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The grand-unification gauge group SOð10Þ contains matter parity as a discrete subgroup. This symmetry
could be at the origin of dark matter stability. The properties of the dark matter candidates depend on the
path along which SOð10Þ is broken, in particular through Pati-Salam or left-right symmetric subgroups. We
systematically determine the nonsupersymmetric dark matter scenarios that can be realized along the
various paths. We emphasize that the dark matter candidates may have colored or electrically charged
partners at low scale that belong to the same SOð10Þ multiplet. These states, which in many cases are
important for coannihilation, could be observed more easily than the dark matter particle. We determine the
structure of the tree-level and loop-induced mass splittings between the dark matter candidate and their
partners and discuss the possible phenomenological implications.
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I. INTRODUCTION

Among the various properties dark matter (DM) particles
must have, the most intriguing one is their stability on
cosmological timescales. This property basically requires
the existence of a new symmetry beyond the Standard
Model (SM). This can be an ad hoc symmetry imposed by
hand or can be derived from a more fundamental principle,
in particular from gauge invariance. The way gauge
symmetries can stabilize the DM particle(s) can be either
direct, if the stability results from the fact that a global or
local subgroup of these gauge symmetries remains unbro-
ken, or indirect, if the gauge symmetries imply an acci-
dental symmetry which is not a subgroup of these gauge
symmetries; see e.g., [1]. Beside the lightest neutrino which
is stable by Lorentz invariance, all other stable particles in
the SM are stable in such a direct (electron and photon) or
indirect way (proton).
In the following, we will be interested in direct stability

for DM consisting of weakly interacting massive particles
(WIMPs). Since direct stability requires an extra gauge
group, natural candidate models are grand unified theories

(GUTs), in particular the ones based on the group SOð10Þ
[2,3]. SOð10Þ contains the Uð1ÞB−L subgroup whose dis-

crete subgroup Z3ðB−LÞ
2 can stabilize the DM particle [4–6].

This is the mechanism used to stabilize the neutralino in the
minimal supersymmetric standard model (MSSM), as the R

symmetry assumed in the MSSM can be traded for Z3ðB−LÞ
2

[7–10]. More recently this mechanism has been shown to
also be operative for the nonsupersymmetric case for a scalar
[4,5] or fermion [6] DM candidate. The various DM
candidates that could emerge in the lowest dimensional
SOð10Þ representations have been determined [6] and
specific candidates have been considered in some details
[11–13] (see alsoRefs. [14–16]). So farmost of theseSOð10Þ
DM scenarios have been discussed from the low-energy
point of view, basically independently of the way SOð10Þ is
broken down to the SM, i.e., disregarding the scalar content.
However, as we will show in this article, the way SOð10Þ

is broken has a clear impact on the low-energy phenom-
enology. If the breaking path is such that one or several
SOð10Þ subgroups larger than the SM group are broken
only around the TeV scale and/or at an intermediate scale,
the DM phenomenology will drastically change. These
symmetries not only can predict low-energy gauge bosons
into or through which DM can (co)annihilate but also can
predict the low-energy presence of some DM partners
belonging to the same SOð10Þ multiplet. Depending on the
breaking path, some of these partners may show up at low
scale, with a pattern of mass splittings and decays between
these particles which greatly affects the DM phenomenol-
ogy and the viability of the DM scenario. In some cases, we
will show that there is no breaking path leading to a viable
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phenomenology for some otherwise good candidates.
Similarly some candidates, a priori excluded from the
start from the low-energy perspective, turn out to be viable
along specific SOð10Þ breaking paths. Moreover some of
these partners could be produced and seen in a much easier
way by colliders than the DM particle itself, because they
are colored or charged.
In this work, adopting a list of simple minimality criteria

that a model must fulfill, we determine in a systematic way
the candidates that show up by explicitly considering the
various possible SOð10Þ breaking paths and discuss the
phenomenology deriving from these paths.
The plan of this article is as follows. We first recap the

possible SOð10Þ breaking chains and subgroups in Sec. II
and the SOð10Þ representations with DM candidates in
Sec. III. The potential DM partners for given SOð10Þ
multiplets and the rationale behind their mass splitting with
respect to the DM are discussed in Sec. IV. In Sec. V we
discuss the various constraints that we will impose on DM
candidates. In Sec. VI we list all the possible low-scale DM
scenarios for representations up to 2100. This constitutes the
core of our work. Having listed all the candidates, we
discuss in Sec. VII how they can concretely be realized
through SOð10Þ breaking. For completeness we discuss the
possibility of accidental DM stability in Sec. VIII. We
summarize our main results and draw our conclusions in
Sec. IX. Appendix A gives an introduction to renormaliza-
tion group evolution that is relevant for radiative mass
splittings within multiplets. In Appendix B we discuss the
condition of chemical equilibrium relevant for coannihila-
tion processes. Appendix C provides tables of tree-level
mass splittings of relevant SOð10Þ multiplets by scalars in
representations 45, 54, and 210.

II. SO(10) BREAKING CHAINS AND SUBGROUPS

As is well known, G10 ≡ SOð10Þ [2,3] can be broken
along various paths depending on the scalar representation
content of the model and on the scalar potential of these
representations.1 These SOð10Þ breaking paths are given in
Figs. 1 and 2. There are two classes of paths, the ones
proceeding through the maximal subgroup G51 ¼ SUð5Þ ×
Uð1Þ and/or its G5 ¼ SUð5Þ × Z2 subgroup (to which we
refer as Georgi-Glashow [20] paths) and the ones proceed-
ing through the maximal Pati-Salam (PS) group G422 ¼
SUð4Þc × SUð2ÞL × SUð2ÞR and/or subgroups (Pati-Salam
[21] paths); see Refs. [22–24] for thorough discussions.
This is shown in Figs. 1 and 2, where the possible scalar
representations up to 210whose vacuum expectation values
(VEVs) are at the origin of these breaking paths are
also displayed. The Pati-Salam paths can involve more

intermediate subgroups than the Georgi-Glashow ones. On
top of the PS group G422, the paths may involve one of the
three subgroups of G422:

G421 ¼ SUð4Þc × SUð2ÞL ×Uð1Þ2R; ð1Þ
G3221 ¼ SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1Þ3ðB−LÞ; ð2Þ
G3211 ¼ SUð3Þc × SUð2ÞL ×Uð1Þ2R ×Uð1Þ3ðB−LÞ: ð3Þ
Note that we have chosen a convenient normalization for
the Uð1Þ generators in order to make the Uð1Þ charges
integer. For scalar representations up to 210, this leads to
many possible paths, as shown in Fig. 2. Here we have also
taken D parity [25–30] into account, which corresponds to
a discrete Z2 left-right exchange symmetry with important
implications when it comes to DM partners. The last
breaking step is of course to the SM gauge group,

GSM ≡G321 ¼ SUð3Þc × SUð2ÞL × Uð1ÞY; ð4Þ
for which we chose the usual hypercharge normalization
Y ¼ Q − TL

3 , with electric charge Q and diagonal SUð2ÞL
generator TL

3 . Hypercharge can also be defined in terms of
SUð2ÞR ×Uð1Þ3ðB−LÞ or Uð1Þ2R ×Uð1Þ3ðB−LÞ as

Y ¼ TR
3 þ 1

6
½3ðB − LÞ� ¼ 1

2
½2R� þ 1

6
½3ðB − LÞ�; ð5Þ

with TR
3 being the diagonal SUð2ÞR generator, which

becomes the Uð1ÞR generator R.

FIG. 1. Breaking paths of SOð10Þ along the Georgi-Glashow
route. Each path corresponds to the VEVof an SOð10Þ scalar; for
example 144ð24;−5Þ denotes the VEV of the ð24;−5Þ SUð5Þ ×
Uð1Þ subcomponent of a scalar SOð10Þ representation 144.

1We will be following the representation naming conventions
(bars and primes) of LIEART [17] and SUSYNO [18], which differ
slightly from e.g., Slansky [19], notably in the assignment 126
vs 126.
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The massive gauge bosons in the coset SOð10Þ=GSM
form representations under GSM (see Table I) and have
well-known couplings to SM fermions. We can calculate
the masses that arise from the various VEVs along the PS
path (Fig. 2) with the help of SUSYNO [18],

m2
U

g2
¼

v216ð4̄;1;2Þ
4

þ 1

6

�
v45ð15;1;1Þ þ

ffiffiffi
3

2

r
v45ð1;1;3Þ

�2

þ
5v254ð1;1;1Þ

12

þ
v2126ð10;1;3Þ

2
þ
v2144ð4̄;1;2Þ

4
þ
v2210ð1;1;1Þ

2
þ
v2210ð15;1;1Þ

3

þ
v2210ð15;1;3Þ

4
−
v210ð1;1;1Þv210ð15;1;3Þffiffiffi

6
p

þ
ffiffiffi
2

p

3
v210ð15;1;1Þv210ð15;1;3Þ ; ð6Þ

m2
V

g2
¼ 1

6

�
v45ð15;1;1Þ −

ffiffiffi
3

2

r
v45ð1;1;3Þ

�2

þ
5v254ð1;1;1Þ

12
þ
5v2144ð4̄;1;2Þ

12

þ
v2210ð1;1;1Þ

2
þ
v2210ð15;1;1Þ

3
þ
v2210ð15;1;3Þ

4
þ v210ð1;1;1Þv210ð15;1;3Þffiffiffi

6
p

−
ffiffiffi
2

p

3
v210ð15;1;1Þv210ð15;1;3Þ ; ð7Þ

m2
X

g2
¼

v216ð4̄;1;2Þ
4

þ
2v245ð15;1;1Þ

3
þ
v2126ð10;1;3Þ

2
þ
v2144ð4̄;1;2Þ

4

þ
2v2210ð15;1;1Þ

3
þ
2v2210ð15;1;3Þ

3
; ð8Þ

m2
WR

g2
¼

v216ð4̄;1;2Þ
4

þ v245ð1;1;3Þ þ
v2126ð10;1;3Þ

2
þ
v2144ð4̄;1;2Þ

4
þ v2210ð15;1;3Þ ;

ð9Þ

m2
Z0

g2
¼

5v216ð4̄;1;2Þ
8

þ
5v2126ð10;1;3Þ

2
þ
5v2144ð4̄;1;2Þ

8
; ð10Þ

using the lowest-order approximation of one common
gauge coupling g. Since the SM gauge bosons are
massless at this level, we do not show them. The mass
contributions of the 16, 45, and 126 match those of
Refs. [31,32] up to notational differences. These explicit

FIG. 2. Breaking paths of SOð10Þ along the Pati-Salam route. Each path corresponds to the VEV of an SOð10Þ scalar; for example

210ð15;1;3Þ denotes the VEVof the (15; 1; 3) PS subcomponent of a scalar SOð10Þ representation 210. The subgroups GD (G=D) conserve
(violate)D parity [25–30]. The VEVs of 16ð4̄;1;2Þ, 126ð10;1;3Þ, and 144ð4̄;1;2Þ can be used at any step to break to the SM and are omitted for
illustration’s sake, similar for the 210ð15;1;3Þ which breaks any group to G3211.

TABLE I. Lower limits on the heavy SOð10Þ gauge boson
masses along one PS path, given in their SM representations. See
text for details and references.

Gauge boson Breaking step Lower limit Observable

U ∼ ð3; 2; 1
6
Þ SOð10Þ → G422 1012 TeV Proton decay

V ∼ ð3; 2;− 5
6
Þ

X ∼ ð3; 1; 2
3
Þ G422 → G3221 102–103 TeV KL → μ�e∓

WR ∼ ð1; 1; 1Þ G3221 → G3211 3 TeV Meson mixing
Z0 ∼ ð1; 1; 0Þ G3211 → GSM OðTeVÞ LHC dilepton
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expressions can give additional insight into the breaking
path and also illustrate the different viewpoints of PS and
Georgi-Glashow. For example, if only the 126 obtains a
VEV, one can see that V remains massless, while all other
new gauge bosons become heavy. This in fact shows that
h126i by itself breaks SOð10Þ → SUð5Þ, as expected from
Fig. 1, with V being precisely the gauge boson in
SUð5Þ=GSM needed to complete SUð5Þ. The VEV
h126i (or h16i) can therefore not be used alone to break
SOð10Þ → GSM contrary to the statement of Fig. 2, but
rather requires an additional VEV that contributes to mV .
As another interesting special case, one can observe that

setting v45ð15;1;1Þ ¼
ffiffi
3
2

q
v45ð1;1;3Þ again keeps V massless and

thus actually breaks SOð10Þ → G51 [31], not visible from
the graphical breaking path in Fig. 2. Indeed, the linear

combination
ffiffi
2
5

q
v45ð15;1;1Þ −

ffiffi
3
5

q
v45ð1;1;3Þ is actually nothing

but v45ð24;0Þ in Georgi-Glashow notation, which is precisely
the 45VEV to provide a mass to the SUð5Þ gauge boson V
if nonzero.
We expect SOð10Þ breaking to happen at energy scales

above mU;V ≳ 1012 TeV in order to avoid stringent
bounds from proton decay [33], but the subgroups could
be broken at lower scales. For the SUð5Þ paths, there is
little room to push the scale down, as proton decay
[mediated by the SUð5Þ gauge boson V] is equally
dangerous here. The Pati-Salam paths, on the other
hand, do not lead to dangerous gauge-boson induced
proton decay and could be valid all the way down to
103 TeV, where limits from rare meson decays such as
KL → μ�e∓ [34–36] put constraints on the massive PS
gauge boson X. This PS scale can be pushed down an
order of magnitude further by playing with the quark and
lepton mixing matrices [37,38], but we will not make use
of this for the most part. Similar lower bounds hold for
the G421 subgroup. Finally, the left-right (LR) subgroup
G3221 [39–41] can easily be at the TeV scale before
running into problems with meson-antimeson oscilla-
tions and direct searches [42,43]. This makes the low-
scale left-right group an obvious candidate to stabilize
DM and produce the right amount, as discussed in
Refs. [44,45]. G3211 can in principle be even lower than
the LR scale, although one still has lower limits of order
TeV from dilepton searches at the LHC, depending on
the details of the breaking [46,47]. For GUT-inspired
couplings the lower limits are roughly between 4 and
5 TeV, ignoring all non-SM Z0 decay channels [48].
We will pay special attention to possible low-scale
SOð10Þ subgroups as they can have a big effect on
DM phenomenology. The heavy colored gauge bosons
U, V, and X induce interactions that are too weak to lead
to viable freeze-out scenarios, but they can still have an
impact on the phenomenology, in particular with regards
to coannihilation; see below.

III. SO(10) DM CANDIDATES

We define matter parity as PM ¼ ð−1Þ3ðB−LÞ, which is a
Z2 subgroup of SOð10Þ [4–6,8].2 If we limit ourselves to
representations up to dimension 210, only the representa-
tions 16 and 144 are odd under matter parity, while all
others are even. Given the fact that the SM fermions of one
generation are in an odd 16 and the SM scalar doublet in an
even 10 representation, the lightest component of a newly
introduced even fermion or an odd scalar representation is
therefore exactly stable. (This stability is no longer guar-
anteed if we have scalar VEVs h16i or h144i, but could still
survive as an accidental symmetry; see Sec. VIII.) This
leads to the list of possible DM candidates given in Table II
[6]. It is also useful to decompose the SOð10Þ representa-
tions in terms of their Pati-Salam and left-right group
representations, which allows us to identify the DM
candidates in each SOð10Þ representation and the quantum
numbers they have under these subgroups. This is given in
Tables III and IV for representations up to 2100. For these
lists of candidates we exclude from the start any multiplet
which is colored; even though it was recently argued in
Ref. [51] that there could in fact be colored DM particles,
our candidates below do not come in the required
representations.
Similarly we exclude candidates with a nonvanishing

hypercharge because these are typically excluded by
Z-mediated direct detection. An exception to this will be
the left-right bidoublet and biquadruplet, whose neutral
Dirac fermion is in general split into two nondegenerate
Majorana fermions at loop level, which can evade direct
detection constraints [45]. Under these criteria Tables III
and IV show that the 10, 45, 54, 120, 126, 210, and 2100
fermion representations contain 1, 3, 2, 2, 2, 4, and 3 DM
candidates, respectively, for a total of 17 candidates. Note
that the representations 45, 120, and 210 have several
candidates with the same SM quantum numbers, namely
two 10, two 21=2, and three 10 candidates, respectively.
Similarly for a scalar representation the 16 contains two
DM candidates while the 144 has four candidates, for a
total of six candidates (with two 10 candidates).

