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In this article, a new perspective for obtaining the magnetic evolution of π-π scattering lengths in the
linear sigma model is presented. When computing the relevant one-loop diagrams that contribute to these
parameters, the sum over Landau levels—emerging from the expansion of the Schwinger propagator–is
handled in a novel way that could also be applied to the calculation of other magnetic-type corrections.
Essentially, we obtain an expansion in terms of Hurwitz zeta functions. It is necessary to regularize our
expressions by an appropriate physical subtraction when jqBj → 0 (where q is the meson charge and B is
the magnetic field strength). In this way, we are able to interpolate between the very high-magnetic-field-
strength region (usually handled in terms of the lowest Landau level approximation) and the weak-field
region (discussed in a previous paper by some of us), which is based on an appropriate expansion of the
Schwinger propagator up to order jqBj2. Our results for the scattering length parameters produce a soft
evolution for a wide range of magnetic field strengths, reducing to the previously found expressions in both
limits.
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I. INTRODUCTION

During recent years, the physics of strongly interacting
hadron matter at high temperatures and densities (or
baryonic chemical potential), including the huge magnetic
fields generated during peripheral heavy-ion collisions, has
attracted the attention of the community, from both the
experimental and theoretical points of view. Different
experiments have reported interesting results that are
related to temperature and eventually to magnetic correc-
tions of some physical quantities. For example, an excess of

photons at low momentum in the invariant momentum
distribution has been reported [1–3]. It has been argued [4]
that this excess—after taking into account common
sources like synchrotron radiation, bremsstrahlung, or pair
annihilation—could be related to gluon fusion in the early
stages of the collision. This mechanism is only possible
if magnetic effects are present. Signals related only to
temperature effects are much more well established such as,
e.g., the broadening of hadron resonances [5]. Of course,
the effect on the broadening of resonance widths should
take into account simultaneous corrections of the temper-
ature and magnetic field.
New experiments like NICA [6] would be able to

explore density effects, allowing the experimental dis-
cussion of scenarios like quarkyonic matter [7]. Of course,
a dense nuclear matter environment is one of the crucial
ingredients for our understanding of compact objects like
neutron stars. Lattice groups [8] have also found the
remarkable phenomenon of inverse magnetic catalysis,
which corresponds to a decrease of the pseudocritical
temperatures of both the chiral and/or deconfinement
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phase transitions and the quark condensates, as functions
of an increasing magnetic field strength. Different explan-
ations have been proposed, including, e.g., an analysis
that went beyond the mean-field approximation by con-
sidering thermomagnetic corrections to the couplings as
well as plasma screening for the boson masses through
ring diagrams in the linear sigma model [9]. It is worth
mentioning that, as a consequence of a renormalization
group analysis, an analytical expression for the thermo-
magnetic evolution of the QCD strong coupling was
recently found [10]. This should allow to extend existing
theoretical calculations.
It seems, therefore, that the discussion of the magnetic

dependence of different physical parameters is highly
relevant for our understanding of these kind of physical
phenomena. In general, it is not an easy task to disen-
tangle magnetic effects from other kinds of corrections,
and this represents an important motivation to search for
new channels or parameters where this goal could be
achieved. π-π scattering lengths are responsible for the
interaction among pions at low energies, near the thresh-
old. Since about 600 pions are produced in a single
heavy-ion collision event, and since charmonium and
bottomonium states—which may survive beyond the
critical temperature—decay into pairs of pions whose
rescattering has been measured, we see that scattering
lengths could be relevant parameters for a better under-
standing of magnetic and thermal evolution. In fact, the
so called cusp effect in the emerging pions from such
heavy onium states has been used as a clear signal for
measuring π-π scattering lengths [11]. It is certainly a
challenge to measure such signals in heavy-ion collision
experiments. The new results we present here are no
longer restricted to the low-magnetic field regime, as was
the case in a previous article by some of us [12].
Some years ago, analyses were done on the temperature

dependence of these scattering length parameters using the
Nambu-Jona-Lasinio [13] and linear sigma models [14].
As previously mentioned, magnetic effects on these objects
were computed in the linear sigma model by some of us
using an expansion of the Schwinger propagator valid for
small magnetic fields [12]. The main result of that article—
namely, the opposite effect of the magnetic field and
temperature—was interesting, since it seems that magnetic
and temperature effects have opposite behavior. For the
isospin I ¼ 0, 2 channels, the π-π scattering lengths increase
or decrease as a function of temperature. The opposite effects
were found for the magnetic evolution.
Here we present, in the linear sigma model at the one-

