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We investigate the baryon asymmetry in the supersymmetry Dine-Fischler-Srednicki-Zhitnitsky axion
model without R-parity. It turns out that the R-parity violating terms economically explain the atmospheric
mass-squared difference of neutrinos and the appropriate amount of baryon asymmetry through the
Affleck-Dine mechanism. In this model, the axion is a promising candidate for dark matter, and the axion
isocurvature perturbation is suppressed due to the large field values of Peccei-Quinn fields. Remarkably, in
some parameter regions explaining the baryon asymmetry and the axion dark matter abundance, the proton
decay will be explored in future experiments.
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I. INTRODUCTION

The Standard Model (SM) of elementary particle physics
is very consistent with the experimental data up to TeV
scale. However, neutrino oscillations reported in the
SuperKamiokande [1], strong CP problem, the excess of
baryon over antibaryon in the current Universe, and the
absence of a dark matter candidate in the SM indicate new
physics beyond the SM. To explain these phenomenologi-
cal problems, we focus on the supersymmetry (SUSY) as
an extension of the SM.
So far, several models have been proposed to explain

the nonvanishing neutrino masses as represented by the
seesaw mechanism, introducing the heavy right-handed
Majorana neutrinos in the SM [2–6]. Among supersym-
metric models, the R-parity violating SUSY scenario is the
simplest approach to explain the tiny neutrino masses [7].1

Because of the R-parity violation, the lepton number
violating interactions generate the neutrino masses without
introducing a new particle in the framework of SUSY.
In addition, the R-parity violating interactions help us to
avoid cosmological gravitino and moduli problems such as
the overabundance of the lightest supersymmetric particle
generated by the gravitino and moduli decays [9–11],
although the moduli are required to be heavier than

Oð100Þ TeV to realize a successful big-bang nucleosyn-
thesis. However, the sizable R-parity violating interactions
cause several cosmological and phenomenological prob-
lems, such as the unobservable proton decay, undetectable
collider signatures of supersymmetric particles, and wash-
ing out of the primordial baryon asymmetry. Thus, it is
necessary to explain the smallness of R-parity violating
interactions.
To explain the smallness of R-parity violating inter-

actions, we focus on the SUSY Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) axion model [12]. In this model, the
strong CP problem in the quantum chromodynamics
(QCD) can be solved using the Peccei-Quinn (PQ) mecha-
nism [13]. The Nambu-Goldstone boson called an axion
[14,15] appears through the spontaneous symmetry break-
ing of global Uð1ÞPQ and dynamically cancels the CP
phases in QCD. Furthermore, this axion is a promising
candidate for dark matter, and its coherent oscillation
explains the current dark matter abundance [16]. Note
that the SUSY DFSZ axion model controls the size of the
μ-term and the R-parity violating couplings by Uð1ÞPQ
symmetry. It is then important to explore whether or not
enough baryon asymmetry is realized in such an extension
of the SM. In an inflationary era, the primordial baryon
asymmetry is diluted away by the accelerated expansion of
the Universe [17,18]. The baryon asymmetry, in particular
the baryon to photon ratio η ≃ 5 × 10−10 required by the
big-bang nucleosynthesis and cosmic microwave back-
ground [19], should be created after inflation. To obtain
the sizable baryon asymmetry after inflation, we study the
Affleck-Dine (AD) mechanism [20,21] in the SUSY DFSZ
axion model without R-parity. Since PQ fields couple to the
baryon/lepton number violating terms to control the size of
the R-parity violating couplings in this setup, it is nontrivial
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that the ADmechanism produces the appropriate amount of
baryon asymmetry.
The aim of this work is to reveal the origin of baryon

asymmetry in the SUSY DFSZ axion model without
R-parity in comparison with the usual supersymmetric
and R-parity conserving axion models. In contrast to the
R-parity violating AD mechanism proposed in Ref. [22],
the R-parity violating terms in our model couple to PQ
fields. The dynamics of PQ fields affects the magnitude
of the R-parity violation and the amount of baryon
asymmetry.2 In this regard, our model is different from
Ref. [22]. We find that there exist some parameter regions,
explaining the current baryon asymmetry, the axion dark
matter abundance, and the smallness of μ- and R-parity
violating terms. It is also consistent with the unobservable
proton decay, undetectable collider signatures of super-
symmetric particles, washout of the baryon asymmetry, and
one of the two mass-squared differences of neutrinos,
corresponding to the atmospheric mass-squared difference
of neutrinos.3 Remarkably, in this model, the axion iso-
curvature perturbation is suppressed because of the enhance-
ment of the PQ breaking scale in the early Universe.
Furthermore, in some parameter regions explaining baryon
asymmetry and axion dark matter abundance, the proton
decay will be explored in future experiments such as the
HyperKamiokande [25].
In particular, this model is economical in the point of view

of explaining the atmospheric neutrino mass data, the baryon
asymmetry, and the strong CP problem in supersymmetric
models. This is because we do not introduce a new field to
explain the atmospheric neutrino mass data and the baryon
asymmetry in the SUSY DFSZ axion model, and we do not
impose the discrete symmetry called R-parity, which is
usually imposed in supersymmetric models.
This paper is organized as follows. In Sec. II, we

consider the SUSY DFSZ axion model without R-parity
and show constraints on the R-parity violating couplings. In
Sec. III, we investigate the AD baryogenesis in more detail.
Then we study the dynamics of the AD and PQ fields and
estimate the baryon asymmetry, taking account of the
dilution of saxion decay. The axion isocurvature perturba-
tion is then suppressed. Finally, we conclude in Sec. IV.

II. MODEL AND CONSTRAINTS
FROM EXPERIMENTS

A. Setup

In this paper, we consider the SUSY DFSZ axion
model in which the global Uð1ÞPQ symmetry and the PQ

fields S0, S1, S2 are introduced adding to the Minimal
Supersymmetric SM (MSSM).4 The gauge symmetry of the
MSSM does not prohibit either the baryon or the lepton
number violating coupling in the superpotential. So-called
R-parity is often assumed in the MSSM to control these
couplings since the proton lifetime easily becomes shorter
than the observational bounds. In the SUSY DFSZ model,
the Uð1ÞPQ symmetry plays this role instead of the conven-
tional R-parity. It will be shown that the charge assignment
of theUð1ÞPQ explains not only the smallness of the baryon
and lepton number violating couplings but also the size of
the μ-parameter.
We assume the following superpotential:

W ¼ WMSSM þW=Rp
þWPQ; ð1Þ

WMSSM ¼ yuijūiQjHu − ydijd̄iQjHd − yeijēiLjHd

þ y0S21
MP

HuHd; ð2Þ

W=Rp
¼ yiS31

M2
P
LiHu þ

γijkS1
MP

LiLjēk þ
γ0ijkS1
MP

LiQjd̄k

þ γ00ijkS
3
1

M3
P

ūid̄jd̄k; ð3Þ

WPQ ¼ κS0ðS1S2 − f2Þ; ð4Þ

where i, j, k ¼ 1, 2, 3 are family indices. The Higgs fields,
quarks, and leptons are the usual representations of the
MSSM gauge group, and the PQ fields are singlet under the
MSSM gauge group. y0, yi, γijk, γ0ijk, γ

00
ijk, κ are dimension-

less parameters which are typically of Oð1Þ.
The PQ charges and also the baryon numbers of each field

are listed in Table I. f in WPQ is the present PQ breaking
scale andMP ≃ 2.4 × 1018 GeV is the reduced Planckmass.
Whenwe arrange the PQ fields to S1 ¼ SeA=f, S2 ¼ Se−A=f,
A behaves as the axion superfield. WPQ induces a sponta-
neous symmetry breaking of Uð1ÞPQ at the minimum
hSi ≃ f. The present effective superpotential after the
symmetry breaking is given by

Weff ¼ WYukawa þ μ0e2A=fHuHd þ μie3A=fLiHu

þ λijkeA=fLiLjēk þ λ0ijke
A=fLiQjd̄k

þ λ00ijke
3A=fūid̄jd̄k; ð5Þ

where WYukawa denotes the Yukawa coupling terms in
Eq. (2), and

2For the AD leptogenesis scenario with a varying PQ scale, see
Ref. [23]. Also see Ref. [24], where the axion inflaton affects the
dynamics of the AD field.

