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We derive analytical formulas for the equal-time Wigner function in an electromagnetic field of arbitrary
strength. While the magnetic field is assumed to be constant, the electric field is assumed to be space
independent and oriented parallel to the magnetic field. The Wigner function is first decomposed in terms
of the so-called Dirac-Heisenberg-Wigner functions, and then the transverse-momentum dependence is
separated using a new set of basis functions which depend on the quantum number n of the Landau levels.
Equations for the coefficients are derived and then solved for the case of a constant electric field. The pair-
production rate for each Landau level is calculated. In the case of finite temperature and chemical potential,
the pair-production rate is suppressed by Pauli’s exclusion principle.
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I. INTRODUCTION

Quantum electrodynamics (QED) of strong electromag-
netic (EM) fields has been studied for a very long time [1]. In
the initial stage of noncentral heavy-ion collisions, the
electromagnetic field can be as large as 9.8 × 1022 V=m
at the Relativistic Heavy Ion Collider (RHIC) [2] and even
larger at the LHC. Such extremely strong fields are gen-
erated by the fast-moving nuclei but will rapidly fall off with
time [3]. Themediumwas estimated to extend the lifetime of
the fields and enhance the possibility of detecting the
influence of strong EM fields [4,5].
A strong magnetic field leads to interesting effects related

to the chiral anomaly of quantum chromodynamics (QCD).
On the other hand, a strong electric field can lead to decay of
the QED vacuum. When the field strength is near or above
the critical strength Ec ¼ m2c3=qℏ [6–8], where m is the
mass of the particle and q is its electric charge, particle-
antiparticle pairs can be created from vacuum. This process
is commonly called the Schwinger process in honor of Julian
Schwinger, who derived the pair-production rate in a famous
work [8]. The rate is exponentially suppressed below the
critical field strength, which is about 1.32 × 1018 V=m for
electron-positron production. Pair production is a nonlinear

phenomenon, and the corresponding experiment is important
for studying QED beyond the perturbative regime. The
mechanism can occur in many systems such as in the early
Universe, around neutron stars, and in heavy-ion collisions,
while it is expected to appear in strong-laser experiments like
the free-electron x-ray laser [9,10] and the extreme-light
infrastructure (ELI) [11].
Although the Schwinger process has been studied for

more than half a century, calculating the pair production in
an arbitrary electromagnetic field is still a challenging
problem. The case of a vanishing magnetic fieldBðt;xÞ¼ 0

and a space-independent electric field has been exhaus-
tively discussed, and the problem can be translated
into solving the famousVlasov equation of quantum kinetic
theory [12–14]. It can be analytically solved for a constant
electric field EðtÞ ¼ E0 and the Sauter-type field EðtÞ ¼
E0sech2ðt=τÞ. Many theoretical methods are developed to
deal with these two cases and go beyond these analytical
benchmarks, such as directly through quantum field theory
[8], Wentzel-Kramers-Brillouin methods [15–17], instan-
tonmethods [18–20], theWigner-functionmethod [21–23],
the numerical worldline loop method [24,25], and holo-
graphic methods [26–28]. In principle, some methods such
as the Wigner-function method [21–23] can be applied to
very general cases, but one faces a system of nonlinear
partial differential equations. However, the field configu-
rations in cosmology or in heavy-ion collisions are much
more complicated than the above-mentioned cases. One
might find an approximate solution by partitioning space-
time into small cells and applying the analytical results for a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 056004 (2019)

2470-0010=2019=99(5)=056004(14) 056004-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.056004&domain=pdf&date_stamp=2019-03-08
https://doi.org/10.1103/PhysRevD.99.056004
https://doi.org/10.1103/PhysRevD.99.056004
https://doi.org/10.1103/PhysRevD.99.056004
https://doi.org/10.1103/PhysRevD.99.056004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


constant electric field in each cell. This, however, may
generate uncontrollable uncertainties because an instanton
study [29] showed that temporal inhomogeneities tend to
enhance the pair production while spatial ones tend to
suppress it. Especially in heavy-ion collisions, where the
EM fields vary rapidly in both space and time [5,30,31], a
proper numerical treatment is necessary [32,33].
Nowadays, many researchers are focusing on the

Schwinger process in strong-laser experiments [34,35].
The critical field strength Ec for eþe− pair production
corresponds to an average laser intensity Ic ¼ 1

2μ0c
E2
c ≃

2.3 × 1029 W=cm2. Unfortunately, such a large intensity is
difficult to generate in an experiment. In the ELI project
[11], the laser pulse can only reach ∼1026 W=cm2, which is
three orders of magnitude lower than Ic. The pair produc-
tion in such a case is strongly suppressed by a factor
expð−πEc=EÞ ≃ 10−66. Clearly, the critical intensity Ic is
not attainable for laser experiments in the near future.
Meanwhile, the electric field in heavy-ion collisions can
reach eE ∼m2

πc3=ℏ ≫ eEc at the RHIC [2], which pro-
vides realistic conditions to study pair production. In the
recently discovered Dirac semimetals, massless Dirac
fermions can be excited by an external electromagnetic
field and may be experimentally observed through their
transport properties. The production rate remains finite
even if the Dirac fermions are massless [36], which is
different from the Schwinger process in vacuum.
According to Maxwell’s equations, a varying electric

field will generate a magnetic field. Analytical calculations
show that a magnetic field which is parallel to the electric
field can increase the pair-production rate [16,37–40].
Recently, the enhancement of the pair-production rate
due to parallel magnetic fields has been studied in string
theory [41–43]. The pair-production rate is modified by the
thermal medium [44–46]. In this paper, we will reproduce
these results via the Wigner-function method. On the other
hand, the pair production in parallel electromagnetic fields
is related to the chiral anomaly [47,48] and to pseudoscalar
condensation [49–51], which can be verified using the
results of this paper. We will focus on these effects in
future work.
This paper is organized as follows. In Sec. II, we will

briefly introduce the equal-time Wigner function and the
Dirac-Heisenberg-Wigner (DHW) functions. General equa-
tions of motion for the DHW functions are also listed in this
section. In Sec. III, we simplify the equations of motion for
the DHW functions in a spatially homogeneous electric
field and give analytical solutions for a constant electric
field. A constant magnetic field, which is parallel to the
electric field, is taken into account in Sec. IV. The DHW
functions reflect the behavior of the Landau levels.
Analytical solutions are derived when both electric and
magnetic fields are constant. In Sec. V, we read off the pair-
production rate from the DHW functions derived in Sec. IV.
In Sec. VI, we give a summary and provide an outlook for

future work. Details about the auxiliary functions used in
this paper and their properties are summarized in
Appendix.
We take fermions to have positive unit charge q ¼ þe

and the electric and magnetic fields to point in the
z-direction.We use the following notations for four-vectors:
X¼ðxμÞ¼ ðt;rÞ¼ ðt;xT;zÞ¼ ðt;x;y;zÞ and P ¼ ðpμÞ ¼
ðE;pÞ ¼ ðE;pT; pzÞ ¼ ðE; px; py; pzÞ. We also use the
differential operators ∂t ¼ ∂

∂t, ∇x ¼ ð ∂∂x ; ∂
∂z ;

∂
∂zÞ and ∇p ¼

ð∂px
; ∂py

; ∂pz
Þ ¼ ð ∂

∂px
; ∂
∂py

; ∂
∂pz

Þ. Our units are natural

Heaviside-Lorentz units, ℏ ¼ c ¼ kB ¼ ϵ0 ¼ μ0 ¼ 1. The
metric tensor is gμν ¼ diagðþ;−;−;−Þ.