loop level, a new discussion on the magnetic dependence
of the π-π scattering lengths, valid for arbitrary values of
the magnetic field strength. The novelty of the analysis
relies on the way we handle the relevant integrals that
appear in the one-loop diagrams. In fact, using the well-
known expansion for the Schwinger propagator in terms

of Landau levels, and introducing a physically transparent
regularization of a certain magnetic-field-dependent log-
arithmic divergent term, we are able to obtain rather
compact expansions for the relevant one-loop integrals
associated with the s- and t-channel contributions. The
paper is organized as follows. In Sec. II the linear sigma
model is revised, and we decompose the π-π scattering
lengths according to isospin channel projections. Then, in
Sec. III the detailed computation of the magnetic field
contribution to the π-π scattering lengths is presented,
including the regularization of a magnetic-dependent
divergent term. In this way, we are able to present our
results for the magnetic evolution for the scattering
lengths in both relevant isospin channels I ¼ 0, 2.
More technical details are presented in the Appendix.
Finally, in Sec. IV we present our final conclusions.

II. LINEAR SIGMA MODEL
AND π-π SCATTERING

The linear sigma model was introduced by Gell-Mann
and Lévy [15] as an effective approach to describe chiral
symmetry breaking via an explicit and spontaneous mecha-
nism. In the context of critical phenomena, the model
represents a field theory where the Lagrangian possesses
OðNÞ symmetry, which near the critical temperature is
spontaneously broken intoOðN − 1Þ, thus leading toN − 1

massless Goldstone bosons (representing tangential oscil-
lating modes) and a single massive field (representing
radial oscillations) with respect to the minimum of a
Mexican-hat-shaped effective potential.
In the phase where the chiral symmetry is broken, the

model is given by

L ¼ ψ̄ ½iγμ∂μ −mψ − gðsþ iπ⃗ · τ⃗γ5Þ�ψ

þ 1

2
½ð∂π⃗Þ2 þm2

ππ⃗
2� þ 1

2
½ð∂σÞ2 þm2

σs2�

− λ2vsðs2 þ π⃗2Þ − λ2

4
ðs2 þ π⃗2Þ2 þ ðεc − vm2

πÞs: ð1Þ

In this expression v ¼ hσi is the vacuum expectation value
of the scalar field σ. The idea is to define a new field s such
that σ ¼ sþ v, with hsi ¼ 0. ψ corresponds to an isospin
doublet associated to the nucleons, π⃗ denotes the pion
isotriplet field, and cσ is the term that explicitly breaks the
SUð2Þ × SUð2Þ chiral symmetry. ε is a small dimensionless
parameter. It is interesting to remark that all fields in the
model have masses determined by v. In fact, the following
relations are valid: mψ ¼ gv, m2

π ¼ μ2 þ λ2v2, and m2
σ ¼

μ2 þ 3λ2v2. Perturbation theory at the tree level allows us to
identify the pion decay constants as fπ ¼ v. Finite-temper-
ature effects on this model have been studied by several
authors, including the thermal evolution of masses, fπðTÞ,
the effective potential, etc. [16–23].
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Since our idea is to use the linear sigma model to
calculate π-π scattering lengths, let us briefly recall the
formalism. A scattering amplitude has the general form
[24,25]

Tαβ;δγ ¼ Aðs; t; uÞδαβδδγ þ Aðt; s; uÞδαγδβδ
þ Aðu; t; sÞδαδδβγ; ð2Þ

where α, β, γ, δ denote isospin components.
By using appropriate projection operators, it is pos-

sible to find the following isospin-dependent scattering
amplitudes:

T0 ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ; ð3Þ

T1 ¼ Aðt; s; uÞ − Aðu; t; sÞ; ð4Þ

T2 ¼ Aðt; s; uÞ þ Aðu; t; sÞ; ð5Þ

where TI denotes a scattering amplitude in a given
isospin channel I ¼ f0; 1; 2g.
As it is well known [24], the isospin-dependent scatter-

ing amplitude can be expanded in partial waves TI
l,

TI
lðsÞ ¼

1

64π

Z
1

−1
dðcosθÞPlðcosθÞTIðs; t; uÞ: ð6Þ

Below the inelastic threshold, the partial scattering
amplitudes can be parametrized as [25]