3We leave the derivation of another mass-squared difference
called the solar mass-squared difference of neutrinos to one of our
future works. 4See, as a review, Ref. [26].
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μ0¼
y0f2

MP
; μi¼

yif3

M2
P
;

λijk¼ γijk

�
f
MP

�
; λ0ijk¼ γ0ijk

�
f
MP

�
; λ00ijk¼ γ00ijk

�
f
MP

�
3

ð6Þ

are defined. For f ¼ 9.0 × 1011 GeV, y0 ¼ yi ¼ 1,
γijk ¼ γ0ijk ¼ 1, and γ00ijk ¼ 1, we obtain

μ0¼ 3.4×105 GeV; μi¼ 1.3×10−1 GeV;

λijk¼ 3.8×10−7; λ0ijk ¼ 3.8×10−7; λ00ijk ¼ 5.3×10−20:

ð7Þ
Thus, the smallness of the μ-parameter is explained by
the Kim-Nilles mechanism [27], and at the same time
the R-parity violating couplings are suppressed by the
Froggatt-Nielsen mechanism [28] by the Uð1ÞPQ assign-
ment. The baryon number violating coupling constants λ00ijk
are highly suppressed, whereas the lepton number is sizably
violated. These facts lead to stability under the single
nucleon decay [29] and suppress effects from the washing
out of the baryon asymmetry [30–33]. Itmay be possible that
one imposes flavor-dependent assignment of the Uð1ÞPQ,
which is related to the flaxion models proposed by
Refs. [34–36].

B. Constraints on the R-parity violating couplings

We briefly review experimental constraints on the
R-parity violating terms. In the following, we enumerate
only some severe bounds on the R-parity violating cou-
plings. A more comprehensive review is written in Ref. [8].
We comment on the relation between these constraints and
our models in Sec. II B 3

1. Proton decay

The observations of single nucleon decay give an
important constraint on the trilinear R-parity violating
terms [29]. The coexistence of the baryon and the lepton
number violating operators induces a decay p → π0lþ

mediated by a d̃R squark in an s-channel, which has not
been detected so far, thus giving the upper bounds on the
trilinear R-parity violating couplings [37,38],

jλ0imkλ
00�
11kj < Oð1Þ × 10−25

�
md̃

5 TeV

�
2

; ð8Þ

where i, k ¼ 1, 2, 3, m ¼ 1, 2, and md̃ is the typical down-
type squark mass. The upper bounds are very severe, but the
Uð1ÞPQ-charge assignment leads to λ0λ00 ∼ 10−26, so the
proton lifetime is longer than the bound.

2. Baryon washout

Other upper bounds on the trilinear R-parity violating
terms come from the observation of baryon asymmetry. If
baryon asymmetry is produced before the electroweak
phase transition and the sphaleron process [39] is in the
thermal equilibrium, the R-parity violating terms would
erase the existing baryon asymmetry [30–33]. To avoid
these effects, the trilinear R-parity violating couplings are
upper bounded by

λ; λ0; λ00 < 4 × 10−7
�

mf̃

1 TeV

�
1=2

; ð9Þ

where mf̃ is the typical mass of the sfermions.

3. Neutrino masses

We next focus on the bilinear R-parity violating cou-
plings μi. Constraints on the R-parity violating couplings
come from the cosmological observations on neutrino
masses because the bilinear R-parity violation gives rise
to the neutrino mass. When we choose the basis in which
the vacuum expectation values (VEVs) of sneutrinos vanish
and the Yukawa couplings of charged lepton are diagonal,
the effective neutrino mass matrix at tree level is generated
by the bilinear R-parity violating terms [40],

Mν
tree ≃ −

mνtree

Σ3
i¼1μ

2
i

0
BB@

μ21 μ1μ2 μ1μ3

μ1μ2 μ22 μ2μ3

μ1μ3 μ3μ2 μ23

1
CCA: ð10Þ

The size of neutrino mass mνtree is given by

mνtree ≃
m2

Zðcos2θWM1 þ sin2θWM2Þ
M1M2ð1þ tan2βÞ tan2ξ; ð11Þ

wheremZ,M1,M2 are the Z boson mass, the bino mass and
the wino mass, respectively, and θW is the Weinberg angle.
tan β ¼ vu=vd is the ratio between the VEVs of two Higgs
fields, vu, vd, and

tan2ξ ≃
μ21 þ μ22 þ μ23

μ20
: ð12Þ

Since the rank of the mass matrix is 1, one of the neutrinos
acquires a mass at tree level. Although the other two
neutrinos acquire masses by quantum corrections [41,42],
the detailed analysis of the other neutrino masses is
beyond the scope of this paper. Indeed, one of the neutrino

TABLE I. PQ charges and baryon numbers of fields.

S0 S1 S2 Hu Hd ūi d̄i Qi ēi Li

PQ 0 1 −1 −1 −1 −1 −1 2 3 −2
B 0 0 0 0 0 −1=3 −1=3 1=3 0 0
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mass-squared differences can be explained by the bilinear
R-parity violating terms, observed by the atmospheric
neutrino observation [43]

ffiffiffiffiffiffiffiffiffiffi
Δm2

A

q
≃ 5 × 10−2 eV: ð13Þ

If we explain the atmospheric neutrino observation without
tuning of the dimensionless parameters, the size of neutrino
mass mνtree is constrained as mνtree ≲ 5 × 10−2 eV, which
leads to the constraint on the bilinear R-parity violating
couplings,

X
i

μ2i ≲ 6.0 × 10−12 eVð1þ tan2βÞ
�

M2

1 TeV

�
μ20: ð14Þ

In addition, the cosmological bound on neutrino massesP
imνi ≲ 0.11 eV (mνtree ≲ 0.11 eV) [44] leads to another

constraint on the bilinear R-parity violating couplings,

X
i

μ2i ≲ 1.3 × 10−11ð1þ tan2βÞ
�

M2

1 TeV

�
μ20: ð15Þ

In our model, the R-parity violating couplings (7) avoid
the constraints of Eqs. (8), (9), (14), and (15). Furthermore,
the bilinear R-parity violating couplings can explain the
atmospheric mass-squared difference of neutrinos in some
region of dimensionless parameters. Furthermore, in the
low-scale SUSY scenario, we may observe the single
nucleon decay for f ≃ 1012 GeV in future experiments
such as HyperKamiokande [25].
In addition, the values in Eq. (7) are derived under the

choice of f ¼ 9.0 × 1011 GeV and hence are, in general,
dependent on f. One can derive the bound on f from
constraints on the R-parity violating terms under y, γ, γ0,
γ00 ¼ 1. If the masses of all of the supersymmetric particles
are the same, the severest constraint on f comes from
Eq. (9),

f < 9.6 × 1011 GeV

�
mf̃

1 TeV

�
1=2

: ð16Þ

III. AFFLECK-DINE BARYOGENESIS IN THE
SUSY DFSZ AXION MODEL WITH THE

R-PARITY VIOLATING TERMS

In this section, we study the Affleck-Dine mechanism
exploiting the R-parity violating terms in the SUSY DFSZ
axion model. A notable point of our scenario is that the
AD field couples to the PQ field, and their dynamics are
affected by each other. This behavior causes a different
amount of baryon asymmetry than the conventional one. In
the following, we will take parameters which are consistent
with the allowed region to explain the atmospheric neutrino
mass-squared difference in Sec. II B.3.

A. Affleck-Dine mechanism

Here and in the following, we consider the Affleck-Dine
baryogenesis exploiting one of the ūid̄jd̄k directions of the
scalar potential.5 We consider one of the ū d̄ d̄ D-flat
directions as the so-called AD field—namely,

ū ¼ 1ffiffiffi
3

p ϕ; d̄ ¼ 1ffiffiffi
3

p ϕ: ð17Þ

In the next subsection, the potential for the AD field and the
PQ fields is derived. The dynamics of the AD/PQ fields
during inflation is studied in Sec. III A 2. After inflation, we
show their dynamics in an era H > mϕ (H ≃mϕ) in
Sec. III A 3 (Sec. III A 4). The resultant baryon asymmetry
is extracted in Sec. III A 4. We will apply the following
method to the Affleck-Dine mechanism using other D-flat
directions. However, it is especially nontrivial for the
Affleck-Dine mechanism via the LHu direction based on
the charge assignment in Table I. This is because the LHu
direction is related to the μ-term (HuHd direction), which
gives a non-negligible contribution to the scalar potential
for the AD field in comparison to the conventional case.
The potentials of other D-flat directions, including the
ū d̄ d̄ direction treated in this paper, do not receive this
contribution.