II. DHW FUNCTIONS AND THEIR
EQUATIONS OF MOTION

In this section, we define the DHW functions as
expansion coefficients of the equal-time Wigner function.
The choice of the gauge potential is to some degree
arbitrary. Here, we use the temporal gauge A0 ¼ 0, for
which the EM fields are given by E ¼ −∂tA and
B ¼ ∇ ×A. In principle, the EM fields include contribu-
tions from external fields and contributions from all
charged particles. But in this paper, we will focus on the
case of an external field only and neglect the interaction
between particles, which corresponds to a free Fermi gas.
The gauge-invariant Wigner operator is given by

ŴðX;PÞ ¼
Z

d4Y
ð2πÞ4 expð−iy

μpμÞψ̄
�
X þ Y

2

�

⊗ U

�
X þ Y

2
; X −

Y
2

�
ψ

�
X −

Y
2

�
; ð1Þ

where ψ is the Dirac field operator for spin-1=2 particles.
This formula represents the Fourier transform with respect
to the relative position Y of the direct product of two
fermion field operators at space-time points X þ Y

2
and

X − Y
2
, respectively. The gauge link between these two

points renders the Wigner operator gauge invariant and is
defined as

U

�
X þ Y

2
; X −

Y
2

�
¼ exp

�
−ieyμ

Z
1=2

−1=2
dsAμðX þ sYÞ

�
;

ð2Þ

where Aμ is the gauge potential, e.g., in this paper the
electromagnetic potential. Taking the expectation value of
the Wigner operator in a state jΩi, we obtain the Wigner
function

WðX;PÞ≡ hΩjŴðX;PÞjΩi: ð3Þ

The Wigner function, defined in eight-dimensional phase
space ðxμ; pμÞ, is Lorentz covariant but does not have a
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clear physical interpretation [52,53]. By integrating over
the energy p0, we obtain the corresponding equal-time
Wigner function [54–56], which can be interpreted as a
quasiprobability distribution in six-dimensional phase
space ðx;pÞ at time t. Such a procedure evidently breaks
the Lorentz covariance; however, the equation of motion
might simplify to that of an initial-value problem. On the
other hand, we adopt the Hartree approximation; i.e., we
treat the quantum EM field as a semiclassical EM field,
from which we derive the following formula for the equal-
time Wigner function Wðt;x;pÞ:

Wðt;x;pÞ

¼
Z

d3y
ð2πÞ3 exp

�
iy · pþ ie

Z
1=2

−1=2
dsy ·Aðt;xþ syÞ

�

×

�
Ω
����ψ̄
�
t;xþ y

2

�
⊗ ψ

�
t;x −

y
2

�����Ω
�
: ð4Þ

The Hartree approximation ignores higher-loop radiative
corrections and is a good approximation for strong EM
fields.
The equation of motion for the equal-time Wigner

function can be derived from the Dirac equation. We
consider a nonzero chemical potential μ associated with
the conservation of fermion number, which, for the sake of
simplicity, we assume to be constant in space-time; hence,
its derivatives vanish. An effective way to include the
chemical potential is by adding a term þμN̂ to the Dirac-
Hamilton operator ĤD, where N̂ is the fermion-number
operator. The corresponding Dirac equation reads

½iγσð∂σ þ ieAσÞ −mþ μγ0�ψðXÞ ¼ 0: ð5Þ

Taking the time derivative of Eq. (4) and simplifying the
result using the Dirac equation, we obtain the following
equation of motion [21],

DtW ¼ 1

2
Dx · ½W; γ0γ� − iΠ · fW; γ0γg þ im½W; γ0�; ð6Þ

where the operators Dt, Dx, and Π are generalized
operators for time and spatial derivatives, as well as
momentum, in the presence of an EM field,

Dt ≡ ∂t þ e
Z

1=2

−1=2
dsEðt;x − is∇pÞ · ∇p;

Dx ≡ ∇x þ e
Z

1=2

−1=2
dsBðt;x − is∇pÞ × ∇p;

Π≡ pþ ie
Z

1=2

−1=2
dssBðt;x − is∇pÞ × ∇p: ð7Þ

For spatially homogeneous EM fields Fμνðt;xÞ ¼ FμνðtÞ,
these operators become local,

Dt ¼ ∂t þ eEðtÞ · ∇p;

Dx ¼ ∇x þ eBðtÞ × ∇p;

Π ¼ p: ð8Þ

It can be easily checked that the equal-time Wigner
function Wðt;x;pÞ satisfies W† ¼ γ0Wγ0 and can be
decomposed in terms of the 16 independent generators
of the Clifford algebra Γi ¼ f1; iγ5; γμ; γ5γμ; 1

2
σμνg,

Wðt;x;pÞ¼ 1

4

�
F þ iγ5Pþ γμVμþ γ5γμAμþ

1

2
σμνSμν

�
;

ð9Þ

where σμν ¼ i
2
½γμ; γν� is the antisymmetric spin tensor.

These 16 functions, commonly called DHW functions,
are real functions of time t and six-dimensional phase space
ðx;pÞ. The tensor part can be further decomposed into two
vector functions

T ¼

0
B@

S10

S20

S30

1
CA; S ¼

0
B@

S23

S31

S12

1
CA: ð10Þ

Some of these DHW functions have a clear physical
meaning [54]; e.g., F determines the mass density, Vμ is
the vector-charge current density, Aμ is the chiral-charge
current density, and S is the magnetic-moment density.
Substituting Eq. (9) into the equation of motion (6) and
projecting onto the 16 basis matrices, we find a system of
partial differential equations (PDEs) for the DHW functions

Dt

0
BBBB@
G1

G2

G3

G4

1
CCCCA¼

0
BBBB@

0 0 0 M1

0 0 −M2 0

0 −M2 0 −2m
−M1 0 2m 0

1
CCCCA

0
BBBB@
G1

G2

G3

G4

1
CCCCA; ð11Þ

where the DHW functions have been divided into four
groups and each group is composed of four functions [57],

G1 ¼
�
F

S

�
; G2 ¼

�
V0

A

�
;

G3 ¼
�
A0

V

�
; G4 ¼

�
P

T

�
: ð12Þ

In Eq. (11), we have introduced the two matrices

M1 ≡
�

0 2ΠT

2Π D×
x

�
; M2 ≡

�
0 DT

x

Dx −2Π×

�
; ð13Þ

where Π and Dx were already defined in Eq. (7).
For any three-dimensional column vector V, VT is the

WIGNER FUNCTION AND PAIR PRODUCTION IN PARALLEL … PHYS. REV. D 99, 056004 (2019)

056004-3



corresponding transposed vector (line vector), and V×

represents the antisymmetric 3 × 3 matrix

V× ¼

0
BB@

0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0

1
CCA; ð14Þ

the elements of which are V×
ij ¼ −ϵijkVk. The differential

equations (11) are equivalent to the ones in Refs. [21,55],
but here we write them in a matrix form. When dealing with
the Landau levels in a constant magnetic field, this matrix
form allows for more compact formulas [57].