TI
l ¼

�
s

s − 4mπ2

�1
2 1

2i
ðe2iδIlðsÞ − 1Þ; ð7Þ

where δl is a phase shift in the l channel. The scattering
lengths are important parameters for describing low-energy
interactions. In fact, the last expression can be expanded
according to

ℜðTI
lÞ ¼

�
p2

m2
π

�
l
�
aIl þ

p2

m2
π
bIl þ � � �

�
: ð8Þ

The parameters aIl and bIl are the scattering lengths and
scattering slopes, respectively. In general, the scattering
lengths obey jaI0j > jaI1j > jaI2j… If we are only interested
in the scattering lengths aI0, it is enough to calculate the
scattering amplitude TI in the static limit, i.e., when
s → 4m2

π , t → 0, and u → 0:

aI0 ¼
1

32π
TIðs → 4m2

π; t → 0; u → 0Þ: ð9Þ

The first measurement of π-π scattering lengths was carried
out by Rosellet et al. [26]. More recently, these parameters
have been measured using pionium atoms in the DIRAC
experiment [27] and also through the decay of heavy
quarkonium states into π-π final states where the so-called

cusp effect was found [28]. We evaluate Eq. (9) for I ¼ 0, 2
in a background magnetic field of arbitrary strength below.

III. SCATTERING LENGTHS AT FINITE
MAGNETIC FIELD

Recently, some of us discussed the magnetic evolution of
the π-π scattering lengths in the context of the linear sigma
model [12].
Our analysis was based on a perturbative treatment of the

bosonic Schwinger propagator, valid for small magnetic
fields. We found that this magnetic evolution displays an
opposite trend with respect to thermal corrections to the
scattering lengths reported previously in the literature [14].
At low magnetic field intensities, the scattering lengths in
the isospin channel I ¼ 2 increase, whereas their projec-
tions into the channel I ¼ 0 decrease (both as functions of
the magnetic field). It is interesting to reanalyze this
problem over the full range of magnetic field intensities.
In fact, in peripheral heavy-ion collisions we may expect
extremely high magnetic fields, which may affect the
interactions among the emerging pions generated during
the collision.
In the linear sigma model, the relevant diagrams that

contribute to π-π scattering are shown in Fig. 1. Notice that
tadpole-like diagrams associated with the mass correc-
tions of the sigma field do not contribute to the π-π
scattering amplitudes, because they do not possess an
absorptive component, since their imaginary part is zero.

a b

c d

e f

g h

i j

FIG. 1. One-loop diagrams relevant to the π-π scattering
lengths. Solid and dashed lines represent pions and σ mesons,
respectively.
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These tadpoles are extremely small in the limit of a very
large mass of the sigma field. This approximation is valid
since, as we know, mσ ≈ 550 MeV is much larger than the
pion mass. Fermions, i.e., nucleons that may interact with
pions, are not considered in our discussion. As a conse-
quence, the sigma field propagator is contracted to a point.
From these considerations, we see that all relevant

diagrams reduce to horizontal (s channel) or vertical
(t and u channels) “fish-type” pion loop contributions,
as shown in Fig. 2. Then, our task is to compute such
diagrams as a function of the magnetic field intensity. This
is an interesting problem, not only because of its physical
implications, but also due to new analytical results that we
present below.
Let us derive our starting expression for the bosonic

propagator as a sum of Landau levels. The bosonic
Schwinger propagator for a charged pion of charge q
immersed in a uniform magnetic field along the third spatial
coordinate in the proper time representation is given by

iDBðkÞ ¼
Z

∞

0

ds
cosðqBsÞ e

isðk2jj−k2⊥
tanðqBsÞ
qBs −m2

πþiϵÞ: ð10Þ

After inserting this propagator into the fish-type dia-
grams, it is not difficult to see that all contributions reduce
to two types of integrals:

I1½B; p0� ¼
Z

d4k
ð2πÞ4 iD

Bðk0;kÞiDBðk0 − 2p0;kÞ; ð11Þ

I2½B� ¼
Z

d4k
ð2πÞ4 ½iD

Bðk0;kÞ�2: ð12Þ

For technical purposes, we shall calculate the integrals
with the expression for the propagator at finite magnetic
field in terms of Landau levels, as presented in Ref. [29],

iDBðkÞ ¼ 2
X∞
l¼0

ð−1ÞlLl

�
2k2⊥
qB

�
e−k

2⊥=qBiΔB
l ðkkÞ; ð13Þ

where LlðzÞ are the Laguerre polynomials, and we have
defined the effective “parallel” propagators

iΔB
l ðkkÞ ¼

i
k2k − ð2lþ 1ÞqB −m2

π þ iϵ
: ð14Þ

Let us first consider the calculation of I1½B�: given its
definition in Eq. (11), by substituting the infinite series for
the propagators (13) we have