IV. DM MASS SPLITTINGS

Having determined SOð10Þ representations that are
stabilized by matter parity and contain an electrically
neutral particle as a DM candidate, we have to worry
about its multiplet partners. As long as SOð10Þ is not
broken, all the particles within an irreducible representation
are necessarily degenerate, leading in all cases to colored
and charged partners at the DM scale. These DM partners
need nevertheless to be heavier than DM, so that they can

2If we would break along the Georgi-Glashow route, matter
parity would be the Z2 subgroup of Uð1Þ χ in SUð5Þ × Uð1Þ χ
[4,49,50].
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decay sufficiently fast to not leave an imprint in cosmo-
logical observables [12]. One must distinguish two kinds of
partners:

(i) The high-scale DM partners: These are the color
partners that decay only by mediation of the very
heavy SOð10Þ gauge bosons U or V, discussed in
Table I, on which we have strong lowermass bounds
from proton decay. The color DM partners then must
have masses several orders of magnitude larger than
the DM component in order to decay sufficiently
fast. As a conservative limit we impose that the
lifetime is shorter than ∼0.1 s in order that the decay
occurs before big bang nucleosynthesis (BBN). For
a typical decay width Γ ∝ m5

DM partner=m
4
U;V and

given the lower bound on mU;V from Table I
(assuming the GUT scale close to current proton-
decay bounds), we obtain a typical lower bound
mDM partner > Oð105Þ TeV. These DM partners are
then clearly inaccessible experimentally and play no
role for our further discussion. They are nevertheless
crucial to the discussion of DM in SOð10Þ, as it is
nontrivial to obtain the required mass splitting
mDM ⋘ mDM partner. This large mass splitting can
be induced only at tree level, proportional to the
various breaking scales, which gives strong con-
straints on the scalar representations and SOð10Þ
breaking path.

(ii) The low-scale DM partners: Even if colored or
charged, some of the partners may be present at the
low DM scale. These are the partners belonging to
the same irreducible SOð10Þ-subgroup representa-
tion as the DM component, i.e., those particles
whose decay into DM proceeds through comparably

TABLE II. The first column gives SUð2ÞL ×Uð1ÞY multiplets
with a neutral component, n being the SUð2ÞL dimension. The
second (third) column shows the PM-even (PM-odd) SOð10Þ
representations that contain a multiplet with the given electro-
weak charges and no color (for representation up to 210 or giving
the smallest possible representation if this one is larger than 210).
The triplet candidates with hypercharge �1 are given for
completeness but they will not be considered further because
they are not viable; see text.

Fermions Scalars

DM multiplet nY
Even SOð10Þ
multiplet

Odd SOð10Þ
multiplet

10 45, 54, 126, 210 16, 144
2�1=2 10, 120, 126, 210, 2100 16, 144
30 45, 54, 210 144
3�1 54, 126 144
4�1=2 2100 560
4�3=2 2100 720
50 660 2640
� � � � � � � � �

TABLE III. Decomposition of the SOð10Þ representations
between 10 and 126 under the PS (LR) subgroup G422 (G3221)
in column 2 (3). In the last column we identify possible DM
components in their SM notation; see Table II.

SOð10Þ G422 G3221 DM-G321

10 (1; 2; 2) (1; 2; 2; 0) 21=2
(6; 1; 1) ð3̄; 1; 1; 2Þ /

ð3; 1; 1;−2Þ /
16 (4; 2; 1) (3; 2; 1; 1) /

ð1; 2; 1;−3Þ 21=2

ð4̄; 1; 2Þ ð3̄; 1; 2;−1Þ /
(1; 1; 2; 3) 10

45 (1; 3; 1) (1; 3; 1; 0) 30
(1; 1; 3) (1; 1; 3; 0) 10
(6; 2; 2) ð3̄; 2; 2; 2Þ /

ð3; 2; 2;−2Þ /
(15; 1; 1) (3; 1; 1; 4) /

ð3̄; 1; 1;−4Þ /
(8; 1; 1; 0) /
(1; 1; 1; 0) 10

54 (1; 1; 1) (1; 1; 1; 0) 10
(1; 3; 3) (1; 3; 3; 0) 30
(6; 2; 2) ð3̄; 2; 2; 2Þ /

ð3; 2; 2;−2Þ /
ð200; 1; 1Þ (6; 1; 1; 4) /

ð6̄; 1; 1;−4Þ /
(8; 1; 1; 0) /

120 (1; 2; 2) (1; 2; 2; 0) 21=2
(6; 1; 3) ð3̄; 1; 3; 2Þ /

ð3; 1; 3;−2Þ /
(6; 3; 1) ð3̄; 3; 1; 2Þ /

ð3; 3; 1;−2Þ /
(10; 1; 1) ð1; 1; 1;−6Þ /

ð3; 1; 1;−2Þ /
ð6̄; 1; 1; 2Þ /

ð10; 1; 1Þ (1; 1; 1; 6) /
ð3̄; 1; 1; 2Þ /
ð6; 1; 1;−2Þ /

(15; 2; 2) (1; 2; 2; 0) 21=2
(8; 2; 2; 0) /
(3; 2; 2; 4) /
ð3̄; 2; 2;−4Þ /

126 (6; 1; 1) ð3̄; 1; 1; 2Þ /
ð3; 1; 1;−2Þ /

(15; 2; 2) (1; 2; 2; 0) 21=2
(8; 2; 2; 0) /
(3; 2; 2; 4) /
ð3̄; 2; 2;−4Þ /

(10; 1; 3) ð1; 1; 3;−6Þ 10
ð3; 1; 3;−2Þ /
ð6̄; 1; 3; 2Þ /

ð10; 3; 1Þ ð3̄; 3; 1; 2Þ /
(1; 3; 1; 6) /
ð6; 3; 1;−2Þ /
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light gauge bosons, namely the SM gauge bosons,
the LR gauge bosons WR and Z0, or even the Pati-
Salam boson X. This requires these partners to be
heavier than the DM component by an amount
which depends on the mass of these gauge bosons.
As we will see, the necessary splittings of the DM
component with the low-scale partners can in some
cases be generated radiatively, unlike the splittings
between DM and the high-scale partners.
To be more explicit and quantitative on the decay

of the low-scale partners, let us consider as an
example a chiral (15; 1; 1) multiplet of the Pati-
Salam group G422. This multiplet contains a color
singlet Majorana χ1 (the DM candidate), two color
triplets (which form one Dirac fermion χ3), and a
Majorana color octet χ8. Obviously the triplet and
octet must have decayed by today or even by the
time of BBN, about 0.1 s after the big bang [52]. The
dominant decay channel for the triplet is into χ1 and
a lepton-quark fermion pair (through a Pati-Salam
gauge boson X), as shown in Fig. 3, with relevant
interactions

g4Xμ

�
1ffiffiffi
2

p Q̄γμPLLþ 1ffiffiffi
2

p d̄γμPRlþ 1ffiffiffi
2

p ūγμPRN

þ
ffiffiffi
2

3

r
χ̄3γ

μ χ1 þ
21=4ffiffiffi
3

p χ̄3γ
μ χ8

�
þ H:c:; ð11Þ

where we also give the X couplings to the SM
fermions Q, l, u, d, as well as the right-handed
neutrinos N. Summing over all SM fermion chan-
nels and assuming these SM fermions to be massless
(including for definiteness the right-handed neutri-
nos) we find the χ3 decay rate

Γ χ3 ¼
m5

3

192π3
g44
m4

X
h

�
m1

m3

�
: ð12Þ

m1 and m3 are the masses of the singlet and triplet,
respectively, and we have the phase-space function

TABLE IV. Decomposition of SOð10Þ representations between
144 and 2100 under PS and LR. In the last column we identify
possible DM components in their SM notation.

SOð10Þ G422 G3221 DM-G321

144 (4; 2; 1) (3; 2; 1; 1) /
ð1; 2; 1;−3Þ 21=2

ð4̄; 1; 2Þ ð3̄; 1; 2;−1Þ /
(1; 1; 2; 3) 10

(4; 2; 3) (3; 2; 3; 1) /
ð1; 2; 3;−3Þ 21=2

ð4̄; 3; 2Þ ð3̄; 3; 2;−1Þ /
(1; 3; 2; 3) 30

(20; 2; 1) (3; 2; 1; 1) /
ð3̄; 2; 1; 5Þ /
(6; 2; 1; 1) /
ð8; 2; 1;−3Þ /

ð20; 1; 2Þ ð3̄; 1; 2;−1Þ /
ð3; 1; 2;−5Þ /
ð6̄; 1; 2;−1Þ /
(8; 1; 2; 3) /

210 (1; 1; 1) (1; 1; 1; 0) 10
(6; 2; 2) ð3̄; 2; 2; 2Þ /

ð3; 2; 2;−2Þ /
(10; 2; 2) ð1; 2; 2;−6Þ /

ð6̄; 2; 2; 2Þ /
ð3; 2; 2;−2Þ /

ð10; 2; 2Þ (1; 2; 2; 6) /
ð6; 2; 2;−2Þ /
ð3̄; 2; 2; 2Þ /

(15; 1; 1) (3; 1; 1; 4) /
ð3̄; 1; 1;−4Þ /
(1; 1; 1; 0) 10
(8; 1; 1; 0) /

(15; 1; 3) (1; 1; 3; 0) 10
(8; 1; 3; 0) /
(3; 1; 3; 4) /
ð3̄; 1; 3;−4Þ /

(15; 3; 1) (1; 3; 1; 0) 30
(8; 3; 1; 0) /
(3; 3; 1; 4) /
ð3̄; 3; 1;−4Þ /

2100 (1; 2; 2) (1; 2; 2; 0) 21=2
(6; 3; 3) ð3̄; 3; 3; 2Þ /

ð3; 3; 3;−2Þ /
(1; 4; 4) (1; 4; 4; 0) 41=2, 43=2
ð200; 2; 2Þ (8; 2; 2; 0) /

(6; 2; 2; 4) /
ð6̄; 2; 2;−4Þ /

(6; 1; 1) ð3̄; 1; 1; 2Þ /
ð3; 1; 1;−2Þ /

(50; 1; 1) ð15; 1; 1; 2Þ /
ð15; 1; 1;−2Þ /
ð10; 1; 1; 6Þ /
ð10; 1; 1;−6Þ /

FIG. 3. Example for the decay of a DM partner into the DM
particle. Here, the color triplet χ3 and Majorana singlet χ1 come
from a (15; 1; 1) under PS and thus decay via the PS gauge boson
X into each other plus SM fermions.
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hðxÞ¼ 1−2x−8x2−18x3þ18x5þ8x6

þ2x7−x8−24x3ð1þxþx2Þ logðxÞ; ð13Þ

which goes to hðxÞ ≃ 32
5
ð1 − xÞ5 if x ≃ 1 (quaside-

generate triplet-singlet case). Note that the decay
rate goes down by a factor of 3=4 if the right-handed
neutrinos are too heavy to be accessible. Demanding
that the triplet decays before BBN, roughly
Γ−1
χ3 < 0.1 s, gives the upper bound on the PS scale

mX=g4 ≲ 106 TeV

�
m3

2 TeV

�
5=4

; ð14Þ

assuming conservatively m1 ≪ m3; otherwise the
decay will be further suppressed by phase space and
mX=g4 needs to be even lower. This will set in many
scenarios an upper bound on the PS scale.
The discussion for the LR scale for decays

mediated by a charged to neutral component of a
SUð2ÞR multiplet via WR is analogous. Note that
decays via the neutral Z0 would be between two
neutral particles, so the DM partner would be neutral
and hardly a problem for BBN. Even in this case one
could find constraints from e.g., Cosmic microwave
background on the energy injection from a long-
lived χ → DMþ SM, but this will not be the focus
here. As for decays mediated by SM gauge bosons,
it is well known that mass splittings of only a few
MeV are enough to make the decay of the charged
partner of DM in an SM multiplet fast enough, as
discussed at length for the case of minimal DM [53].
As we will see in the following, the low-scale

mass splittings are not only crucial for allowing a
sufficiently fast decay of the partners but also in
some cases to get the right amount of DM relic
density via coannihilation.

Given that mass splittings are crucial for the phenom-
enology of SOð10Þ DM, let us discuss explicitly how they
can be generated. Here we will discuss the tree-level and
radiative splittings separately:

(i) Tree-level mass splittings: To know what are the
various possible structures of tree-level splittings we
can get, one needs to know what are the various
scalar fields that can contribute to their masses. For
example, chiral multiplets R can be split at tree level
by introducing scalars in representations found in
the product (R ⊗ R) and letting them acquire VEVs.
One also needs to know the Clebsch-Gordan co-
efficients which weight the various VEVs for the
various components. These can be determined effi-
ciently with the program SUSYNO [18] or (partly)
found in Ref. [54]. In Appendix C we give all the
relevant Clebsch-Gordan coefficients that appear in
the product (R ⊗ R) for R up to 2100. Note that

along the various possible breaking paths of SOð10Þ
there are in most cases breaking scales that do not
contribute to the mass formula of the DM multiplet,
either because they do not show up in (R ⊗ R) or
because they contribute only to the antisymmetric
combination, which vanishes if we have only one
generation of R. Thus, to see what are the possible
mass spectra of DM and its multiplet partners, one
will not need to consider explicitly each possible
breaking path. It is sufficient to consider the various
possible hierarchies one could have between the
mass contributions of the various scalar representa-
tions entering in the mass formula, no matter that
along an explicit given SOð10Þ breaking path there
could be other scalar representations not contribut-
ing to the mass formula. This largely simplifies the
discussion for all DM representations except for the
210 where all possible scalar representations con-
tribute to the mass (except for 126), which makes the
discussion more involved.

In particular, for the Pati-Salam ways and scalar
representations up to 210, there are seven scalar
fields entering in the symmetric product ðR ⊗ RÞS.
The mass for each component of the DMmultiplet is
thus in full generality a combination of the universal
mass m1 all SOð10Þ multiplet components receive
(i.e., the GUT symmetry conserving contribution)
and of the VEVs v of these seven scalar fields, each
one multiplied by the corresponding Clebsch-
Gordan coefficient c. For any fermion f one thus
has the general tree-level “master” mass formula

mf ¼ m1 þ cf45ð15;1;1Þv45ð15;1;1Þ þ cf45ð1;1;3Þv45ð1;1;3Þ

þ cf54ð1;1;1Þv54ð1;1;1Þ þ cf210ð1;1;1Þv210ð1;1;1Þ

þ cf210ð15;1;1Þv210ð15;1;1Þ þ cf210ð15;1;3Þv210ð15;1;3Þ ; ð15Þ
where the various scalar fields are defined according
to their Pati-Salam G422 quantum numbers. We
omitted the VEV of a 126 scalar even though it
can be used to break SOð10Þ because it does not
couple to any of the DM multiplets under discus-
sion here. There are hence only six scalar VEVs
relevant for the DM splitting. Computing the rel-
evant SOð10Þ Clebsch-Gordan coefficients, given in
Appendix C, one can determine the particles in the
DM SOð10Þ multiplet which can arise at the same
scale as the DM particle.

Similarly for the Georgi-Glashow paths (Fig. 1)
there are also six relevant scalar fields and we have

mf ¼ m1 þ cf45ð1;0Þv45ð1;0Þ þ cf45ð24;0Þv45ð24;0Þ

þ cf54ð24;0Þv54ð24;0Þ þ cf210ð1;0Þv210ð1;0Þ

þ cf210ð24;0Þv210ð24;0Þ þ cf210ð75;0Þv210ð75;0Þ ; ð16Þ
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where the various scalar fields are defined according
to their Georgi-Glashow G51 quantum numbers.
Note that we will mostly focus on the PS paths
and not the Georgi-Glashow paths, because the
former allow for more low-energy subgroups. This
stems from the fact that proton decay constrains the
SUð5Þ group to be broken at a very high scale, above
∼1013 TeV. The only Georgi-Glashow subgroup
allowed at lower scales is G3211 from SUð5Þ ×
Uð1Þ χ → GSM ×Uð1Þ χ [55]. This has qualitatively
the same phenomenology as theG3211 obtained from
PS, differing only in the Z0 couplings. We will
therefore not give the Clebsch-Gordan coefficients
along the Georgi-Glashow paths in this work.
Nonzero tree-level mass splittings require Yukawa

couplings of the DM multiplet to scalars. In the
following we will neglect these interactions when it
comes to DM phenomenology, e.g., in the freeze-out
process. This is a valid approximation if all the
scalars are sufficiently heavier than the DM particle
or the Yukawa couplings are very small. While the
former is a rather natural outcome of a multiscale
theory, it is also highly unwelcome, seeing as at least
the SM scalar doublet has to be light. It is hence
perfectly possible that other scalars could also be
light and thus relevant for our discussion of DM. We
have to neglect these scenarios here due to the sheer
number of additional free parameters and possibil-
ities this would introduce.

(ii) Radiative mass splittings: Given a set of scalar
representations contributing to the masses at tree
level, in general a set of sum rules among the masses
will be obtained; i.e., certain linear combinations of
masses vanish,

P
j djmj ¼ 0, with mj the masses of

the various DM multiplet components. However,
even if the gauge group is further broken only by
scalars that do not couple directly to R, these sum
rules will in general be broken at loop level, as can
be verified by calculating the fermion self-energies
with gauge bosons in the loop [56,57].

P
jdjmj then

becomes a calculable observable, seeing as the lack
of counterterms for this quantity implies finite loop
corrections. Two popular examples here are wino
and minimal DM [53], which transform as 3 and 5
under SUð2ÞL, respectively, and do not couple to any
scalars. At one-loop level the degenerate electric-
charge Q eigenstate components split,

mQ −m0 ≃Q2

(
α2mWsin2ðθW2 Þ for mW ≪ m0;
3α
2πm0 logðmW

m0
Þ for mW ≫ m0;

ð17Þ
where the masses are physical pole masses and the
couplings are running MS parameters, with a re-
normalization scale dependence that is canceled by

higher loop orders [58]. One sum rule remains
unbroken at this level for the quintuplet, ðm2−m0Þ−
4ðm1−m0Þ¼0, which, surprisingly, seems to be
even satisfied at the two-loop level [59,60].

