;s ¼
V

ð2πÞ3 exp
�
−π

m2⊥
eĒ

�����1þ π

2

m2⊥
eĒ

E0

Ē

× exp

�
−
i
4

jΩj2 þ 4jΩjpz

eĒ

�

× 1F̃1

�
1 −

i
2

m2⊥
eĒ

; 2;
i
2

jΩj2
eĒ

�����2: ð49Þ

The number distribution (49) is plotted in Figs. 1 and 2.
We also compared Eq. (49) with various other evaluations,
i.e., the Schwinger nonperturbative formula (43); the
perturbative formula (45); and an exact result which is
obtained by numerically solving the original Dirac equa-
tion (5) without any expansion nor approximations.5 Notice
that Eq. (49) reproduces the exact result very well for any
values of Ω. This confirms that our perturbative formu-
lation is valid as long as the weak field E is weak enough
E ≪ Ē, and that the frequency of E is not important.
For subcritical field strength eĒ≲m2⊥, the interplay

between the nonperturbative and the perturbative particle
production takes place (see the top panel of Fig. 1 and

FIG. 2. The number distribution np;s as a function of the
frequency Ω and the transverse mass m⊥. pk and E0 are fixed

as pk=
ffiffiffiffiffiffi
eĒ

p
¼ 0 and E0 ¼ Ē=100. The blue line at Ω=

ffiffiffiffiffiffi
eĒ

p
¼ 20

shows the Schwinger formula [see Eq. (43)] for the nonpertur-
bative field alone exp½−πm2⊥=eĒ�. The red line at the bottom
shows Ω ¼ 2ωp, at which the perturbative particle production is
peaked [see Eq. (50)].

FIG. 1. The frequencyΩ dependence of the number distribution
np;s (thick black line) for subcritical field strength m⊥=

ffiffiffiffiffiffi
eĒ

p
¼

2.5 (top) and supercritical one m⊥=
ffiffiffiffiffiffi
eĒ

p
¼ 0.2 (bottom). We

fixed pk and E0 as pk=
ffiffiffiffiffiffi
eĒ

p
¼ 0 and E0 ¼ Ē=100. The blue and

dashed cyan lines show the Schwinger formula [see Eq. (43)] for
the strong field alone exp½−πm2⊥=eĒ� and for the total electric
field exp½−πm2⊥=eðĒþ E0Þ�, respectively. The red vertical line
shows Ω ¼ 2ωp, at which the perturbative particle production is
peaked [see Eq. (50)]. The orange dotted line shows the exact
result, which is obtained by numerically solving the original
Dirac equation (5).

5We solved the Dirac equation numerically for a finite time
interval x0 ∈ ½−T; T� with a plane wave initial condition set at
x0 ¼ −T, and computed the off-diagonal Bogoliubov coefficient
βp at x0 ¼ T. The number distribution at time T is obtained as
np;s ¼ V=ð2πÞ3 × jβpj2 [39]. The exact result plotted in Fig. 1 is
obtained by taking sufficiently large T. We carefully checked that
the result is insensitive to T if it is large enough.
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Fig. 2) as we already discussed analytically in Sec. III A: In
the high-frequency region Ω=

ffiffiffiffiffiffi
eĒ

p
≫ 1, the particle pro-

duction becomes the most efficient at Ω ∼ 2ωp. This
implies that the production is dominated by the perturbative
process. Indeed, the perturbative formula (45) for the
monochromatic wave (47) is sharply peaked at Ω ¼ 2ωp as

nðpertÞp;s ¼ VT
ð2πÞ3

π

8

m2⊥
ω2
p

jeE0j2
ω2
p

δðjΩj − 2ωpÞ; ð50Þ

where we used δðω ¼ 0Þ ¼ T=2π with T being the whole
time interval. Physically speaking, the location of the peak
Ω ¼ 2ωp in Eq. (50) can be understood as the threshold
energy for one photon to create a pair of particles from the
vacuum. On the other hand, in the low-frequency region
Ω=

ffiffiffiffiffiffi
eĒ

p
≪ 1, the particle production becomes nonpertur-

bative, and is consistent with the Schwinger formula for the
total electric field (43). Notice that the nonperturbative
particle production is strongly suppressed by an exponen-
tial of jeĒj−1, but the perturbative one is only suppressed by
powers of eĒ. Thus, the perturbative particle production is
more abundant than the nonperturbative one for subcritical
field strength eĒ≲m2⊥.
The structure of the perturbative peak atΩ ∼ 2ωp (see the