I1½B; p0� ¼
Z

d2kkd2k⊥
ð2πÞ4 iDBðkÞiDBðk0 − 2p0;kÞ

¼ 4
X∞
l¼0

X∞
l0¼0

ð−1Þlþl0Gl;l0 ðp0Þ

×

�Z
d2k⊥
ð2πÞ2 e

−2k2⊥=qBLl

�
2k2⊥
qB

�
Ll0

�
2k2⊥
qB

��
:

ð15Þ
Here, we have defined the integrals

Gl;l0 ðp0Þ ¼
Z

d2kk
ð2πÞ2 iΔ

B
l ðkkÞiΔB

l0 ðkk − 2p0Þ: ð16Þ

Let us now calculate the integral over the Laguerre
polynomials in the second term by using two-dimensional
“spherical coordinates,” with 0 ≤ jk⊥j < ∞,

d2k⊥ ¼ 2πjk⊥jdjk⊥j ¼
πqB
2

dx; ð17Þ

where we have defined the auxiliary variable x ¼ 2k2⊥=qB,
with 0 ≤ x < ∞. Therefore, we have

Z
d2k⊥
ð2πÞ2 e

−2k2⊥=qBLl

�
2k2⊥
qB

�
Ll0

�
2k2⊥
qB

�

¼ 1

4π2
πqB
2

Z
∞

0

dxe−xLlðxÞLl0 ðxÞ

¼ qB
8π

δl;l0 ; ð18Þ

where the orthogonality relation between Laguerre poly-
nomials was used. Substituting this result into Eq. (16), we
end up with the expression

p

p
k

2p−k

p

p γ

δ

α

β

(a)

p

p p

p

kk

α γ

δβ (  )γ

(  )δ

(b)

FIG. 2. “Fish-type” diagrams.
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I1½B; p0� ¼
qB
2π

X∞
l¼0

Gl;lðp0Þ: ð19Þ

As shown in detail in the Appendix, we calculate
Gl;lðp0Þ by first integrating over k0 in the complex plane,
and later over k3. This procedure allows us to obtain the
infinite series

I1½B; p0� ¼
i

16π2
2qB
p2
0

X∞
l¼0

zlArctanðzlÞ; ð20Þ

where we have defined zl ¼ ðp0=
ffiffiffiffiffiffiffiffiffi
2qB

p Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2þ ðm2

π − p2
0Þ=ð2qBÞ

p
. This infinite series, as

expected, displays a mild logarithmic divergence, which
can however be removed with a straightforward procedure,
as we now show. Let us first expand each term in the series
above using the infinite series (valid for jzlj > 1 and
jzlj < 1)

zlArctanðzlÞ ¼
X∞
m¼0

22mðm!Þ2
ð2mþ 1Þ!

�
z2l

1þ z2l

�
mþ1

¼
X∞
m¼0

22mðm!Þ2
ð2mþ 1Þ! ð1þ z−2l Þ−m−1: ð21Þ

Inserting Eq. (21) back into Eq. (20), and exchanging the
order of the sums, we obtain

I1½B; p0� ¼
i

16π2
X∞
m¼0

22mðm!Þ2
ð2mþ 1Þ!

�
p2
0

2qB

�
m

× ζ

�
1þm;

1

2
þ m2

π

2qB

�
; ð22Þ

where ζðα; zÞ ¼ P∞
l¼0ðzþ lÞ−α are the Hurwitz zeta func-

tions. It is important to remark that the termm ¼ 0 needs to
be regularized, using the relation between the Hurwitz zeta
function and the digamma function ψðzÞ,

ζðz; 1þ ϵÞ ¼ −ψðzÞ þ 1

ϵ
þOðϵÞ; ϵ → 0þ: ð23Þ

The asymptotic behavior of the digamma function for very
large values of its argument (jzj ≫ 1) is captured by the
series

ψðzÞ ∼ lnðzÞ −
X∞
n¼1

Bn

n
z−n; ð24Þ

where Bk are the Bernouilli numbers, for B1 ¼ 1=2.
Clearly, the digamma function displays a logarithmic
divergence in this limit. Therefore, the expression for
I1½B� in Eq. (22) diverges as B → 0, as expected from
the vacuum contribution to the diagram at zero field. Since

we are interested in the contribution due to the finite
magnetic field with respect to the experimental zero-field
value of the scattering length, we define the regularized
expression