The approximate mass splitting for the hierarchy
mW ≫ m0 can equivalently be calculated using
effective field theory. For this we convert the pole
masses mQ to MS masses MQðμÞ, which we run up
to the high-scale mW using standard QED formulas
and impose the common-multiplet boundary con-
ditionsMQðmWÞ ¼ M0ðmWÞ ∀Q. We can easily do
this more generally for any group G that is broken to
a subgroupH at scale mG: fermions with degenerate
mass m ≪ mG that used to form an irreducible
representation ofG are now split into representations
Rj of H, with pole-mass splitting

mðRiÞ −mðRjÞ
m

≃
3αðmÞ
2π

ðΔC2Þij log
�
mG

m

�
; ð18Þ

ðΔC2Þij ≡ C2ðRiÞ − C2ðRjÞ being the difference of
quadratic Casimir invariants (a selection is given in
Table V in Appendix A) and α the fine structure
constant of H. If H is a direct product of groups the
right-hand side of Eq. (18) becomes a sum over the
corresponding couplings and Casimirs. The above
approximation breaks down for large representations
under strongly coupled groups and should be re-
placed by a more careful treatment that sums up the
large logs, similar to the procedure for gluino masses
[61]. We refer to Appendix A for a discussion.

Despite the potentially large logarithm logðmG=mÞ
in Eq. (18), it is clear that purely radiative mass
splitting cannot generate huge hierarchies among the
components of a GUT multiplet, explaining why we
said above that the splittings between the DM com-
ponent and its heavy partners must be necessarily
induced at tree level.

V. LIST OF DM VIABILITY CONSTRAINTS

In this section we give the full list of criteria we apply to
retain a DM scenario. This list contains the criteria already
discussed above as well as other simple ones, based on

TABLE V. Quadratic Casimir and Dynkin coefficients for some
groups. Note that the adjoint of Uð1Þ has Q ¼ 0.

Group ðR;C2ðRÞ; S2ðRÞÞ
Uð1Þ ðQ;Q2; Q2Þ
SUð2Þ ð2; 3

4
; 1
2
Þ; ð3; 2; 2Þ; ð4; 15

4
; 5Þ; ð5; 6; 10Þ; ð6; 35

4
; 35
2
Þ

SUð3Þ ð3; 4
3
; 1
2
Þ; ð6; 10

3
; 5
2
Þ; ð8; 3; 3Þ; ð10; 6; 15

2
Þ; ð15; 16

3
; 10Þ

SUð4Þ ð4; 15
8
; 1
2
Þ; ð6; 5

2
; 1Þ; ð10; 9

2
; 3Þ; ð15; 4; 4Þ; ð20; 39

8
; 13
2
Þ

SUð5Þ ð5; 12
5
; 1
2
Þ; ð10; 18

5
; 3
2
Þ; ð15; 28

5
; 7
2
Þ; ð24; 5; 5Þ; ð35; 48

5
; 14Þ
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viability and minimality. They focus on the DM pattern,
without trying to solve many other issues that arise in
SOð10ÞGUTs, as these issues could easily depend on many
extra ingredients that are to a large extent independent of
the DM pattern. These criteria and assumptions are as
follows:

(i) DM representation: We limit ourselves to a single
SOð10Þ representation with dimension up to 210.
Adding several candidates that mix with each other
can lead to interesting phenomenology [14,15] but
would lead us too far.

(ii) Color-singlet DM: As already mentioned above, it is
easy to show that all the colored DM candidates
which show up are excluded, so that they will not
appear anywhere below.

(iii) Relic density: We check that the DM scenario can
lead to the observed relic density in a thermal way,
i.e., from (co)annihilation freeze-out. In Appendix B
we explain how DM can be obtained through
coannihilation, as relevant for the scenarios we will
consider. This requires that the coannihilating par-
ticles are in chemical equilibrium, a condition that is
also derived in this Appendix.

(iv) Low-scale DM partners: As already mentioned
above, given the strong constraints which exist on
any stable colored or charged particle relic density
today, onemustmake sure that any colored or charged
DM partner decays. This depends on the mass and
mass splittings involved; see the discussion above.

(v) Direct detection: We will make sure that the
DM-nucleon cross section induced in the various
scenarios is not already excluded by current direct
detection experiments [62,63]. As mentioned above,
direct detection constraints exclude all the candi-
dates with a nonvanishing hypercharge which could
show up otherwise below, except the left-right
bidoublet and biquadruplet. We will not look at
indirect detection constraints, except when these
constraints have already been studied in the literature.

(vi) Fine-tuning of the DM mass: In all scenarios below
we need to have some DM partners at a much higher
scale than the low-scale fermion DM candidate, the
above called “high-scale DM partners.” This dis-
parity of scales turns out to imply in all cases a fine-
tuning, i.e., a cancellation of at least two DM mass
contributions which are both larger than the DM
mass. This might not look like much of a surprise
given the fact that the framework we consider is
nonsupersymmetric, but it is actually a rather subtle
point (see the discussion of the DM representation
120 in Sec. VII D below). In the following we will
allow for one DM mass contribution cancellation
and not more. Of course, if one allows for one
cancellation, nothing prevents one from having
more cancellations, but already with one we cover
a wide range of possibilities. We will discuss briefly

in Sec. VI R what could change when more can-
cellations are assumed. Similarly, we will not try to
solve other fine-tuning issues that may arise in
nonsupersymmetric GUTs, especially in the scalar
sector, including the doublet-triplet splitting prob-
lem. We will also not consider any explicit scalar
potential to see how the patterns of symmetry
breaking scales assumed in the various scenarios
could actually be achieved.

(vii) Yukawa interactions: DM couplings to scalars are
unavoidable in order to obtain the tree-level mass
splittings necessary for viable mass spectra. If these
couplings are large and the scalars not too heavy,
they could have a major impact on the DM phe-
nomenology, say the relic abundance. We will
neglect these interactions in the following and only
study gauge interactions.

(viii) Gauge unification: We will not demand our setup to
lead to gauge unification, because this does not
only depend on the general breaking pattern and
DM multiplet considered here but also (see e.g.,
Refs. [24,64–66]) on the exact values of the breaking
scales, the values of the Yukawa couplings multiply-
ing these scales, on the boundary conditions assumed
at the GUT scale, on renormalization group running
effects, and on the existence of other possible SOð10Þ
multiplets whose masses could show up basically
anywherewithoutmuch affecting our DMdiscussion.
Note nevertheless that in some cases these extra
multiplets could affect themasses of theDMmultiplet
components. Thus, whenever we use running param-
eters in the following, they are to be understood as
benchmark values within the most minimal models
and hence could be subject to change in full models.
Of course, the cases below that havemany low-energy
states could have a very large effect on the running of
the gauge couplings, which would typically require
other states at intermediate scales in order to have
gauge unification, but again wewill not consider this.

(ix) Fermion masses: For the same reasons as for gauge
unification, we will not look at the way SM fermion
masses and neutrino masses can be accounted for.

VI. LIST OF LOW-SCALE DM SCENARIOS

This section displays the practical low-energy output of
the analysis performed in this work: here we list the various
low-scale scenarios obtained from considering stable fer-
mionic DM representations up to 2100 and briefly discuss
the phenomenology of each of these scenarios. On the basis
of the constraints described in the previous section, this list
is obtained in a top-down way from the detailed and more
involved discussion given in Sec. VII. We will present first
the scenarios which do not lead to any colored partner at
low scale and subsequently the ones which do predict low-
energy colored partners. This order corresponds mostly to
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the order which would show up if we were presenting the
scenarios in the order they appear starting from a 10 DM
representation all the way up to the 2100. Note that in the
following the number indicated in the name of each
scenario refers to the number of tree-level fermionic
degrees of freedom (d.o.f.) this scenario involves. For
example, the “octet-singlet bidoublet 32þ 4” scenario of
Sec. VI O contains at low energy one color octet that is also
a bidoublet under SUð2ÞL × SUð2ÞR for a total number of
8 × 2 × 2 ¼ 32 degenerate states plus one color-singlet
bidoublet with four degenerate states, but with a different
mass from the octet. To our knowledge, the majority of
scenarios listed below are basically new (see scenarios in
Secs. VI D, VI G, VI H, VI J–VI R).

A. LR bidoublet 4

- Low-scale content: A tree-level degenerate chiral
bidoublet of SUð2ÞL × SUð2ÞR coming from the
ð1; 2; 2ÞPS in 10 or 120 or the ð15; 2; 2ÞPS in 120. DM is
the lightest neutral component of it.
-Mass splittings: The bidoublet forms one Dirac doublet

ð1; 2; 1
2
Þ under the SM group; this Higgsino-like doublet

with massm is ultimately split by electroweak loops, which
make the charged component χþ approximately αmZ=2 ≃
360 MeV heavier than the neutral one [53,67]. Still, the
neutral component of the doublet is naively excluded as a
DM candidate due to its hypercharge, which implies a
coupling to the Z boson and thus large direct-detection
cross sections. However, once the LR symmetry is broken,
this neutral Dirac component is actually split into two
Majorana fermions χ1;2 at the one-loop level via WL�WR

mixing (see Ref. [45]) leading to the mass splitting within
the Dirac doublet ð1; 2; 1

2
Þ

m χþ −m χ1;2 ≃
α

2
mZ1

� α2
8π

gR
gL

m sinð2ξÞ½fðrW2
Þ − fðrW1

Þ�;

ð19Þ

with WL�WR mixing angle ξ, mass ratio rV ≡mV=m, and
loop function

fðrÞ≡ 2

Z
1

0

dxð1þ xÞ log ½x2 þ ð1 − xÞr2�

¼ −5 − r2 þ r4 log r

þ r
2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4

p
ð2þ r2Þ log

�
r2 − 2 − r

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4

p

2

�
:

ð20Þ

For LR scales below ∼75 TeV, the induced splitting
between the neutral components can be above 200 keV,
enough to kinematically forbid the now inelastic direct-
detection scattering [68,69]. Thus one can get a viable DM
candidate only if the LR group is broken below ∼75 TeV.

This hence requires a symmetry breaking path proceeding
through a low-scale LR group. The final mass spectrum of
the 10 is illustrated in Fig. 7.
- Relic density: If the LR gauge bosons WR and Z0 are

much heavier than the DM, the relic abundance is mainly
set by DM annihilation into SM gauge bosons, which fixes
the Higgsino-like DM mass to be 1.2 TeV [70,71].
However, much larger masses up to 30 TeV become viable
if DM annihilates into SM particles via the WR or Z0
resonances, i.e., for mDM ≃mWR

=2 or mZ0=2 [45]. The
exact way the relic density is obtained depends on whether
the LR group is broken directly to the SM or goes through
the G3211 intermediate step, as this changes the ratio
mWR

=mZ0 . Without the intermediate step G3211 it has been
shown in Ref. [45] that the bidoublet of the LR group leads
to a good DM candidate with mass between TeV and
30 TeV and a low LR scale. With the intermediate G3211

step one can achieve a gauge-boson hierarchy mZ0 ≪ mWR

which can potentially change the DM phenomenology. We
still need mWR

≲ 75 TeV for a large enough DM mass
splitting, so Z0 and WR cannot actually be too far apart
considering mZ0 has to be multi-TeV to evade existing
constraints (Table I). For mDM ≪ mZ0 ≪ mWR

, the DM
abundance is once again set by annihilation into SM gauge
bosons, so one requires again 1.2 TeV for the correct relic
abundance. Considering mDM ∼mZ0 ≪ mWR

allows one to
go to higher DM masses as long as one sits on the Z0
resonance. The last possible hierarchy, mZ0 ≪ mDM, in
which the additional annihilation channel into Z0Z0 would
become relevant is excluded by the lower bounds on mZ0

(Table I). The phenomenology with or without G3211 is
hence qualitatively similar.
- LHC: Both direct and indirect detection are heavily

suppressed [45], so the best signature of this model is the
existence of relatively light gauge bosonsWR and Z0 as well
as the charged DM partners at the DM mass scale modulo
the small 360 MeV mass splitting. The LHC phenomenol-
ogy of the bidoublet is very similar to (pseudo-Dirac)
Higgsinos, in particular the decay rate of χþ into DM and
pions [45,67]. As such, the LHC will not be able to probe
the relevant parameter space, but a 100 TeV collider could
probe the TeV mass region [72–75], i.e., the nonresonant
regime.

B. SU(2)L triplet 3

- Low-scale content: One SUð2ÞL triplet coming from the
ð1; 3; 1ÞPS in 45 or ð15; 3; 1ÞPS in 210. This is the usual
wino DM scenario that is well known from the MSSM:

mð1;3;0Þ ≡mDM: ð21Þ

- Mass splittings: mþ −m0 ≃ 166 MeV [Eq. (17)].
- Relic density: The annihilation proceeds into SM gauge

bosons in the usual wino way, which gives [76,77]
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ΩLh2 ≃ 0.12

�
mDM

2.7 TeV

�
2

: ð22Þ

The above formula misses the Sommerfeld resonances,
e.g., at mDM ∼ 2.4 TeV, but is a good approximation
overall. If all DM is in the form of this triplet, we need
mDM ≃ 2.7 TeV [77], which leads to a Sommerfeld-
enhanced production of monochromatic photons and is
basically excluded by observation for the most standard
galactic DM density profiles Navarro–Frenk–White and
Einasto; it is, however, still allowed for an isothermal
profile [78,79].
- LHC: The current lower limit on the wino mass is

460 GeV [80], and future limits can be found in
Refs. [74,81]. The LHC will not be able to probe the
relic-density motivated region mDM ∼ 2.7 TeV, but a
100 TeV collider might.
Note that this is the only SOð10Þ DM scenario that does

not give any restrictions on SOð10Þ subgroups and scales,
thanks to the fact that it can annihilate into SM gauge
bosons and that electroweak loops provide the necessary
mass splittings.

C. SU(2)R triplet 3

- Low-scale content: A tree-level degenerate SUð2ÞR
triplet from the ð1; 1; 3ÞPS in 45 or ð15; 1; 3ÞPS in 210:

mð1;1;1Þ ¼ mð1;1;0Þ ≡mDM: ð23Þ

Note that a scenario with only this triplet at low scale [and
not also the SUð2ÞL triplet at low scale as in Refs. [44,45] ]
has to our knowledge been previously considered only
in Ref. [16].
-Mass splittings: The mass splitting of the SUð2ÞR triplet

induced by the gauge interactions is given by

mR
Q −mR

0 ≃
α2
4π

g2R
g2L

mDMQ2½fðrW2
Þ − c2MfðrZ2

Þ

−s2Ws2MfðrZ1
Þ − c2Ws

2
MfðrγÞ�; ð24Þ

where sM ¼ sinðθMÞ ¼ tanðθWÞgL=gR and cM ¼ cosðθMÞ.
Here Z1 and W1 (Z2 and W2) denote the mass eigenstates
which are essentially the SM gauge bosons [the SUð2ÞR
gauge bosons [44,45] ]. Some region of parameter space is
excluded because the charged component χþR is lighter than
the neutral one (see Fig. 4), at least for gR ¼ gL.
- Relic density: Since the neutral Majorana component

χ0R of the SUð2ÞR triplet does not couple to the Z0, the relic
density is necessarily set by processes which couple χ0R to
the charged component χþR and a WR. There are two types
of relevant processes: direct coannihilation of the neutral
state into light SM states χþR χ

0
R → WR → SMSM and two-

step coannihilation, i.e., the conversion χ0RSM → χþRSM
followed by χþR χ

−
R annihilation into SM particles mediated

by γ and Z. The values of the DM andWR masses needed to
reproduce the observed relic density, as calculated using
MICROMEGAS [82] and taking into account the radiative
mass splitting, are given in Fig. 4.
From the direct process, one can reproduce the observed

relic density for DM masses up to 50 TeV around the WR
resonance mDM ∼mWR

=2. For larger mWR
to mDM ratio, the

relic density can be achieved through the χ0R → χþR con-
version driven coannihilation process, with subsequent
annihilation of these charged states into photons and
Z bosons. This leads to the correct relic density for a DM
mass around 300–500 GeV [44,45], as shown in Fig. 4. This
calculation is similar to the one performed in Refs. [44,45]
but takes into account the finite value of the radiative mass
splitting. Coannihilation requires the transition rate χ0R →
χþR to be in thermal equilibrium around the time of freeze-
out, which is easily achievable formWR

=gR ≲Oð102Þ TeV.3
Finally, the charged states could also annihilate into SM
particles via a Z0 in the s channel. If one lies at the resonance
of this process, mZ0 ∼ 2m χþR

, one can also reproduce the
observed relic density, which leads to the lower resonance
peak in Fig. 4. This region is, however, invalid because the
radiative mass splitting turns negative in that region, at least
for the LR symmetric case, gR ¼ gL, i.e., using the usual
mZ0=mWR

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sec 2θW

p
mass relation. If gR > gL, the

allowed parameter space shrinks because this leads to a more
extended excluded region where the charged state is lighter

FIG. 4. The correct relic density of a right-handed triplet
(black), assuming gR ¼ gL, which fixes mZ0=mWR

. The dotted
green lines show radiative-mass-splitting contours as deter-
mined by Eq. (24). In the blue region the radiative mass splitting
within the triplet is negative, rendering the charged component
stable [44,45]. The orange region is excluded by meson mixing
constraints and searches for singly charged collider-stable
particles.

