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We discuss an ab initio world-line approach to constructing phase space distributions in systems with
internal symmetries. Starting from the Schwinger-Keldysh real-time path integral in quantum field theory,
we derive the most general extension of the Wigner phase space distribution to include color and spin
degrees of freedom in terms of dynamical Grassmann variables. The corresponding Liouville distribution
for colored particles, which obey Wong’s equation, has only singlet and octet components, while higher
moments are fully constrained by the Grassmann algebra. The extension of phase space dynamics to spin is
represented by a generalization of the Pauli-Lubanski vector; its time evolution via the Bargmann-Michel-
Telegdi equation also follows from the phase space trajectories of the underlying Grassmann coordinates.
Our results for the Liouville phase space distribution in systems with both spin and color are of interest in
fields as diverse as chiral fluids, finite temperature field theory and polarized parton distribution functions.
We also comment on the role of the chiral anomaly in the phase space dynamics of spinning particles.
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I. INTRODUCTION

Classical phase space distributions involving internal
degrees of freedom (d.o.f.) such as spin and color are useful
in describing a wide range of physics across energy scales.
The construction of classical phase space distributions with
internal symmetries through the use of Grassmann variables
was pioneered by Berezin and Marinov [1]. They demon-
strated straightforwardly how one recovers in this frame-
work the Bargmann-Michel-Telegdi (BMT) equation [2]
describing the precession of spins in background fields.
Several contemporaneous studies complemented the work
of Berezin and Marinov and extended the Grassmann
algebra description of internal symmetries to describing
the dynamics of both spin and color d.o.f. [3–10]. The
Wong equations [11,12] describing the precession of non-
Abelian point particles in colored background fields are
also recovered in this approach.
The world-line formalism [13–23] provides an elegant

method, from first principles in quantum field theory, to
derive classical phase space distributions in systems with
internal symmetries. In this approach, one-loop effective
actions are expressed by quantum mechanical point-particle
path integrals with internal symmetries incorporated through

Grassmann d.o.f. In this work, we will develop the
Schwinger-Keldysh (SK) generalization of the world-line
formalism for applications to nonequilibrium physical proc-
esses.1 The classical color phase space limit is obtained
explicitly from the saddle point of the world-line effective
action and the phase space dynamics of the extended color
and spin symplectic algebra is obtained from Grassmannian
classical Poisson brackets as well as a Grassmann valued
phase space measure.
For colored d.o.f., a canonical coordinate transformation

from Grassmann variables to Grassmann bilinears relates
our approach to that of Alekseev, Faddeev and Shatashvili
(AFS) [25]. The AFS approach described the symplectic
orbits of compact Lie groups with functional integrals
involving phase space Darboux variables. In particular, the
AFS construction of symplectic structures for internal
symmetries contains a classical action with a topological
Berry monopole [26]. In contrast, no such topological
terms arise in our derivation of the classical limit by a
saddle-point approximation to the SK world-line path
integral. We also demonstrate that the Grassmann algebra
allows one to express the Liouville density for colored
particles uniquely in terms of two independent color
structures.
One can similarly construct classical phase space dis-

tributions in the world-line approach for both massless and
massive fermions recovering the results of Berezin and
Marinov [1]. Here, too, a canonical transformation from
Grassmann spin variables to their commuting bilinear
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1A detailed study of its applications in finite temperature
quantum field theory will be discussed separately in [24].
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phase space counterpart, and the corresponding simple
rules for the spin phase space measure, generates a unique
and elegant form for the classical phase space distribution
function for spin in these variables. This derivation pro-
vides a many-body generalization of the relativistic Pauli-
Lubanski spin pseudovector [1], whose time evolution
reproduces the BMT equation.
One can also define, in this language of Grassmann

bilinears, chiral vector and axial vector currents as
classical phase space averages weighted by the generalized
Liouville density. We show that a naive generalization of
our approach misses the effects of the chiral anomaly.
Recovering the anomaly requires a careful treatment
whereby one introduces auxiliary axial vector fields in
the Schwinger Keldysh world-line path integral.
Our manuscript is organized as follows: In Sec. II, we

provide a short derivation of classical phase space distri-
butions with internal symmetries from a saddle point
expansion of the world-line path integral expression for
the one loop effective action in quantum field theory. A
more detailed computation will be presented in [24]. We
derive in the Schwinger-Keldysh formalism, via a “trun-
cated Wigner” (or classical-statistical) approximation, the
Wigner distribution for the extended symplectic phase
space involving Grassmann variables.2 Our construction
involves canonical phase space variables and we will show
that the semiclassical limit of quantum phase space is
incompressible [33–35].
In Sec. III, we discuss the structure of the Grassmann

valued Wigner phase space for color d.o.f. and demonstrate
that the group algebra is exactly realized in the classical
limit for any finite dimensional representation. An intuitive
description of the extended phase space for color is
obtained by expressing our results in terms of
Grassmanian bilinear color charges whose dynamics is
given by Wong’s equations [11]. This allows us to replace
the Grassmann formulation of the extended Wigner phase
space distribution (and the corresponding Grassmann
valued measure) by a classical phase space distribution
(and phase space measure), whose elements are color
charges.
Section IV is devoted to the Grassmann description of

relativistic spin and chirality. In analogy to the case of
color, the spin Wigner function can be replaced by a
classical phase space distribution including a many-body
generalization of the Grassmanian bilinear Pauli-Lubanski
spin pseudovector satisfying the BMT equation.
In Sec. V, we briefly describe from first principles how

the chiral anomaly manifests itself in this phase space
approach. We first show that the expectation value of the
axial-vector current, constructed from a semiclassical phase
space average, is naively conserved. We show that the

proper treatment of its violation by the anomaly is obtained
by introducing an auxiliary axial-vector gauge field in the
path integral; the four-derivative of the corresponding axial
vector current is robust when this axial vector field is
subsequently put to zero and generates the well known
expression for the axial anomaly.
Our derivation provides a clean and transparent deriva-

tion in quantum field theory of classical phase space
distributions in terms of internal d.o.f. that have a simple
physical interpretation but are nevertheless fully con-
strained by the underlying Grassmann algebra. The frame-
work developed here potentially has wide ranging
applications in nonequilibrium processes; in our conclud-
ing remarks, we briefly outline our work in progress on
some of these problems.
Our work is supplemented by Appendixes: In

Appendix A, we discuss Liouville’s theorem and the
(in-)compressibility of phase space in the semiclassical
limit. We provide details of the classical color phase space
construction in Appendix B. In Appendix C, we outline
how the incompressibility of phase space may be affected
by the presence of a Berry phase [26,36–42] and discuss
possible ambiguities in its interpretation.