top panel of Fig. 1 and Fig. 2) is significantly modified by
the strong field Ē. This is nothing but the Franz-Keldysh
effect in QED. Indeed, in contrast to the naive perturbative
formula (50), the perturbative peak in the figures is not a
simple delta function strictly localized at the threshold
energy, but it has nontrivial structure: (i) there is a tail below
the threshold Ω≲ 2ωp; (ii) the largest peak is located
slightly above the threshold Ω≳ 2ωp; and (iii) above the
threshold Ω > 2ωp, the peak does not decrease monoton-
ically but oscillates.
Here is an intuitive explanation why the Franz-Keldysh

effect occurs (see also Fig. 3): The perturbative particle
production from the vacuum occurs when a particle which
is filling one of the negative energy states (the Dirac sea) is
excited into one of the positive energy states. As the energy
bands are nonperturbatively tilted by the strong electric
field Ē, the probability density of a particle in the Dirac sea
can tunnel into the gap. Once the particle tunneled into the
gap, the threshold energy to excite the particle into a
positive state is reduced. Thus, the perturbative particle
production can occur even below the naive threshold (i).
However, this does not necessarily imply that the particle
production occurs most efficiently below the threshold. On
the contrary, it should be slightly above the threshold in the
presence of Ē. This is because only a part of the probability
density can tunnel into the gap but the major part of it is
reflected by the gap. Because of this reflection, the
probability density takes its maximum slightly away from
the gap, at which more energy is needed to excite the
particle. Hence, the perturbative particle production

becomes the most efficient slightly above the naive thresh-
old energy (ii). Another important consequence of the
reflection is that it mixes up the incoming and outgoing
wave. Therefore, the probability density outside of the gap
is no longer uniform but oscillates in space. This results in
the oscillating pattern in the distribution (iii) because the
excitation energy at each local maximum of the probability
density is different and larger excitation energy is needed
for deeper local maxima.
For supercritical field strength eĒ≳m2⊥ (see the bottom

panel of Fig. 1 and Fig. 2), the nonperturbative production
becomes so abundant no matter how slow or fast the
frequency Ω is. Thus, the perturbative production is always
buried in the nonperturbative one, and the interplay or the
Franz-Keldysh effect is not manifest at first sight. This,
however, does not imply that there is no interplay nor the
Franz-Keldysh effect. Indeed, the distribution shows an
oscillating behavior for large Ω, which is a reminiscent of
the Franz-Keldysh oscillation (iii). Also, the production
becomes smaller for largeΩ, which is because the interplay
takes place. For large Ω, the weak field E and the strong
field Ē separately contribute to the scattering amplitude of
the production process. As the weak field E with large Ω
only gives a perturbative contribution, which is negligible
to the nonperturbative one from Ē, the distribution is
described well by the Schwinger formula for the strong
field Ē alone. On the other hand, for smallΩ, not only Ē but
also E contributes to the production process in a non-
perturbative manner. Thus, the distribution is described by
the Schwinger formula for the total field E ¼ Ēþ E0,
which gives larger (if E0 > 0) production compared to that
for Ē alone.
Let us discuss a relation between the Franz-Keldysh

effect in QED and the dynamically assisted Schwinger
mechanism. The physical setups in the Franz-Keldysh

FIG. 3. A schematic picture of the band structure of QED in the
presence of a strong constant electric field Ē. The blue curve
represents the probability densityψ†ψ of a particle in theDirac sea.
The black dashed line shows the band gap energy 2ωp between the
band edges. The red (green) dashed line shows the energy needed to
excite a particle in the Dirac sea which is tunneled into (reflected
by) the tilted gap into a positive energy state.
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effect and in the dynamically assisted Schwinger mecha-
nism are quite similar to each other. Although both
mechanisms consider a superposition of a weak field onto
a strong slow field, it is typical to assume in the dynami-
cally assisted Schwinger that the frequency of the weak
field is well below the threshold and the strong electric field
is subcritical. Thus, the setup discussed in (i) (i.e., a weak
field with frequency below the threshold on top of a
subcritical strong field) is the completely same setup that
is discussed in the dynamically assisted Schwinger mecha-
nism. Therefore, the physical origin of (i) should be the
same as the dynamically assisted Schwinger mechanism.
Indeed, the dynamically assisted Schwinger mechanism
claims that the quantum tunneling is assisted by the
perturbative excitation, while the perturbative excitation
is assisted by the quantum tunneling in the Franz-Keldysh
effect. This is just a rephrasing of the same physical process
from a different point of view. Note that the dominance of
the perturbative particle production in the dynamically
assisted Schwinger mechanism was emphasized previously
in Refs. [34,41]. On the other hand, the setups discussed in
(ii), (iii) (i.e., a weak field with frequency near and/or above
the threshold on top of a subcritical strong field), and the
supercritical setup are not the setups discussed in the
context of the dynamically assisted Schwinger mechanism.
Therefore, one may understand the Franz-Keldysh effect in
QED as a generalization of the dynamically assisted
Schwinger mechanism to broader parameter regions.
Note that a similar effect to (ii) was found previously in