3More precisely, using the results from Appendix B, we obtain
that chemical equilibrium requires mWR

≲ 170 TeV for mR
0 ¼

300 GeV and a mass splitting of 5 GeV, assuming gR ¼ gL and
heavy right-handed neutrinos. For the case of mR

0 ¼ 500 GeV
and zero splitting, relevant for the scenario of Sec. VI D, we get
instead mWR

≲ 260 TeV.
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than the neutral one and because in this case the LHC lower
limit on mWR

increases. The case gR < gL leads to a pattern
similar to the symmetric limit; it requires a slightly smaller
value of mWR

for a given mDM, and puts the Z0 resonance
peak in the allowed region.
- LHC: LHC searches for singly charged stable particles

give strong constraints around 650 GeV [83,84]. This
excludes the entire coannihilation region around
mDM ≃ 300–500 GeV, seeing as the small radiative mass
splitting gives a very suppressed χþR decay rate.
Specifically, the decay χþR → χ0Re

þN with massless
right-handed neutrino N gives

ΓðχþR → χ0Re
þNÞ ≃ Δm5

240π3

�
gR
mWR

�
4

≃
1

20 m

�
Δm

2 GeV

�
5
�
3 TeV
mWR

�
4

; ð25Þ

whereas the rate is a color factorNc ¼ 3 larger for the light-
quark modes χþR → χ0Rd̄u. This makes χþR stable on collider
scales and thus excludes mDM ≲ 650 GeV (considering
here only the quark channels). The only viable region of
parameter space left is then near the WR resonance with
mDM ≳ 1 TeV, as shown in Fig. 4, which given the fact that
one can get the observed relic density for mDM up to
∼50 TeV implicitly also gives an upper bound on the LR
scale, mWR

≲ 100 TeV.

D. SU(2)R triplet 2 + 1

- Low-scale content: One SUð2ÞR triplet with tree-level
mass splitting

mð1;1;1Þ ≠ mð1;1;0Þ ≡mDM; ð26Þ

coming from the ð1; 1; 3ÞPS in 45 or ð15; 1; 3ÞPS in 210.
-Mass splittings: Compared to Sec. VI C we have a tree-

level mass splitting Δm≡mð1;1;1Þ −mDM between the
charged and neutral components.
- Relic density and LHC: With respect to Sec. VI C the

tree-level mass splitting allows us to decouple the value of
the splitting from the values of the other parameters.
For what concerns the χ0R → χþR conversion driven

coannihilation regime, i.e., the mDM ∼ 300–500 GeV
region, to consider a larger mass splitting shortens the
χþR lifetime, which is welcome to soften the mDM ≳
650 GeV LHC constraint (see Fig. 4). However, a larger
mass splitting makes the coannihilation process less
efficient due to the Boltzmann-suppressed conversion rate
hΓi χ0R→ χþR

∝ e−Δm=T (Appendix B), which requires us to

lower the overall mass of χþR and χ0R from 500 GeV,
potentially down to the LEP bound of 100 GeV [85–87],
as shown in Fig. 5. There is indeed a small region of
parameter space where we can evade the LHC bound.
Using for example mDM ¼ 250 GeV with a mass splitting

Δm ¼ 6 GeV, we can obtain the correct relic density in
the coannihilation region (Fig. 5). For mWR

close to its
current bound, the χþR lifetime can be as low as cτ ∼ 1 cm,
short enough to evade the LHC constraints on stable
charged particles. In fact, these decays could appear
displaced in ATLAS and CMS, a potentially advanta-
geous search feature. As stated above, the dominant decay
will be into light quark modes plus missing energy via
χþR → χ0Rd̄u and χ0Rs̄c, with χþR itself being pair-produced
via Drell-Yan. Note that increasing gR > gL will shorten
the χþR even further and render its decays prompt, without
affecting much the coannihilation calculation. The DM
mass in this coannihilation region is below 400 GeV and
the charged partner less than 8 GeV heavier. This together
with the necessarily as-light-as-possible WR make this
region completely testable at the LHC. We strongly
encourage a dedicated search for these states.
Increasing the mass splitting above ∼8 GeV renders the

coannihilation region infeasible and thus requires us to go
back to the resonant regions above mDM > TeV (Fig. 5).
Here the effects of Δm are rather small until we increase it
above 10%. A larger Δm always makes (co)annihilation
less efficient, so one has to be closer and closer to the WR
or Z0 resonances in order to end up with the desired
abundance. For Δm > 500 GeV only the χþR χ

0
R → WR →

SMSM driven coannihilation region is left, which further-
more requires mDM > 2 TeV. The overall upper bound
mWR

≲ 100 TeV is still valid in all cases because the larger
mWR

is the less efficient are the WR mediated processes.
The resonant region is clearly more difficult to probe,
especially if the mass splitting is large, making the χþR
extremely short lived.

E. LR triplet 6

- Low-scale content: One triplet of SUð2ÞL and one of
SUð2ÞR which are degenerate at tree level due to D parity
and can come from the ð1; 3; 1ÞPS ⊕ ð1; 1; 3ÞPS in 45 or
ð15; 3; 1ÞPS ⊕ ð15; 1; 3ÞPS in 210. The tree-level masses of
the fields, decomposed under GSM, are

FIG. 5. The correct relic density of a right-handed triplet,
assuming gR ¼ gL, for various fixed mass splittings.
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mð1;3;0Þ ¼ mð1;1;1Þ ¼ mð1;1;0Þ ≡mDM: ð27Þ

This is a two-component DM scenario, since the neutral
Majorana components of both triplets are stable. The
phenomenology of this low-scale particle content has been
studied in detail in Refs. [44,45].
-Mass splittings: Radiativemass splittings as inSecs.VI B

and VI C.
- Relic density: For the SUð2ÞL triplet the abundance is

given by Eq. (22). The SUð2ÞR triplet has an abundance
ΩRh2 that depends on theWR mass (Fig. 4) and can be used
to obtain ΩLh2 þ ΩRh2 ≃ 0.12 for 1 TeV ≤ mDM ≤
2.7 TeV (see Sec. VI C). As already said above, the upper
end of this mass range, where DM is mainly from the
SUð2ÞL triplet, is in tension with indirect-detection con-
straints [78] (see Sec. VI B). The SUð2ÞR triplet relic
density is subdominant in this case, which can be obtained
if one lies within the region bounded by both resonance
peaks in Fig. 4. This requires a very low LR scale
of mWR

≲ 7 TeV.
The mDM ∼ 1 TeV lower end of this mass range, where

DM is essentially from the SUð2ÞR triplet, corresponds to
the lower bound we got in Fig. 4. It requires mWR

≲ 4 TeV
and is not without tension from indirect detection, too, but
at a lower level [77]. The entire LR triplet six scenario can
thus be excluded in the future using indirect detection data
and slightly improved limits on WR.
- LHC: With DM masses above TeV the LHC will not be

able to see these particles.

F. LR triplet 3 + 3

- Low-scale content: One SUð2ÞL triplet and one SUð2ÞR
triplet which are split by a D-parity breaking tree-level
mass contribution:

mDM;L ≡mð1;3;0Þ ≠ mð1;1;1Þ ¼ mð1;1;0Þ ≡mDM;R: ð28Þ

The triplets can come from the ð1; 3; 1ÞPS ⊕ ð1; 1; 3ÞPS in
45 or the ð15; 3; 1ÞPS ⊕ ð15; 1; 3ÞPS in 210. We have two-
component DM since both triplets are stable.
-Mass splittings: We have a free tree-level mass splitting

mDM;L −mDM;R between both triplets, but within each
triplet the radiative splittings are again given by Eqs. (17)
and (24).
- Relic density: With respect to the case in Sec. VI E

where both triplets are degenerate at tree level, this leads to
more freedom for the parameter space and allows one to
alleviate largely the strong indirect detection constraints
which hold for a pure wino or for the case where both
triplets are degenerate. We can have a winolike subcom-
ponent of DM with massmDM;L < 2.7 TeV and fill the rest
with right-handed triplet DM with mass mDM;R up to
50 TeV (see Fig. 4). We need mWR

< 100 TeV as in the
Sec. VI C scenario.

- LHC: Since the wino is only a subcomponent of DM, it
could lie around the corner, just beyond the current LHC
bound of 460 GeV [80]. The right-handed triplet with mass
above TeV will, on the other hand, be elusive.

G. LR triplet 5 + 1

- Low-scale content: One SUð2ÞL triplet and one SUð2ÞR
triplet whose neutral component is split by a tree-level mass
contribution,

mDM;L ≡mð1;3;0Þ ¼ mð1;1;1Þ ≠ mð1;1;0Þ ≡mDM;R; ð29Þ

coming from the ð1; 3; 1ÞPS ⊕ ð1; 1; 3ÞPS in 45.
- Mass splittings: Radiative mass splittings are the same

as in previous cases. We need mDM;R < mDM;L < 2.7 TeV
to get rid of the charged components and to not overclose
the Universe [Eq. (22)].
- Relic density: With respect to the Sec. VI E scenario this

scenario has more freedom in a way similar to the Sec. VI D
scenario with respect to the Sec. VI C scenario. We still
need approximately mWR

≲ 7 TeV as in the Sec. VI E
scenario if we live in the resonant region mDM;R þ
mDM;L ∼mWR

. Given the lower limit 460 GeV < mDM;L

from LHC searches for winos, we cannot use the coanni-
hilation region of Sec. VI D.
- LHC: Again, with DM masses above TeV, there is little

to see at the LHC, but future colliders should be able to
probe this scenario conclusively, e.g., by looking for
the wino.

H. LR triplet 3 + 2 + 1

- Low-scale content: One SUð2ÞL triplet and one SUð2ÞR
triplet with all possible tree-level splittings,

mDM;L ≡mð1;3;0Þ ≠ mð1;1;1Þ ≠ mð1;1;0Þ ≡mDM;R; ð30Þ

coming from the ð1;3;1ÞPS⊕ð1;1;3ÞPS in 45 or ð15;3;1ÞPS⊕
ð15;1;3ÞPS in 210.
- Mass splittings: Radiative splitting between the wino

components as usual.
- Relic density: This case gives the most freedom, it

corresponds to the Sec. VI D scenario with an additional
wino of arbitrary mass. Since indirect detection constraints
prefer this wino component to be underabundant, which
translates into mDM;L < 2.7 TeV, the phenomenology is
similar basically to the one of Sec. VI D. In particular, the
mWR

< 100 TeV bound remains valid.
- LHC: This scenario has the richest LHC phenomenol-

ogy. In the region of underabundant wino, it could be
around the corner of the current LHC limit. In addition, the
LHC could probe the sub-TeV region of the right-handed
triplet; see the discussion in Sec. VI D.
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I. LR bitriplet 9

- Low-scale content: DM is the lightest neutral compo-
nent of nine tree-level degenerate components within an
SUð2ÞL × SUð2ÞR bitriplet, coming from the ð1; 3; 3ÞPS in
54. This bitriplet contains one chiral wino and one triplet
with hypercharge Y ¼ 1, which contains an electrically
neutral Dirac fermion. This was discussed in detail in
Ref. [45].
-Mass splittings: Direct detection requires the wino to be

the lightest of the two SUð2ÞL triplets, which in turn
restricts the mDM-mWR

parameter space [45].
- Relic density: For a low LR scale, coannihilation is very

efficient and makes it possible to obtain the correct relic
abundance for DM masses between 1.8 and 40 TeV.
However, it still behaves exactly as a wino, so indirect
detection puts very strong constraints on most of the
parameter space, leaving only some narrow regions near
the WR resonance, which in particular requires mWR

<
80 TeV [45].
- LHC: The DM masses above 1.8 TeV make it

difficult to see the wino triplet at the LHC. The partner
triplet with hypercharge, on the other hand, has much
larger production cross sections and could be probed
even at these high masses at the HL-LHC [45,53],
although a thorough analysis has yet to be performed.

J. LR biquadruplet 16

- Low-scale content: An SUð2ÞL × SUð2ÞR biquadruplet
from the 2100 representation. DM is the lightest of the four
neutral components.
- Mass splittings: The biquadruplet can be written as a

self-conjugate particle

Ψ ¼ Ψ̃

¼

0
BBB@

Ψ0
B Ψþ

B Ψþþ
B Ψþþþ

Ψ−
C Ψ0

A Ψþ
A −Ψþþ

A

Ψ−−
A Ψ−

A −ðΨ0
AÞc Ψþ

C

Ψ−−− −Ψ−−
B Ψ−

B −ðΨ0
BÞC

1
CCCA; ð31Þ

which contains two neutral Dirac particles: Ψ0
A and Ψ0

B.
As can be seen from the Lagrangian interactions, Ψ0

A is
split into two Majorana fermions χ1;2 at the one-loop
level, in complete analogy to the bidoublet case and with
the same mass formula with respect to Ψþ

A [Eq. (19)]. If
the mass splitting Δm between χ1;2 is above 200 keV,
we can evade direct-detection bounds. Ψ0

B, on the other
hand, remains Dirac even at the one-loop level and can
therefore not be a good DM candidate due to the
coupling to the Z boson. We thus have to make sure
that one of χ1;2 is the lightest of the biquadruplet
particles, which requires us to calculate all the radiative
mass splittings. After SUð2ÞR breaking, the biquadruplet

can be described as two Dirac multiplets which transform
under GSM according to

ðΨ0
B;Ψ−

C;Ψ−−
A ;Ψ−−−ÞT ∼ ð1; 4;−3=2Þ; ð32Þ

ðΨþ
B ;Ψ0

A;Ψ−
A;−Ψ−−

B ÞT ∼ ð1; 4;−1=2Þ: ð33Þ

The mass splitting between these two multiplets is
determined by mWR

and can be suitably chosen so that
the one with Ψ0

A is lightest via mDM < mWR
. Within each

GSM multiplet, the mass splittings then simply depend on
the W and Z masses, with the mass formula well known
from minimal DM [53]. In particular, one finds for the
ð1; 4;−1=2Þ multiplet,

mΨþ
B
−mΨ0

A
≃ −

tan2ðθW=2Þ
2

αmZ ≃ −23 MeV; ð34Þ

mΨ−
A
−mΨ0

A
≃
1

2
αmZ ≃ 350 MeV; ð35Þ

mΨ−−
B
−mΨ0

A
≃
1þ 2 cosðθWÞ
1þ cosðθWÞ

αmZ ≃ 1 GeV: ð36Þ

The neutral component of ð1; 4;−1=2Þ is hence not the
lightest particle, rendering it excluded at first sight. How-
ever, since our Ψ0

A splits further into two Majoranas via
LR mixing, mΨ0

A
→ mΨ0

A
� Δm=2, and we can conceiv-

ably make this splitting Δm large enough to push one of
the Majoranas, say χ1, below the Ψþ

B mass. The χ1�χ2
mass splitting is hence no longer required to be just above
200 keV, but rather above 46 MeV. This requires a very
low LR scale, say mWR

< 5 TeV, probably even lower,
with large WL�WR mixing. This scenario might already
be excluded, but will definitely be conclusively probed
by the LHC. Assuming the scenario to still be viable from
the WR perspective, it is clear that the mass splitting
mΨþ

B
−m χ1 will be tiny, at best Oð10Þ MeV. Such a small

mass splitting can render the charged partner fairly long
lived, potentially wreaking havoc with BBN.
- Relic density:The right relic density for a ð1; 4;−1=2Þ

multiplet can be obtained for a mass around 2.4 TeV [53],
neglecting Sommerfeld effects. Since we necessarily
have a light WR, one can have coannihilations with the
ð1; 4;−3=2Þ multiplet and in particular access to the WR
s-channel resonance, allowing one to increase the DM
mass significantly.
Overall, this scenario is extremely constrained and will

be excluded if we do not find a WR at the LHC.