II. WORLD-LINE FORMULATION OF
REAL-TIME QUANTUM FIELD THEORY

We begin by reviewing the world-line computation of
one-loop effective actions [13–22,43] including internal
symmetries such as color and spin. For simplicity, we begin
with a scalar (spin-less) massless particle coupled to a
background non-Abelian gauge field, where the one loop-
effective action is

Γ½A� ¼ −Tr logð−iD2½A�Þ: ð1Þ

Here Dμ ¼ ∂μ − igAμ is the non-Abelian covariant deriva-
tive in arbitrary representation and Tr denotes an infinite
dimensional functional trace over spatial coordinates as
well as internal symmetries. Using the heat-kernel repre-
sentation of the logarithm, Strassler [13] showed that
Eq. (1) can be written as a quantum mechanical path
integral

Γ½A� ¼
Z

∞

0

dT
T

NDxtrP exp

�
i
Z

T

0

dτ

�
_x2

2ϵ
þ gAμ½x�_xμ

��
;

ð2Þ

where the functional trace over position is now written as a
path integral of a pointlike particle satisfying a trajectory in
proper time τ with the position eigenvalue xμðτÞ. The
einbein ϵ is an arbitrary positive parameter that we will
discuss further shortly. Equation (2) contains the trace in

2General properties of fermionic Wigner functionals are
discussed in e.g., [27–32].
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color of the matrix valued Wilson line of the external gauge
field along the world-line.
Remarkably, this proper-time ordered color trace can be

expressed as a functional integral just as is the case
for the spatial coordinates. In particular, D’Hoker and
Gagne derived the following very elegant identity for an
n × n Hermitian matrix MðτÞ [14,15]3:

trP exp
�
i
Z

T

0

dτMðτÞ
�
¼
Z

Dϕ

Z
Dλ†Dλeiϕðλ†λþn

2
−1Þ

×exp

�
i
Z

T

0

dτ

�
iλ†

dλ
dτ

þ λ†Mλ

��
;

ð3Þ

where
R
Dϕ≡ ðπTÞn

P
ϕ and λ, λ† are Grassmann valued

eigenvalues of fermionic creation and annihilation oper-
ators. The exponential factor eiϕðλ†λþn

2
−1Þ is a constraint that

restricts the fermion creation and annihilation operators to
act on a finite dimensional representation of the internal
symmetry group [5,19].
Substituting Eq. (3) in Eq. (2), one obtains the

Schwinger-Keldysh real-time effective action to be

ΓC½A; χ� ¼
Z

d4xþi d
4x−i

Z
dλþi dλ

−
i

Z
dλ†þi dλ

†−
i

× χAðxþi ; x−i ; λþi ; λ−i ; λ†þi ; λ†−i Þ

×
Z
C
DϵDϕ

Z
C
Dx

Z
C
Dλ†DλeiSC ½A�: ð4Þ

In this expression, χA is the density matrix at initial time τ0
with ðx�i ; λ�i ; λ†�i Þ≡ ðx�; λ�; λ†�Þðτ0Þ, � denotes support
on the upper/lower Keldysh contour and C denotes inte-
gration along this contour with the (massless) SK action
given by

SC½A� ¼
Z
C
dτ

�
_x2

2ϵ
þ g_xμλ†Aμλþ iλ† _λþ ϕ

�
λ†λþ n

2
− 1

��
:

ð5Þ

In going from Eq. (2) to Eq. (4), we replaced the dT=T
integral by a more general expression, where the einbein ϵ
is promoted to a dynamical variable and integrated over.
The integration over the einbein can be understood as
integration over a gauge redundancy, which results from the
world-line action in Eq. (2) being invariant under rescaling

of the world-line parameter τ → τ0. As shown in the
Euclidean formulation of [21], one can “BRST-fix” this
gauge freedom in Eq. (4) to arrive at Eq. (2), where the
dT=T integral is a remnant of this construction.4

The einbein representation in Eq. (4) is advantageous
when taking the saddle point of the SK path integral. To
make contact with the phase space formulation of the
problem, we can write the action as SC ≡ R

C dτðiλ† · _λþ
p · _x −HÞ with the Hamiltonian

H ¼ ϵ

2
P2 − ϕ

�
λ†λþ n

2
− 1

�
; ð6Þ

where Pμ ¼ pμ − gλ†aAc
μtcabλb is the kinetic momentum,

and explicitly write the canonical conjugate momentum in
the SK phase space measure. Employing the truncated
Wigner approximation (also known as the classical-
statistical approximation), the Keldysh action can be
expanded as [45–47]

SC ¼ S0 þ
Z

dτ

��
_̄p −

∂
∂x̃ H

�
x̃ −

�
_̄xþ ∂

∂p̃ H

�
p̃

−
�
i _̄λ −

∂
∂λ̃†H

�
λ̃† −

�
i _̄λ

† − ∂
∂λ̃H

�
λ̃

�
þOðℏ2Þ ð7Þ

where we introduced the Keldysh basis z̄≡ 1
2
ðzþ þ z−Þ,

z̃≡ zþ − z−, with z denoting collectively any of the SK path
integral variables (z� ∈ fx�; p�; λ�; λ†�g) [24,45–47].
Here z̄ are interpreted as classical variables while z̃ are
the “quantum” d.o.f. measured in units of ℏ [45–47].
One obtains S0¼

R
dτf−ðϵ̃=2ÞP̄2gþϕ̃ðλ̄†λ̄þn

2
−1Þ and

the phase space measure becomes
R
C Dz≡ R

DzþDz− ¼R
Dz̄Dz̃.
To make contact with the phase space formulation of

quantum mechanics, we can express the initial density
matrix in terms of its Wigner transform Wχ

A as5

χAðxþi ; x−i ; λþi ; λ−i ; λ†þi ; λ†−i Þ

≡
Z

d4p̄i

ð2πÞ4W
χ
Aðx̄i; p̄i; λ̄i; λ̄

†
i Þeiðp̄i·x̃iþ1

2
λ̄†i ·λ̃iþ1

2
λ̄i·λ̃

†
i Þ: ð8Þ

Substituting Eqs. (7) and (8) into Eq. (4), the path integral
can be performed,

3A similar representation was suggested previously in [10].
World-line representations for mixed symmetries are discussed
in [44].

4This can be interpreted as the integral over each gauge
equivalent configuration normalized by the volume of the gauge
group (not explicitly written).