1. Potential for the AD/PQ fields

We assume that the other D-flat directions have positive
mass terms, so we ignore effects from these directions in
the following discussion. Note that some other D-flat
directions coupled with the PQ fields will be available
for the Affleck-Dine mechanism. For more details, see the
Appendix, where we discuss the AD mechanism with
general couplings between PQ field S1 and AD field ϕ.
The generalized setup can be applied to the R-parity
conserving case. The potential of the AD field and the
PQ fields depends on SUSY-breaking scenarios, and it is
important for the ADmechanism how these fields couple to
the inflaton. In this paper, we assume the gravity- (or
anomaly-) mediated SUSY-breaking scenario, together
with the F-term inflation. In the gauge-mediated SUSY-
breaking scenario, it is nontrivial that the AD mechanism
works in this model. This is because the scalar potential is
modified by the effect of the gauge-mediated supersym-
metry breaking [45].

5If we impose the lepton number of S1 as 1
3
, the AD baryo-

genesis via ūid̄jd̄k cannot work. However, it may be possible that
a certain baryon asymmetry is produced by other directions of the
potential, e.g., LiQjd̄k, based on a charge assignment different
from the one in Table I. The detailed calculation is one of our
future works.
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Let us consider the following superpotential:

W¼WinfðIÞþW=Rp
ðS1;ϕÞþWPQþWmix;

W=Rp
ðS1;ϕÞ¼−

γS31ϕ
3

3M3
P
; WPQ¼ κS0ðS1S2−f2Þ; ð18Þ

where WinfðIÞ is the superpotential for the inflaton I,
W=Rp

ðϕÞ originates from the last term in Eq. (3), and

Wmix stands for possible mixing terms between the inflaton
and the AD/PQ fields. Here κ is a coupling constant. Since
the ū d̄ d̄ direction has a flavor dependence, γ represents
one of γ00ijk.
The supergravity scalar potential is given by [46]

V ¼ eK=M
2
P

�
ðDaWÞKab̄ðDb̄W̄Þ − 3

M2
P
jWj2

�
; ð19Þ

with

DaW¼ ∂W
∂Φaþ

∂K
∂Φa

W
M2

P
; Kab̄ ¼

� ∂2K
∂Φa∂Φb�

�
−1
; ð20Þ

whereΦa;b ¼ I, ϕ, S0, S1, S2, andK is the Kähler potential.
We assume the following Kähler potential with nonminimal
couplings:

K ¼
X
a

Φa†Φa þ α

M2
P
ϕ†ϕI†I þ β

M2
P
S†1S1I

†I þOðM−3
P Þ;

ð21Þ

where the coupling constants α, β are introduced. Here S0
and S2 have only the minimal Kähler potential.
The inflaton scalar potential is given by

V inf ≃ eK=M
2
P

�
FIKIĪF�̄

I −
3

M2
P
jWinfðIÞj2

�
: ð22Þ

If α, β ≳ 1, the Hubble-induced mass terms are provided by
the F-term of the inflaton,

VHubble ≃ c0H2jS0j2 − c1H2jS1j2 þ c2H2jS2j2 − c3H2jϕj2;
ð23Þ

where c0, c1, c2, c3 are positive constants and H is the
Hubble parameter. The signs of the mass terms indicate that
S0 and S2 acquire large positive masses during inflation.
There are also soft SUSY-breaking mass terms,

Vsoft ¼ m2
0jS0j2 þm2

1jS1j2 þm2
2jS2j2 þm2

ϕjϕj2: ð24Þ

Next, let us consider the contributions from W=Rp
ðS1;ϕÞ,

WPQ, and Wmix. The F-term scalar potential is given by

VF ¼ jκj2jS1S2 − f2j2þ
����κS0S2 − γS21ϕ

3

M3
P

����
2

þ jκj2jS0S1j2 þ
jγj2jS1j6jϕj4

M6
P

: ð25Þ

In our study, we assume that jIj ≪ MP and the dynamics of
the inflaton is basically separated from those of the AD/PQ
fields. Even in this case, the F-term of the inflaton FI may
give significant effects to the dynamics of the AD/PQ
fields. Let us consider the following mixing superpotential:

Wmix ¼ α0
I
MP

W=Rp
ðS1;ϕÞ þ β0

I
MP

WPQ; ð26Þ

where α0, β0 are coupling constants. This superpotential
induces the potential,

ðα0W=Rp
ðS1;ϕÞ þ β0WPQÞ

F�
I

MP
þ H:c:; ð27Þ

which are not suppressed even for jIj ≪ MP. Therefore, we
expect that there are Hubble-induced couplings in the scalar
potential. In addition, there are soft SUSY-breaking terms,
generating from the mixing superpotential,

VA ¼ ðaHH þ amm3=2ÞW=Rp
ðS1;ϕÞ

þ ðbHH þ bmm3=2ÞWPQ þ H:c:

¼ −ðaHH þ amm3=2Þ
γS31ϕ

3

3M3
P

þ ðbHH þ bmm3=2ÞκS0ðS1S2 − f2Þ þ H:c:; ð28Þ

where aH, bH stand for the Hubble-induced couplings, and
am, bm are soft SUSY-breaking couplings. The size of the
soft SUSY-breaking terms is represented by the gravitino
mass m3=2 as usual in the gravity mediation.
Finally, the whole scalar potential is given by collecting

the above contributions,

V ¼ VHubble þ Vsoft þ VF þ VA: ð29Þ

2. Dynamics of the AD/PQ fields during inflation

In this section, we show the dynamics of the AD/PQ
fields during inflation. We find a minimum of the scalar
potential and consider the dynamics of the AD/PQ fields
around the minimum. The details of the calculation are
shown in the Appendix.
During inflation, H ≫ m3=2, the soft SUSY-breaking

terms can be neglected. We first focus on the phase-
dependent part of the potential. The fields can be decom-
posed to

ϕi ¼ ϕ̂ie
iθϕi ; ϕi ¼ S0; S1; S2;ϕ; ð30Þ
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where ϕ̂i and θϕi
are real fields. The phase-dependent scalar

potential is given by

Vphase ¼ −2κ̂2f2Ŝ1Ŝ2 cos ðθS1 þ θS2Þ

− 2κ̂ γ̂
Ŝ0Ŝ

2
1Ŝ2ϕ̂

3

M3
P

cos ðθS0 þ θS2 − 2θS1 − 3θϕ þ ζÞ

þ 2κ̂b̂HðHŜ0ÞŜ1Ŝ2 cos ðθS0 þ θS1 þ θS2 þ ηÞ
− 2κ̂b̂Hf2ðHŜ0Þ cos ðθS0 þ ηÞ

− γ̂âHH
Ŝ31ϕ̂

3

3M3
P
cos ð3θS1 þ 3θϕ þ ξÞ; ð31Þ

where the coupling constants with a hat stand for their
absolute values and ζ ≡ Argðκ�γÞ, η≡ ArgðκbHÞ, and ξ≡
ArgðγaHÞ are defined. The first line comes from the F-term
potential VF, and the last two lines come from the Hubble-
induced A-terms in VA. If HhŜ0i ≪ f2, as shown later, the
second line can be neglected and the minimum of the
phases are placed at

hθS1 þ θS2i ≃ 0;

hθS0 þ θS2 − 2θS1 − 3θϕi ≃ −ζ;

h3θS1 þ 3θϕi ≃ −ξ: ð32Þ

Under this condition, the extremal condition for the radial
directions ∂V=∂ϕ̂i ¼ 0 has a solution:

hŜ0i¼
κ̂hŜ2i

κ̂2hŜ1i2þ κ̂2hŜ2i2þc0H2

γ̂hŜ1i2hϕ̂i3
M3

P
;

hŜ2i≃
f2

hŜ1i
; hŜ1i≃khϕ̂i;

hϕ̂i≃
�
kâHþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k6â2Hþ4c1ð2k2þ3k4Þ

p
2ð2k2þ3k4Þ

HM3
P

γ̂

�1
4

; ð33Þ

where k is an Oð1Þ constant which depends on âH, c1, c3.
At this minimum, our assumption prior to the estimation,

HhŜ0i ≲ f2H=ϕ̂ ≪ f2; ð34Þ

is satisfied, and the estimation is self-consistent as long
as H ≪ MP.
Since the masses of AD/PQ fields mϕi