K. Octet-triplet-singlet 8 + 6 + 1

- Low-scale content: One Majorana color octet, one
Dirac color triplet, and one Majorana singlet, split by a tree-
level mass contribution,
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mð8;1;0Þ ≠ mð3;1;2=3Þ ≠ mð1;1;0Þ ≡mDM; ð37Þ

coming from the ð15; 1; 1ÞPS in 45 or ð15; 1; 3ÞPS in 210.
- Mass splittings: Even if there were no tree-level

splitting between the octet, triplet, and singlet, the
degenerate 15PS would still be split at the one-loop level
once the PS group is broken; see Appendix A. The singlet
ends up lighter than its partners, making it a good DM
candidate; the color octet is the heaviest component. For a
low PS scale ∼103 TeV and the 15PS at the TeV scale, we
use the one-loop Renormalization group equations to run
up to the PS scale and impose the degeneracy condition on
the components of the 15 (Appendix A). For a 1 TeV
singlet mass, this gives triplet and octet pole masses at
around 1.7 TeVand 2.5 TeV, respectively, due to the large-
log enhancement. These colored components then decay
sufficiently fast into the DM candidate. Larger PS scales
lead to larger mass splittings.
- Relic density: From only the radiative splitting above

the relic density cannot be obtained from a standard freeze-
out because an annihilation of the singlet DM candidate
can proceed only through the exchange of a PS scale
gauge boson X which suppresses the annihilation rate too
much. Due to the presence of the color partners one could
nevertheless think about coannihilation between the DM
singlet and these color partners. In more details, as
explained in Appendix B this requires the PS scale gauge
boson mediated processes involving the DM color singlet
and the color triplet to be fast enough to keep the singlet in
thermal equilibrium, such that it transforms into these color
states, the latter states undergoing a thermal freeze-out into
gluons; see Refs. [77,88] for a general scenario of this
kind. This condition of thermal equilibrium gives the
approximate constraint mX=g4 ≲ 900 TeVðm1=TeVÞ3=4.
The experimental lower bound on mX ≳ 2000 TeV of
[34–36] then requires considering DM masses m1≳
3 TeV, as illustrated in Fig. 12.
However, in order that the DM singlet abundance is

sufficiently depleted in this way, this would require a mass
splitting between the singlet and one of the colored states to
be at most 100 GeV [77,88]. The radiative splittings are
hence too big for coannihilation to work, which is the reason
we did not retain an “octet-triplet-singlet 15” scenario in our
list. However, with additional tree-level mass splittings to
8þ 6þ 1 states, one can have the required small mass
splitting to get the observed relic density via coannihilation.
Note that, as explained in Sec. VII, one could also have

only the singlet and octet components at low energy, but
this scenario does not work because the gauge boson X
only couples the singlet to the triplet and the triplet to the
octet. Conversion of a singlet to an octet thus requires a
mediator triplet, which becomes inefficient if the triplet is
much heavier than the singlet and octet. Thus one could
think instead about a scenario with the singlet and triplet
components as the only low-energy components, but this

scenario does not show up from any of the representations
we consider in Sec. VII if one assumes at most one large
fine-tuning between the various contributions in the mass
formula. It could show up nevertheless with more than one
of these tunings; see Sec. VI R.
- LHC: The relevant interactions are given in Eq. (11).

On top of a rather small mass splitting between the singlet
and triplet, successful coannihilation requires a DM mass
above 3 TeV (see Appendix B, especially Fig. 12). The
Dirac color triplet χ3 with electric charge 2=3 will decay
flavor universal according to χ3 → χ0ql̄, which should
be a good signature, especially since the decay length is
typically large in the parameter region of interest, poten-
tially even stable on collider scales. It will then form
R-hadron-like bound states with SM particles [89] which
can lead to specific energy loss signatures [90].
The color octet DM partner within the (15; 1; 1) will

behave similar to a gluino, albeit with different decay
modes. With gluino limits currently around 1.5 TeV [91]
our scenario should still be viable, although we urge the
experimental collaborations to investigate the PS DM
decay chain pp → χ8 χ8 with χ8 → χ3lq̄ → χ0q̄q0l̄0l.
Our gluino can easily be long lived on collider scales,
which gives rise to different signatures [92,93].

L. Octet-triplet-singlet 14 + 1

- Low-scale content: One Majorana color octet, one
Dirac color triplet, and one Majorana DM singlet, the latter
split by a tree-level mass contribution from the other
degenerate states.

mð8;1;0Þ ¼ mð3;1;2=3Þ ≠ mð1;1;0Þ ≡mDM: ð38Þ

This can arise from a low-scale ð15; 1; 1ÞPS multiplet in the
45 representation.
- Mass splittings: The tree-level degenerate octet and

triplet split at loop level by rather large amounts, as derived
in Appendix A. The tree-level mass splitting allows us to
keep the triplet close to the singlet, as relevant for
coannihilation.
- Relic density: Thanks to the tree-level splitting between

the singlet and the triplet, coannihilations are possible for a
low ∼1000 TeV PS scale; see the discussion in Sec. VI K
and in Appendix B.
- LHC: DM and partners are between 3 and 5 TeV (see

Fig. 12), with signatures depending strongly on the mass
splitting and PS scale.

M. Octet-triplet-singlet bidoublet 60

- Low-scale content: A degenerate ð15; 2; 2ÞPS multiplet
in 120, for a total of 60 states at low scale. DM is the
lightest neutral component of the ð1; 2; 2; 0ÞLR LR bidoub-
let within this PS multiplet.
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-Mass splittings: Taking a PS scale above ∼103 TeV, the
biggest splitting within ð15; 2; 2ÞPS comes from the RGE
running as in Appendix A:

mð8;2;2;0ÞLR
mð1;2;2;0ÞLR

≳ 2.5;
mð3;2;2;4ÞLR
mð1;2;2;0ÞLR

≳ 1.7: ð39Þ

The lightest bidoublet ð1; 2; 2; 0ÞLR → ð1; 2; 1=2ÞSM is then
split as in the scenario of Sec. VI A, which, to evade direct-
detection constraints, requires a low LR scale ≲75 TeV.
- Relic density: The phenomenology is similar to the

bidoublet scenario of Sec. VI A, since the colored partners
are too heavy to lead to coannihilation. Away from the WR
and Z0 resonances, this then requires a bidoublet DM mass
of 1.2 TeV [45]. Using the RGE mass splitting, and the
decay formula from Eq. (12), we find an upper bound of
106 TeV on the PS breaking scale in order to let the color
triplet decay before BBN.
- LHC: The color triplets ð3; 2; 1=6ÞSM ⊕ ð3; 2; 7=6ÞSM

and octet ð8; 2; 1=2ÞSM DM partners can be as light as
2 TeV and 3 TeV, respectively, very much in reach of the
LHC. Pushing the PS scale to 106 TeV increases these
masses to 3 TeV and 5 TeV, still rather low. If these are
excluded by LHC searches, one has to put the DM
bidoublet close to the WR or Z0 resonance in order to push
its mass to the multi-TeV range, which correspondingly
increases the colored partner masses.

N. Octet-triplet-singlet bidoublet 32 + 24 + 4

- Low-scale content: Same as the previous scenario, but
with additional tree-level splittings of the ð15; 2; 2ÞPS
within 120, leading to a 32þ 24þ 4 mass spectrum,

mð8;2;2;0ÞLR ≠ mð3;2;2;4ÞLR ≠ mð1;2;2;0ÞLR ≡mDM: ð40Þ

- Mass splittings: The bidoublet ð1;2;2;0ÞLR→ ð1;2;
1=2ÞSM splits as in the scenario of Sec. VI A, which here
too requires a low LR scale ≲75 TeV.
- Relic density: Either as the scenario of Sec. VI A or via

coannihilation with the colored partners for small mass
splittings. An efficient coannihilation would require a PS
scale similar to the one given in Eq. (B11), i.e., close to the
current bound, and <Oð100 GeVÞ mass splittings. The
DM mass scale in both cases is going to be above TeV.
Note that the ð8; 2; 1=2ÞSM is not a good DM candidate

because it either has hypercharge or splits into two
Majorana octets, both options being disfavored [51].
- LHC: The colored DM partners here can easily be

around TeV, which should lead to interesting signatures
at the LHC. Due to the decay via the heavy X boson, these
partners are typically long lived and should thus form R
hadrons [89], which can lead to specific energy loss
signatures [90]. A detailed analysis will be performed
elsewhere.

O. Octet-singlet bidoublet 32 + 4

- Low-scale content: Same as the last two scenarios but
with an additional tree-level contribution that sends the
color triplets, within the (15; 2; 2) in the 120 representation,
to a high scale, leaving a total of 32 states at low scale:

mð8;2;2;0ÞLR ≠ mð1;2;2;0ÞLR ≡mDM: ð41Þ
- Mass splittings: As in the scenario of Sec. VI A for the

components of the bidoublet. The decay of the octet must
necessarily proceed through a virtual triplet going to the
singlet, estimated as Γ ∝ Δm11=ðm8

Xm
2
3Þ. Given the

∼1000 TeV lower bound on the mass of the X boson
this requires the triplet to be not too heavy, depending on
the octet-singlet mass splitting.
- Relic density: As in the scenario of Sec. VI A for large

mass splitting. Here coannihilation with the color octet
would not work since the PS boson X does not couple the
color singlet with the color octet. As a result, this is
essentially the scenario of Sec. VI A with an additional
color octet partner that is irrelevant for the relic abundance
and has an arbitrarily (short) lifetime, at least if the color
triplet is not too heavy.

P. Octet-triplet-singlet SU(2)L triplet 45

- Low-scale content: One ð15; 3; 1ÞPS from a 210
representation is present at low scale for a total of 45
tree-level degenerate states. DM is the neutral component
of the SUð2ÞL triplet.
-Mass splittings: The biggest splitting comes again from

the high PS breaking scale (Appendix A),

mð8;x;y;0ÞLR
mð1;x;y;0ÞLR

≳ 2.5;
mð3;x;y;4ÞLR
mð1;x;y;0ÞLR

≳ 1.7; ð42Þ

and afterwards the wino ð1; 3; 1; 0ÞLR splits radiatively
as usual.
- Relic density: the radiative mass splitting between the

color octet/triplet and the color singlet are too large to allow
successful coannihilation. Thus for the relic density this
scenario is like the wino of the Sec. VI B scenario above,
which fixes the wino mass to 2.7 TeV. This implies a color
triplet (octet) mass above 4.6 TeV (6.8 TeV). Letting the
triplet decay before BBN puts an upper bound of∼106 TeV
on the PS scale, which then translates into upper limits on
the triplet and octet masses of 6.2 TeV and 11.9 TeV,
respectively. We note again that this wino scenario is
disfavored by indirect detection.
- LHC: The colored partners in this scenario are rather

heavy and thus possibly out of reach of the LHC, but as
always could be probed at a future 100 TeV collider.

Q. SM singlet charged under extra U(1)

- Low-scale content: In none of the scenarios above,
which are all based on assuming a single real DM
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representation, do we have only a singlet DM candidate
with no partner from the same representation at low scale.
This shows that a DM singlet scenario without partners
does not result at all generically from a GUT theory, at least
for a fermion candidate. However, it turns out that such a
scenario can result from SOð10Þ if one assumes a complex
DM representation and its conjugate, for instance the 126
representation and its 126 conjugate, with the singlet
coming from the ð10; 1; 3ÞPS in these representations; see
Sec. VII G.
- Mass splittings: The Dirac singlet is the only state at

low scale, i.e., no low-scale mass splittings here.
- Relic density: The singlet is charged under the extra

Uð1Þ in the intermediate G3211 subgroup [47]. The relic
density constraint requires this subgroup to be broken at
low energy, so that DM can annihilate into a pair of Z0 or
through an s-channel Z0-mediated transition into SM
fermions. In Fig. 6 we show the MICROMEGAS [82]
result for the relic density as well as constraints from direct
detection (XENON1T [63]).
- LHC: While the DM candidate itself is difficult to see

at the LHC, we still have dilepton Z0 searches [48].
As shown in Fig. 6 these searches exclude Z0 masses
below 4–4.3 TeV, depending on the DM mass (which can
lower the Z0 → l−lþ branching ratio). As with most other
Z0-mediated DM models one is forced to sit close to the
resonance mΨ ∼mZ0=2 in order to evade constraints. The
DMmass is then necessarily between 1.3 TeVand∼50 TeV.

R. Other scenarios

As noted in Sec. VII, a 210 DM representation can also
lead to scenarios with more states and/or mass splittings,
such as the “octet-triplet-singlet SUð2ÞL triplet 24þ18þ3
scenario,” where the entire (15; 3; 1) is present at low scale
with tree-level splitting between the color octets, triplets,
and singlets, and similarly the “octet-triplet-singlet
SUð2ÞR triplet 24 þ 18 þ 3 scenario” from the (15; 1; 3).
Combinations of the last two scenarios are also possible,
leading to the “octet-triplet-singlet SUð2ÞLþR triplet n

scenarios,” with n equal to 48þ 36þ 6 or 3þ 3þ 18þ
18þ 24þ 24 or 3þ 3þ 42þ 42 (with in the latter case
degenerate color triplet and octet). As stated in Sec. VII we
will only mention these complicated possibilities but not go
into details. Further scenarios for the 210 DM representa-
tion (which we do not list in Sec. VII) arise if one considers
the paths going through an additional intermediate G3211

subgroup. A further contribution from a vacuum expect-
ation value leading to this subgroup can split states within
the same LR multiplet, in particular the charged and neutral
component of a right-handed triplet, so that the “3” above
in the ð15; 1; 3ÞPS in 210 becomes a 2þ 1.
As emphasized also in Sec. VII, we will not consider

explicitly models whose low-energy mass spectrum would
be the result of more than one fine-tuning between mass
scale contributions much larger than the DM scale. The
systematic determination of such cases would bring us too
far, and this would not bring many new different cases. One
interesting exception, i.e., model we do not get with at most
one large fine-tuning, is the “singlet-triplet 1þ 6” scenario,
involving at low scale one Dirac color triplet and one
Majorana singlet, split by a tree-level mass contribution,

mð3;1;2=3Þ ≠ mð1;1;0Þ ≡mDM; ð43Þ

coming from the ð15; 1; 1ÞPS in 45 or ð15; 1; 3ÞPS in 210.
Here DM is in the form of the color singlet coannihilating
with the color triplet, just as explained in Appendix B.
One could also think about scenarios where the DM

relic density is produced nonthermally but this would
bring us too far, too. Just as an example note that the
scenario of Sec. VI K where all the 15 states would be
degenerate at tree level, so an octet-triplet-singlet 15
scenario which does not appear in the list above because
it cannot lead to the observed relic density thermally,
could work with nonthermal DM production; see the brief
discussion in Sec. VII B.

VII. DETAILED DETERMINATION OF
THE CANDIDATES

Having discussed the many possible low-scale mass
hierarchies among the various DM partners, we will now
show in detail how we obtained these scenarios from the
top-down perspective. To this end we will discuss the case
of each possible real chiral DM representation from the
smallest ones, from the 10 up to 2100. As said above we
make the assumption that DM comes from a single SOð10Þ
representation. At the end of this section we will never-
theless also consider the complex 126 case, which requires
both a 126 and a 126, as it displays new interesting features.
All along this discussion, we will also see that it is always
necessary to make the DM candidate light by means of a
fine-tuned cancellation; otherwise it would be drawn to the
scale of its heaviest GUT partner, which is at least as heavy
as 105 TeV. As explained at the end of Sec. IV, to

FIG. 6. The correct relic density (black lines) of a Dirac singlet
from 126 coupled to a low-scale Z0 from G3211, as well as
constraints from XENON1T (blue line) and CMS (red line).
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systematically determine the possible mass spectra, we will
proceed directly from the tree-level master mass formula,
considering the various possible hierarchies of mass con-
tributions in this formula, without specifying what are all
the explicit breaking paths which can lead to such a
hierarchy. These can be obtained easily by adding scalar
representations that do not contribute to the mass formula
to the scalar representations assumed in the mass formula.

A. Fermionic 10 candidate

We start our detailed discussion with the smallest non-
trivial SOð10Þ representation, a chiral 10. Under the Pati-
Salam G422, and its G3221, G3211, and SM subgroups the
real 10 decomposes as follows:

10⟶
PS ð1; 2; 2Þ ⊕ ð6; 1; 1Þ

⟶
LR ð1; 2; 2; 0Þ ⊕ ð3; 1; 1;−2Þ ⊕ ð3̄; 1; 1; 2Þ
⟶
3211ð1; 2; 1; 0Þ ⊕ ð1; 2;−1; 0Þ ⊕ ð3; 1; 0;−2Þ ⊕ ð3̄; 1; 0; 2Þ

⟶
SM

�
1; 2;

1

2

�
⊕

�
1; 2;−

1

2

�
⊕

�
3; 1;−

1

3

�
⊕

�
3̄; 1;

1

3

�
ð44Þ

(see also Fig. 7) and eventually forms one massive Dirac
color triplet ð3; 1;− 1

3
Þ and one Dirac electroweak doublet

ð1; 2; 1
2
Þ. The product rule

10 ⊗ 10 ¼ 1S ⊕ 45A ⊕ 54S ð45Þ

shows that the 10 is allowed an SOð10Þ invariant mass term
m1 and can be split at tree level only by a 54 VEV v54,
seeing as a coupling to 45 is antisymmetric and hence
vanishes in our minimal setup. We find the Dirac masses

mð1;2;1
2
Þ ¼ m1 þ 3y54v54; ð46Þ

mð3;1;−1
3
Þ ¼ m1 − 2y54v54; ð47Þ

y54 being the conveniently normalized Yukawa coupling.4

The only possible DM candidate resides in the electroweak
Dirac doublet ð1; 2; 1

2
Þ with mass in the TeV range. This

leads to the LR bidoublet 4 scenario where the “4” refers to
the number of fermionic d.o.f. at low scale. Its low-energy
phenomenology (see the scenario of Sec. VI A), in par-
ticular constraints on mass splittings, implies an LR scale
broken below 75 TeV [45]. This means also that paths
proceeding through G421 are excluded for this scenario
because such a group must be broken above ∼1000 TeV,
implying aWR with a mass of at least this scale, leading to a
too small neutral mass splitting. To have a G3211 symmetry

at an intermediate scale between the LR breaking scale and
the Electroweak scale is a possibility.
This leaves the question of what happens to the Dirac

fermion ð3; 1;− 1
3
Þ, the SOð10Þ partner of the bidoublet.