5Note that in writing this expression, we have used the fact that
a fermion coherent state Wigner distribution can be expressed as
[28,29], χðλþ; λ−; λ†þ; λ†−Þ≡ R

d4p̄λd4p̄λ†Wðλ̄; λ̄†; p̄λ; p̄λ†Þ×
expðλ̃p̄λ þ λ̃†p̄λ†Þ. Further, noting that p̄λ ¼ iλ̄†=2 and p̄λ† ¼
iλ̄=2 are second class constraints, we obtain the form of the
Wigner function in Eq. (8).
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ΓC ≈
Z

d4x̄id4p̄idλ̄idλ̄
†
i W

χ
Aðx̄i; p̄i; λ̄i; λ̄

†
i Þ
Z
C
DxDpDλDλ†DϵDϕ exp

�
iS0 þ i

Z
dτ

��
_̄p −

∂H
∂x̃

�
x̃

−
�
_̄xþ ∂H

∂p̃
�
p̃ −

�
i _̄λ −

∂
∂λ̃†H

�
λ̃† −

�
i _̄λ

† −
∂
∂λ̃H

�
λ̃

��

¼
Z

d4x̄id4p̄idλ̄idλ̄
†
i W

χ
Aðx̄i; p̄i; λ̄i; λ̄

†
i Þ
Z

Dx̄Dp̄Dλ̄Dλ̄†Dϵ̄Dϕ̄
Y
τ

δð _̄pðτÞ − _pclÞδð _̄xðτÞ − _xclÞδð _̄λðτÞ þ _λclÞ

× δð _̄λ†ðτÞ − _λ†clÞδðP̄2Þδ
�
λ̄†aλ̄aðτÞ þ

n
2
− 1

�
: ð9Þ

The variables _xcl; _pcl; _λcl; _λ
†
cl satisfy the classical equations

of motion which we will specify shortly in Sec. III. The last
two delta functions in Eq. (9) impose classical spectral
constraints and are obtained by integration over ϵ̃ and ϕ̃.
Equation (9) contains all the ingredients to construct

classical phase space distributions with internal sym-
metries. Specifically, Wχ

Aðx̄i; p̄i; λ̄i; λ̄
†
i Þ is a generalized

Wigner distribution that coincides with the classical
Liouville density in the ℏ ¼ 0 limit. The Wigner distribu-
tion at a given world-line proper time can be obtained from
its initial distribution at τ0

Wχ
A½x̄ðτÞ; p̄ðτÞ; λ̄ðτÞ; λ̄†ðτÞ�

≡
Z

d4x̄id4p̄idλ̄idλ̄
†
i W

χ
A½x̄i; p̄i; λ̄i; λ̄

†
i Þ�

×
Z

Dx̄0Dp̄0Dλ̄0Dλ̄†0Dϵ̄0Dϕ̄0

×
Y
τ0≤τ

δð _̄pðτ0Þ− _pclÞδð _̄xðτ0Þ− _xclÞδð _̄λðτ0Þ− _λclÞ

×δð _̄λ†ðτ0Þ− _λ†clÞδð ¯P2ðτ0ÞÞδ
�
λ̄†aλ̄aðτ0Þþ

n
2
−1

�
; ð10Þ

whereDz̄≡Q
τ0<τdz̄ðτ0Þ.6 This relation can equivalently be

expressed as the solution to Liouville’s equation,

d
dτ

Wχ
A¼

�
_̄xμ

∂
∂x̄μþ

_̄Pμ
∂

∂P̄μ
þ _̄λa

∂
∂λ̄aþ

_̄λ
†
a
∂
∂λ̄†a

�
Wχ

A: ð11Þ

for a given initial conditionWχ
A½x̄i; p̄i; λ̄i; λ̄

†
i � at τ ¼ τ0. In its

most general relativistic formulation, Liouville’s equation
satisfies dWχ

A=dτ ¼ 0, which represents the incompress-
ibility of the semiclassical phase space distribution. Note
that the quantum nature of Wχ

A is embedded in the
stochastic distribution of initial conditions; the subsequent
evolution of these initial configurations is classical.
In Appendix A, we discuss the equivalence of the

Wigner distribution in TWA [Eq. (10)] and Liouville’s
equation [Eq. (11)]. In the semiclassical limit, phase space

is incompressible and is a simple consequence of the fact
that the variables in our construction are canonical.7 We
will return to the topic of compressibility in Sec. V.
As the subscript A denotes, the Wigner distribution in

Eq. (10) is further embedded in a larger path integral of
dynamical gauge fields [48,49]. The resulting quantum
kinetic theory thus includes a double average, where one
splits fluctuating modes, according to their lifetimes, into
quasi-static classical fields and shorter lived dynamical
modes in the presence of these fields. Two examples of
phenomena in QCD where such a separation of scales is
employed are finite temperature QCD plasmas [50–57] and
small x physics [58–60].
Equations (9)–(11) specify the semiclassical limit of

color through the “classical” Grassmann variables λ; λ†; as
we shall shortly discuss in Sec. IV, a similar result is
obtained when one includes spin through the anticommut-
ing coordinates ψμ.

III. PHASE SPACE REPRESENTATIONS
OF COLOR

In this section, we will discuss further the properties of
the Wigner distribution8 Wχ

Aðx; P; λ; λ†Þ which obeys the
Liouville equation defined in Eq. (11). We will show that
this Wigner distribution can equivalently be reexpressed in
terms of the color charges Qa that are constructed from
Grassmann bilinears. As wewill discuss, this formulation is
elegant and potentially powerful.
In Eq. (11), the Euler-Lagrange equations of motion

derived from the world-line effective action are [4,5,19]

_xμ ¼ vμ; ð12Þ

_Pμ ¼ gλ†aFc;μνtcabλbvν; ð13Þ

_λ†a ¼ −igvμtcabAc
μλ

†
b; ð14Þ

_λa ¼ igvμtcabA
c
μλb; ð15Þ

6We emphasize that the delta functions in Eq. (10) include the
last τ slice, while the path integral excludes it.

7The reverse is not necessarily true.
8For simplicity, we will here, and henceforth, drop the bar

symbol representing classical phase space coordinates.
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where vμ ≡ ϵPμ ¼ ϵ½pμ − gAa
μðxÞQa�. The corresponding

Dirac brackets are defined as

fA;Bg ¼ A

� ∂⃖
∂xμ

∂⃗
∂Pμ −

∂⃖
∂Pμ

∂⃗
∂xμ

�
B

− iA

� ∂⃖
∂λ†a

∂⃗
∂λa þ

∂⃖
∂λa

∂⃗
∂λ†a

�
B; ð16Þ

and give

fxμ; Pνg ¼ gμν; ð17Þ

fPμ; Pνg ¼ gλ†Fμνλ; ð18Þ

fλ†a; λbg ¼ −iδab; ð19Þ

fPμ; Fαβg ¼ −ðDμFαβÞ: ð20Þ

The classical color phase space measure at fixed proper
time τ follows directly from the saddle point limit of the SK
path integral, Eq. (10):
Z

dλðτÞdλ†ðτÞ≡
Z

dnλðτÞdnλ†ðτÞδ
�
λ†aðτÞλaðτÞþ

n
2
−1

�
;