Ref. [42], in which electron and positron pair production
from a strong oscillating electric field was discussed.
Reference [42] found that pair production thresholds for
multiphoton processes increase as the strength of the strong
oscillating field increases, although Ref. [42] did not
consider static strong electric field and interpreted it in
terms of a change of electron’s effective mass.

2. Total number

The total number of produced particles N can be
computed by integrating the spin s and the momentum p
of the distribution np;s (49) as

N ¼
X
s

Z
d3pnp;s

¼ ðeĒÞ2VT ×
1

eĒ
1

2π2

Z
∞

m
dm⊥m⊥ exp

�
−π

m2⊥
eĒ

�

×

�
1þ

���� π2m
2⊥

eĒ 1F̃1

�
1 −

i
2

m2⊥
eĒ

; 2;
i
2

jΩj2
eĒ

�����2
�
E0

Ē

�
2
�
:

ð51Þ
Here, we neglected a term ∝ δðΩÞ by assuming Ω ≠ 0, and
thus there is no linear term ðE0=ĒÞ1 in the square brackets.
Also, we evaluated the pk integration as

R
dpk ¼ eĒT.

This is because the momentum pk and the time x0

integration are related with each other in the presence
of a constant electric field [38]. In fact, as we explained
below Eq. (42), the particle production usually occurs at
x0 ¼ −pk=eĒ. Thus, eĒdx0 ¼ −dpk should hold, which
yields

R
dpk ¼ eĒ

R
dx0 ¼ eĒT.

The total number (51) is plotted in Figs. 4 and 5. For
comparison, Schwinger’s nonperturbative formula for the
strong field Ē [the integration of Eq. (43)]

NðSchÞ ¼
X
s

Z
d3pnðSchÞp;s

¼ ðeĒÞ2VT ×
1

4π3
exp

�
−π

m2

eĒ

�
; ð52Þ

the perturbative formula [the integration of Eq. (45)]

NðpertÞ ¼
X
s

Z
d3p nðpertÞp;s

¼ ðeĒÞ2VT ×
1

48π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

Ω2

r

×

�
2þ 4m2

Ω2

����� E0

Ē

����2θðΩ − 2mÞ; ð53Þ

FIG. 4. The frequency Ω dependence of the total number N
(thick black line) for subcritical field strength m=

ffiffiffiffiffiffi
eĒ

p
¼ 2.5

(top) and supercritical onem=
ffiffiffiffiffiffi
eĒ

p
¼ 0.2 (bottom). We fixed E0

as E0 ¼ Ē=100. The green, blue, and dashed purple lines
show the perturbative formula (53), the Schwinger formula
for the strong field (52), and a superposition of them (54). The
dashed cyan line shows the asymptotic value of N at Ω ¼ 0
[Eq. (55)].
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and a superposition of them [the integration of
Eq. (44)]

NðSchþpertÞ ¼ NðSchÞ þ NðpertÞ; ð54Þ

are also plotted in the figures. In Eq. (54), we dropped a
cross term between Schwinger’s nonperturbative produc-
tion and the perturbative one because it is negligible in the
limit of T → ∞. Notice that the perturbative formula (53)
has a cutoff at Ω ¼ 2m, which is the minimum energy to
create a pair of particles from the vacuum 2ωp¼0 ¼ 2m.
One can roughly understand the parameter dependence

of the total number N (see Figs. 4 and 5) in terms of the
interplay between the nonperturbative and perturbative
particle production: For large frequency Ω=

ffiffiffiffiffiffi
eĒ

p
≫ 1,

the perturbative particle production by the weak field E
occurs. As the nonperturbative production by the strong
field Ē is negligible for subcritical field strength eĒ≲m2,
the perturbative process dominates the particle production
and the total number is basically in agreement with the
perturbative formula (53). Note, however, that there cer-
tainly exist small disagreements between them, which are
nothing but the Franz-Keldysh effect and are discussed later
in detail. On the other hand, the nonperturbative production
for supercritical field strength eĒ≳m2 becomes so abun-
dant that the perturbative production just gives a small
correction to the nonperturbative one. Because of this small
correction, the total number slightly deviates from the
Schwinger formula for the strong field alone (52) and
it is consistent with the sum of the Schwinger formula and
the perturbative formula (54). For small frequency
Ω=