Clearly, its presence at low scales would be very constrained
fromheavy nuclei searches, etc., sowe have tomake sure it is
heavier than the Electroweak doublet and decays sufficiently
fast. Since it does not belong to the samePSmultiplet asDM,
it is a “high-scale DM partner”, as defined in Sec. IV. This
means that its decay proceeds via the virtual GUT-scale
gauge bosonsU andV (see Table I and Fig. 7), which implies
that its mass must be at leastmð3;1;−1=3Þ > 105 TeV, in order
that it decays beforeBBN.As theGUT-gauge-boson induced
radiative splitting of the 10 is insufficient for this purpose,
one has to rely on a fine-tuned cancellation of the bare mass
m1 and the 54 VEV v54 in Eqs. (46) and (47). It is thus
mandatory that there exists a 54 representation which
acquires a VEV. Note, however, that v54 is not necessarily
the onlyVEV contributing to SOð10Þ breaking (seeing aswe
need some additional PSbreakingVEVs anyway), so it could
conceivably be lower than the naive GUT-scale 1013 TeV;
sincewe need it above 105 TeV, this would still imply a fine-
tuning of 1 in 105 or more to obtain the required multiplet
splitting. This mass splitting problem turns out to be present
in all of our simple GUT DM models. (A recent attempt at
avoiding this problem requires two copies of the 10 [14].)
This fine-tuning aside, the 10 makes for a perfectly viable
SOð10ÞDMcandidate, in the form of the neutral component
of a low-scale quasidegenerate fermion bidoublet [45],
requiring in summary a 54 VEV above 105 TeV and a
low-scale LR scale below 75 TeV [i.e., a path not going
through SUð5Þ or G421], with or without an extra G3211

breaking step at a lower scale.

B. Fermionic 45 candidate

The adjoint representation of SOð10Þ contains several
promising DM candidates, as can already be seen from the
PS decomposition

FIG. 7. The fermionic 10 components mass from the SOð10Þ
scale down to low energies. There is only one tree-level mass
splitting, by the h54i, and all other splittings arise radiatively. In
blue we also indicate the massive gauge bosons relevant for the
(tree-level) decays of the DM partners into the lightest DM state.

4The Clebsch-Gordan coefficients match those of Ref. [94].
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45⟶
PS ð1; 3; 1Þ ⊕ ð1; 1; 3Þ ⊕ ð15; 1; 1Þ ⊕ ð6; 2; 2Þ; ð48Þ

where the first three components contain electrically neutral
particles. The product rule

45 ⊗ 45 ¼ 1S ⊕ 45A ⊕ 54S ⊕ 210S ⊕ 770S ⊕ 945A

ð49Þ
illustrates that the masses can be split at tree level by scalar
VEVs h54i, h210i, and h770i. To avoid large representations,
we will restrict ourselves to scalars of dimension ≤ 210.
Our discussion is greatly simplified by the fact that we can

always use the matter-parity even scalar representations 126
and 45 to go down the PS breaking path (Fig. 2) without
giving any mass contribution to the 45DM representation. It
implies that to determine the possible mass spectra scenarios
we can just discuss them looking directly at themass formula,
considering the various possible hierarchies one could have
between the various possible mass contributions, without
needing to consider the breaking paths explicitly. This can be
done even if for what concerns the mass scale of the various
SOð10Þ gauge bosons (and radiative mass splittings induced
by one-loop diagrams involving these gauge bosons) what
matters is the full breaking path. In practice to discuss the
various possible low-energy spectra the mass formula can
give, we will discuss them according to down to which
subgroup we assume that tree-level mass contributions are
generated, starting from G422, considering subsequently
G3221 and G3211.

1. Tree-level masses down to G422

If the SOð10Þ breaking path goes through the G422

subgroup and is afterwards broken only by h126i and/or
h45i, the general tree-level mass formula is

mð1;3;1Þ ¼ m1 − 6m54 þm210ð1;1;1Þ ; ð50Þ

mð1;1;3Þ ¼ m1 − 6m54 −m210ð1;1;1Þ ; ð51Þ

mð15;1;1Þ ¼ m1 þ 4m54; ð52Þ

mð6;2;2Þ ¼ m1 −m54; ð53Þ

where everywhere in this work we will define

mX ≡ yXvX; ð54Þ
see Appendix C for more details. The mass contribution
m210ð1;1;1Þ from the 210 clearly breaks the left-right exchange
D parity [30], whereas m54 conserves it. Whatever is the
structure of the various terms in these equations, the
(6; 2; 2) mass needs to be above 105 TeV because it is a
“high-scale DM partner”, as defined in Sec. IV, so TeV-
scale DM demands here too a fine-tuned cancellation. To
discuss the various possibilities we will first consider a

single scalar VEV mass contribution and subsequently
consider the general case.
Tree-level mass contribution only from 54: If there is no

210mass contribution but only a 54 one, the left- and right-
handed triplets are degenerate at tree level due to D parity.
This common mass mð1;3;1Þ ¼ mð1;1;3Þ ¼ OðTeVÞ can be
tuned, keeping the other 45 components above 105 TeV.
The LR group breaking scale must be below 106 TeV in
order for the charged right-handed wino partner to have
decayed by the BBN time, or even below ∼100 TeV due to
the relic density constraints (which given the fact that G422

must be broken above ∼103 TeV requires G422 to be
broken to G3221 by an extra 45 in order to decouple the
PS and LR scales); see the scenario of Sec. VI E. This is the
“LR triplet 6 scenario,” where the “6” indicates that there
are six low-energy states degenerate at tree level.
Alternatively one could have the (15; 1; 1) to be the

lightest 45 component (with all other 45 components above
105 TeV), as this includes a total singlet after PS breaking:

ð15; 1; 1Þ⟶LR ð1; 1; 1; 0Þ ⊕ ð8; 1; 1; 0Þ ⊕ ð3; 1; 1; 4Þ
⊕ ð3̄; 1; 1;−4Þ: ð55Þ

This scenario cannot lead to the observed relic density in a
thermal way, neither through annihilation nor through
coannihilation (the latter because the radiative splitting
induced is too large for that); see the discussion of the
scenario of Sec. VI K.
One could think about nonthermal production of the

singlet with a low reheating temperature. This could be
achieved assuming a reheating temperature sufficiently far
below the PS scale so that the singlet is not put in
equilibrium but is at most nonthermally produced [95].
This is easier to achieve for a large PS scale, which in turn
increases the mass splitting among the 15 components (see
Fig. 10). This should work, but will of course lead to an
unwelcome dependence on the initial conditions. Still, we
end up with colored DM partners in the TeV range that can
be searched for at the LHC, mimicking to some degree
gluinos and squarks. We will call this scenario the
“octet-triplet-singlet nonthermal 15 scenario,” which we
mentioned as a possible “other scenario” in Sec. VI R. To
be more explicit, if the reheating temperature is below the
PS scale, the singlet χ1 only has dimension-six interactions
of the form χ̄1γ

μ χ3q̄γμl=v2PS with the color triplet χ3,
ignoring the color octet partner for simplicity. As shown in
Ref. [96], the UV freeze-in DM abundance from such a
nonrenormalizable operator should scale as

ΩDM ∝ mDMmPlT3
RH=v

4
PS; ð56Þ

assuming the hierarchy mDM ≪ TRH ≪ vPS and ignoring
numerical prefactors. Fixing mDM ¼ 1 TeV for illustration
purposes, we can use the radiative mass splitting of χ1 and
χ3 (Appendix A) to put an upper bound of vPS < 7 ×
105 TeV on the PS scale by demanding the triplet to decay
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before BBN. The triplet mass is then around 2 TeV,
depending on the exact value of vPS. Note that the singlet
is indeed out of chemical equilibrium in this case; see
Fig. 12. Analogous to Ref. [96] we can then estimate a
required reheating temperature around 1 TeV in order to
obtain the correct relic abundance, which is low due to the
rather low PS scale. Properly taking the fermion masses
into account would certainly change this number some-
what, but it seems likely that one can adjust the reheating
temperature to obtain the desired DM abundance. Let this
suffice as an example for non-freeze-out DM from GUTs; it
should be clear that there are far more scenarios that could
be discussed. We will not consider any other examples,
focusing instead on thermal scenarios.
Only 210ð1;1;1Þ: The VEVof a 210ð1;1;1Þ scalar field has an

opposite mass contribution to both L and R triplets,
manifestly breaking D parity. In this case since the
SOð10Þ conserving mass term m1 must be at least of order
105 TeV in order that the (6; 2; 2) components are at least at
this scale, the (15; 1; 1) is also at this scale and the only
possibility is to have the (1; 3; 1) or the (1; 1; 3) at low scale
but not both. The former leads to the SUð2ÞL triplet 3
scenario or “wino” scenario of Sec. VI B. If instead the
SUð2ÞR triplet is alone at low scale, this leads to a singlet
DM scenario with a charged partner heavier by an amount
of up to GeV, depending on the WR mass. This is the
SUð2ÞR triplet 3 scenario of Sec. VI C.
General case: 54 and 210ð1;1;1Þ: With respect to the case

with only a 54 representation above, this case brings an
additional tree-level splitting between the (1; 3; 1) and the
(1; 1; 3). If this splitting is far above the DM mass, we get
the same phenomenology as with only a 210ð1;1;1Þ: a single
SUð2ÞL triplet or a single SUð2ÞR triplet candidate.
Alternatively if the 210ð1;1;1Þ mass contribution is of order
of the DM mass, one ends up with both L and R triplets at
low scale but with a splitting of order of their mass. With
respect to the case above with only a 54 representation, this
brings the possibility to have independent masses for both
triplets, still with both neutral components of the triplets
constituting the DM. This leads to much more freedom for
the masses of these triplets and allows one to alleviate largely
the strong indirect detection constraints which hold for a
pure wino or for the case where both triplets are degenerate.
This is the “LR triplet 3þ 3 scenario” of Sec. VI F. It can be
mentioned here that with more than one large fine-tuning, we
could also have at low scale any of the triplets (but not both)
together with the (15; 1; 1) representation. This shows that
with more fine-tuning we can sometimes get more d.o.f. at
low scale but not necessarily whatever states.

2. Tree-level masses down to G3221

With respect to the previous cases above, this case
necessarily involves a 210ð15;1;1Þ VEV, which conserves
D parity. The only net effect of this scalar field is to bring
different mass contributions to the LR multiplets within the
PS (15; 1; 1) multiplet:

mð1;3;1;0Þ ¼ m1 − 6m54 þm210ð1;1;1Þ ;

mð1;1;3;0Þ ¼ m1 − 6m54 −m210ð1;1;1Þ ;

mð1;1;1;0Þ ¼ m1 þ 4m54 − 2m210ð15;1;1Þ ;

mð3;1;1;4Þ ¼ m1 þ 4m54 −m210ð15;1;1Þ ;

mð8;1;1;0Þ ¼ m1 þ 4m54 þm210ð15;1;1Þ ;

mð3;2;2;−2Þ ¼ m1 −m54: ð57Þ
This extra mass contribution does not change anything in
the scenarios above which have SUð2ÞL and/or SUð2ÞR
triplet(s) at low scale [except if we were allowing for more
than one tuning in case one can get both triplets and the
(1; 1; 1; 0) at low scale, with all other states at a high scale].
Thus, beside this special case, to add a v210ð15;1;1Þ contri-

bution is only relevant for the case where DM is made of
the (1; 1; 1; 0) singlet within the (15; 1; 1). The addition of
the m210ð15;1;1Þ contribution can make the (1; 1; 1; 0) singlet a
viable DM candidate, provided this contribution is below
TeV. In this case the singlet, triplet, and octet within the
(15; 1; 1) are all present at low scale, with a mass splitting
between the singlet and triplet which can have the value
necessary for having the right amount of coannihilationof the
singlet into the triplet (see Appendix B). This is the “octet-
triplet-singlet 8þ 6þ 1 scenario” of Sec. VI K. Note never-
theless that this requires the mass splittings in the
Oð10 GeVÞ range [77] despite the fact that the pure radiative
splitting is more of order TeV (see Appendix A), which
implies a cancellation of the tree-level and radiative mass
splittings at the few percent level. This also requires a rather
low PS scale in order to keep the singlet in chemical
equilibrium during coannihilation, roughly mX=g4 ≲
1500 TeVðmDM=2 TeVÞ3=4, fairly close to meson con-
straints (see Appendix B). The phenomenology is then
similar toRefs. [77,88], althoughwehave two coannihilation
partners, which change the numbers somewhat.
With this low PS scale, the tiny mass splitting the lifetime

of the (8; 1; 1; 0) and (3; 1; 1; 4) is just about enough to
satisfy BBN constraints (see Fig. 12).5 This makes the
colored partners in particular stable on collider scales, which
leads to new signatures discussed in Sec. VI K.

3. Tree-level masses down to G3211

So far we have ignored a possible VEV v210ð15;1;3Þ. The
presence of such a VEV implies that the lowest group down
to which one gets tree-level mass contributions is G3211.
Under this group the three LR multiplets which contain a
DM candidate decompose as

ð1; 1; 1; 0Þ → ð1; 1; 0; 0Þ; ð58Þ

5Assuming a mass splitting of 100 GeV (10 GeV), BBN gives
a lower bound on the PS scale of 4 × 104 TeV (2 × 103 TeV),
still compatible with the constraints of Table I.
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ð1; 3; 1; 0Þ → ð1; 3; 0; 0Þ; ð59Þ

ð1; 1; 3; 0Þ → ð1; 1; 0; 0Þ0 ⊕ ð1; 1; 2; 0Þ: ð60Þ

At this level four VEVs can contribute to the mass formula
leading to a more involved mass pattern:

mð1;1;0;0Þ0 ¼ m1 þ Aþ 1

2

ffiffiffiffi
B

p
;

mð1;1;0;0Þ ¼ m1 þ A −
1

2

ffiffiffiffi
B

p
;

mð1;3;0;0Þ ¼ m1 − 6m54 þm210ð1;1;1Þ ;

mð1;1;2;0Þ ¼ m1 − 6m54 −m210ð1;1;1Þ ;

mð3;1;0;4Þ ¼ m1 þ 4m54 −m210ð15;1;1Þ ;

mð8;1;0;0Þ ¼ m1 þ 4m54 þm210ð15;1;1Þ ;

mð3;2;−1;−2Þ ¼ m1 −m54 þm210ð15;1;3Þ ;

mð3;2;1;−2Þ ¼ m1 −m54 −m210ð15;1;3Þ ; ð61Þ

with

A≡ −m54 −
1

2
m210ð1;1;1Þ −m210ð15;1;1Þ ; ð62Þ

B≡ ð10m54 þm210ð1;1;1Þ − 2m210ð15;1;1Þ Þ2 þ 24m2
210ð15;1;3Þ :

ð63Þ

Thus a v210ð15;1;3Þ VEV modifies the masses of the LR
singlet, of the neutral component of the SUð2ÞR triplet, and
of two color triplets out of the PS sextet. These four
contributions are different, as the CG coefficient is different
for each one. Most importantly, the v210ð15;1;3Þ VEV also
mixes the singlets, which leads to the square root expression
in their masses from a matrix diagonalization. The dis-
cussion of this case depends on whether the mass con-
tributionm210ð15;1;3Þ is smaller than any of the other tree-level
mass contributions.
Leadingm210ð15;1;3Þ : By leadingm210ð15;1;3Þ contribution, we

here mean leading with respect to the contribution of the
other tree-level mass contribution in the

ffiffiffiffi
B

p
term [includ-

ing for instance if SOð10Þ is broken only by 45 represen-
tations on top of this one]. A leading m210ð15;1;3Þ ∼ TeV
contribution is excluded because, in this case, either all
contributions from all scalars are small, which leaves all 45
particles at low scale [including high-scale DM partners
such as the ð6; 2; 2ÞPS], or there is fine-tuned cancellation of
the various other contributions in the

ffiffiffiffi
B

p
term, which may

leave one of the DM candidates at a low scale only at the
price of several tunings. To have instead m210ð15;1;3Þ ≫ TeV
is compatible with a low-scale DM singlet, (1; 1; 0; 0) or
ð1; 1; 0; 0Þ0, alone at low scale, but in this case this singlet

has nothing to annihilate into and nothing to coannihilate
with. A large leading m210ð15;1;3Þ ≫ TeV is also compatible
with having the SUð2ÞL triplet at low scale. In this case we
go back to the situations with low-scale triplets above but
with the neutral SUð2ÞR triplet component necessarily at a
much higher scale. This may leave the charged SUð2ÞR
triplet components at a lower scale, but this is excluded
because in this case they have nothing to decay into. Thus
one concludes that a leading m210ð15;1;3Þ ≫ TeV contribution
is compatible only with having the SUð2ÞL triplet at low
scale, i.e., the SUð2ÞL triplet 3 scenario of Sec. VI B, which
also requires a large m210ð1;1;1Þ contribution in order to split
the charged R triplet components from the L triplet.
Subleading m210ð15;1;3Þ : If m210ð15;1;3Þ is smaller than the

other tree-level mass contributions in the
ffiffiffiffi
B

p
term, the

(1; 1; 0; 0) or ð1; 1; 0; 0Þ0 singlets receive a “seesaw” sup-
pressed contribution from this m210ð15;1;3Þ :

mð1;1;0;0Þ ≃m1 − 6m54 −m210ð1;1;1Þ

−
6ðm210ð15;1;3Þ Þ2

10m54 − 2m210ð15;1;1Þ þm210ð1;1;1Þ
; ð64Þ

mð1;1;0;0Þ0 ≃m1 þ 4m54 − 2m210ð15;1;1Þ

þ 6ðm210ð15;1;3ÞÞ2
10m54 − 2m210ð15;1;1Þ þm210ð1;1;1Þ

: ð65Þ

To have this contribution be subleading is somewhat to be
expected as it breaks a smaller group than the other
contributions. This allows an interesting situation where
this seesaw contribution is of order the DM mass or lower,
even though all breaking scales are much larger. For
example, for the denominator of order the GUT scale
one gets a contribution of order, say 1 GeV or 1 TeV, if
m210ð15;1;3Þ ∼ few 104 TeV or ∼106 TeV, respectively. In this
case this seesaw contribution allows one to shift the mass of
each of both singlets accordingly. This does not affect much
the scenarios above which, without this contribution, lead
to the SUð2ÞL triplet 3 scenario of Sec. VI B, but does affect
the frameworks above which, without this contribution,
lead one of these two singlets at a low scale.
In practice this means that the scenarios above where the

neutral component of the SUð2ÞR triplet was DM now
receives an extra seesaw contribution for this neutral
component, leading to a DM candidate whose mass is
given by Eq. (65). Thus these scenarios, which are the LR
triplet 6 scenario of Sec. VI E, as well as the SUð2ÞR triplet
3 scenario of Sec. VI C above, as well as the LR triplet
3þ 3 scenario of Sec. VI F become a “LR triplet 5þ 1
scenario” of Sec. VI G [where the SUð2ÞL triplet which is
degenerate at tree level with the charged SUð2ÞR triplet
components], a “SUð2ÞR triplet 2þ 1 scenario”: of
Sec. VI D, and a “LR triplet 3þ 2þ 1 scenario” of
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Sec. VI H, respectively. Note that, given the fact that these
scenarios require the WR mass to be below ∼100 TeV
(in order that the R triplet component does not overclose the
Universe; see Sec. VI C), this gives an accordingly upper
bound on m210ð15;1;3Þ because h210ð15;1;3Þi contributes to
mWR