ð21Þ
where the integration is over the “classical” Keldysh
coordinates which we denoted with bars in Eq. (9). The
phase space measure represents the integration over the
phase space variables for one specific slice in proper time;
from now on, we will drop the explicit label τ. Also, n is the
dimension of the representation of the color group; we will
restrict ourselves to SUð3Þ in this work.
The Liouville densityWχ

Aðx; P; λ; λ†Þ can be expanded as
a power series in λ; λ†, and is Grassmann even and real. It
can therefore be parametrized by the bilinears λ†aΓabλb,
where Γ are Hermitian matrices. A natural choice for Γ are
the eight SUð3Þ generators and the identity, which span a
complete trace-orthonormal set,

Qa ≡ λ†ctacdλd; ð22Þ

where insertion of the identity λ†aδabλb produces a phase
space invariant and can be dropped. The classical Dirac
brackets of the bilinears follow from Eq. (19),

fQa;Qbg ¼ λ†½ta; tb�λ ¼ ifabcQc; ð23Þ

realizing the SUðNcÞ group algebra.9 Equations (12)–(15),
along with Eq. (22), reproduce Wong’s equations [11] for

the precession of color charges in a non-Abelian back-
ground field, thereby providing a first principles derivation
for the same [4,5], but also cleanly establishing its
provenance and regime of applicability [19] in QCD.
The phase space measure of the Qa charges was not

discussed in these papers. However, by simply defining

Z
dQ≡

Z
dλdλ†; ð24Þ

the following identities are obtained:

Z
dQ ¼ 0; ð25Þ

Z
dQQa ¼ 0; ð26Þ

Z
dQQaQb ¼ 1

2
δab; ð27Þ

Z
dQQaQbQc ¼ AR

2
dabc; ð28Þ

where AR is the so-called anomaly coefficient of the
representation [61]. Integrals of higher polynomials of
Q’s vanish by Grassmann nilpotency. (Eqs. (27) and
(28) are proven in Appendix B.)
The most general form of the phase space distribution is

thus

Wχ
Aðx; P; λ; λ†Þ

→ fAðx; P;QÞ ¼ c0fðx; PÞ þ c1faðx; PÞQa

þ c2fabðx; PÞQaQb þ c3fabcðx; PÞQaQbQc; ð29Þ

with real coefficients ci, which can be determined by taking
moments,

fðx; PÞ≡
Z

dQfðx; P;QÞ; ð30Þ

faðx; PÞ≡
Z

dQQafðx; P;QÞ; ð31Þ

fabðx; PÞ≡
Z

dQQaQbfðx; P;QÞ; ð32Þ

fabcðx; PÞ≡
Z

dQQaQbQcfðx; P;QÞ: ð33Þ

Using the properties of the Grassmann variables, one
obtains the form of the phase space distribution function
to be

9The “classical” color realization in Eq. (23) thereby does not
imply a large color representation via a large number of color
sources [43], but is valid for any representation of SUð3Þ.
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fðx; P;QÞ ¼ fðx; PÞ
�
1þ 2

ARd2
dabcQaQbQc

�

þ 2faðx; PÞQa; ð34Þ

where d2 ≡ dabcdabc ¼ N2
c − 4.

Equation (34) is a key result of our study and is a direct
consequence of the Grassmann color algebra obtained from
the saddle point limit of the SK world-line path integral.
Details of this derivation can be found in Appendix B,
where we also show that higher color moments of the phase
space distribution are completely determined by the lower
singlet and octet moments:

fabðx; PÞ ¼ 1

2
δabfðx; PÞ þ ARdabcfcðx; PÞ; ð35Þ

fabcðx; PÞ ¼ AR

2
dabcfðx; PÞ: ð36Þ

Similar phase space representations were discussed previ-
ously [53–55,62–66]. However, the underlying Grassmann
algebra was not considered in these works; in its absence,
one may conclude that an infinite tower of independent
moments analogous to Eqs. (30)–(33) is feasible. In contrast,
we have shown that the entire content of the phase space
dynamics is captured by two moments giving the simple
form in Eq. (36). Our construction is therefore potentially
very useful in further development of the transport theory of
color charges.
The bilinears QaðτÞ parametrize orbits of the gauge

group SUð3Þ in the classical limit. They coincide with the
commuting Darboux variables discussed by Alekseev,
Faddeev and Shatashvili [25] (AFS)—albeit their origin
in terms of Grassmann coherent states was not considered
there. In that work, AFS used spherical coordinates to
derive an action principle parametrizing orbits of various
compact Lie groups. Specifically, for SUð2Þ, they specified
the Darboux variables by the spherical coordinates ϕ; θ and
imposed the quantization constraint

ffiffiffiffiffiffiffiffiffiffiffiffi
QaQa

p ¼ m ∼ ℏ. As a
result, the authors arrived at the topological action

S ¼ m
Z

cos θdϕþ γ

Z
dϕ; ð37Þ

containing a Berry monopole atQaQa ¼ m2 ¼ 0. Here γ ¼
1=2 if m is half-integer and γ ¼ 0 if m is integer. This
construction is for fixed spin length m ∼ ℏ and it is unclear
what happens for ℏ → 0. In contrast, no topological term
arises in our world-line construction. The classical limit
ℏ → 0 is understood to be the saddle point approximation
to the SK world-line path integral, where classical and
quantum d.o.f. are manifest in the Keldysh basis [45–47].

IV. REPRESENTATIONS OF SPIN AND
CHIRALITY

We shall now extend the construction developed in the
previous section to include spin, with a focus on relativistic
spin-1=2 fermions. The Grassmann representation of phase
space was obtained by Berezin and Marinov over 40 years
ago [1]. The Hamiltonian for a massive colored spin-1=2
fermion is10

H̃ ¼ ϵ

2
ðP2 þm2 þ igψμλ†bFa

μνðxÞtabcλcψνÞ

þ i
2
ðPμψ

μ þmψ5Þχ; ð38Þ

where g is the QCD coupling, ψμ, ψ5 are Grassmann spin
variables and χ is a Grassmann valued supersymmetric
partner of the einbein parameter ϵ. Using this expression for
the Hamiltonian and Eq. (16), the classical equations of
motion are

_xμ ¼ ϵPμ; ð39Þ

_Pμ ¼ ϵgFa;μνQaPν −
iϵg
2

ψαðDμFαβÞaQaψβ; ð40Þ

_ψμ ¼ ϵgFa;μνQaψν; ð41Þ

_λ†a ¼ −igvμtcabAc
μλ

†
b −

ϵg
2
ψμFb

μνtbacλ
†
cψν; ð42Þ

_λa ¼ igvμtcabA
c
μλ

†
b þ

ϵg
2
ψμFb

μνtbacλcψν; ð43Þ

where vμ ≡ ϵPμ andQa as in Eq. (22). For a suitable choice
of χ, ψ5 is not dynamical and can be dropped from the
equations of motion. The Grassmann coordinates obey
fψμ;ψνg ¼ −igμν.
The most general form of the Liouville distribution with

spin written down by Berezin and Marinov [1]—now
extended to color—is,

Wχ
Aðx; P; λ; λ†;ψÞ ¼ Wχ

Aðx; P; λ; λ†Þ
�
Σμðx; P; λ; λ†Þ

× vλψμψλ −
i
6
ϵμναβvμvλψνψαψβψλ

�
;