ffiffiffiffiffiffi
eĒ

p
≪ 1, the perturbative particle production does

not take place and the production becomes purely non-
perturbative. The total number becomes slightly larger than
the Schwinger formula for the strong field alone (52)
because not only the strong field but also the weak field

contributes to the nonperturbative particle production.
Indeed, Eq. (51) gives

N⟶
jΩj→0ðeĒÞ2VT ×

1

4π3
exp

�
−π

m2

eĒ

�

×



1þ

�
1

2
þ π

2

m2

eĒ
þ π2

4

�
m2

eĒ

�
2
��

E0

Ē

�
2
�
; ð55Þ

which is actually larger than the Schwinger formula (52) by
the factor ofOððE=ĒÞ2Þ. Note thatOððE=ĒÞ1Þ correction is
absent in Eq. (55), although corrections to the momentum
distribution np;s start from OððE=ĒÞ1Þ [see Eq. (42)]. This
is because, for our monochromatic wave configuration,
OððE=ĒÞ1Þ correction in the total number becomes propor-
tional to δðΩÞ after pk integration, and hence can be
discarded for Ω ≠ 0. For general field configurations,
OððE=ĒÞ1Þ correction in the total number cannot be a
delta function and has a finite value even for Ω ≠ 0, so that
the correction should start from OððE=ĒÞ1Þ.
As pointed out, although our result is basically in

agreement with the perturbative formula (53) or the sum
with the Schwinger formula (54) in the high-frequency
regime Ω=

ffiffiffiffiffiffi
eĒ

p ≳ 1, there certainly exist small disagree-
ments between them. The disagreements may be more
clearly illustrated in Fig. 6, in which absolute difference
between our result and the sum of the Schwinger and the
perturbative formula (54), ΔN ¼ N − ðNðSchÞ þ NðpertÞÞ,
near the threshold Ω ∼ 2m is plotted. The disagreements
are nothing but the Franz-Keldysh effect. Namely, (i) the
perturbative particle production occurs even below the
threshold Ω≲ 2m; (ii) the production number is slightly
suppressed just above the threshold Ω≳ 2m; and (iii) the
production number oscillates around the naive perturbative
formula (53) above the threshold Ω > 2m. The physical
origin of this effect is completely the same as what we

FIG. 5. The total number N as a function of the frequency Ω
and massm. E0 is fixed E0 ¼ Ē=100. The green, blue, and dashed
purple lines show the perturbative formula (53), the Schwinger
formula for the strong field (52), and a superposition of them
(54). The red line at the bottom shows the threshold energy
Ω ¼ 2m.

FIG. 6. Difference between the total number and the sum
of the Schwinger and the perturbative formula (54),
N − ðNðSchÞ þ NðpertÞÞ, near the threshold Ω ∼ 2m. E0 is fixed
E0 ¼ Ē=100. Different colors distinguish the strength of the
strong field Ē.
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explained in Sec. III B 1, i.e., the change of wave function
due to the quantum tunneling and/or reflection by the tilted
gap in the presence of strong electric field. Note that the
difference ΔN corresponds to the change of the photon-
absorption rate by the Franz-Keldysh effect in condensed
matter physics, and is extensively measured in experiments
[28–32].
An important point of the Franz-Keldysh effect is that it

is suppressed only weakly by powers of m=
ffiffiffiffiffiffi
eĒ

p
as

can be seen from the figures. This implies that, for a
fixed subcritical strong field, the Franz-Keldysh effect
would be more manifest than the purely nonperturba-
tive particle production mechanism (the Schwinger
mechanism), which is strongly suppressed by an exponen-
tial of ðm=

ffiffiffiffiffiffi
eĒ

p
Þ−1. As an example, let us consider a

subcritical strong electric field with
ffiffiffiffiffiffi
eĒ

p ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−2×eEcr

p
¼

10−1×me¼Oð10keVÞ, V ¼ Oðð1 μmÞ3Þ, and T¼
Oð1 fsecÞ, which are typical values within the current laser
technologies [43]. Although it may still be difficult within
the current laser technologies to realize coherent electric
fields with high frequency exceeding the electron mass
scale, let us assume for now that we have such a high-
frequency electric field with weak strength. Then, NðSchÞ