IReg1 ½B; p0�≡ I1½B; p0� − I1½B → 0; p0�

¼
Z

d4k
ð2πÞ4 ½iD

Bðk0;kÞiDBðk0 − 2p0;kÞ

− iD0ðk0;kÞiD0ðk0 − 2p0;kÞ�; ð25Þ

where clearly, by definition,

lim
B→0

IReg1 ½B; p0� ¼ 0: ð26Þ

In order to construct the regularized form, we subtract the
asymptotic, logarithmically divergent expression for the
digamma function (m ¼ 0) at small magnetic field as
follows:

IReg1 ½B; p0� ¼
i

16π2

�
−ψ

�
1

2
þ m2

π

2qB

�
þ ln

�
1

2
þ m2

π

2qB

�

þ
X∞
m¼1

ðm!Þ2
ð2mþ 1Þ!

�
2
p2
0

qB

�
m

× ζ

�
mþ 1;

1

2
þ m2

π

2qB

��
: ð27Þ

Let us now turn our attention to the integral I2½B�
defined in Eq. (12). It is straightforward to obtain the
regularized expression for this integral by setting p0 ¼ 0 as
follows:

IReg2 ½B�≡ I2½B� − I2½B → 0�
¼ lim

p0→0
IReg1 ½B; p0�

¼ i
16π2

�
−ψ

�
1

2
þ m2

π

2qB

�
þ ln

�
1

2
þ m2

π

2qB

��
: ð28Þ

In order to obtain the scattering lengths aI0, we use the
decomposition of the scattering amplitude in the different
isospin channels presented in Sec. I. Since we are only
interested in the scattering lengths aI0, it is enough to
calculate the scattering amplitude in the static limit.
Therefore, we normalize by the experimental values at
tree level [a00ðexpÞ ¼ 0.217 and a20ðexpÞ ¼ −0.041] to
obtain the expressions
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a00ðBÞ ¼ a00ðexpÞ þ
1

32π
ð3Aðs; t; uÞ þ Aðt; s; uÞ

þ Aðu; t; sÞÞ;

a20ðBÞ ¼ a20ðexpÞ þ
1

32π
ðAðt; s; uÞ þ Aðu; t; sÞÞ: ð29Þ

Here, Aðs; t; uÞ, Aðt; s; uÞ, and Aðu; t; sÞ correspond
to all s-channel, t-channel, and u-channel contributions,
respectively. On the other hand, the s-channel contribution
is obtained from IReg1 ½B; p0 ¼ mπ�, while those for the t and
u channels are obtained from IReg2 ½B� according to the
following expressions:

Aðs; t; uÞ ¼ −4λ4
�
1 −

12λ2v2

m2
σ

þ 24λ4v4

m4
σ

�

× IReg1 ½B; p0 ¼ mπ�;

Aðt; s; uÞ þ Aðu; t; sÞ ¼ −8λ4
�
1 −

12λ2v2

m2
σ

þ 24λ4v4

m4
σ

�

× IReg2 ½B�: ð30Þ
The experimental values in the absence of a magnetic

field (B ¼ 0) are given by [30] a00ðexpÞ ¼ 0.217 and
a20ðexpÞ ¼ −0.041. The mass for the sigma meson is set
to mσ ¼ 550 MeV, and the mass for the pion mπ ¼
140 MeV, with the parameters v ¼ 89 and λ2 ¼ 4.26.

IV. RESULTS AND CONCLUSIONS

We have presented a novel method of calculating the
scattering lengths for π-π scattering within the linear sigma
model at the one-loop level, in the isospin channels
I ¼ f0; 2g, as functions of the external magnetic field
intensity. Our calculation shows that the relevant contri-
butions can be reduced to the calculation of two types of

“fish-type” diagrams (see Fig. 2). Throughout this article,
we have obtained exact analytical results for the integrals
involved in those diagrams and, moreover, we developed a
regularization procedure that allows to connect smoothly
and continuously the low and high magnetic field intensity
regimes. Explicit analytical expressions for the regularized
integrals are presented in Eqs. (27) and (29), respectively.
This method extends our previous results [12] to the full
range of magnetic field intensities, thus revealing that the
scattering lengths are smooth and continuous functions of
the field (see Fig. 3). In particular, our analytical results
show that the scattering length a00 decreases as a function of
the magnetic field with respect to its experimental value.
On the contrary, the scattering length a20 is a monotonically
increasing function (in absolute value) of the external
magnetic field. Interestingly, both scattering lengths
achieve asymptotic constant values in the infinitely strong
field limit. Remarkably, the observed trends are opposite
to the ones predicted as a function of temperature [14],
thus suggesting a potential means to experimentally dis-
entangle thermal and magnetic effects. As a natural
extension of this work, we are currently examining the
combined effect of the thermal and magnetic contributions
of the scattering lengths in these isospin channels. Results
shall be reported elsewhere.