ð44Þ

which is uniquely parametrized by a pseudovector
Σμðx; P; λ; λ†Þ. As shown in [1], this form of the distribu-
tion function equivalently imposes the spectral constraint11

10Hamiltonians for spin-1 can be found in [67].
11As such, it might be understood as a classical equivalent of

the GSO projection [68,69] in fermionic extensions of bosonic
string theory [70–72], removing unphysical d.o.f. from the
classical equations of motion.
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given by the second term of Eq. (38). As in the case of color
discussed in the previous section, we can organize the
Grassmann spin variables into the bilinears

Sμν ¼ −iψμψν; ð45Þ

which can straightforwardly shown to satisfy the Poisson
bracket relation

fSμν; Sαβg ¼ −gαμSβν þ gβμSαν − gανSμβ þ gβνSμα: ð46Þ

The Liouville density can likewise, through a canonical
transformation, be replaced by

Wχ
Aðx; P; λ; λ†;ψÞ → fAðx; P;Q; SÞ; ð47Þ

where

fAðx; P;Q; SÞ

¼ fAðx; P;QÞ
�
iΣμðx; P;QÞSμνvν −

i
6
ϵμναβvμSναSβλvλ

�
:

ð48Þ

Further, the Grassmann spin phase space measure, in
analogy to Eq. (21) can be represented as

Z
dS≡ −i

Z
dψ0dψ1dψ2dψ3; ð49Þ

which yields the identities

Z
dS ¼ 0; ð50Þ

Z
dS Sμν ¼ 0; ð51Þ

Z
dS SμνSαβ ¼ iϵμναβ: ð52Þ

The pseudovector Σμ defined in Eq. (44) can equiva-
lently be defined as the first moment of the phase space
distribution:

Σμðx; P;QÞ≡
Z

dSσμðP; SÞfðx; P;Q; SÞ; ð53Þ

where we abbreviated

σμðP; SÞ≡ 1

2
ϵμναβvνSαβ: ð54Þ

Using Eqs. (48) and (50)–(52),

_σμ ¼ fσμ; H̃g

¼ g
P0

Fa
μνQaσν þ 2g

P0
σαFa;αβQavβvμ

þ g
2ðP0Þ2 ½σνðD

νF̃αβÞaQaσαvβvμ

− vνðDνF̃αβÞaQaσαvβσμ�; ð55Þ

where F̃a;μν ¼ ϵμναβFa
αβ=2. Note that this is the covariant

generalization of the spin precession of the quantum
mechanical spin three vector defined to be σi ¼
− i

2
ϵijkψ jψk.
Our derivation also allows us to identify Σμðx; P;QÞ as

the proper definition of the Pauli-Lubanski spin pseudo-
vector in quantum field theory.12 Relative to Eq. (55), the
time evolution of Σμ has the simpler form

_Σμðx; P;QÞ ¼ g
P0

Fa
μνQaΣνðx; P;QÞ

þ 2g
P0

Σαðx; P;QÞFa;αβQavβvμ: ð56Þ

Equation (56) is the Bargmann-Michel-Telegdi (BMT)
equation [2] mentioned previously. It describes the pre-
cession of the spin pseudovector generalized to relevant
inhomogeneous QCD color backgrounds. This is a physical
quantity; the relativistic BMT equation (in QED) is
routinely used in high energy accelerator physics to
describe spin precession of relativistic spinning electrons
and protons in external electromagnetic fields [73–76].
Similarly, from Eqs. (42)–(43), we obtain Wong’s equa-
tion for the color precession of spin-1=2 fermions in
background fields,13

_Qa ¼ −igvμfabcAb
μQc −

gϵ
2
fabcψμFb

μνψ
νQc: ð57Þ

To summarize our discussion, we have obtained a novel
expression for the Liouville phase space distribution [given
by fAðx; P;Q; SÞ in Eq. (48)] and the corresponding phase
space measures [given by Eqs. (25)–(28) and Eqs. (50)–
(52)] that describes the phase space dynamics of particles
with both color and spin internal d.o.f. To do so, we
identified from first principles in quantum field theory, the
canonical Grassmann bilinear variables Qa and Sμν that
satisfy the Wong equation in Eq. (57) and the covariant
BMTequation in Eq. (56). We note that besides providing a

12We remark that σμ defined in Eq. (54) is equivalent to the
phase space coordinates suggested in [62–64]. This identifica-
tion, however, did not take into account the Grassmann origin of
Sμν. More importantly, σμ is not a canonical variable; replacing
Sμν by σμ fails to preserve the Poisson bracket algebra satisfied by
the former.

13Solutions to Wong’s equations without spin are discussed
in [77].
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compact and transparent formulation of semiclassical trans-
port phenomena in quantum field theory, our world-line
construction allows one in principle to devise a systematic
route beyond the truncated Wigner/classical-statistical
semiclassical approximation employed here.

V. SEMICLASSICAL CURRENTS
AND THE CHIRAL ANOMALY

A transport problem of great interest in a wide range of
fields–from astrophysical phenomena to heavy-ion colli-
sions to strongly correlated electronic materials–is chiral
kinetic theory [27,38–40,78–94]. Here, the challenge is to
find semiclassical phase space distributions for chiral
fermions and to account for the chiral anomaly, when
defining vector and axial-vector currents. This is also
important in first principles constructions of anomalous
hydrodynamics in a number of different physical contexts
[95–103].
Let us consider first, in this chiral kinetic theory context,

the semiclassical vector and axial vector currents defined
naively as phase space averages in our generalized phase
space framework. To simplify our discussion, we shall
consider only the Abelian case, where the currents are
obtained from the phase space average over ∂S=i∂Aμ,

hJμL=RðxÞi≡ e
Z

d4PdSϵ½Pμ þ Sμν∂ν�fðx; P; SÞ: ð58Þ

Here, e is the electromagnetic coupling. Using the Abelian
equivalent of Eq. (48) and the fact that semiclassically
Σμ
L=R ¼ �Pμ=2P0 for left- and right-handed particles in the

chiral limit [104], one can explicitly perform the
Grassmann integral over S to obtain

hJμðxÞi ¼ hJμRðxÞi þ hJμLðxÞi ¼ e
Z

d4PϵPμfðx; PÞ; ð59Þ

hJμ5ðxÞi ¼ hJμRðxÞi − hJμLðxÞi

¼ e
Z

d4PϵϵμναβPβ∂ν½Σαðx; PÞfðx; PÞ�: ð60Þ

Both currents are classically conserved, as ∂μhJμðxÞi ¼ 0

follows directly from Liouville’s equation and ∂μhJμ5ðxÞi¼0

from the antisymmetry of ϵμναβ. This straightforward imple-
mentation clearly misses the effects of the anomaly.
The missing piece is obtained from a more careful

derivation within the world-line formalism. We will sketch
below a variational approach to the derivation of the
semiclassical limit of the world-line representation for
chiral fermions by carefully repeating the derivation of
Sec. II, this time for chiral fermions. The corresponding
Schwinger-Keldysh real-time many-body world-line path
integral is