III. SPATIALLY HOMOGENEOUS
ELECTRIC FIELD

In this section, we will simplify the equations of motion
(11) for the DHW functions in a spatially homogeneous
electric field and then give the solution for a constant
electric field. The electric field is taken to point into the
z-direction. In this case, the gauge potential is AðtÞ ¼
AðtÞez with ∂tAðtÞ ¼ −EðtÞ. A similar procedure has been
adopted in Ref. [21], in which the authors only discussed the
pair production in vacuum. In a thermal environment, the
low-energy states are occupied, which blocks the production
of pairs into these states. In this section, a thermal equilib-
rium distribution is assumed at the initial time. Since
collisions between particles are not included, all existing
particles are accelerated by the electric field, and thus the
distribution depends on the canonical momentum.We show
that, in the solution, the thermal distribution appears as an
overall suppression factor, which does not influence the
structure of the PDE system. The basis used in this section is
different from the one in Ref. [21], but both span the same
Hilbert space and thus are equivalent to each other. The
systemof PDEs and corresponding initial conditions derived
with the basis in this section provides a convenient frame-
work to describe pair production in parallel electric and
magnetic fields in Sec. IV.
Let us first consider the DHW functions for a free gas of

fermions. These can be derived by first quantizing the field
operators in terms of solutions for free particles, which can
be found in any textbook of quantum field theory, and then
inserting the field operators into the definition of the
Wigner function. The result is

�
F

V

�
free

ðpÞ ¼ ds
ð2πÞ3

1

Ep
½fFDðEp − μÞ þ fFDðEp þ μÞ − 1�

×

�
m

p

�
;

V0;freeðpÞ ¼
ds

ð2πÞ3 ½fFDðEp − μÞ − fFDðEp þ μÞ þ 1�:

ð15Þ

Here, ds is the degeneracy of spin, which is ds ¼ 2 for
spin- 1

2
particles, and

fFDðEp ∓ μÞ ¼ 1

1þ exp½βðEp ∓ μÞ� ð16Þ

is the Fermi-Dirac distribution for particles/antiparticles
with energy Ep and vector chemical potential μ, while
β ¼ T−1 is the inverse temperature. Note that the fermionic
field operators in the definition (4) are not normal ordered;
therefore, taking the expectation value in the state jΩi
yields an additional ∓ 1, which appears in the square
brackets in Eq. (15). Here, V0, V, and F are the charge,
current, and mass densities, respectively. All other DHW
functions vanish for a free gas of fermions, P ¼ A0 ¼
A ¼ S ¼ T ¼ 0, which can be proven using the com-
pleteness relations for the Dirac spinors uðk; sÞ and vðk; sÞ.
We now proceed to solve the equations of motion (11)

for the DHW functions. Due to the absence of a magnetic
field and translation invariance of the system, we can set the
spatial derivative Dx to zero, and Π≡ p. The matrices in
Eq. (13) then simplify to

M1 ¼
�

0 2pT

2p 03×3

�
; M2 ¼

�
0 01×3

03×1 −2p×

�
; ð17Þ

and Dt ¼ ∂t þ eEðtÞ∂pz
. Then, the 16 equations of motion

for the DHW functions can be divided into several groups.
The equation for the charge density separates from the
others and reads

DtV0ðt;pÞ ¼ 0: ð18Þ

After integrating over the momentum p and neglecting the
boundary terms (because there is no particle with infinite
pz), the above equation is nothing but the conservation of
net charge. Furthermore, the ten equations of motion for the
DHW functions F , V, A, and T decouple from the other
five for the functionsP,A0, and S. These latter ones will no
longer be considered because their initial values are zero
and thus they will remain zero for later times as well. In
matrix form, we have

Dtwðt;pÞ ¼ MðpÞwðt;pÞ; ð19Þ

where wðt;pÞ ¼ ðF ;V;A;TÞT is a ten-dimensional vector
consisting of ten DHW functions and MðpÞ is a 10 × 10
matrix,

MðpÞ ¼ 2

0
BBBB@

0 0 0 pT

0 0 p× −m
0 p× 0 0

−p m 0 0

1
CCCCA: ð20Þ
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Inspired by the form (15) of the free DHW functions, we
make the following ansatz for the solution of Eq. (19):

wðt;pÞ ¼ ds
ð2πÞ3 ffFDðEpþeδAðtÞez − μÞ

þ fFDðEpþeδAðtÞez þ μÞ − 1g
X3
i¼1

χiðt;pÞeiðpTÞ:

ð21Þ

Here, δAðtÞ≡ AðtÞ − Aðt0Þ is the difference of the gauge
potentials at time t and at initial time t0. The distribution
thus depends on the canonical momentum, which reflects
the acceleration of fermions in an electric field. Since the
operator Dt acting on pþ eδAðtÞez gives zero, the term in
the curly brackets in Eq. (21) behaves like a constant
overall factor and can be taken out of Eq. (19). The value of
this term is in the range ð−1; 0Þ, which is the effect of Pauli
blocking by particles already present in the thermal system.
Note that, since the matrix wðt;pÞ has dimension 10, in
principle, we would need ten basis vectors ei in the ansatz
(21). However, we actually only need three because these
form a closed subspace under the operators Dt and MðpÞ,
while the initial conditions are also inside this subspace.
These basis vectors are

e1 ¼

0
BBBB@

0

ez
0

0

1
CCCCA; e2ðpTÞ ¼

1

mT

0
BBBB@

m

pT

0

0

1
CCCCA;

e3ðpTÞ ¼
1

mT

0
BBBB@

0

0

ez × pT

−mez

1
CCCCA; ð22Þ

which are independent of t and pz, so that Dtei ¼ 0 for all
i ¼ 1, 2, 3. Here, we have introduced the transverse mass
mT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
T

p
, so that the three basis vectors are

properly normalized, ei · ej ¼ δij. We can also check that
they are closed under the operator MðpÞ,

MðpÞ

0
B@

e1
e2
e3

1
CA ¼ 2

0
B@

0 0 −mT

0 0 pz

mT −pz 0

1
CA
0
B@

e1
e2
e3

1
CA: ð23Þ

Inserting the ansatz (21) into Eq. (19) and using Eq. (23),
we can derive the equations of motion for the coefficient
functions χiðtÞ,

Dt

0
B@

χ1

χ2

χ3

1
CAðt;pÞ ¼ 2

0
B@

0 0 mT

0 0 −pz

−mT pz 0

1
CA
0
B@

χ1

χ2

χ3

1
CAðt;pÞ:

ð24Þ

In order to solve this system of PDEs, we need to
specify the initial condition. Here, we choose the values
of the DHW functions in the absence of an electric
field. For an integrable electric field, which vanishes
sufficiently rapidly for t → �∞, such as the Sauter-type
field EðtÞ ¼ E0cosh−2ðt=τÞ, we specify the initial condition
for t0 → −∞, where we take the DHW functions to assume
the values given by Eq. (15).
However, for a constant electric field EðtÞ ¼ E0, the

momentum shift will be infinitely large if we take
t0 → −∞, because a constant field is not integrable. In
reality, fermions will collide with each other, kinetic
energy will be converted to thermal energy, and the system
will approach thermodynamical equilibrium. Here, we
make the assumption that the system is already in thermo-
dynamical equilibrium at initial time t0. We should find a
solution that coincides with Eq. (15) when the field strength
is sufficiently small, E0 → 0, i.e.,

0
B@

χ1

χ2

χ3

1
CAðt;pÞ

������
E0→0

¼ 1

Ep

0
@ pz

mT

0

1
A: ð25Þ

The pair-production rate and the corresponding Wigner
function have analytical solutions for both a constant field
and a Sauter-type field; see Ref. [21] for details of the
derivation from quantum kinetic theory, which we will not
repeat here. In a constant field, EðtÞ ¼ E0, the solutions do
not depend on space-time coordinates, which is obvious
because of translation invariance,