(ϕi ¼ S0, S1, S2,
ϕ) at the extrema are estimated by using Eqs. (29) and (33),

mS0 ≃mS2 ≃ hŜ1i ≫ jmS1 j; jmϕj ≃H; ð35Þ

S0 and S2 are expected to have large positive mass terms
and to be fixed at the minimum during inflation. The
curvature along the Ŝ1, ϕ̂ directions is determined by the
mass matrix,

1

2

0
BBBB@

∂2V

∂Ŝ1∂Ŝ1
∂2V

∂Ŝ1∂ϕ̂
∂2V

∂ϕ̂∂Ŝ1
∂2V

∂ϕ̂∂ϕ̂

1
CCCCA: ð36Þ

Approximately, if jaHj ≫ c1, c3, the curvature is positive,
which is confirmed by numerical calculation. As long as
this condition is satisfied, the AD field ϕ and the PQ field
S1 have masses of OðâHHÞ. Therefore, all of the AD/PQ
fields will settle at the minimum during inflation.
At the end of this subsection, we comment on the

axionic isocurvature perturbation [47–50] and the baryonic
isocurvature perturbation [51–55]. If there is no Hubble-
inducedA-termwithaHH, the phase direction 3θS1 þ 3θϕ þ
ξ becomes massless. Then the large baryonic isocurvature
perturbation is induced. In our model, the phase direction
3θS1 þ 3θϕ þ ξ has a mass of OðHÞ. This avoids the
problematic baryonic isocurvature perturbation. The axionic
isocurvature perturbation will also be so suppressed by the
large VEVs of PQ and AD fields that the model is consistent
with the Planck observations [44].6 The axionic isocurvature
perturbation is discussed in more detail in Sec. III C.

3. Dynamics of the AD/PQ fields after inflation: H > mϕ

After the end of inflation, the inflaton starts to oscillate
around Imin, and the effect of the Hubble-induced A-term
aHH on the dynamics of the AD/PQ fields turns off. In this
era, the Universe is dominated by the oscillation energy,
and the Hubble parameter evolves as H ¼ 2=ð3tÞ. The
Kähler potential and superpotential are approximately

Kinf ¼ jIj2 þ � � � ¼ I�minδI þ IminδI† þ jδIj2 þOðδI3Þ;

W ¼ 1

2
MinfðI − IminÞ2 þ � � � ¼ 1

2
MinfδI2 þOðδI3Þ;

ð37Þ

where δI ¼ I − Imin, and Minf is the inflaton mass. Since
FI ¼ −MinfδI† and the Hubble-induced A-term aHH
originates from FI , aH diminishes rapidly after the F-term
inflation [55,58] as long as the inflaton oscillates in the
period M−1

inf , which is shorter than the Hubble time H−1.
The suppression factor is estimated as [58]

H
Hinf

; ð38Þ

where Hinf is the Hubble parameter during inflation.
The Hubble-induced A-term with aHH after inflation is
given by

6For more recent works on axion isocurvature perturbations,
see, e.g., Refs. [56,57].
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γaHH2S31ϕ
3

3HinfM3
P

þ H:c: ð39Þ

Eventually, this Hubble-induced A-term diminishes as time
evolves. The point in Eq. (33) is no longer the minimum of
the potential, and the value of this extrema changes. Then
the AD/PQ fields start to roll down. Since Eqs. (29), (33),
and (35) show that S0 and S2 are heavier than S1 and ϕ until
hŜ1i is larger than f, we assume that S0 and S2 are fixed at
the minimum in this epoch. The dynamics of S1, ϕ obey the
following equations of motion:

d2S1
dt2

þ 2

t
dS1
dt

þ ∂V
∂S†1

¼ 0;

d2ϕ
dt2

þ 2

t
dϕ
dt

þ ∂V
∂ϕ† ¼ 0: ð40Þ

The soft SUSY-breaking terms can also be neglected
until H ∼mϕ ∼m3=2.
We numerically solve the equations. Let us introduce

new parameters z, s1, and χ, defined as

z ¼ logHinft; S1 ¼ s1

�
2HinfM3

P

3γ̂
e−z

�1
4

;

ϕ ¼ χ

�
2HinfM3

P

3γ̂
e−z

�1
4

; ð41Þ

from which Eq. (40) becomes

∂2s1
∂z2 þ 1

2

∂s1
∂z −

�
4c1
9

þ 3

16

�
s1 þ

8

9
js1j2jχj6s1

þ 4

3
js1j4jχj4s1 −

8âH
27

e−z−iξs†21 χ†3 ¼ 0;

∂2χ

∂z2 þ
1

2

∂χ
∂z −

�
4c3
9

þ 3

16

�
χ þ 4

3
js1j4jχj4χ þ

8

9
js1j6jχj2χ

−
8âH
27

e−z−iξs†31 χ†2 ¼ 0: ð42Þ

The time variations of s1 [with s1R ¼ Reðs1Þ; s1I ¼ Imðs1Þ]
and χ [with χR ¼ ReðχÞ, χI ¼ ImðχÞ] are shown in the left
panel and the right panel of Fig. 1, respectively. The red
(blue dashed) line represents the real (imaginary) part of the
scalar field. For concreteness, γ̂ ¼ 1, âH ¼ 5, c1 ¼ 1=4,
c3 ¼ 1=5, ξ ¼ 0 are assumed. Then k is estimated as k ≃ 1
for âH ≫ c1, c3. Since the variations of field values depend
on the Hubble parameter during inflation Hinf , we assume
that the Hubble parameter during inflation is fixed at
Hinf ¼ 1011 GeV, which is consistent with the isocurvature
perturbation discussed in Sec. III C. The initial conditions
at inflation end, t ¼ tend ¼ H−1

infðz ¼ logð2=3ÞÞ, are

θs1 jz¼logð2=3Þ ¼
2π

3
; θϕjz¼logð2=3Þ ¼ −

2π

3
ð43Þ

and

∂s1
∂z

����
z¼logð2=3Þ

¼ 0;
∂χ
∂z

����
z¼logð2=3Þ

¼ 0: ð44Þ

In addition, the initial conditions of js1j; jχj are extracted
from Eq. (33),

js1jjz¼logð2=3Þ ¼ kjχjjz¼logð2=3Þ;

jχjjz¼logð2=3Þ ¼
�
kâH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k6â2H þ 4c1ð2k2 þ 3k4Þ

p
2ð2k2 þ 3k4Þ

�1
4

:

ð45Þ

Hereafter we take k ¼ 1.
The trajectories start from t ¼ H−1

inf (z ¼ logð2=3Þ) and
evolve to t ¼ m−1

ϕ ≃ 1 TeV−1 (z ≃ 18). Finally, s1, χ at
H ≃mϕ ≃ 1 TeV (z ≃ 18) have the following values:
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,s
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I
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0.0

z

R
,

I

FIG. 1. The time variations of s1, χ for c1 > c3 duringmϕ < H. In the left panel, we draw the time variations of ðs1R; s1IÞ, whereas, in
the right panel, we draw the time variations of ðχR; χIÞ. The red (blue dashed) line represents the real (imaginary) part of the scalar field.
We set the parameters as γ̂ ¼ 1, âH ¼ 5, c1 ¼ 1=4, c3 ¼ 1=5, and ξ ¼ 0, and the initial conditions as θs1 jt¼tend ¼ 2π

3
, θϕjt¼tend ¼ − 2π

3
and

ds1
dt jt¼tend ¼ 0, dχ

dt jt¼tend ¼ 0. We draw these time variations from Hinf ≃ 1011 GeV (z ≃ logð2=3Þ) to H ≃mϕ ≃ 1 TeV (z ≃ 18).
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s1R ≃ −23.6; s1I ≃ 40.9;

χR ≃ −7.17 × 10−3; χI ≃ −1.24 × 10−3;

∂zs1R ≃ −8.29; ∂zs1I ≃ 14.4;

∂zχR ≃ 1.14 × 10−2; ∂zχI ≃ 1.97 × 10−2: ð46Þ

These values give initial values for the dynamics atH ≃mϕ

which is analyzed in the next subsection. The numerical
calculation indicates that js1j increases by Oð10Þ, while jχj
diminishes byOð103Þ as the time evolution for c1 > c3. This
result will not depend on the parameters or the initial values,
except for c1, c3 sensitively. However, the variations due to
the dynamics will decrease for smallerHinf and c1, c3. Note
thatS1 does not dominate the energy density of theUniverse.
Although js1j increases during the time mϕ ≲H, the field
value of Ŝ1 is still smaller than the reduced Planck mass,