Γ½A;B�≡ tr
Z

d4xþi d
4x−i d

4ψþ
i d

4ψ−
i ζ

A;Bðxþi ; x−i ;ψþ
i ;ψ

−
i Þ

×
Z

x−i

xþi

DxDp
Z

ψ−
i

ψþ
i

Dψ

Z
DϵDχeiSC ½A;B�; ð61Þ

where the trace is over left- and right-handed chiral sectors
and the initial density matrix ζA;B is in 2 × 2 matrix form,
respectively [48,49]. This path integral is embedded in a
larger path integral including dynamical gauge fields Aμ

and a novel nondynamical variational axial-vector gauge
field Bμ that will be put to zero at the end of the derivation.
The exponential in Eq. (61) can be written as

eiSC½A;B� ≡
�
eiSC½AþB� 0

0 eiSC ½A−B�

�
; ð62Þ

with the spinning particle action given by

S½A� B� ¼
Z

dτC

�
pμ _xμ þ

i
2
ψμ _ψ

μ −H½A� B�
�
; ð63Þ

where C denotes the ’in-in” (closed) Keldysh time contour.
The generalization of the Hamiltonian in Eq. (38) is
given by

H½A� B�≡ ϵ

2
ðP2 þ ieψμFμν½A� B�ψνÞ

þ i
4

�
Pμψ

μ � i
3
ϵμναβPμψνψαψβ

�
χ; ð64Þ

with kinetic momentum Pμ ≡ pμ − eðA� BÞμ. The anti-
commuting Lagrange multiplier χ ensures that the Weyl
spectral condition is independently satisfied for both left-
and right-handed fermions [49,105].14

It is sufficient to expand the effective action to linear
order in the variational parameter BμðyÞ,

Γ½A; B� ¼ Γ½A� þ
Z

d4y
δΓ½A;B�
δBμðyÞ

				
B¼0

BμðyÞ; ð65Þ

where the linear term δΓ=iδBμðyÞ≡ hJ5;μðyÞi is the expect-
ation value of the axial vector current. The world-line
representation for the lowest order term Γ½A� is

Γ½A� ¼ tr
Z

d4xþi d
4x−i d

4ψþ
i d

4ψ−
i ζ

Aðxþi ; x−i ;ψþ
i ;ψ

−
i Þ

×
Z

x−i

xþi

DxDp
Z

ψ−
i

ψþ
i

DψDϵDχeiSC½A�; ð66Þ

14We note that Berezin andMarinov’s phase space distribution,
Eq. (44), reflects precisely the same Weyl spectral constraint as in
Eq. (64) in the chiral limit where Σμ ∼�Pμ.
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which is equivalent to Eq. (4) if we replace color by spin.
The linear term in Eq. (65) can then be written as

δΓ½A;B�
δBμðyÞ

				
B¼0

¼ tr
Z

d4xþi d
4x−i d

4ψþ
i d

4ψ−
i

×

�
ζA;Bðxþi ; x−i ;ψþ

i ;ψ
−
i Þ

Z
x−i

xþi

DxDp
Z

ψ−
i

ψþ
i

Dψ

Z
DϵDχ

×
iδSC½A;B�
δBμðyÞ

eiSC ½A� þ δζA;Bðxþi ; x−i ;ψþ
i ;ψ

−
i Þ

δBμðyÞ

×
Z

x−i

xþi

DxDp
Z

ψ−
i

ψþ
i

Dψ

Z
DϵDχeiSC ½A;B�

�				
B¼0

: ð67Þ

The first term of Eq. (67) in the square brackets is the
expectation value of the axial-vector current given previ-
ously in Eq. (68),

hJμ5ðyÞi ¼ tr
Z

d4xþi d
4x−i d

4ψþ
i d

4ψ−
i ζ

Aðxþi ; x−i ;ψþ
i ;ψ

−
i Þ

×
Z

x−i

xþi

DxDp
Z

ψ−
i

ψþ
i

Dψ

Z
DϵDχ

�
JμR 0

0 JμL

�

× eiSC ½A�; ð68Þ

where

JμL=R ≡ δSC½A� B�
iδBμðyÞ

				
B¼0

¼ �e
Z

dτCϵðPμ − iψμψν∂νÞδ½x − y�: ð69Þ

To compute the second term of Eq. (67), we split the
initial density matrix,

ζ ≡ ζð0Þ þ ζð1Þ; ð70Þ

where ζð0Þ parametrizes arbitrary occupation numbers of
left- and right-handed fermions at initial time and is
independent of Bμ:

ζð0Þ ≡
�
ζAR½xþi ; x−i ;ψþ

i ;ψ
−
i � 0

0 ζAL½xþi ; x−i ;ψþ
i ;ψ

−
i �

�
: ð71Þ

Only the second piece ζð1Þ is Bμ-dependent and therefore
contributes to the second term in Eq. (67). It was computed
previously in [49] to be

ζð1Þ ≡ 2I2×2½∂μBμðx̄iÞ − f∂μ; Bνðx̄iÞgψ̄νψ̄μ�
× δðxþi − x−i Þδðψþ

i − ψ−
i Þ; ð72Þ

where x̄i ¼ ðxþi þ x−i Þ=2 and ψ̄ i ¼ ðψþ
i þ ψ−

i Þ=2. This
term can be interpreted as a vacuum contribution to the
initial density matrix and survives as an anomalous con-
tribution to h∂μJ

μ
5iwhen we set Bμ → 0, thereby modifying

the expectation value of the axial vector current in Eq. (68).
In [49], we showed by analytic continuation in Euclidean

space that the anomalous nonconservation of the axial-
vector current arises from this contribution and yields the
well known expression

h∂μJ
μ
5ðyÞi ¼ −

e2

8π2
FμνF̃μνðyÞ; ð73Þ

where F̃μν ≡ ϵμναβFαβ=2. Equation (68) can be reexpressed,
using the canonical transformation to Grassmannian bilin-
ears, as the second equation in Eq. (60) while, as we have
seen, the derivation of Eq. (73) is quite nontrivial.
In some of the condensed matter literature, the emer-

gence of the chiral anomaly is identified with the com-
pressibility of phase space in the presence of a Berry
monopole [26]. However, as we have shown, in our
construction, phase space is incompressible and the deri-
vation of the anomaly equation is distinct from these
considerations. Indeed, we showed previously that in a
Euclidean formulation of the world-line path integral,
Berry’s phase is derived from the real part of the effective
action; the anomaly, in contrast, arises from the imaginary
phase that is made manifest by introducing the auxiliary
gauge field Bμ [48]. Note that a similar observation
concerning the connection between Berry’s phase and
anomalies was discussed recently in [106–109]. In
Appendix C, we will discuss further formulations of chiral
kinetic theory including a Berry term and its interpretation
in terms of the chiral anomaly.