can be estimated as NðSchÞ ∼ ð4 × 10−118Þ × T½fsec�, which
is, obviously, an extremely small number. On the other
hand, the Franz-Keldysh effect predicts that there should
be a difference in the production number ΔN ¼ N −
ðNðpertÞ þ NðSchÞÞ ∼ N − NðpertÞ with and without the strong
electric field. From Fig. 6, ΔN can be estimated as
ΔN ∼ ð1 × 1014Þ × T½fsec� [whereNðpertÞ ∼ ð1× 1014∼15Þ×
T½fsec�] for E0 ¼ 10−2 × Ē ¼ 10−4 × Ecr. This is a huge
number. Note that this order estimate may be valid when T
is not so long T ≲ 10−4 fsec, for which backreaction may
safely be neglected.6 Therefore, the Franz-Keldysh effect is
actually more manifest than the Schwinger mechanism, and
would be testable by experiments if we have a weak electric

field with high frequency even if the strong field is
not so strong. Note that the Franz-Keldysh effect
depends on E quadratically. Thus, the Franz-Keldysh effect
may still be manifest even for very weak E (e.g., E0 ∼
10−9 × Ē ¼ 10−11 × Ecr still gives a significant differ-
ence ΔN ∼ 1 × T½fsec�).

IV. SUMMARY AND DISCUSSION

We studied an analog of the Franz-Keldysh effect in
QED, and the interplay between the nonperturbative (the
Schwinger mechanism) and the perturbative particle pro-
duction in the presence of a strong slow field and a weak
perturbation on top of it.
In Sec. II, we derived a general formula for the produced

number of particles. Firstly, we used the retarded Green
function technique to solve the Dirac equation perturba-
tively with respect to the weak perturbation, while the
interactions due to the strong field are treated nonpertur-
batively. We, then, employed the canonical quantization
procedure in the presence of the strong field, and directly
computed the in-vacuum expectation value of the number
operator. The obtained formula (29) is written in terms of
bilinears between positive/negative frequency mode func-
tions at in- and out-states, which are fully dressed by the
strong field. This dressing enables us to study the Franz-
Keldysh effect, which is a cooperative effect between the
nonperturbative particle production mechanism due to the
strong field and the perturbative one due to the weak
perturbation. Also, the formula (29) is valid no matter how
fast or slow the weak perturbation is as long as the
perturbation is sufficiently weaker than the strong field.
Thus, the formula (29) is able to describe the interplay
between the perturbative particle production and the non-
perturbative one (the Schwinger mechanism) with chang-
ing characteristic timescale of the perturbation.
In Sec. III, we considered a specific field configuration to

discuss features of the particle production in more detail. To
be concrete, we assumed that the strong field and the weak
perturbation are given by a constant homogeneous electric
field and a monochromatic wave, respectively. In this
configuration, we analytically evaluated Eq. (29) without
any approximations, and explicitly demonstrated how the
interplay and the Franz-Keldysh effect occur. In particular,
we found that the Franz-Keldysh effect significantly affects
the perturbative particle production mechanism: (i) the
perturbative particle production occurs even below the
threshold energy; (ii) the perturbative production becomes
the most efficient just above the threshold energy; and (iii) a
characteristic oscillating pattern appears in the production
number above the threshold energy. We argued that these
changes are naturally explained in terms of changes of
wave function of electrons in the Dirac sea due to quantum
tunneling/reflection in the presence of the strong electric
field. In addition, we claimed that (i) is essentially the same
as the dynamically assisted Schwinger mechanism, and,

6In order to make a more realistic estimate, it is important, in
particular for longer T, to consider backreaction effects of the
particle production to the electric field. In general, backreaction
becomes important when the energy of produced particles
becomes comparable to that of the electric field [39,44,45].
Backreaction would deplete the electric field, so that one has to
inject additional energy (or sources) to the field in order to
maintain the field strength; otherwise the present order estimate
for ΔN fails to reproduce the actual production number. In the
present parameter choice, the energy of produced particles Ee ∼
meN ∼ ð1 × 1014∼15Þ ×me × T½fsec� becomes comparable to the
field’s energy Efield∼VĒ2=2∼ ð1×1015Þ×me if T ∼ 1fsec. Also,
the perturbative estimate (53) may be valid for meNðpertÞ≲
E2
0=2 ⇒ T ≲ ð1 × 10þ2Þ ×m−1