0
B@

χ1

χ2

χ3

1
CAðpÞ ¼

0
BBBBBBB@

d1

�
η;

ffiffiffiffiffiffi
2

eE0

q
pz

�

mTffiffiffiffiffiffiffi
2eE0

p d2

�
η;

ffiffiffiffiffiffi
2

eE0

q
pz

�

mTffiffiffiffiffiffiffi
2eE0

p d3

�
η;

ffiffiffiffiffiffi
2

eE0

q
pz

�

1
CCCCCCCA
; ð26Þ

where η≡m2
T=ðeE0Þ is the dimensionless transverse mass

square and the auxiliary functions are listed in Eq. (A1) of
Appendix. It is easy to check numerically that the solutions
(26) satisfy the constraint (25) and the system (24) of PDEs.
The corresponding DHW functions can be readily derived
by inserting Eq. (26) into Eq. (21).
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IV. PARALLEL AND SPATIALLY
HOMOGENEOUS ELECTRIC
AND MAGNETIC FIELDS

In this section, we will consider spatially homogeneous
electric and magnetic fields which are parallel to each other.
Without loss of generality, the fields are assumed to point
into the z-direction. We also assume the magnetic field to
be constant in time. Then, the solution can be simplified
by separately considering the different Landau levels. We
provide an analytical solution for the case when the electric
field is also constant in time.

A. Initial conditions

Analogously to the case without magnetic field, we
choose the DHW functions in a pure magnetic field as an
initial condition for the system (11) of PDEs. Since we
consider this field to be constant in space and time,
an analytical solution can be found. The corresponding
covariant DHW functions in eight-dimensional phase space
have been determined in Ref. [57]. In this paper, we set
the axial chemical potential to zero; i.e., we do not consider
the chiral magnetic effect. Then, using the results of
Ref. [57], the covariant DHW functions read

�
G1ðPÞ
G2ðPÞ

�
¼

X
n¼0

VðnÞðp0; pzÞeðnÞ1 ðpTÞ
�

m

p0 þ μ

�
;

G3ðPÞ ¼ pzVð0Þðp0; pzÞeð0Þ1 ðpTÞ
þ
X
n>0

VðnÞðp0; pzÞ½pze
ðnÞ
2 ðpTÞ

þ
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
eðnÞ3 ðpTÞ�;

G4ðPÞ ¼ 0; ð27Þ

where

VðnÞðp0; pzÞ ¼
2ð2 − δn0Þ
ð2πÞ3 δfðp0 þ μÞ2 − ½EðnÞ

pz �2g

× fθðp0 þ μÞfFDðp0Þ
þ θð−p0 − μÞ½fFDð−p0Þ − 1�g: ð28Þ

Here, EðnÞ
pz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ 2neB
p

is the energy of the nth
Landau level in a constant magnetic field, and fFD is the

Fermi-Dirac distribution function. The basis vectors eðnÞi are
given in Eq. (A4) of the Appendix. Since the pair
production is a dynamical process, it is more convenient
to use the equal-time formula. We emphasize that the
covariant DHW functions can be obtained from the equal-
time ones by applying an additional Fourier transformation
in t, i.e., t → p0, and conversely, the equal-time DHW
functions can be derived from the covariant ones by
integrating over p0. Here, we give the equal-time DHW
functions,

G1ðpÞ ¼
X
n¼0

m

EðnÞ
pz

CðnÞ
1 ðpzÞeðnÞ1 ðpTÞ;

G2ðpÞ ¼
X
n¼0

CðnÞ
2 ðpzÞeðnÞ1 ðpTÞ;

G3ðpÞ ¼
pz

Eð0Þ
pz

Cð0Þ
1 ðpzÞeð0Þ1 ðpTÞ þ

X
n>0

CðnÞ
1 ðpzÞ

1

EðnÞ
pz

×
h
pze

ðnÞ
2 ðpTÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
eðnÞ3 ðpTÞ

i
;

G4ðpÞ ¼ 0: ð29Þ

Here, CðnÞ
1 ðpzÞ≡

R
dp0E

ðnÞ
pz V

ðnÞðp0; pzÞ and CðnÞ
2 ðpzÞ≡R

dp0ðp0 þ μÞVðnÞðp0; pzÞ, respectively. The p0-integrals
can be performed, yielding the result

CðnÞ
1 ðpzÞ ¼

2 − δn0
ð2πÞ3 ½fFDðEðnÞ

pz − μÞ þ fFDðEðnÞ
pz þ μÞ − 1�;

CðnÞ
2 ðpzÞ ¼

2 − δn0
ð2πÞ3 ½fFDðEðnÞ

pz − μÞ − fFDðEðnÞ
pz þ μÞ þ 1�:

ð30Þ

The Fermi-Dirac distributions are the number densities
in coordinate space for fermions/antifermions. The prefac-
tor 2 − δn0 is the spin degeneracy of the various Landau
levels. Comparing with Eq. (15) without the electromag-
netic field, Eq. (29) has more nonvanishing components
and depends on the Landau levels n. We will show later that
in a constant magnetic field different Landau levels evolve
independently.

B. Equations of motion

In the presence of a constant magnetic field, the operator
for the generalized spatial differentiation, cf. second equa-
tion in Eq. (8), becomesDx ¼ eB × ∇p, where the ordinary
spatial gradient ∇x has been dropped, since all considered
fields are spatially homogeneous and the system is trans-
lation invariant.
The lowest Landau level is special since we only need

the basis vector eð0Þ1 ðpTÞ to describe the dynamics in the
lowest Landau level. The reason is that, in a constant

magnetic field, eð0Þ1 ðpTÞ is an eigenvector for all operators
Dt, M1, M2 appearing in the equation of motion (11),

M1e
ð0Þ
1 ðpTÞ ¼ 2pze

ð0Þ
1 ðpTÞ;

M2e
ð0Þ
1 ðpTÞ ¼ Dte

ð0Þ
1 ðpTÞ ¼ 0: ð31Þ

For the higher Landau levels, the situation is more
complicated. In the last subsection, we have shown that
the basis vectors eðnÞi , i ¼ 1, 2, 3, cf. Eq. (A4), are necessary
to describe the equal-time DHW functions in a constant
magnetic field. One can easily check that these basis
vectors are not closed under the operator M2 defined in
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Eq. (13). In order to construct a closed space underM2, we

need another basis vector, eðnÞ4 , the definition of which is
also given in Eq. (A4). Acting M1, M2 onto these basis
vectors and using the relations (A9) gives for all higher
Landau levels n > 0

M1e
ðnÞ
i ðpTÞ ¼

X4
j¼1

ðcðnÞ1 ÞTijeðnÞj ðpTÞ;

M2e
ðnÞ
i ðpTÞ ¼

X4
j¼1

ðcðnÞ2 ÞTijeðnÞj ðpTÞ; ð32Þ

where the coefficient matrices are

cðnÞ1 ≡ 2

0
BBBBB@

0 pz

ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
0

pz 0 0 0ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
0 0 0

0 0 0 0

1
CCCCCA;

cðnÞ2 ≡ −2

0
BBBBB@

0 0 0 0

0 0 0
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p

0 0 0 −pz

0 −
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
pz 0

1
CCCCCA: ð33Þ

Note that the transpose of these matrices appears
in Eq. (32).
We have already seen in Eq. (29) that, when the electric

field vanishes, the DHW functions can be expressed in
terms of the basis vectors eðnÞi . Taking Eq. (29) as an initial
condition, one can straightforwardly conclude that the

DHW functions will stay in the space spanned by eðnÞi
when they evolve according to the equation of motion (11).