. To have a seesaw contribution not larger than
∼10 GeV (as required by the relic density constraint,
Fig. 4) requires that the denominator of the seesaw
contribution is of order 107 TeV (for a LR scale of order
100 TeV), which is compatible with the fact that some of
the mass contributions in the denominator must be larger
than 105 TeV to make the “high-scale partners” heavy
enough [with m1 þ 4m54 − 2m210ð15;1;1Þ in Eq. (65) tuned to
be of order TeV].
Let us give one quantitative example on how to obtain

the SUð2ÞR triplet 2þ 1 scenario of Sec. VI D in this setup.
To minimize fine-tuning we use the 45 VEV h45ð15;1;1Þi >
1012 TeV to break SOð10Þ to G

=D
3221 (see Fig. 2) without

contributing to the DM masses. We further pickm210ð1;1;1Þ ¼
106 TeV and m210ð15;1;1Þ ¼ 4 × 105 TeV.
The SOð10Þ-invariant mass term m1 has to be fine-tuned

to push the (1; 1; 3; 0) mass scale below TeV:
m1 ¼ ð106 − 0.25Þ TeV. This gives us the SUð2ÞR triplet
with mass 0.25 TeV and all other 45 partners with mass
above 105 TeV. Finally we turn on m210ð15;1;3Þ ¼ 15 TeV in
order to split the SUð2ÞR triplet components by 6 GeV
through the seesaw contribution. As far as gauge boson
masses are concerned, the colored U, V, and X have GUT-
scale masses, whereas WR is potentially at the 10 TeV
scale. A full breaking to the SM requires furthermore a
h126i, which should be below 10 TeV in order not to
contribute too much to mWR

. In this case we realize the
SUð2ÞR triplet 2þ 1 scenario of Sec. VI D. Note that the
DM mass splittings depend on the mass terms mX ¼ yXvX,
whereas the gauge boson masses do not depend on the
Yukawa couplings but rather on the gauge couplings.
Above we have essentially taken all Yukawas and gauge
couplings to be of order one for simplicity, but with these
additional parameters the relevant scales are subject to
much more freedom.
Coming back to our systematic discussion of subleading

m210ð15;1;3Þ , the only other possibility is to consider an order
TeV seesaw contribution in Eq. (65), i.e., considering as
DM candidate the singlet in the (15; 1; 1). In this case where
all the 15 components were degenerate at tree level,
Eq. (53) (which was not working as explained above)
now becomes an “octet-triplet-singlet 14þ 1 scenario” of
Sec. VI L where the triplet and octet are still degenerate at
tree level. The octet-triplet-singlet 8þ 6þ 1 scenario,
Eq. (57), remains an octet-triplet-singlet 8þ 6þ 1 sce-
nario, but with more sources of tree-level mass splitting.
The octet-triplet-singlet 14þ 1 scenario is viable through
coannihilation, since it allows one to split the singlet from

the triplet by just the right amount at the price of a tuning at
the few percent level; see the discussion for the octet-
triplet-singlet 8þ 6þ 1 scenario above (requiring the
seesaw induced splitting to be of order ∼TeV).
Finally note that the last possibility is to have a seesaw

contribution in Eqs. (64) and (65) much larger than ∼TeV.
This necessarily splits any SM singlet DM candidates in the
45 from any other multiplet (by such a large seesaw mass
contribution), excluding these singlets as DM candidates
(at least again if one invokes only one large fine-tuning in
the mass formula). Thus this is a viable option only along
the pure SUð2ÞL triplet 3 scenario of Sec. VI B.

C. The 54 DM candidates

The 54 only receives tree-level mass splittings from a 54
VEV (Table VI), making the discussion very simple:

mð1;1;1Þ ¼ m1 þ 2m54;

mð1;3;3Þ ¼ m1 þ 6m54;

mð6;2;2Þ ¼ m1 þm54;

mð200;1;1Þ ¼ m1 − 4m54: ð66Þ
It contains one PS singlet, which only has GUT-suppressed
annihilations and thus overcloses the Universe if it was ever
in thermal equilibrium. Freeze-in should work, but will not
be discussed here. The other candidate is the bitriplet
(1; 3; 3) [45], leading to the bitriplet 9 scenario of Sec. VII.
This requires a rather low LR scale, below 100 TeV.

D. The 120 DM candidates

The 120 fermion representation with decomposition

120⟶
PS ð1; 2; 2Þ ⊕ ð6; 1; 3Þ ⊕ ð6; 3; 1Þ
⊕ ð10; 1; 1Þ ⊕ ð15; 2; 2Þ; ð67Þ

contains two colorless SUð2ÞL × SUð2ÞR bidoublets whose
neutral components are DM candidates. Masses for the
various components come from

120 ⊗ 120 ¼ 1S ⊕ 45A ⊕ 54S ⊕ 210S

⊕ 210A ⊕ 770S ⊕ � � � : ð68Þ
For the fermionic 120 representation there is no mass
contribution coming from a h45i or h126i scalar VEV,
which greatly simplifies the discussion, just as for the 45
fermion DM representation. Here too we will discuss the
120 case as a function of the last subgroup down to which
tree-level mass contributions are generated.

1. Tree-level masses down to G422

If the SOð10Þ breaking chain goes through the G422

subgroup, the various components may receive, on top
of a universal SOð10Þ invariant mass m1, two mass
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contributions, from v54 and v210ð1;1;1Þ , the latter breaking D
parity explicitly:

mð1;2;2Þ ¼ m1 − 9m54;

mð6;1;3Þ ¼ m1 − 4m54 −m210ð1;1;1Þ ;

mð6;3;1Þ ¼ m1 − 4m54 þm210ð1;1;1Þ ;

mð10;1;1Þ ¼ m1 þ 6m54;

mð15;2;2Þ ¼ m1 þm54: ð69Þ

The (10; 1; 1) as well as the (6; 1; 3) and (6; 3; 1) are high-
scale DM partners, so that they must lie above 105 TeV.
Since both bidoublets as well as the (10; 1; 1) receive mass
contributions only from m1 and the 54, a TeV scale DM
candidate necessarily requires a 54 contribution above
105 TeV fine-tuned with m1.
Tree-level mass contribution only from 54: In this case

one can get either of both bidoublets at low scale. If the
bidoublet singled out at low energy is the (1; 2; 2) one gets
the same low-energy “bidoublet 4 scenario” of Sec. VI A as
for the 10 representation above. If instead it is the bidoublet
in (15; 2; 2) which appears at low scale, it comes with the
entire (15; 2; 2) multiplet at low scale, that is to say with a
color-octet bidoublet and two color-triplet bidoublets, for a
total of 60 tree-level degenerate particles at low scale. In
this case one gets radiative splittings between the octet,
triplet, and singlet which are similar to the ones reported
above for the (15; 1; 1) in the 45 representation (see also
Appendix A). This means that the radiative splittings are
large enough for these color partners to decay before they
could coannihilate with the singlet DM particles. Thus
these color partners do not play any role for the relic
density, and the relic density is obtained in the same way as
for the (1; 2; 2) candidate; i.e., the fact that these color
singlets form a bidoublet allows one to get the relic density
again along the lines of the “bidoublet 4 scenario” of
Sec. VI A. This distinguishes this (15; 2; 2) in 120 case
from the (15; 1; 1) of PS in the 45 case above. We call this
scenario the “octet-triplet-singlet bidoublet 60 scenario” of
Sec. VIM. As already said in Sec. VI M, any bidoublet
scenarios must have the LR scale below 75 TeV in order to
split the resulting neutral Dirac state into two Majorana
ones which satisfy the direct detection constraints [45].
General case: 54 and 210ð1;1;1Þ: With respect to the case

with only a 54 representation, this case brings an extra mass
contribution to the sextets of PS. But since these do not
contain any DM candidates and must still have a large
mass, to add such a contribution does not bring any new
feature.

2. Tree-level masses down to G3221

The mass splittings for this case are given in Table VI,
repeated here for convenience:

mð1;2;2;0Þ ¼ m1 − 9m54;

mð3;1;3;−2Þ ¼ m1 − 4m54 −m210ð1;1;1Þ ;

mð3;3;1;−2Þ ¼ m1 − 4m54 þm210ð1;1;1Þ ;

mð1;1;1;−6Þ ¼ m1 þ 6m54 − 3m210ð15;1;1Þ ;

mð3;1;1;−2Þ ¼ m1 þ 6m54 −m210ð15;1;1Þ ;

mð6;1;1;−2Þ ¼ m1 þ 6m54 þm210ð15;1;1Þ ;

mð1;2;2;0Þ0 ¼ m1 þm54 − 2m210ð15;1;1Þ ;

mð3;2;2;4Þ ¼ m1 þm54 −m210ð15;1;1Þ ;

mð8;2;2;0Þ ¼ m1 þm54 þm210ð15;1;1Þ : ð70Þ

This case necessarily involves a m210ð15;1;1Þ which gives a
mass contribution to all 120 states except to the (1; 2; 2)
bidoublet and to the color triplets from the PS sextets.
Tree-level mass contribution only from m210ð15;1;1Þ : This

could leave the ð1; 2; 2; 0Þ0 from ð15; 2; 2ÞPS as the only
low-scale multiplet, in which case we get the viable
“bidoublet 4 scenario” of Sec. VI A.
Tree-level mass contribution only from m210ð1;1;1Þ and

m210ð15;1;1Þ : This case is interesting for two different reasons.
First of all, even if this case involves two VEVs, it remains
“minimal” in the sense that it involves two different mass
contributions which can come from a single scalar 210
field. Second, in this case, all states receive mass contri-
butions from the VEVs of scalar fields except one, the PS
singlet bidoublet (1; 2; 2; 0), which receives a contribution
only from the SOð10Þ invariant m1. Since the latter has no
relation to the GUT scale, the bidoublet can easily sit at the
TeV scale, while all other states naturally receive mass
contributions of order of the GUT scale from h210i. Thus,
here there is seemingly no need for a cancellation between
two large contributions to have a DM candidate at low
scale, i.e., no need for tree-level fine-tuning. However, still
one will need a fine-tuning at the level of the loop-mass
contribution because this particular fermion mass is not
protected by a symmetry; i.e., it is not protected from
renormalization effects proportional to the higher scales,
similar to the well-known hierarchy problem for scalars.
To understand this better let us symbolically write the

Lagrangian in terms of a Weyl field ξ120 and a real scalar
field ϕ210,

L ¼ iξ†120σ̄
μDμξ120

−
1

2
ðm1ξ120ξ120 þ yξ120ξ120ϕ210 þ H:c:Þ; ð71Þ

suppressing all indices and Clebsch-Gordon coefficients.
For m1 ¼ 0 ¼ y, the Lagrangian has an extra global Uð1Þ
symmetry ξ120 → eiαξ120 that commutes with SOð10Þ and
ensures that the ξ120 remains massless. For m1 ≠ 0 ¼ y,
all loop corrections to the mass are then necessarily
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proportional to m1, the only Uð1Þ-breaking coupling. For
m1 ¼ 0 ≠ y, the Uð1Þ is broken even if we had a complex
ϕ210 with transformation ϕ210 → e−2iαϕ210, because the
210 obtains a VEV by assumption. Some of the fermions
then obtain masses of order yhϕ210i, while others might
remain massless at tree level due to vanishing Clebsch-
Gordon coefficients. Clearly there is no remaining global
symmetry that could protect the masslessness of these
fermions, so they should obtain loop-induced masses
proportional to yhϕ210i (see Fig. 8), reintroducing the
necessity for fine-tuning for a light DM candidate with
heavy partners. (Since we started off with a real represen-
tation 120, all fermions are Majorana or bring their own
Dirac partners.)
The above argument relies on the fact that any global

symmetry that could protect m ¼ 0 should commute with
the gauge symmetry; i.e., all fermions in the ξ120 feel the
same chiral symmetry, or otherwise it would already be
broken by gauge interactions. However, in some cases
accidental Uð1Þ symmetries emerge that can keep some
fermions massless at least to some loop level. An example
is already provided by the ξ120 under PS, as given by
Eq. (69). Setting the SOð10Þ invariant mass m1 to zero as
well as m54 ¼ 0, we see that the only nonvanishing masses
are mð6;1;3Þ ¼ −mð6;3;1Þ. The bidoublet (1; 2; 2) is thus
massless at tree level, but has couplings to the massive
fermions and bosonic representations (6; 2; 2) (both scalar
and vector). Hence one can draw one-loop diagrams such
as Fig. 8 that would generate a bidoublet mass ∝ mð6;1;3Þ,
which, however, happen to cancel between the (6; 1; 3) and
(6; 3; 1) contributions. Indeed, one can put the two massive
Majorana fermions into one Dirac-like combination χ� ≡
ξð6;1;3Þ � iξð6;3;1Þ that allows us to identify aUð1Þ symmetry
ξð1;2;2Þ → eiαξð1;2;2Þ, χ� → e∓iα χ� that happens to be con-
served in all one-loop diagrams that would give a mass to
the bidoublet. This Uð1Þ is of course broken by other terms
in the Lagrangian, so at higher loop level one will indeed
find a bidoublet mass ∝ mð6;1;3Þ, albeit further suppressed
by loop factors. Note that such a curious cancellation no
longer holds at the LR level; as soon as the (15; 2; 2) picks
up a mass mð15;2;2Þ from m210ð15;1;1Þ [see Eq. (70)], one has
one-loop diagrams that should raise the bidoublet mass
from zero to mð15;2;2Þ. The phenomenology of this “less-
tuned” case (but unfortunately still loop level tuned) is the

one of the “bidoublet 4 scenario” of Sec. VI A. Note that,
consequently, this case requires a LR breaking scale below
∼75 TeV to be viable.
Finally, note that adding to the m210ð15;1;1Þ contribution a

m210ð1;1;1Þ contribution leaves intact the possibility to have
the bidoublet in the 15 of PS as the only state at low scale,
leading again to the “bidoublet 4 scenario” of Sec. VI A.
Tree-level mass contribution from m54 and m210ð15;1;1Þ : If

m210ð15;1;1Þ is much larger than ∼TeV, this case can lead to a
low-scale DM candidate in the form of any of both
bidoublets, with nothing else at low scale. Both of them
give again the “bidoublet 4 scenario”. If insteadm210ð15;1;1Þ is
a ∼TeV perturbation with respect to the case above where
one has only a 54 contribution, this does not change
anything to the (1; 2; 2) “bidoublet 4 scenario” one can
have in this case, but does change the (15; 2; 2) scenario:
the color octet, triplet, and singlet in the (15; 2; 2) are now
split at tree level, which allows more possibilities. In
particular, it allows one to get the right tiny amount of
splitting between the color singlet and the color triplet and
octet to get the observed relic density through coannihi-
lation of the singlet with the triplet and octet (see the
discussion for the “octet-triplet-singlet scenario” above, but
now each of these multiplets is a bidoublet of the LR
symmetry, not a singlet anymore). This leads to the octet-
triplet-singlet bidoublet 32þ 24þ 4 scenario of Sec. VI N.
General case: With all three VEVs m54, m210ð1;1;1Þ , and

m210ð15;1;1Þ present there are no important differences with
respect to the case with only m54 and m210ð15;1;1Þ because,
again, an additional m210ð1;1;1Þ brings contributions only to
the color triplets out of the PS sextet which do not contain a
DM candidate.