ACKNOWLEDGMENTS

M. L. acknowledges support from FONDECYT (Chile)
under Grant No. 1170107, 1150471, and 1150847, and
ConicytPIA/BASAL (Chile) Grant No. FB0821. L. M.
acknowledges support from FONDECYT (Chile) under
Grant No. 1170107. A. R. acknowledges support form
“Consejo Nacional de Ciencia y Tecnología (Mexico)
under Grant No. 256494. R. Z. acknowledges support
from CONICYT FONDECYT Iniciación under Grant
No. 11160234. E. M. acknowledges support from
FONDECYT under Grant No. 1190361.

APPENDIX: INTEGRALS OVER kk = (k0; k3)

Here we present in detail the calculation of the integrals
involved in Eq. (19) of the main text. Using the definition of
the “parallel” propagators (14), we have

Gl;lðp0Þ ¼
ZZ

dk0dk3
ð2πÞ2 iΔB

l ðk0; k3ÞiΔB
l ðk0 − 2p0; k3Þ

¼ i2

ð2πÞ2
Z þ∞

−∞
dk3flðk3; p0Þ; ðA1Þ

where we have defined the integral

flðk3; p0Þ ¼
Z þ∞

−∞

dk0
Aðk3ÞCðk3Þ

; ðA2Þ

with

FIG. 3. The scattering parameters a00 (dashed) and a
2
0 (solid) are

displayed as functions of the dimensionless magnetic field
qB=m2

π . In the figure, the parameters are normalized by their
(experimental) zero-field values.
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Aðk3Þ ¼ k20 − Elðk3Þ2 þ iϵ;

Cðk3Þ ¼ ðk0 − 2p0Þ2 − Elðk3Þ2 þ iϵ; ðA3Þ

and Elðk3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þm2

π þ qBð2lþ 1Þ
p

. The integral can
be evaluated in the complex k0 plane, by noticing that it
possesses four simple poles at k0 ¼ �Elðk3Þ ∓ iϵ0 and
k0 ¼ 2p0 � Elðk3Þ ∓ iϵ0, i.e., two located in the positive
imaginary plane and two located in the negative imaginary
plane. For the integration contour we choose a semicircle,
which closes on the upper imaginary plane, and thus it

encloses the poles kð1Þ0 ¼ −Elðk3Þ þ iϵ0 and kð2Þ0 ¼ 2p0 −
Elðk3Þ þ iϵ0. By direct application of the residue theorem,
we have that

flðk3; p0Þ ¼
−2iπ
8p0

�
1

Elðk3ÞðElðk3Þ þ p0Þ

−
1

Elðk3ÞðElðk3Þ − p0Þ
�
: ðA4Þ

Now we calculate the integral over k3. Inserting Eq. (A4)
into Eq. (A1), we have

Gl;lðp0Þ ¼
i

16πp0

ðglðp0Þ − glð−p0ÞÞ; ðA5Þ

where we have defined

glðp0Þ ¼
Z þ∞

−∞

dk3
Elðk3Þ½Elðk3Þ − p0�

¼ 2

Z þ∞

0

dk3
Elðk3Þ½Elðk3Þ − p0�

¼ 2

π
2
− Arctan

�
p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qBð2lþ1Þþm2
π−p2

0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qBð2lþ 1Þ þm2

π − p2
0

p : ðA6Þ

Substituting back into Eq. (A5), we obtain the finite result

Gl;lðp0Þ ¼
i

4πp0

Arctan
�

p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qBð2lþ1Þþm2

π−p2
0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qBð2lþ 1Þ þm2

π − p2
0

p : ðA7Þ

Inserting this expression back into Eq. (19) of the main text,
we obtain the infinite-series representation

I1½B; p0� ¼
iqB
8π2p0

X∞
l¼0

Arctan
�

p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qBð2lþ1Þþm2

π−p2
0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qBð2lþ 1Þ þm2

π − p2
0
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