This is because Dt acting on e
ðnÞ
i gives zero, while we have

already seen that these basis vectors form a closed subset
when acting with M1;2 onto them; see Eq. (32). We thus
make the ansatz

Giðt;pÞ ¼ fð0Þi ðt; pzÞeð0Þ1 ðpTÞ þ
X
n>0

X4
j¼1

fðnÞij ðt; pzÞeðnÞj ðpTÞ;

ð34Þ

where i, j ¼ 1, 2, 3, 4. Since the magnetic field is assumed

to be constant in time, the basis vectors eðnÞi are also
independent of time. Inserting Eq. (34) into the equation of
motion (11) for the DHW functions, and using the
orthogonality relations (A7) and (A8) for the basis vectors,

we can derive the equations of motion for the functions fð0Þi

and fðnÞij . For the lowest Landau level, we obtain

Dt

0
BBBBB@

fð0Þ1

fð0Þ2

fð0Þ3

fð0Þ4

1
CCCCCAðt;pzÞ ¼ 2

0
BBBBB@

0 0 0 pz

0 0 0 0

0 0 0 −m
−pz 0 m 0

1
CCCCCA

0
BBBBB@

fð0Þ1

fð0Þ2

fð0Þ3

fð0Þ4

1
CCCCCAðt;pzÞ:

ð35Þ

The equations for the higher levels are

Dt

0
BBBBB@

f ðnÞ1

f ðnÞ2

f ðnÞ3

f ðnÞ4

1
CCCCCAðt; pzÞ ¼

0
BBBBB@

0 0 0 cðnÞ1

0 0 −cðnÞ2 0

0 −cðnÞ2 0 −2m

−cðnÞ1 0 2m 0

1
CCCCCA

×

0
BBBBB@

f ðnÞ1

f ðnÞ2

f ðnÞ3

f ðnÞ4

1
CCCCCAðt; pzÞ; ð36Þ

where f ðnÞi ≡ ðfðnÞi1 ; fðnÞi2 ; fðnÞi3 ; fðnÞi4 ÞT is a four-dimensional
column vector. We observe that, on account of the ortho-
gonality relations (A7) and (A8), the equations for the
different Landau levels separate from each other, which
greatly facilitates the solution of the equations of motion.

C. Lowest Landau level

The spin of the fermion in the lowest Landau level with
positive/negative charge is parallel/antiparallel to the mag-
netic field. The equation for fð0Þ2 , cf. the second line in
Eq. (35), decouples from the other equations and gives rise to
the conservation of net fermion number in the lowest Landau
level. In order to see this,wenote that thenet fermion-number
density V0ðt;pÞ is the first component ofG2 in Eq. (12). The

lowest Landau level contributes just fð0Þ2 ðt; pzÞΛð0Þ
þ ðpTÞ,

cf. Eqs. (34) and (A4). Acting Dt ¼ ∂t þ eE0∂pz
on

that and integrating over p yields with the definition

nð0Þ ≡ R
d3pfð0Þ2 ðt; pzÞΛð0Þ

þ ðpTÞ, the conservation law

∂tnð0Þ ¼
Z

d3p½Dtf
ð0Þ
2 ðt; pzÞ�Λð0Þ

þ ðpTÞ ¼ 0; ð37Þ

where we have integrated by parts and neglected the

boundary term. The equation Dtf
ð0Þ
2 ðt; pzÞ ¼ 0, together

with fð0Þ2 ðt; pzÞjE0→0 ¼ CðnÞ
2 ðpzÞ, has the special solution

fð0Þ2 ðt; pzÞ ¼ Cð0Þ
2 ðpz − eE0tÞ: ð38Þ

This solution describes an overall acceleration of all charged
particles. We note that in this paper we focus on a free
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fermion gas, so there are no collisions to prevent the
acceleration.
The equations of motion for the other three functions

fð0Þi¼1;3;4 are coupled with each other. In order to simplify the
problem, we make an ansatz which splits off the thermal
distribution functions,

ffð0Þ1 ; fð0Þ3 ; fð0Þ4 g ¼ fχð0Þ1 ; χð0Þ2 ; χð0Þ3 gCð0Þ
1 ðpz − eE0tÞ; ð39Þ

where Cð0Þ
1 is defined in Eq. (30). Here, pz þ eAðtÞ ¼ pz −

eE0t is the canonical momentum. When acting Dt on fð0Þi ,
we only need to consider its effect on χi, because

DtC
ð0Þ
1 ðpz − eE0tÞ ¼ 0. Thus, the equations of motion for

the χi are the same as the one for the corresponding fð0Þi ,
cf. Eq. (35),

Dt

0
BBB@

χð0Þ1

χð0Þ2

χð0Þ3

1
CCCAðt; pzÞ ¼ 2

0
B@

0 0 pz

0 0 −m
−pz m 0

1
CA
0
BB@

χð0Þ1

χð0Þ2

χð0Þ3

1
CCAðt; pzÞ:

ð40Þ

Comparing the ansatz (39) with the initial condition (29),
i.e., for E0 → 0, we find

0
BBB@

χð0Þ1

χð0Þ2

χð0Þ3

1
CCCAðt; pzÞ

���������
E0→0

¼ 1

Eð0Þ
pz

0
B@

m

pz

0

1
CA; ð41Þ

The system (40) of PDEs with the initial condition (41)
coincides with the PDE system (24) in a pure electric field

(substituting χ1 → χð0Þ2 , χ2 → χð0Þ1 , and χ3 → −χð0Þ3 and
setting p2

T ¼ 0). One can therefore immediately give the
solution for a constant electric field EðtÞ ¼ E0,

0
BBB@

χð0Þ1

χð0Þ2

χð0Þ3

1
CCCAðpzÞ ¼

0
BBBBBBBB@

mffiffiffiffiffiffiffi
2eE0

p d2

�
ηð0Þ;

ffiffiffiffiffiffi
2

eE0

q
pz

�

d1

�
ηð0Þ;

ffiffiffiffiffiffi
2

eE0

q
pz

�

− mffiffiffiffiffiffiffi
2eE0

p d3

�
ηð0Þ;

ffiffiffiffiffiffi
2

eE0

q
pz

�

1
CCCCCCCCA
; ð42Þ

with di defined in Eq. (A1) and ηð0Þ ¼ m2=eE0.

Multiplying Eq. (42) with Cð0Þ
1 ðpz − eE0tÞÞ gives the

functions fð0Þ1 , fð0Þ3 , and fð0Þ4 in a constant electric field,

0
BBB@
fð0Þ1

fð0Þ3

fð0Þ4

1
CCCAðpzÞ

¼

0
BBBBBBB@

mffiffiffiffiffiffiffi
2eE0

p d2

�
ηð0Þ;

ffiffiffiffiffiffi
2

eE0

q
pz

�
Cð0Þ
1 ðpz−eE0tÞ

d1

�
ηð0Þ;

ffiffiffiffiffiffi
2

eE0

q
pz

�
Cð0Þ
1 ðpz−eE0tÞ

− mffiffiffiffiffiffiffi
2eE0

p d3

�
ηð0Þ;

ffiffiffiffiffiffi
2

eE0

q
pz

�
Cð0Þ
1 ðpz−eE0tÞ

1
CCCCCCCA
: ð43Þ

Inserting these functions into Eq. (34), one obtains the
contribution from the lowest Landau level to the DHW
functions.