Ŝ1 ≪ MP: ð47Þ
Thus, the inflaton dominates the Universe during mϕ ≲H,

ρS1 ∼H2Ŝ21 ≪ ρinf ∼ 3H2M2
P: ð48Þ

In addition, the dynamics of js1j and jχj are characteristic
for the c1 ¼ c3 case. Although the point in Eq. (33)
becomes a saddle point after inflation, js1j and jχj oscillate
around the ridges of the saddle point. Because of the large
field values of Ŝ1 and ϕ, the quantum fluctuations of Ŝ1 and
ϕ will not affect the dynamics of js1j and jχj at the time
mϕ ≲H. Figure 2 shows the time variations of s1 and χ for
c1 ¼ c3 ¼ 1. The values of the other parameters and the
initial conditions are the same as in Fig. 1. From this
perspective, we confirm that both js1j and jχj stay around
the Oð1Þ values.
In the c1 < c3 case, we find that js1j decreases while jχj

increases in typical parameter spaces. Since we must
consider the dynamics of S2 for small js1j, the dynamics
of AD/PQ fields after inflation are complicated, and we

leave them to future work. In the next section, we therefore
concentrate on two cases, c1 > c3 and c1 ¼ c3, by estimat-
ing the dynamics of S1, ϕ for H ≃mϕ.

4. Dynamics of the AD/PQ fields at H ≃mϕ
and baryon asymmetry

In this subsection, we consider the dynamics of the
AD/PQ fields at H ≃m3=2 and finally estimate the
amount of baryon asymmetry. At this epoch, the soft
supersymmetry-breaking effect becomes important. The
AD/PQ fields eventually start to oscillate around the
minimum:

hŜ0i ¼
κ̂hŜ2i

κ̂2hŜ1i2 þ κ̂2hŜ2i2 þ c0H2

γ̂hŜ1i2hϕ̂i3
M3

P
¼ 0;

hŜ1i ≃ f; hŜ2i ≃ f; hϕ̂i ¼ 0: ð49Þ
Then S0 and the scalar field orthogonal to the flat direction
S1S2 ¼ f2 have masses of order of f. These masses are
heavier than the scale of soft mass Oðm3=2Þ, which is the
same order ofmϕ. Thus, following the previous section, we
can set S1S2 ¼ f2 and Ŝ0 as Eq. (33). In the following, we
consider only the dynamics of S1 and ϕ in this epoch. Since
the masses of S1 and ϕ are positive, S1 and ϕ will go to the
minimum [Eq. (49)]. Because S1 and ϕ will be damped
enough, the potential of the AD field will be approximated
as a quadratic one which does not depend on the PQ fields.
Thus, the amount of baryon asymmetry will be conserved
after S1 ≃ f because we neglect CP-violating terms. The
above statement is numerically confirmed in the following
analysis.
First, let us analytically consider the dynamics of S1, ϕ

and estimate the amount of baryon asymmetry. The baryon
number density is given by

nB ¼ i
3

�
dϕ�

dt
ϕ − ϕ� dϕ

dt

�
¼ 2

3
jϕj2 dθϕ

dt
: ð50Þ
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FIG. 2. The time variations of s1, χ for c1 ¼ c3 duringmϕ < H. In the left panel, we draw the time variations of ðs1R; s1IÞ, whereas, in
the right panel, we draw the time variations of ðχR; χIÞ. The red (blue dashed) line represents the real (imaginary) part of the scalar field.
We set c1 ¼ c3 ¼ 1 and ξ ¼ 0. The values of the other parameters and the initial conditions are the same as in Fig. 1. We draw these time
variations from Hinf ≃ 1011 GeV (z ≃ logð2=3Þ) to H ≃mϕ ≃ 1 TeV (z ≃ 18).
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It obeys the following equation of motion using the one
of ϕ,

dnB
dt

þ 3HnB ¼ Im

�∂V
∂ϕ ϕ

�
; ð51Þ

and in the integral form, we obtain

RðtÞ3nBðtÞ ¼
Z

t

tinf

dt0Rðt0Þ3Im
�
γamm3=2S31ϕ

3

3M3
P

�

¼
Z

tosc

tinf

dt0Rðt0Þ3Im
�
γamm3=2S31ϕ

3

3M3
P

�

þ
Z

t

tosc

dt0Rðt0Þ3Im
�
γamm3=2S31ϕ

3

3M3
P

�
; ð52Þ

where R is the scale factor of the Universe, and tinf ∼H−1
inf is

the time at the end of inflation. ϕ starts to oscillate after
the time tosc defined as Hosc ¼ 2=ð3toscÞ ∼mϕ. The CP-
violating factor is defined as δeff ¼ sinðξþ 3θS1 þ 2θϕÞ.
As explicitly checked in the numerical calculation, the
second integration on the second line of Eq. (51) gives
small effects to the baryon asymmetry since the sign phase
factor δeff changes rapidly after the AD/PQ fields ϕ, S1 start
to oscillate. As a result, the baryon number in Eq. (52)
will be fixed at t ¼ tosc, and the baryon number density at
t ¼ tosc is estimated as

nBðtoscÞ ≃
1

3
ϵâmm3=2δeff

�
m3=2M3

P

γ̂

�1
2

; ð53Þ

where ϵ is defined as

ϵ ¼ Ŝ1ðtoscÞ3ϕ̂ðtoscÞ3
�
m3=2M3

P

γ̂

�
−3
2

: ð54Þ

To check the above statements, we numerically solve the
equations of motion of S1, ϕ and estimate the trajectories
and the baryon asymmetry for H ≲mϕ. Here we assume
that the inflaton still dominates the Universe—namely, the
matter-dominated Universe. Reparametrizing again as

S1 → S1

�
m3=2M3

P

γ̂

�1
4

;

ϕ → ϕ

�
m3=2M3

P

γ̂

�1
4

; ð55Þ

Eq. (40) approximately becomes

d2S1
dt2

þ 2

t
dS1
dt

þ 2m2
3=2Ŝ1

2ϕ̂6S1 þ 3m2
3=2Ŝ

4
1ϕ̂

4S1

− amm2
3=2S

†2
1 ϕ†3 þ

�
m2

1 −
4c1
9t2

�
S1

−
�
m2

2 þ
4c2
9t2

�
f4

m3=2M3
PŜ

4
1

S1 ¼ 0;

d2ϕ
dt2

þ 2

t
dϕ
dt

þ 3m2
3=2Ŝ

4
1ϕ̂

4ϕþ 2m2
3=2Ŝ1

6ϕ̂2ϕ

− amm2
3=2S

†3
1 ϕ†2 þ

�
m2

ϕ −
4c3
9t2

�
ϕ ¼ 0; ð56Þ
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FIG. 3. The dynamics of S1, ϕ for c1 > c3 duringH < mϕ. In the left (right) panel, we draw the trajectories of ðS1R; S1IÞ [ðϕR;ϕIÞ] as
a function of z. We set the parameters as γ̂ ¼ 1, âm ¼ c2 ¼ 1, c1 ¼ 1=4, c3 ¼ 1=5, f ¼ 109 in units of m3=2 ¼ 103 GeV ¼ 1,
argðγamÞ ¼ π=3, and the initial conditions as in Eq. (46).
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from which the oscillation time is extracted as
tosc ¼ 2c1=23 =ð3mϕÞ. Here we set m1 ¼ m2 ¼ m3=2, κ ¼
γ ¼ 1 for simplicity. In the following analysis, we numeri-
cally solve Eq. (56) from the time tosc.
First, let us consider the case with c1 > c3. We solve

Eq. (56) and draw the trajectories of (S1R ¼ ReðS1Þ,
S1I ¼ ImðS1Þ) in the right panel of Fig. 3 and the
trajectories of (ϕR ¼ ReðϕÞ, ϕI ¼ ReðϕÞ) in the left panel
of Fig. 3. Here we set the parameters as mϕ ¼ 1,
âm ¼ c2 ¼ 1, c1 ¼ 1=4, c3 ¼ 1=5, argðamÞ ¼ π=3, f ¼
109 in units of m3=2 ¼ 103 GeV ¼ 1 and the initial con-
ditions as in Eq. (46). We take the initial time as
tosc ¼ 2c1=23 =ð3mϕÞ. Figure 3 shows that the AD field ϕ
and the PQ field S1 go to the minimum (49). Then we can
estimate ϵ ≃ 3.1 × 10−4 numerically, and the ratio of the
numerical value in Eq. (52) to the analytical value in
Eq. (53) is shown in Fig. 4. It turns out that the numerical
value coincides with the analytical one in Eq. (53) with