e ∼ 1 × 10−4 fsec. Note that one
can apply electric fields with short duration ΔT for many times
n. Backreaction for each production process can safely be
neglected as long as ΔT is sufficiently short, and hence the total
production number should be consistent with the present estimate
without backreaction with T ¼ nΔT. We leave the backreaction
problem as a future work.
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therefore, one may understand the Franz-Keldysh effect
in QED as a generalization of the dynamically assisted
Schwinger mechanism.
We also found that the Franz-Keldysh effect is sup-

pressed only weakly by powers of the critical field
strength of QED. In other words, for a fixed subcritical
strong field, the Franz-Keldysh effect would be more
manifest than the purely nonperturbative particle produc-
tion mechanism (the Schwinger mechanism), which is
strongly suppressed by an exponential of the critical field
strength. Unfortunately, however, it is still difficult within
the current laser technologies to realize coherent electric
fields with high frequency exceeding the electron mass
scale. Nevertheless, once such high-frequency electric
fields are realized in future laser experiments and/or other
physical systems with strong fields such as ultrarelativistic
heavy ion collisions, the Franz-Keldysh effect would take
place, which in turn leaves significant experimental signa-
tures. One of the possible experiments is to measure the
difference ΔN between the number of produced particles
from the vacuum by a weak monochromatic wave with and
without a strong electric field as suggested inFig. 6. This is an
analog of “modulation spectroscopy,”which is actually used
in the area of condensed matter physics to detect the Franz-
Keldysh effect in semiconducting materials [46]. We expect
that ΔN significantly deviates from zero near the threshold
and exhibits characteristic patterns in the frequency depend-
ence, e.g., an exponential tail below the threshold; a very
sharp peak at the threshold; and an oscillation above the
threshold.
The Franz-Keldysh effect would serve as a powerful tool

to study nonperturbative aspects of QED. In particular, it
would be very useful to investigate the vacuum structure of
QED. This is because the Franz-Keldysh effect occurs due
to changes of wave function of particles filling the Dirac sea
as we explained in Sec. III B 1, and the changes are directly
related to actual observables, i.e., frequency dependence of
the produced particle number. In fact, in the area of
condensed matter physics, the Franz-Keldysh effect is
experimentally used to precisely determine band structure
of semiconducting materials, and is very successful [46].
There are several possible future directions for this work.

One direction is to consider more realistic field configu-
rations, e.g., spatially inhomogeneous fields and/or pertur-
bations; polarized perturbations; and inclusion of strong
magnetic fields. Although we concentrated on the simplest
situation in Sec. III (i.e., a constant homogeneous strong
electric field and a weak monochromatic wave) for

simplicity, our general perturbative formalism developed
in Sec. II can be directly applicable to these more general
situations. Note that a similar perturbative approach was
used to study these more realistic situations in the context
of the dynamically assisted Schwinger mechanism [34,47].
This extension is not only important for actual experiments,
but also interesting from a phenomenological point of view.
For example, recently it is argued in the context of the
dynamically assisted Schwinger mechanism that spatial
inhomogeneous perturbations dramatically change the
production number [48,49]. As the dynamically assisted
Schwinger mechanism can be understood as a part of the
Franz-Keldysh effect, we expect that similar changes
should appear in the Franz-Keldysh effect as well.
Inclusion of strong magnetic fields should also have
significant impacts on the Franz-Keldysh effect because
the Landau quantization comes into play. In fact, nontrivial
changes are discussed in the area of condensed matter
physics as a result of the interplay between strong electric
and magnetic fields [50–53].
Another direction we would like to mention is applica-

tions to phenomenology. In particular, an application
to heavy ion physics may be interesting. Just after a
collision of ultrarelativistic heavy ions at RHIC and/or
LHC, there appears very strong chromoelectromagnetic
field (sometimes called “glamsa”), whose typical strength
is Oð1 GeVÞ [54–58]. In addition to the glasma, there also
exist jets, which are made up of high-energetic partons
originating from initial hard collisions. Although the
typical energy scale of jets are Oð100 GeVÞ, there are
thousands of low-energetic jets (∼ a few GeV), which are
called minijets. Thus, one may regard the system just after a
collision as a superposition of strong field (glamsa) and
weak perturbations on top of it [(mini-)jets]. This is
essentially the same situation that we discussed in this
paper. Thus, the Franz-Keldysh effect may take place. The
Franz-Keldysh effect may change parton splitting func-
tions, which might soften jet spectrum and help minijets to
thermalize.
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