D. Higher Landau levels

For the higher Landau levels (n > 0), we can read off
from Eqs. (29) and (34) that, when switching off the electric

field, the only functions which do not vanish are fðnÞ11 , f
ðnÞ
21 ,

fðnÞ32 , and fðnÞ33 . Writing down the equations of motion (36)

for the fðnÞij functions for the higher Landau levels using

Eq. (33), we observe that fðnÞ24 , f
ðnÞ
42 , and fðnÞ43 couple with

fðnÞ11 , f
ðnÞ
32 , and fðnÞ33 in the presence of an electric field. The

corresponding six basis functions form a closed subspace.
The other nine functions are decoupled to three indepen-

dent groups, ffðnÞ12 ; f
ðnÞ
13 ; f

ðnÞ
31 ; f

ðnÞ
41 g, ffðnÞ22 ; f

ðnÞ
23 ; f

ðnÞ
34 ; f

ðnÞ
44 g

and ffðnÞ14 g, and each forms a closed set of homogeneous
PDEs. However, since all of them have vanishing values
when the electric field is zero, all of them will stay zero
during the further evolution, even after switching on the
electric field.
In the following, we therefore focus on the seven

nontrivial functions fðnÞ11 , f
ðnÞ
21 , f

ðnÞ
24 , f

ðnÞ
32 , f

ðnÞ
33 , f

ðnÞ
42 , and

fðnÞ43 . The equation for f
ðnÞ
21 , Dtf

ðnÞ
21 ¼ 0, decouples from the

others. As discussed in the previous subsection, this
equation is nothing but the conservation of net charge in
each Landau level. The solution is

fðnÞ21 ðt; pzÞ ¼ CðnÞ
2 ðpz − eE0tÞ; ð44Þ

where pz − eE0t describes the overall acceleration of all
existing particles by the electric field in the z-direction.
As already mentioned above, the other six functions,

fðnÞ11 , f
ðnÞ
24 , f

ðnÞ
32 , f

ðnÞ
33 , f

ðnÞ
42 , and f

ðnÞ
43 , satisfy a six-dimensional

system of PDEs. They can be further decoupled by
introducing the following linear combinations,
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0
@gðnÞ1 gðnÞ3

gðnÞ4 gðnÞ2

1
A¼ 1

mðnÞ

0
@ m

ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
−m

1
A
0
@fðnÞ11 fðnÞ24

fðnÞ33 fðnÞ42

1
A;

ð45Þ

where the effective mass at level n is mðnÞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2neB

p
.

Then, we get the following two groups of equations:

Dt

0
BBB@

gðnÞ1

gðnÞ2

fðnÞ32

1
CCCAðt; pzÞ

¼ 2

0
BBB@

0 −pz 0

pz 0 −mðnÞ

0 mðnÞ 0

1
CCCA
0
BBB@

gðnÞ1

gðnÞ2

fðnÞ32

1
CCCAðt; pzÞ; ð46Þ

and

Dt

0
BBB@

gðnÞ3

gðnÞ4

fðnÞ43

1
CCCAðt;pzÞ¼ 2

0
BBB@

0 −pz 0

pz 0 mðnÞ

0 −mðnÞ 0

1
CCCA
0
BBB@

gðnÞ3

gðnÞ4

fðnÞ43

1
CCCAðt;pzÞ:

ð47Þ

In this way, gðnÞ1 , gðnÞ2 , and fðnÞ32 decouple from gðnÞ3 , gðnÞ4 , and

fðnÞ43 . When the electric field vanishes, we find from

Eqs. (29), (34), and (45) that gðnÞ3 , gðnÞ4 , and fðnÞ43 vanish.
Under the time evolution determined by Eq. (47), this will
remain the case after switching on E. Therefore, we only

need to focus on the equations for gðnÞ1 , gðnÞ2 , and fðnÞ32 .
Analogous to the treatment of the lowest Landau level, we
assume that the solutions have the following form:

fgðnÞ1 ; gðnÞ2 ; fðnÞ32 g ¼ fχðnÞ1 ; χðnÞ2 ; χðnÞ3 gCðnÞ
1 ðpz − eE0tÞ: ð48Þ

Since DtC
ðnÞ
1 ðpz − eE0tÞ ¼ 0, the system of PDEs for

fχðnÞ1 ; χðnÞ2 ; χðnÞ3 g reads

Dt

0
BBB@
χðnÞ1

χðnÞ2

χðnÞ3

1
CCCAðt;pzÞ¼ 2

0
BBB@

0 −pz 0

pz 0 −mðnÞ

0 mðnÞ 0

1
CCCA
0
BBB@
χðnÞ1

χðnÞ2

χðnÞ3

1
CCCAðt;pzÞ:

ð49Þ

The initial values can be deduced by first reading off the

functions fðnÞij via a comparison of Eq. (29) and Eq. (34) and
then using Eq. (45),

0
BBB@

χðnÞ1

χðnÞ2

χðnÞ3

1
CCCAðt; pzÞ

��������
E0→0

¼ 1

EðnÞ
pz

0
B@

mðnÞ

0

pz

1
CA: ð50Þ

The system (49) of PDEs and the initial condition (50)
coincide with the PDE system (24) in a pure electric field

(replacing χ1 → χðnÞ3 , χ2 → χðnÞ1 , χ3 → χðnÞ2 , and setting
p2
T ¼ 2neB). Then, the solutions for a constant electric

field EðtÞ ¼ E0 are straightforward to write down,

0
BBB@

χðnÞ1

χðnÞ2

χðnÞ3

1
CCCAðpÞ ¼

0
BBBBBBB@

mðnÞffiffiffiffiffiffiffi
2eE0

p d2

�
ηðnÞ;

ffiffiffiffiffiffi
2

eE0

q
pz

�

mðnÞffiffiffiffiffiffiffi
2eE0

p d3

�
ηðnÞ;

ffiffiffiffiffiffi
2

eE0

q
pz

�

d1

�
ηðnÞ;

ffiffiffiffiffiffi
2

eE0

q
pz

�

1
CCCCCCCA
; ð51Þ

with di defined in Eq. (A1) and ηðnÞ ¼ ðm2þ2neBÞ=ðeE0Þ.
Now that we have found the solution for the χðnÞi , we can

insert it into the ansatz (48) and obtain gðnÞ1 , gðnÞ2 , and fðnÞ32 .
Then, using the inverse of the transformation (45), one can
compute all nonvanishing functions,

0
@ fðnÞ11

fðnÞ33

1
A ¼

�
mffiffiffiffiffiffiffiffiffiffiffi
2neB

p
�

1ffiffiffiffiffiffiffiffiffiffi
2eE0

p d2

0
@ηðnÞ;

ffiffiffiffiffiffiffiffi
2

eE0

s
pz

1
A

× CðnÞ
1 ðpz − eE0tÞ;�

fðnÞ24

fðnÞ42

�
¼

� ffiffiffiffiffiffiffiffiffiffiffi
2neB

p

−m

�
1ffiffiffiffiffiffiffiffiffiffi
2eE0

p d3

0
@ηðnÞ;

ffiffiffiffiffiffiffiffi
2

eE0

s
pz

1
A

× CðnÞ
1 ðpz − eE0tÞ;

fðnÞ32 ¼ d1

0
@ηðnÞ;

ffiffiffiffiffiffiffiffi
2

eE0

s
pz

1
ACðnÞ

1 ðpz − eE0tÞ; ð52Þ

together with fðnÞ21 from Eq. (44). The remaining ten
functions are zero.