δeff ¼ 1 after the AD/PQ fields start to oscillate. However,
we find that the numerical value is a little smaller than the
analytical estimation, and the ratio of the numerical value to
the analytical one becomes Oð10Þ in other parameter
regions. This is because the rotation of ϕ is complicated,
as in Fig. 3, and the baryon number in Eq. (52) is not
exactly fixed at tosc. The mass of θϕ is heavier than the mass
of θS1 because in Fig. 1, the field value of ϕ̂ decreases while
Ŝ1 increases, and the field value of ϕ̂ is smaller than the one
of S1. For this reason, θϕ moves, whereas θS1 does not, as
shown in Fig. 3.
Similarly, we numerically solve Eq. (56) and draw the

trajectories of S1, ϕ in Fig. 5 for the c1 ¼ c3 case. Here we
set c1 ¼ c3 ¼ 1, and the values of the other parameters are
the same as in Fig. 3. The initial conditions of S1, ϕ are set
by the values of s1, χ at z ¼ 18. Then we can estimate
ϵ ≃ 2.4 × 10−1 numerically, and the ratio of the numerical
value in Eq. (52) to the analytical one in Eq. (53) is shown
in Fig. 6. We also find that the numerical value coincides
with the analytical one in Eq. (53) with δeff ¼ 1 after the
AD/PQ fields start to oscillate. In this case, the mass of θϕ
is comparable to the mass of θS1 because the field value of
ϕ̂ is of the same order as the one of Ŝ1. As a result, the
phases of S1 and ϕ rotate at the same time (drawn in Fig. 5).
The ratio of the baryon number density nB to the entropy

density s after the reheating (t ¼ treh) is

nB
s

¼ 1

sðtrehÞ
�
RðtoscÞ
RðtrehÞ

�
3

nBðtoscÞ

¼ ϵâmm3=2δeffTreh

12M2
Pm

2
ϕ

�
mϕM3

P

γ̂

�1
2

; ð57Þ

where Treh is the reheating temperature. Then the AD field
decays, and its energy density converts into radiation [59].
Thus, the baryon asymmetry is estimated as

nB
s
¼ ϵâmm3=2δeffTreh

12M2
Pm

2
ϕ

�
mϕM3

P

γ̂

�1
2

≃

8>>><
>>>:

0.53×10−10
�

Treh

105 GeV

��
1

γ̂

�1
2

�
m3=2

mϕ

��
mϕ

1TeV

�
−1
2

for c1¼ 1
4
; c3¼ 1

5
; ϵ¼3.1×10−4

0.40×10−10
�

Treh

102 GeV

��
1

γ̂

�1
2

�
m3=2

mϕ

��
mϕ

1TeV

�
−1
2

for c1¼c3¼1; ϵ¼2.4×10−1;

;

ð58Þ

where we set âm ¼ 1 and δeff ≃ 1. It is remarkable that the
obtained baryon asymmetry is very consistent with its
current observed value and the tiny neutrino mass, simul-
taneously. The amount of baryon asymmetry is different
from the AD mechanism without R-parity [22] due to the
nontrivial dynamics of PQ fields.
Finally, we comment on the Q-ball problem [60]. If the

potential of theAD fieldϕ is flatter than the quadratic one, the
AD fields form the nontopological solitons called Q-balls

[61,62]. In this paper, we assume a gravity-mediated SUSY-
breaking scenario without R-parity. In gravity-mediated
scenarios, one problem comes from the long lifetime of
Q-balls. If R-parity is conserved in this scenario, Q-balls are
unstable and the late timedecaysofQ-balls often overproduce
lightest supersymmetric particles (LSPs), which are a candi-
date cold dark matter. SinceR-parity is violated in ourmodel,
the overabundance of LSPs could be avoided due to the LSP
decays. We leave the detailed calculation to future work.
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FIG. 4. The time evolution of the ratio between the numerical
value RðtÞ3nðtÞ (52) and R3ðtoscÞnðtoscÞ (53) for c1 > c3. The
horizontal axis corresponds to mϕt. Here we set ϵ ¼ 3.1 × 10−4

and δeff ¼ 1. The parameters are the same as in Fig. 3.
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B. Saxion decay in the SUSY DFSZ model

In this section, we discuss the dynamics of the saxion S1
in more detail. During inflation, the energy density of
the saxion field should be smaller than that of the inflaton
field, which constraints the field values of S1 and ϕ

ρS1 ; ρΦ ∼H2
infϕ

2 < ρinf ≃ 3H2
infM

2
P: ð59Þ

Now we have used the field values (33) during inflation,
and the masses of S1, ϕ are ofOðHinfÞ, as mentioned below
Eq. (36). Thus, from Eqs. (33) and (59), the field values of
S1, ϕ during inflation have to satisfy S1, ϕ < MP.

After inflation, the inflaton and saxion fields oscillate
around their minimum, and their energy densities decay in
proportion to R−3. Consequently, the inflaton decays at
the time

treh ≃
1

Γinf
≃
�

90

π2g�

�
1=2 MP

ðTrehÞ2

≃ 7 × 107 GeV−1
�
106.75
g�

�
1=2

�
105 GeV

Treh

�
2

; ð60Þ

where g� denotes the effective degrees of freedom,
and Γinf is the total decay width of the inflaton. On the
other hand, the total decay width of saxion field depends
on the sparticle spectrum. (For more details, see, e.g.,
Ref. [63].) When mS1 > 2μ, the saxion decays mainly into
Higgsino through the μ-term in Eq. (2). If such a decay is
kinematically disallowed, the total decay width of saxion is
dominated by the saxion decay into the CP-even Higgs
bosons h, H and the gauge bosons W� and Z. Note
that saxion decays into axions are suppressed in our setup
hS1i ≃ hS2i ≃ f, taking into account two PQ fields S1;2 and
singlet field S0 with Uð1ÞPQ charges in Table I [64].7

It then allows us to avoid the dark radiation problem
from the saxion decay. As a result, the total decay width
of the saxion8
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FIG. 6. The time evolution of the ratio between the numerical
value RðtÞ3nðtÞ (52) and R3ðtoscÞnðtoscÞ (53) for c1 ¼ c3 ¼ 1.
The horizontal axis corresponds to mϕt. Here we set ϵ ¼ 2.4 ×
10−1 and δeff ¼ 1. The parameters are the same as in Fig. 5.
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FIG. 5. The dynamics of S1, ϕ for c1 ¼ c3 duringH < mϕ. In the left (right) panel, we draw the trajectories of ðS1R; S1IÞ [ðϕR;ϕIÞ] as
a function of z. We set the parameters as γ̂ ¼ âm ¼ c1 ¼ c2 ¼ c3 ¼ 1, f ¼ 109 in units of m3=2 ¼ 103 GeV ¼ 1, argðγamÞ ¼ π=3, and
the initial conditions are the values of s1, χ at z ¼ 18 in Fig. 2.

7For the dark radiation constraints in models with multiple PQ
multiplets, we refer to, e.g., Refs. [63,65].