VI. SUMMARY AND OUTLOOK

We presented in this manuscript a first principles con-
struction of classical phase space with color and spin
internal symmetries employing the Schwinger-Keldysh
generalization of the world-line approach to many-body
quantum field theory. In this path integral formalism,
internal symmetries are expressed by elements of a
Grassmann algebra. We obtained the classical phase space
limit by taking the saddle-point limit of the quantum
mechanical SK world-line path integral in the truncated
Wigner approximation, which is also equivalent to the
classical statistical approximation in field theory. For
SUðNcÞ color, we derived the quantumWigner distribution
whose dynamics is defined by classical Poisson brackets
and a Grassmann valued phase space measure.
A canonical coordinate transformation connects our

approach to that of Alekseev, Faddeev and Shatashvili
[25] who used commuting Darboux variables to represent
the color algebra. The underlying Grassmann algebra has a
number of advantages. Without it, color phase space
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density and Liouville equation are decomposed into an
infinite tower of equations, preventing any practical
solution. In contrast, we obtained a unique form for the
color phase space distribution function, containing
only singlet and octet components. Secondly, the action
generating the symplectic algebra for color using com-
muting Darboux variables in [25] contains a topological
Berry monopole which is problematic in the classical
limit. In contrast, no such topological term arises in our
approach and the classical phase space limit is concep-
tually clean.
We discussed further the construction of classical phase

space distributions and the corresponding phase space
measure for spin-1=2 fermions. Starting from the SK
world-line formulation, we recovered the results of
Berezin and Marinov [1]. We explicitly demonstrated that
one can write the most general form for the Wigner phase
space distribution function in terms of Grassmann spin
bilinears and discussed the properties of the corresponding
phase space measure. The phase space distribution is
parametrized by a pseudovector, which is the well-known
Pauli-Lubanski vector satisfying the relativistic Bargmann-
Michel-Telegdi equation.
We proceeded to construct the vector and axial-vector

currents of massless spin-1=2 fermions as phase space
averages over the associated Liouville phase space distri-
bution. A naive representation of the latter shows that it is
conserved. We showed that the nonconservation of this
current due to the anomaly can be traced back to the proper
gauge invariant regularization of the spectrum; this is
shown to be encoded in the initial conditions for the
quantum Wigner distribution in the Schwinger-Keldysh
representation.
The results presented in this manuscript are part of a

larger effort in constructing a consistent chiral kinetic
theory. In related work [24] in preparation, we derive a
kinetic theory including collision terms from a fluctuation
analysis of the Liouville equation using the relations
derived here. We have applied this formalism to the case
of a nonequilibrium QCD plasma applying the consistent
power counting pioneered by Bödeker [52,110], Arnold,
Son and Yaffe [111], and Moore [112,113]. The physics
goal of this specific application is to follow the spacetime
development of the chiral magnetic current [114,115]
generated in the Glasma produced in ultrarelativistic
heavy-ion collisions [116,117], from the initial generation
of net topological charge by sphaleron transitions [118], to
the transport of this charge in background electromagnetic
fields all the way, and ultimately to quantitatively ascer-
tain the physical consequences of the same in experi-
mental observables. While anomalous hydrodynamics is a
robust approach to describe the late time dynamics of the
chiral current in heavy-ion collisions, the results are very
sensitive to the initial conditions. The initial spacetime

development of the chiral magnetic current vial sphaleron
transitions can be followed using classical statistical
methods [119,120]; however, the validity of this approach
fails before hydrodynamic equilibrium is attained. It is at
this step that chiral kinetic theory is crucial for the
subsequent description of chiral transport in the topologi-
cal QCD background. Our work develops the framework
for the implementation of chiral kinetic theory in this
context.
Phase space formulations for internal symmetries are

also important for future experimental investigations of
the spin structure of the proton. For the first time, the
proposed Electron-Ion Collider (EIC) [121] will allow a
unique three-dimensional tomography of the proton, thus
extending previous one-dimensional parton distribution
functions to fully five-dimensional quantum Wigner dis-
tributions [122–124]. Specifically, the EIC will allow to
measure the decomposition of the proton spin’s spin into
intrinsic and orbital angular momentum contributions of
its parton constituents [125–128]. Recently, there has been
considerable progress in studies of polarized parton
distributions at small x [129,130]. An outstanding ques-
tion in this regard is the role of the chiral anomaly [131–
133]. The world-line framework is ideally suited for this
discussion. We have recently adapted the world-line
framework to study unpolarized and polarized parton
distributions at small x [134] and plan to address this
issues in the near future [135].
This formalism may also be useful in extending the

regime of validity of effective field theory descriptions
[58–60] of gluon saturation because this framework nat-
urally includes a Wess-Zumino term [136,137].
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APPENDIX A: DERIVATION
OF LIOUVILLE’S THEOREM

In this Appendix, we will derive Liouville’s theorem
from quantum phase space in the semiclassical approxi-
mation. Firstly, we demonstrate how Eq. (11) follows from
Eq. (10). We write Eq. (10) in the more compact form
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Wχ
A½x̄ðτÞ; p̄ðτÞ; λ̄ðτÞ; λ̄†ðτÞ�

¼
Z

d4x̄id4p̄id4λ̄id4λ̄
†
i W

χ
A½x̄i; p̄i; λ̄i; λ̄

†
i �

× δ½xðτÞ − xclðτ; xiÞ�δ½pðτÞ − pclðτ;piÞ�
× δ½λðτÞ − λclðτ; λiÞ�δ½λ†ðτÞ − λ†clðτ; λ†i Þ�; ðA1Þ

where xclðτ; xiÞ denotes the solution to the classical
equations of motion at time τ for given initial conditions
xi. Secondly, taking the derivative d=dτ yields Liouville’s
equation, Eq. (11),

d
dτ

Wχ
A ¼

Z
d4x̄id4p̄id4λ̄id4λ̄

†
i W

χ
A½x̄i; p̄i; λ̄i; λ̄

†
i �

×

�
_xμ

∂
∂xμþ _pμ

∂
∂pμ

þ _λa
∂
∂λaþ

_λ†a
∂
∂λ†a

�

× δ½xðτÞ− xclðτ;xiÞ�δ½pðτÞ−pclðτ;piÞ�
× δ½λðτÞ− λclðτ;λiÞ�δ½λ†ðτÞ− λ†clðτ;λ†i Þ�

¼
�
_xμ

∂
∂xμþ _pμ

∂
∂pμ

þ _λa
∂
∂λaþ

_λ†a
∂
∂λ†a

�
Wχ

A; ðA2Þ

where we used the identity ðd=dτÞδ½xðτÞ − xclðτ; xiÞ� ¼
_xμð∂=∂xμÞδ½xðτÞ − xclðτ; xiÞ� and similar identities for
p; λ; λ†. Alternatively, Eq. (A2) can be written as

dWχ
A

dτ
¼ fWχ

A;HWg; ðA3Þ

whereHW is the Weyl symbol of the Hamiltonian and f·; ·g
denote Dirac brackets. Fixing a specific world-line para-
metrization, τ ¼ τðx0Þ, allows one to write the right-hand of
Eq. (A2) in noncovariant form,