V. PAIR-PRODUCTION RATE

In the last section, we have derived the DHW functions
in constant electric and magnetic fields. In this section, we
will relate the DHW functions to pair production. Note that,
in the presence of an electric field, the system cannot
remain in thermodynamical equilibrium.
Let us first consider amultipair system,where the particles

are described by the plane-wave solutions of the free Dirac
equation. Inserting these wave functions into the definition
of the Wigner function and then projecting onto the unit
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matrix and the gammamatrices γ, we obtain the contribution
of fermion/antifermion pairs to the DHW functions [54],

F ¼ 2m
Ep

½npairðpÞ − 1�; V ¼ 2p
Ep

½npairðpÞ − 1�; ð53Þ

where npairðpÞ is the number density of pairs in phase space.
The Pauli principle implies that 0 ≤ npairðpÞ ≤ 1. The
density of pairs will change due to the pair-production
process caused by the electric field. The corresponding rate
is given by

d
dt

npair ¼
1

2

d
dt

Z
d3p

mF þ p · V
Ep

; ð54Þ

where npair ¼
R
d3pnpairðpÞ is the number of pairs.

Equation (54) can be proven by inserting Eq. (53) into the
right-hand side.
Analogously, for a multipair system in a constant

background magnetic field, the on-shell energy is EðnÞ
pz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
z þ 2neB

p
. If there is pair production by an

electric field in the system, its rate in the nth Landau level
can then be calculated via

d
dt

nðnÞpair ¼
1

2

d
dt

Z
d3p

mF ðnÞ þ p · VðnÞ

EðnÞ
pz

: ð55Þ

Here, F ðnÞ and VðnÞ represent the DHW functions corre-
sponding to the nth Landau level. Employing Eq. (12) and
the ansatz (34), we get

d
dt

nðnÞpair ¼
1

2

d
dt

Z
d3p

2
4ηðnÞ

EðnÞ
pz

ffiffiffiffiffiffiffiffi
eE0

2

r
d2

0
@ηðnÞ;

ffiffiffiffiffiffiffiffi
2

eE0

s
pz

1
A

þ pz

EðnÞ
pz

d1

0
@ηðnÞ;

ffiffiffiffiffiffiffiffi
2

eE0

s
pz

1
A
3
5

× CðnÞ
1 ðpz − eE0tÞΛðnÞ

þ ðpTÞ; ð56Þ

where CðnÞ
1 is given by Eq. (30). The integration over

pT can be performed using Eq. (A6). Replacing the
kinetic momentum pz by the canonical momentum
qz ¼ pz − eE0t, we obtain the pair-production rate in the
nth Landau level in parallel electric and magnetic fields and
a thermal background,

d
dt

nðnÞpair ¼
Z

dqz½1 − fFDðEðnÞ
qz − μÞ − fFDðEðnÞ

qz þ μÞ�

×
d
dt

nðnÞvacðt; qzÞ; ð57Þ

where d
dt n

ðnÞ
vacðpzÞ is the pair-production rate in vacuum for

given quantum numbers pz and n,

d
dt

nðnÞvacðt; qzÞ

¼ −
�
1 −

δn0
2

�
e2BE0

ð2πÞ2

×
d
dqz

(
ηðnÞ

EðnÞ
qzþeE0t

ffiffiffiffiffiffiffiffi
eE0

2

r
d2

"
ηðnÞ;

ffiffiffiffiffiffiffiffi
2

eE0

s
ðqz þ eE0tÞ

#

þ qz þ eE0t

EðnÞ
qzþeE0t

d1

"
ηðnÞ;

ffiffiffiffiffiffiffiffi
2

eE0

s
ðqz þ eE0tÞ

#)
: ð58Þ

The Fermi-Dirac distributions in the square bracket in
Eq. (57) describe the suppression of pair production due to
the Pauli exclusion principle. Summing Eq. (57) over all
Landau levels yields the total pair-production rate.
In a medium in which the chemical potential is zero but

the temperature is nonzero, the suppression factor is

1 − 2fFDðEðnÞ
qz Þ ¼ tanh

βEðnÞ
qz
2
, which suppresses the produc-

tion of pairs with small energies. This factor agrees with the
result of Ref. [45].However, the integral in Eq. (57) is hard to
calculate numerically because the auxiliary functions
d1 and d2 are highly oscillatory at large qz, which makes
the integration converge too slowly. This problem can be
solved by separating the vacuum contribution from the
thermal contribution. The pair-production rate in the nth
Landau level in vacuum can be analytically calculated, using
the asymptotic behavior of the d1;2 functions, cf. Appendix,

d
dt
nðnÞvac ¼

Z
dqz

d
dt
nðnÞvacðt;qzÞ

¼−
�
1−

δn0
2

�
e2BE0

ð2πÞ2 ½d1ðη
ðnÞ;−∞Þþd1ðηðnÞ;þ∞Þ�

¼
�
1−

δn0
2

�
e2BE0

2π2
exp

�
−π

m2þ2neB
eE0

�
: ð59Þ

The total rate from all Landau levels is

d
dt

X∞
n¼0

nðnÞvac ¼ e2E0B
4π2

exp

�
−
πm2

eE0

�
coth

�
πB
E0

�
; ð60Þ

which was previously derived in Refs. [37,38,40]. We see
that the rate will be enhanced for B ≫ E0 compared to that
without the magnetic field [8]. Similarly, we can also derive
the production rate of chiral charge dn5=dt in a strong
magnetic field, which gives the anomaly with the pair
production and is consistent with the result of Ref. [58,59].
The thermal contribution in Eq. (57) for the nth Landau

level is

d
dt

nðnÞthermal ¼ −
Z

dqz½fFDðEðnÞ
qz − μÞ þ fFDðEðnÞ

qz þ μÞ�

×
d
dt

nðnÞvacðt; qzÞ: ð61Þ
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The Fermi-Dirac distributions provide an exponential

suppression ∼e−E
ðnÞ
qz for large qz; thus, the qz-integral

converges quickly. In order to show the thermal sup-
pression in a physically intuitive way, we introduce the
ratio r of the thermal to the vacuum contribution. This
ratio is a function of time t and the three dimension-
less parameters eẼ0 ≡ eE0

½mðnÞ�2, T̃ ≡ T
mðnÞ, and μ̃≡ μ

mðnÞ, where

mðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2neB

p
is the effective mass in the nth

Landau level. The total pair-production rate in the nth
Landau level is given by

d
dt

nðnÞpair ¼ ½1þ rðt; Ẽ0; T̃; μ̃Þ�
d
dt

nðnÞvac: ð62Þ

In order to show the thermal influence on pair production,
we choose the time t ¼ 0, which is when the canonical
momentum equals the kinetic one. Figure 1 shows the
function rð0; Ẽ0; T̃; μ̃Þ at finite dimensionless temperature
and chemical potential. The values stay between −1 and 0
for all parameters considered, which describes the thermal
suppression of pair production as demanded by the Pauli
exclusion principle: a quantum state has a higher proba-
bility to be occupied at higher temperature or higher
chemical potential; this occupation will block the produc-
tion of new pairs with the same quantum numbers. When
the electric field is strong enough, pairs with higher
energies, which have smaller thermal occupation numbers,
are more likely to be excited. Thus, the suppression is
inversely proportional to the electric field strength.