8Now we consider the μ > mA, where mA is the mass of the
CP-odd Higgs boson.
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ΓðS1Þ
tot ≃

8>>><
>>>:

1

4π

�
μ0
f

�
2

mS1 ðmS1 > 2μ0Þ;

7

2π

μ40
f2mS1

ðmS1 < 2μ0Þ
ð61Þ

determines the decay temperature of the saxion

TðS1Þ
dec ≃

8>>><
>>>:

4.1 × 102 GeV

�
106.75
g�

�
1=4

�
μ0

104 GeV

��
1012 GeV

f

��
mS1

3 × 104 GeV

�
1=2

ðmS1 > 2μÞ;

2.8 × 103 GeV
�
106.75
g�

�
1=4

�
μ0

104 GeV

�
2
�
1012 GeV

f

��
mS1

103 GeV

�
1=2

ðmS1 < 2μÞ;
ð62Þ

and the decay time of the saxion

tðS1Þdec ≃
1

ΓðS1Þ
tot

≃
�

90

π2g�

�
1=2 MP

ðTðS1Þ
dec Þ2

≃ 7 × 1011 GeV−1
�
106.75
g�

�
1=2

�
103 GeV

TðS1Þ
dec

�
2

: ð63Þ

Let us examine whether or not the saxion decay dilutes the
baryon asymmetry via the entropy production from the
saxion decay. The entropy dilution factor is determined

by the ratio of the saxion decay temperature TðS1Þ
dec and

the saxion-radiation equality temperature Teq, that is,

Teq=T
ðS1Þ
dec . When the energy density of saxion is equal to

that of radiation, Teq is given by

Teq ≃
1

6
Treh

�
Ŝ01
MP

�2

≃
1

6
Treh

�
Hinf

MP

�
1=2

; ð64Þ

where Ŝ01 is the VEV of Ŝ1 during inflation. In the setup
discussed so far, the amplitude of saxion Ŝ01 ≃ ðHinfM3

PÞ1=4
is of Oð10−2MPÞ, with Hinf ¼ 1011 GeV, and then Teq is

not larger than TðS1Þ
dec unless Treh > Oð1015 GeVÞ. Hence,

there is no entropy dilution.
Finally, we comment on the lepton asymmetry generated

from the saxion decay. The saxion field S1 would be
identified with the right-handed Majorana neutrino, as
seen in the superpotential (3). The leptogenesis scenario
decaying from the Majorana neutrino has been discussed in
the thermal [66] and the nonthermal epoch [67]. Since, in
our case, the saxion oscillates around its minimum soon
after inflation, it is possible to generate the lepton asym-
metry through the coupling

W ≃ 3

�hS1i
MP

�
2

S1LHu: ð65Þ

Such a lepton asymmetry is determined by

nðS1ÞL

s
≃ δ

nS1
s

; ð66Þ

where δ involves a CP asymmetry and lepton number
violating factor determined by the saxion decay at one loop
level. At the reheating era, the number density of saxion nS1
becomes

nS1
s

≃
nS1ðtðS1Þosc Þ
sðtrehÞ

ρðtrehÞ
ρðtðS1Þosc Þ

≃
3

4

TrehmS1ðtðS1Þosc Þ
H2

inf

�
Ŝ01
MP

�2

≃ 1.5 × 10−10
�

Treh

105 GeV

��
1011 GeV

Hinf

�
1=2

; ð67Þ

where we use mS1ðtðS1Þosc Þ ≃Hinf and Ŝ01 ≃ 10−2MP.

Since the lepton asymmetry nðS1ÞL =s is further suppressed
by the factor δ, which is proportional to the effective
Yukawa coupling ðhS1i=MPÞ2 in Eq. (65), the saxion
produced lepton asymmetry is negligible even when
Treh > 105 GeV.
In addition, we have to estimate the lepton asymmetry,

taking into account the S1 asymmetry which is generated by
the AD mechanism as shown in Figs. 1, 2, 3, and 5. The S1
asymmetry is numerically estimated as

nS1 − nS̄1
s

≃
nB
s
≃ 10−10; ð68Þ

where nS̄1 is the number density of anti S1. Then this S1
asymmetry can be converted to lepton asymmetry due to
the saxion decay at tree level. This asymmetry is deter-
mined by

nðS1ÞL

s
≃ δ0

nS1 − nS̄1
s

≃ 10−10δ0; ð69Þ
where δ0 is a lepton number violating factor determined by
the saxion decay at tree level. We obtain δ0 as

δ0 ¼ ΓðS1Þ
L

ΓðS1Þ
tot

; ð70Þ
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where ΓðS1Þ
L is the decay width of the saxion coming

from the lepton number violating channel thorough the
coupling (65),

ΓðS1Þ
L ≃

8>>>>><
>>>>>:

X
i

1

4π

�
μi
f

�
2

mS1 ðmS1 > μ0Þ;

X
i

1

8π

μ4i
f2mS1

ðmS1 > mL̃Þ:
ð71Þ

The first line denotes the saxion decays to Higgsinos and
leptons, whereas the second line represents the saxion
decays to Higgs and sleptons with mass mL̃. For f ≪ MP,
the lepton number violating factor δ0 is estimated as

δ0 ¼ ΓðS1Þ
L

ΓðS1Þ
tot

≲
�

f
MP

�
2

≪ 1: ð72Þ

As a result, this lepton asymmetry (69) is also negligible.9

C. Axion isocurvature perturbation

In this model, the massless Nambu-Goldstone boson
called an axion exists through the spontaneous symmetry
breaking of the Uð1ÞPQ. This axion is a candidate for
dark matter, and the present axion energy density is given
by [68]

Ωah2 ≃ 0.18θ2a

�
fa

1012 GeV

�
1.19

; ð73Þ

where θa is the misalignment angle of the axion. fa is the
axion decay constant depending on the domain wall
number NDW, which is 6 for the DFSZ axion model [12]:

fa ¼
ffiffiffi
2

p
f

NDW
: ð74Þ

For f ¼ 1012 GeV and θa ¼ 1.9, the axion energy density
is coincident with the dark matter energy density
ΩCDM ≃ 0.12.
However, such a massless boson would have been

problematic in the early Universe [69]. In our model, the
Uð1ÞPQ symmetry is spontaneously broken during inflation
and is not recovered after inflation. Because of Uð1ÞPQ
symmetry breaking, the domain wall problem [70,71] does
not occur. The PQ field S1 gets the large VEV hS1i ≃
hϕi ≃ ðHinfM3

PÞ1=4 during inflation. It can suppress the
axion isocurvature perturbation [47–50]. The axion almost

consists of the linear combination of θS1 and θϕ for jS1j,
jϕj ≫ f during inflation, so the axion a takes the form

a ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hŜ1i2 þ hϕ̂i2
q ðhŜ1i2θS1 − hϕ̂i2θϕÞ: ð75Þ

The PQ breaking scale v during inflation is

v ≃max½hŜ1i; hϕ̂i� ≃ ðHinfM3
PÞ1=4: ð76Þ

The power spectrum of cold dark matter (CDM) iso-
curvature perturbation Piso is

Piso ≃ r2
�
Hinf

πvθa

�
2

; ð77Þ

where r is the ratio of the present axion energy density to
the matter energy density, r ¼ Ωah2=Ωmh2. The Planck
constraint on the uncorrelated isocurvature perturbation
[44] becomes

Hinf ≲ 2.2 × 1012 GeVθ−1a

�
1012 GeV

fa

�
1.59

: ð78Þ

Thus, the axion isocurvature perturbation is mildly sup-
pressed due to the large v. In our analysis, we consider
Hinf ≃ 1011 GeV to avoid this constraint.

IV. CONCLUSION AND DISCUSSION

In this paper,wehave investigated the baryon asymmetry in
theSUSYDFSZaxionmodelwithoutR-parity. SuchR-parity
violating interactions aremotivated not only by explaining the
tiny neutrino masses but also by avoiding the cosmological
gravitino and moduli problems. In this model, the Affleck-
Dine mechanism can work out via the coupling among PQ
fields and sleptons (squarks). We reveal that the R-parity
violating terms produce the appropriate amount of baryon
asymmetry in the parameter region, explaining the axion dark
matter abundance, the smallness of μ- and R-parity violating
interactions, and the atmospheric mass-squared difference of
neutrinos. Furthermore, in this model, the constraint for the
Hubble parameter during inflation is relaxed because the PQ
breaking scale is enhanced during inflation.
Although, in this paper, we have focused on the

atmospheric mass-squared difference of neutrinos, it would
be interesting to discuss in more detail the neutrino masses
and flavor mixings, which will be the subject of future
work. The SUSY DFSZ axion model without R-parity may
explain the structure of the neutrino masses and flavor
mixings without severe tunings of parameters.
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APPENDIX: GENERAL COUPLING BETWEEN
AD/PQ FIELDS AND THE MINIMUM

DURING INFLATION

In Sec. III, we consider the PQ charges as Table I and
ū d̄ d̄ D-flat direction. However, we can consider other PQ
charges and other D-flat directions in the AD mechanism.
Therefore, in this section, we consider the following
general superpotential of the AD field and PQ fields
WADðS1;ΦÞ:

WADðS1;ΦÞ ¼ −
γ0Sm1 ϕ

n

nMnþm−3
P

; ðA1Þ

wherem, n are integers and γ0 is a dimensionless parameter,
giving rise to the following superpotential:

W ¼ WinfðIÞ þWADðS1;ΦÞ þWPQ þW00;

WPQ ¼ κS0ðS1S2 − f2Þ;

W00 ¼ ðα00WADðS1;ϕÞ þ β00WPQÞ
F�
I

MP
þ H:c:; ðA2Þ

where α00, β00 are coupling constants. Let us investigate the
minimum during inflation in this setup. After inflation, we
must numerically study the dynamics of the AD/PQ fields,
and the results depend on the detail of parameters. In this
respect, we will postpone the investigation of their
dynamics for a future work, but the results will be similar
to Secs. III A 3 and III A 4. Here we consider n, m ≥ 2.
In our model presented in Sec. III—namely, n ¼ 3,
m ¼ 3—the following calculation is simplified. We can
apply the following calculation to the R-parity conserv-
ing case.
First, we consider the scalar potential for the AD/PQ

fields. We assume that the Kähler potential is the same as in
Eq. (21). Then the scalar potential for the AD/PQ field is
described as

V ¼ VHubble þ Vsoft þ V 0
A þ V 0

F;

V 0
A ¼ ða0HH þ amm3=2Þ

γ0Sm1 ϕ
n

nMnþm−3
P

þ ðb0HH þ b0mm3=2ÞκS0ðS1S2 − f2Þ þ H:c:;

V0
F ¼ jκj2jS1S2 − f2j2þ

����κS0S2 −mγ0Sm−1
1 ϕn

nMnþm−3
P

����
2

þ jκj2jS0S1j2 þ
jγ0j2jS1j2mjϕj2ðn−1Þ

M2nþ2m−6
P

; ðA3Þ

where VHubble and Vsoft are the same as in Eqs. (23) and (24).
Let us investigate a minimum of the potential. Ignoring the soft supersymmetry-breaking effect, the phase-dependent

term in this potential is

Vphase ¼ −2κ̂2f2Ŝ1Ŝ2 cosðθS1 þ θS2Þ − 2κ̂γ̂0Ŝ0Ŝ2
mŜ1

m−1ϕ̂n

nMnþm−3
P

cosðθS0 þ θS2 − ðm − 1ÞθS1 − nθϕ þ ζ0Þ

− 2κ̂ ˆb0HðHŜ0ÞŜ1Ŝ2 cosðθS0 þ θS1 þ θS2 þ η0Þ þ 2κ̂ ˆb0H f2ðHŜ0Þ cosðθS0 þ η0Þ

− 2γ̂0âHH
Ŝ1

mϕ̂n

nMnþm−3
P

cosðmθS1 þ nθϕ þ ξ0Þ; ðA4Þ

where ζ0, η0, ξ0 are some numerical constants. Then the minima of the phases are

hθS1 þ θS2i ≃ 0;

hθS0 þ θS2 − ðm − 1ÞθS1 − nθϕi ≃ −ζ0;

hmθS1 þ nθϕi ≃ −ξ0: ðA5Þ

We assume that HjS0j < f2, which is confirmed in the same way as in Sec. III A 2. We set all dimensionless parameters
as Oð1Þ. Ignoring the soft mass terms, the first derivatives in each radial direction of field at the minimum of the phase
directions are

KENSUKE AKITA and HAJIME OTSUKA PHYS. REV. D 99, 055035 (2019)

055035-14



∂V
∂Ŝ0 ≃ 2κ̂Ŝ2

�
κ̂Ŝ0Ŝ2 −

mγ̂0Ŝ1
m−1ϕ̂n

nMnþm−3
P

�
þ 2κ̂2Ŝ0Ŝ1

2 þ 2c0H2Ŝ0;

∂V
∂Ŝ1 ≃ 2κ̂2Ŝ2

�
Ŝ1Ŝ2 − f2

�
−
2mðm − 1Þγ̂0Ŝ1m−2ϕ̂n

nMnþm−3
P

�
κ̂Ŝ0Ŝ2 −

mγ̂0Ŝ1
m−1ϕ̂n

nMnþm−3
P

�
þ 2κ̂2Ŝ0

2Ŝ1

þ 2mðγ̂0Þ2Ŝ12m−1ϕ̂2ðn−1Þ

M2nþ2m−6
P

−
2mγ̂0âHHŜ1

m−1ϕ̂n

nMnþm−3
P

− 2c1H2Ŝ1;

∂V
∂Ŝ2 ≃ 2κ̂2Ŝ1

�
Ŝ1Ŝ2 − f2

�
þ 2κ̂Ŝ0

�
κ̂Ŝ0Ŝ2 −

mγ̂0Ŝ1
m−1ϕ̂n

nMnþm−3
P

�
þ 2c2H2Ŝ2;

∂V
∂ϕ̂ ≃ −

2mγ̂0Ŝ1
m−1ϕ̂n−1

Mnþm−3
P

�
κ̂Ŝ0Ŝ2 −

mγ̂0Ŝ1
m−1ϕ̂n

nMnþm−3
P

�
þ 2ðn − 1Þðγ̂0Þ2Ŝ12mϕ̂2n−3

M2nþ2m−6
P

−
2γ̂0âHHŜ1

mϕ̂n−1

Mnþm−3
P

− 2c3H2ϕ̂: ðA6Þ

From the extremal conditions ∂V
∂ϕ̂i

¼ 0, one of the extrema is given by

hŜ0i ¼
κ̂hŜ2i

κ̂2hŜ1i2 þ κ̂2hŜ2i2 þ c0H2

mγ̂0hŜ1im−1hϕ̂in
nMnþm−3

P

;

hŜ2i ≃
f2

hŜ1i
; hŜ1i ≃ k0hϕ̂i;

hϕ̂i ≃

0
B@k0m−2 m

n âH þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02m m2

n2 â
2
H þ 4c1ðk02m−4 m2ðm−1Þ

n2 þ k02m−2mÞ
q

2ðk02m−4 m2ðm−1Þ
n2 þ k02m−2mÞ

HMnþm−3
P

γ̂0

1
CA

1
nþm−2

; ðA7Þ

where k0 is some numerical constant which depends on âH,
c1, c2, n, and m. To get this extrema, we must satisfy the
following condition during inflation:

hŜ1i≳ f: ðA8Þ

Note that, in Sec. III, Eq. (A8) is satisfied under H > mϕ

and f ≃ 1012 GeV. From the potential and Eq. (A8), S0 and
S2 obtain large positive masses of hŜ1i. Thus, we assume

that Ŝ0, Ŝ2, and all phase directions are fixed at the
minimum. Then the mass matrix of Ŝ1 and ϕ̂ is

1

2

0
BBB@

∂2V

∂Ŝ1∂Ŝ1
∂2V

∂Ŝ1∂ϕ̂
∂2V

∂ϕ̂∂Ŝ1
∂2V

∂ϕ̂∂ϕ̂

1
CCCA; ðA9Þ

where

1

2

∂2V

∂Ŝ1∂Ŝ1 ≃
m2ðm − 1Þð2m − 3Þðγ̂0Þ2Ŝ12m−4ϕ̂2n

n2M2nþ2m−6
P

þmð2m − 1Þðγ̂0Þ2Ŝ12ðm−1Þϕ̂2ðn−1Þ

M2nþ2m−6
P

−
mðm − 1Þγ̂0âHHŜ1

m−2ϕ̂n

nMnþm−3
P

− c1H2; ðA10Þ

1

2

∂2V

∂Ŝ1∂ϕ̂ ≃
2m2ðm − 1Þðγ̂0Þ2Ŝ12m−3ϕ̂2n−1

nM2nþ2m−6
P

þ 2ðn − 1Þmðγ̂0Þ2Ŝ12m−1ϕ̂2n−3

M2nþ2m−6
P

−
mγ̂0âHHŜ1

m−1ϕ̂n−1

Mnþm−3
P

; ðA11Þ

1

2

∂2V

∂ϕ̂∂ϕ̂ ≃
m2ð2n − 1Þðγ̂0Þ2Ŝ12ðm−1Þϕ̂2ðn−1Þ

nM2nþ2m−6
P

þ ð2n − 3Þðn − 1Þðγ̂0Þ2Ŝ12mϕ̂2n−4

M2nþ2m−6
P

−
ðn − 1Þγ̂0âHHŜ1

mϕ̂n−2

Mnþm−3
P

− c3H2: ðA12Þ

One can realize the positive eigenvalues of Eq. (A9) under jaHj ≫ c1, c3.
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