�
∂t − _x

∂
∂x − _p

∂
∂p − _λa

∂
∂λa þ

_λ†a
∂
∂λ†a

�
Wχ

A ¼ 0; ðA4Þ

which demonstrates that indeed dWχ
A=dτ ¼ 0. The absence

of an explicit τ-dependence can alternatively be understood
as a gauge symmetry related to reparametrization invari-
ance on the world-line.

APPENDIX B: COLOR PHASE SPACE:
SOME IDENTITIES

In this Appendix, we will fill in some details of classical
phase space using Grassmanian variables for color. First,
Eq. (27) is demonstrated through direct integration

Z
dQQaQb ¼

Z
DλDλ†ðλ†ctacdλdÞðλ†etbefλfÞ

¼ −ϵcegϵdfgtacdtbef ¼ TrðtatbÞ ¼ 1

2
δab; ðB1Þ

and similarly for Eq. (28)

Z
dQQaQbQc ¼

Z
DλDλ†ðλ†dtadeλeÞðλ†ftbfgλgÞðλ†htchiλiÞ

¼ −ϵdfhϵegiðtadetbfgtchiÞ

¼ Trðtbfta; tcgÞ ¼ AR

2
dabc: ðB2Þ

To compute the coefficients ci in Eq. (34), we take
moments according to Eqs. (30)–(33). We obtain

faðx; PÞ ¼
Z

dQQafðx; P;QÞ

¼ c1
2
faðx; PÞ þ AR

2
c2fbcðx; PÞdabc; ðB3Þ

fabðx; PÞ ¼
Z

dQQaQbfðx; P;QÞ

¼ c0
2
δabfðx; PÞ þ AR

2
c1dabcfcðx; PÞ; ðB4Þ

fabcðx; PÞ ¼
Z

dQQaQbQcfðx; P;QÞ

¼ AR

2
c0dabcfðx; PÞ; ðB5Þ

fðx; PÞ ¼
Z

dQfðx; P;QÞ ¼ AR

2
c3dabcfabc; ðB6Þ

so that c1 ¼ 2, c2 ¼ 0, c3 ¼ 4=ðA2
Rc0d

2Þ and c0 ¼ 1. In the
context of Liouville’s equation, one encounters derivatives
with respect to color variables and we will find the
following identities to be useful:

Z
dQQa ∂

∂Qb fðx; P;QÞ ¼ 3

d2
dacddbcdfðx; PÞ; ðB7Þ

Z
dQQaQb ∂

∂Qc fðx; P;QÞ ¼ δabfcðx; PÞ: ðB8Þ

APPENDIX C: COMPRESSIBILITY OF
QUANTUM PHASE SPACE AND THE

CHIRAL ANOMALY

It is well known [33] that the quantum mechanical
formulation of phase space violates Liouville’s theorem
by compressible corrections to Eq. (A3) at Oðℏ2Þ. These
can be understood from Moyal’s equation

dWχ
A

dτ
¼ −2HW sin

�
Λ
2

�
Wχ

A ¼ fWχ
A;HWg þOðℏ2Þ; ðC1Þ

with the Poisson/Dirac brackets as defined in Eq. (16) and
the bilinear operator Λ which satisfies
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AΛB≡ fA;Bg: ðC2Þ

In the more general formulation of Eq. (C1), one can
systematically derive quantum corrections to the semi-
classical approximations presented in this manuscript.
One might also speculate about a connection between the

quantum anomaly and (compressible) quantum connec-
tions in Moyal’s equation. We wish to argue that there is no
such connection. In fact, one can demonstrate that the
generalized coordinates ðxμ; pμ;ψμÞ introduced in Sec. IV
and are canonical variables and that phase space is
incompressible in the semiclassical limit. Yet, in this limit
the anomaly is manifest from the SK path integral, as
discussed in Sec. V.
In this context, let us consider semiclassical phase space

formulations including a Berry term [26,35–38,40], which
involves noncanonical variables and compressible phase
space in the semiclassical limit.15 Son and Yamamoto
proposed a semiclassical effective many-body theory for
chiral fermions following the description of Xiao, Shi and
Niu [37] for semiclassical Bloch electrons in weak electro-
magnetic fields. A similar discussion may also be found in
Sundaram and Niu [36]. This theory is summarized in the
effective classical equations,

_x ¼ 1

ℏ
ϵnðpÞ
∂p − _k ×ΩnðpÞ; ðC3Þ

ℏ _p ¼ −eEðxÞ − e_r ×BðxÞ; ðC4Þ

whereΩ is the Berry curvature [26] and ϵn the energy of the
nth energy band. Xiao et al. [37] demonstrated that phase
space is compressible in this theory, with the volume
element

ΔV ≡ ΔV0

1þ eB ·Ω=ℏ
; ðC5Þ

and ΔV0 ≡ d3xd3p given in the absence of magnetic fields
(in the asymptotic past). They further suggested that the
particle number density at zero temperature and finite
chemical potential should be defined as

ne ¼
Z

μ d3p
ð2πÞ3

�
1þ eB ·Ω

ℏ

�
; ðC6Þ

where the integrand includes modes with energy below the
chemical potential μ.
Son and Yamamoto [38,40] interpret Eq. (C6) as the

chiral charge density and obtain their well known anomaly
result by assuming constant μ.
In contrast, Xiao et al. [37] give a different interpretation

of Eq. (C6), where particle number is conserved. They note
that the chemical potential is not constant in a magnetic
field. Its time dependence causes a change in the fermi
volume [37], precisely compensating the correction term to
the electron density in Eq. (C6). This interpretation is more
in line with our understanding that the compressibility of
phase space and the chiral anomaly have different origins.
However, it is indeed remarkable that the expression
obtained by Son and Yamamoto from the compressibility
of phase space in the presence of a Berry term recovers
precisely the form of the anomaly. The puzzle this presents,
and its definitive resolution, deserve further study.
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