VI. SUMMARY

In this paper, we have analytically calculated the Wigner
function as well as the Schwinger pair production in
constant and parallel electric and magnetic fields. We have
derived the equation of motion for the equal-time Wigner
function, the 16 components of which, the so-called DHW
functions, have definite physicalmeanings.One can relate the

Schwinger pair-production rate to some of these functions.
For the case of a pure constant electric field, we took the
vacuum values for the 16DHW functions as initial condition.
Then, we obtained an analytic solution for the system of
PDEs for the DHW functions. For parallel electric and
magnetic fields, we adopted a similar method to calculate
the DHW functions. We showed that the contributions of
different Landau levels separate from each other. Under the
replacement p2

T → 2neB, the system of PDEs and the
condition when the electric field vanishes coincide with
those in a pure electric field for each Landau level. This
provides us with a new method for calculating the pair
production in parallel electric andmagnetic fields. Analytical
solutions for the DHW functions for the case of constant
electric andmagnetic fields, togetherwith the pair-production
rate in each Landau level, are derived. Our results can be
directly generalized to the case of finite temperature and
chemical potential. The calculation shows that the pair-
production rate is thermally suppressed and the suppression
is proportional to the thermodynamic variablesT andμ.More
energetic pairs can be created in a stronger electric field and
are less likely to be Pauli blocked by the thermal distribution,
and this leads to a decrease of the suppression factor.
The equation of motion for the Wigner function is

equivalent to the Dirac equation if we adopt the classical-
field approximation. However, the Wigner function con-
tains 16 independent components, which leads to a
16-dimensional system of PDEs. Due to advances in
computer technology in the past few decades, it has become
possible to numerically solve this PDE system in some
simplified cases. In this paper, we have found a set of basis
functions in the presence of a constant magnetic field.
These basis functions provide us with a way to replace the
continuous transverse momenta px and py by the discrete
Landau level index n. The parameter space of the Wigner
function is then simplified from six-dimensional phase
space ðx;pÞ to the four-dimensional space spanned by
ðx; pzÞ plus one discrete parameter n, which makes the

FIG. 1. The ratio of the thermal contribution to the total pair-production rate to the vacuum contribution for a constant electric field.
Left panel: dependence on electric field strength for temperature T̃ ¼ 1 and chemical potential μ̃ ¼ 0, 1, 3. Right panel: μ̃ ¼ 0 and
T̃ ¼ 0.5, 1, 3.
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system of PDEs more amenable for a numerical solution.
However, the case considered in this paper, i.e., homo-
geneous and parallel electromagnetic fields, is effectively
only a (1þ 1)-dimensional problem, whereas the fields in
real experiments are more likely to be space-time depen-
dent. Nevertheless, the way to decompose the Wigner
function presented here may inspire future works and
may be a convenient starting point for the Wigner-function
approach.
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APPENDIX: AUXILIARY FUNCTIONS

We have introduced three auxiliary functions in the
solutions for the DHW functions,

d1ðη; uÞ ¼ −1þ e−
πη
4 η
���D−1−iη=2ð−ueiπ4Þ

���2;
d2ðη; uÞ ¼ e−

πη
4 ei

π
4D−1−iη=2ð−ueiπ4ÞDiη=2ð−ue−iπ4Þ þ c:c:;

d3ðη; uÞ ¼ e−
πη
4 e−i

π
4D−1−iη=2ð−ueiπ4ÞDiη=2ð−ue−iπ4Þ þ c:c:;

ðA1Þ

where Dν is the parabolic cylinder function. These func-
tions satisfy the following differential equations:

d
du

d1ðη; uÞ ¼ ηd3ðη; uÞ;
d
du

d2ðη; uÞ ¼ −ud3ðη; uÞ;
d
du

d3ðη; uÞ ¼ −2d1ðη; uÞ þ ud2ðη; uÞ: ðA2Þ

We plot the di as function of u in Fig. 2. We observe that all
these functions are convergent for u → −∞, but only d1 is
obviously convergent for u → þ∞. The functions d2 and
d3 are highly oscillatory in a finite region for large u, and
thus d2=u and d3=u converge to zero when u → þ∞.
Moreover, we have

lim
u→−∞

d1ðη;uÞ¼−1; lim
u→þ∞

d1ðη;uÞ¼ 1−2e−πη: ðA3Þ

Four groups of basis vectors are used in the expansion
of the DHW functions in a constant magnetic field.
They are functions of the Landau-level index n and the
transverse momentum pT , or its modulus pT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pT · pT
p

,
respectively,

eðnÞ1 ðpTÞ ¼

0
B@ΛðnÞ

þ ðpTÞ
0T

ΛðnÞ
− ðpTÞ

1
CA; eðnÞ2 ðpTÞ ¼

0
B@

ΛðnÞ
− ðpTÞ
0T

ΛðnÞ
þ ðpTÞ

1
CA;

eðnÞ3 ðpTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p

p2
T

ΛðnÞ
þ ðpTÞ

0
B@

0

pT

0

1
CA;

eðnÞ4 ðpTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p

p2
T

ΛðnÞ
þ ðpTÞ

0
BBB@

0

−py

px

0

1
CCCA: ðA4Þ

Here, the ΛðnÞ
� functions are defined as

FIG. 2. u-dependence of the auxiliary functions diðη; uÞ, i ¼ 1, 2, 3 for η ¼ 2 (left panel) and η ¼ 0.5 (right panel).
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ΛðnÞ
� ðpTÞ≡

8>>><
>>>:

ð−1Þn
�
Ln

�
2p2

T

eB

�
∓ Ln−1

�
2p2

T

eB

��
exp

�
−
p2
T

eB

�
; n > 0;

2 exp

�
−
p2
T

eB

�
; n ¼ 0;

ðA5Þ

where LnðxÞ is the nth Laguerre polynomial. For the lowest

Landau level, n ¼ 0, we have eð0Þ3 ¼ eð0Þ4 ¼ 0 and

eð0Þ1 ¼ eð0Þ2 . These basis vectors allow us to separate the
pT dependence. When integrating over transverse momen-

tum pT , Λ
ðnÞ
þ ðpTÞ gives the density of states for Landau

level n, while ΛðnÞ
− ðpTÞ gives zero for all n > 0,

1

ð2πÞ2
Z

d2pTΛ
ðnÞ
þ ðpTÞ ¼

eB
2π

;

1

ð2πÞ2
Z

d2pTΛðnÞ
− ðpTÞ ¼ 0; ðn ≠ 0Þ: ðA6Þ

The basis vectors eðnÞi for i ¼ 1, 2, 3, 4 and n ¼ 0; 1; 2;…
are orthogonal with respect to an inner product,Z

d2pTe
ðmÞT
i ðpTÞeðnÞj ðpTÞ ¼ 2πeBδmnδij; ðA7Þ

for n > 0, together with

Z
d2pTe

ð0ÞT
1 ðpTÞeð0Þ1 ðpTÞ ¼ 4πeB;Z

d2pTe
ðnÞT
i ðpTÞeð0Þ1 ðpTÞ ¼ 0: ðA8Þ

We can also check that the functions ΛðnÞ
� in Eq. (A5)

satisfy the following relations,

eB∂px
ΛðnÞ
þ ðpTÞ ¼ −2pxΛðnÞ

− ðpTÞ;

eB∂px
ΛðnÞ
− ðpTÞ ¼ −2px

�
1 −

2neB
p2
T

�
ΛðnÞ
þ ðpTÞ; ðA9Þ

which are used to derive Eqs. (31) and (32).
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