3. Tree-level masses down to G3211

This case necessarily involves a m210ð15;1;3Þ VEV, leading
to the pattern of masses given in Table XI. This contribution
splits the components of the various SUð2ÞR multiplets, but
importantly not the two SUð2ÞL doublets in the DM
bidoublet candidates, because these doublets are conjugate
(see above). This contribution also mixes both bidoublets.
Its main practical effect is to split the color-singlet
bidoublet (1; 2; 2; 0) in the (15; 2; 2) from the other
(15; 2; 2) components. This case essentially depends on
how this m210ð15;1;3Þ contribution compares with respect to
the other contributions. More precisely one can distinguish
two cases:
Subleading m210ð15;1;3Þ : If this extra contribution is sub-

leading with respect to the other contribution in the square
root term appearing in the mass formula (Table XI) of the
(1; 2; 1; 0) G3211 multiplet [inside the (1; 2; 2) of PS] and of
the ð1; 2; 1; 0Þ0 G3211 multiplet [inside the (15; 2; 2)], then
the m210ð15;1;3Þ contribution is seesaw suppressed and the
mass formula for these two states reduces to

FIG. 8. A massless or light DM fermion will pick up the large
mass of its partners (denoted as a cross) since it is connected to
them via the GUT gauge bosons U, V, and X as well as scalars
(not shown).
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mð1;2;1;0Þ ≃m1 − 9m54

−
3

8

ðm210ð15;1;3Þ Þ2
m1 − 4m54 −m210ð15;1;1Þ

; ð72Þ

mð1;2;1;0Þ0 ≃m1 þm54 − 2m210ð15;1;1Þ

−
3

8

ðm210ð15;1;3Þ Þ2
m1 − 4m54 −m210ð15;1;1Þ

: ð73Þ

To have this extra contribution to be subleading is some-
what to be expected since this contribution breaks G3221,
unlike the other ones that break a larger subgroup.
Interestingly, in this case, the v210ð15;1;3Þ contribution can
be of order TeV or less, even though m210ð15;1;3Þ is larger
than TeV.
In this case, any of the two bidoublets can be present at

low scale. This does not change much the scenarios above
which involve the (1; 2; 2) bidoublet at low scale because in
all these scenarios this bidoublet is already alone at this
scale. However, for the (15; 2; 2) case, a v210ð15;1;3Þ seesaw
contribution that shifts the mass of the bidoublet only by
∼TeV or less shifts the masses of the color triplets in this
(15; 2; 2) by a much larger contribution since for the triplet
the dependence on v210ð15;1;3Þ is linear, not quadratic (see
Table XI):

mð3;2;−1;4Þ ¼ m1 þm54 −m210ð15;1;1Þ −m210ð15;1;3Þ ;

mð3;2;1;4Þ ¼ m1 þm54 −m210ð15;1;1Þ þm210ð15;1;3Þ ;

mð8;2;1;0Þ ¼ m1 þm54 þm210ð15;1;1Þ : ð74Þ

Consequently, this does affect the scenarios abovewhere the
(15; 2; 2) multiplet is at low scale, by removing the color
triplets from the low-energy world, but not the color octet
(since the latter does not receive any contribution from a
v210ð15;1;3Þ). Thus the “octet-triplet-singlet bidoublet 60 sce-
nario” of Sec. VIM abovewhere all 60 states are degenerate
at tree level above becomes an “octet-singlet bidoublet 32þ
4 scenario” of Sec. VI O (with 36 light states instead of 60),
which, due to the v210ð15;1;3Þ contribution, has different tree-
level masses for the bidoublet and for the color-octet
bidoublet. This scenario can lead to the observed relic
density through bidoublet annihilations similar to Sec. VI
A, but not through coannihilations between the colored
partners since the color singlet does not couple directly to the
color octet throughX boson exchange.Given the fact that the
bidoublet (annihilation) scenario requires a LR breaking
scale below ∼75 TeV, the seesaw mass difference is, for
example, of order 0.1 TeVor less if we take the denominator
to be above 105 TeV (aswe could expect, since at least some
of the contributions in the denominator must be of this order
to send the high-scaleDMpartners to this scale or above).As
for the octet-triplet-singlet bidoublet 32þ 24þ 4 scenario

above it also becomes an octet-singlet bidoublet 32þ 4
scenario of Sec. VI O, with tree-level masses also
from v210ð15;1;1Þ .
Leading m210ð15;1;3Þ : If there are no other VEVs than

hð15; 1; 3Þi [breaking SOð10Þ directly to G3211 or going
through additional subgroups via an extra 45 representa-
tion], we get an interesting situation where both the
(1; 2; 1; 0) and the ð1; 2; 1; 0Þ0 are degenerate at low scale.
However, this is excluded by the fact that in this case
m210ð15;1;3Þ , on the one hand, must be larger than 105 TeV to
send the high-scale DM partners to at least this scale, and
on the other hand, must be smaller than ∼75 TeV so as not
to induce a WR mass above this scale (as necessary for
bidoublets). Therefore, one needs another mass contribu-
tion of order 105 TeV. Thus, for the m210ð15;1;3Þ contribution
not to be seesaw suppressed, i.e., to be leading in the square
root term appearing in the mass formula of the (1; 2; 1; 0)
and of the ð1; 2; 1; 0Þ0 G3211 multiplets (Table XI), and also
to have a candidate at low scale, one would need several
tunings.

E. 210 DM candidates

There are many possibilities for DM if one turns to a
representation as large as 210. This representation contains
four DM candidates (see Table IV)—one PS singlet (1; 1; 1)
and three candidates coming from the three different PS 15
representations: (15; 1; 1), (15; 1; 3), and (15; 3; 1). Thus
one 15 is a SUð2ÞL triplet, another one is a SUð2ÞR triplet,
and the third one is a singlet of both of these SUð2Þ groups.
The components of the 210 can receive tree-level contri-
butions from not less than six different scalar representa-
tions up to 210,

210 ⊗ 210 ¼ 1S ⊕ 45S ⊕ 45A ⊕ 54S ⊕ 210S

⊕ 210A ⊕ 770S þ � � � ; ð75Þ

that is to say from a 54 VEV, from the two 45 VEVs, and
from the three 210 VEVs (see Tables VI and XII). The PS
singlet DM candidate (1; 1; 1) has interactions only with
GUT-scale gauge bosons and thus cannot proceed through
freeze-out. It could be produced through freeze-in, but we
will not look at this possibility. The (15; 1; 1) DM candidate
was already present in the 45 DM representation discussed
above. However, the DM multiplets (15; 3; 1) and (15; 1; 3)
are new. Note that, unlike for the previous DM representa-
tions, basically all scalar representations that allow us to go
down the GUT breaking path (Fig. 2) contribute to the DM
mass formula, including the scalar representation 45. This
largely complicates the discussion, because in this case it is
not sufficient to look just at the possible mass hierarchies
that can emerge from the mass formula. In many cases,
there is no breaking path leading to a given mass hierarchy
obtained from the mass formula.
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As for the previous representations, we will discuss the
various cases according to the last group down to which one
assumes that there are mass contributions, i.e., down to the
Pati-Salam group G422, the LR group G3221, or the G421

group. Note that, contrary to all cases above, for which to
pass or not through G421 did not change anything to the
tree-level mass formula (because to pass through this group
requires a 45ð1;1;3Þ VEV that did not contribute to the
masses), here this makes a difference, since the existence of
a 45ð1;1;3Þ VEV would contribute. As for the very involved
cases passing through G3211 (Table XII), we will not study
them in detail, but just make a few general remarks.

1. Tree-level masses down to G422

If the PS group is broken to the SM only by a scalar 126
representation, then the fermionic 210 components receive
tree-level masses only from a 54ð1;1;1Þ or a 210ð1;1;1Þ, which
gives the mass pattern (see also Table VI in Appendix C)

mð1;1;1Þ ¼ m1 þ 12m54;

mð6;2;2Þ ¼ m1 þ 7m54;

mð10;2;2Þ ¼ m1 − 3m54;

mð15;1;1Þ ¼ m1 − 8m54;

mð15;1;3Þ ¼ m1 þ 2m54 þm210ð1;1;1Þ ;

mð15;3;1Þ ¼ m1 þ 2m54 −m210ð1;1;1Þ : ð76Þ

Tree-level mass contribution only from 210ð1;1;1Þ: A
D-parity breaking 210ð1;1;1Þ VEV alone allows at low scale
a (15; 3; 1) or a (15; 1; 3), but not both. If the (15; 3; 1) is
alone at low scale, then the winolike Majorana particle and
its two colored partners split in mass radiatively (see
Appendix A). Given the fact that the mass splittings are
determined by the PS scale, for a singlet mass of 2.7 TeV,
the triplet and octet masses are at least 4.6 TeVand 6.8 TeV,
respectively, due to the ∼103 TeV lower bound on the PS
scale. A larger PS scale increases the mass splitting further
but also increases the lifetime of the color partners.
Imposing the BBN constraint of a lifetime below 0.1 s
on the triplet partner, we find an upper bound on the PS
scale around 106 TeV, which also implies upper bounds of
the triplet and octet of 6.2 TeV and 11.9 TeV, respectively.
Due to the large mass splitting, coannihilation is not
efficient and the colored partners decay immediately after
their freeze-out into the wino, which is still in equilibrium
at that point. The DM abundance and (in)direct detection
phenomenology is thus the same as for a wino and requires
mDM ≃ 2.7 TeV. To distinguish this scenario from a stan-
dard wino, one has to observe the colored partners at a
collider. Consequently one has an octet-triplet-singlet
SUð2ÞL triplet 45 scenario of Sec. VI P.
Having instead the (15; 1; 3) alone at a low scale does not

work, simply because, here too, with only the 210ð1;1;1Þ

contributing to the masses, the PS group can only be broken
directly to the SM via a 126, which gives with Eq. (10)
mWR

≃mX > 103 TeV. Since the radiative splitting of the
PS 15 is too large to allow for colored coannihilations, we
have to obtain the correct relic abundance from the SUð2ÞR
triplet interactions. From Fig. 4 we see immediately that
this is not possible for an LR scale mWR

> 103 TeV, due to
constraints on long-lived charged DM partners.
Tree-level mass contribution only from 54: The 54 VEV

alone isolates at low scale either the (1; 1; 1) DM candidate
or the (15; 1; 1) or both the (15; 3; 1) and the (15; 1; 3).
Disregarding, as said above, the singlet candidate, this leads
to the (15; 1; 1) DM candidate as in the 45 case above (i.e., a
nonviable candidate assuming thermal freeze-out) or to a
new case where no less than 90 particles are tree-level
degenerate at low scale, from both the (15; 3; 1) and the
(15; 1; 3). This D-parity conserving scenario is, however,
excluded as it involves the (15; 1; 3) at low scale, leading to
the same problem as with this representation alone at low
scale: with only h126i at our disposal to break PS → SM,
the WR ends up to be too heavy to sufficiently dilute the
(15; 1; 3) abundance.
General case: 54 and 210ð1;1;1Þ: Adding a smaller 54

VEV on top of a large 210ð1;1;1Þ VEV does not change
anything compared to the case with only large 210ð1;1;1Þ
VEV. Adding a smaller 210ð1;1;1Þ VEVon top of a large 54
VEV instead allows the possibility to have both (15; 3; 1)
and (15; 1; 3) at the TeV scale, but with a tree-level mass
difference from the 210ð1;1;1Þ VEV, again excluded in the
same way. Finally, the case where both 210ð1;1;1Þ and 54
VEVs are large allows for any of the four DM candidates in
the 210 to be alone at low scale, with no difference with
respect to the case in which any of these candidates is alone
at low scale from only a 54 or only a 210ð1;1;1Þ, thus leading
again to the octet-triplet-singlet SUð2ÞL triplet 45 scenario
of Sec. VI P as the only possibility.

2. Tree-level masses down to G3221

This case introduces two more tree-level mass contri-
butions, from 210ð15;1;1Þ and from 45ð15;1;1Þ, allowing one to
have an intermediate LR symmetry step. The resulting mass
pattern is given in Table VI in Appendix C. The four DM
candidates are now in (1; 1; 1; 0), ð1; 1; 1; 0Þ0, (1; 1; 3; 0),
and (1; 3; 1; 0) representations of G3221. Here, too, it is
interesting to start with the case where there is only one of
these VEVs.
Leading tree-level mass contribution from 45ð15;1;1Þ: It is

interesting to note that a D-parity breaking 45ð15;1;1Þ VEV
alone splits any of these four representations from any other
G3221 one in the 210 multiplets. In this case, this VEV
cannot be small because the whole 210 multiplet would be
present at low scale. It must be larger than 103 TeV to have
the PS breaking scale of at least this order, and, further-
more, larger than 105 TeV to send the high-scale DM
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partners to at least this scale. Thus one needs this VEV to be
large, and one is left with any of these four multiplets alone
at low scale. In this case, the two singlet DM candidates
again cannot be thermal, whereas the other two simply lead
to the SUð2ÞL triplet 3 scenario of Sec. VI B or SUð2ÞR
triplet 3 scenario of Sec. VI C already encountered for the
45 representation; see above. The latter is allowed here
because the 45ð15;1;1Þ breaks PS into LR, which can then be
broken into the SM by a 126 at a lower scale. Actually, in
the latter case, since we need the WR lighter than
∼100 TeV, and since we assume here subleading 54 and
subleading 210ð15;1;1Þ, the 45ð15;1;1Þ must be of order the
GUT scale in order to break SOð10Þ (directly into the LR
group).
Leading tree-level mass contribution from 210ð15;1;1Þ:

Again, this (D-parity conserving) VEV must be larger than
103 TeV scale to have the PS breaking scale of at least this
order, and above 105 TeV to send the high-scale DM
partners to at least this scale. This leads either to both DM
triplet candidates, (1; 1; 3; 0) and (1; 3; 1; 0) to be degen-
erate at low scale with the PS singlet, (1; 1; 1; 0), or to the
ð1; 1; 1; 0Þ0 to be degenerate at low scale with the
ð3; 2; 2;−2Þ0. Both cases are excluded because the singlets
do not have efficient (co)annihilation channels. More
generally, with a dominant 210ð15;1;1Þ VEV contribution,
adding any other contribution will send the singlet
(1; 1; 1; 0) to a high scale and lead to the SUð2ÞL triplet
3 scenario of Sec. VI B, the SUð2ÞR triplet 3 scenario of
Sec. VI C, the LR triplet 6 scenario of Sec. VI E, or the LR
triplet 3þ 3 scenario of Sec. VI F (see the 45 DM case
above). In the last three cases, since we need the WR to be
lighter than ∼100 TeV, and since we assume here sub-
leading 54 and subleading 210ð15;1;1Þ, the 210ð15;1;1Þ must be
of order the GUT scale so as to break SOð10Þ (directly into
the LR group).
Subleading 210ð15;1;1Þ and subleading 45ð15;1;1Þ: If both

these VEVs are smaller than the 54 and/or 210ð1;1;1Þ
contributions (as could be expected, as the latter two break
a larger group than the former two), their contribution to the
mass of the DM candidates in the 210 is obviously
subleading. We will not discuss the resulting possibilities
in full details, but merely sketch them.
One possibility that emerges easily is to have only a wino

at low scale, leading to the SUð2ÞL triplet 3 scenario of
Sec. VI B. The other possibilities of low-energy spectra to
get the observed relic density are again to invoke coanni-
hilations between the DM color singlet and its color triplet
partners within the same PS multiplet and/or to have a
SUð2ÞR triplet at low scale. Once again, a low-scale
SUð2ÞR triplet requires the WR mass below ∼100 TeV.
And once again coannihilation of the singlet with its color
triplet partner requires the PS breaking scale to be at most
of order a few 103 TeV, so that the 210ð15;1;1Þ and 45ð15;1;1Þ
VEVs must be at most at this scale. Furthermore it requires

the mass splitting between the color triplet and singlet to be
below TeV so that the mass contributions of these two
scalar fields must be at most of this scale (implying Yukawa
couplings below ∼10−3). This means that SOð10Þ must be
broken into PS by either the 54 or the 210ð1;1;1Þ, so that at
least one of these VEVs must be of order of the GUT scale.
Putting all that together, it turns out that it leaves enough
freedom to get the following viable low-energy spectra. For
the ð15; 1; 1ÞPS DM candidate there is only one possibility,
the octet-triplet-singlet 8þ 6þ 1 scenario of Sec. VI K
(but not 14þ 1 spectrum because it cannot give a viable
seesaw contribution). For the (15; 3; 1) and/or (15; 1; 3),
many scenarios are possible: beside the SUð2ÞL triplet 3
scenario of Sec. VI B, one has the SUð2ÞR triplet 3 scenario
of Sec. VI C, the LR triplet 6 scenario of Sec. VI E, and the
LR triplet 3þ 3 scenario. More complicated scenarios are
also possible, such as the octet-triplet-singlet SUð2ÞL triplet
24þ 18þ 3 scenario, where the entire (15; 3; 1) is present
at low scale, and similarly the octet-triplet-singlet SUð2ÞR
triplet 24þ 18þ 3 scenario. Combinations of the last two
scenarios are also possible, leading to the octet-triplet-
singlet SUð2ÞLþR triplet n scenarios with n equal to 48þ
36þ 6 or 3þ 3þ 18þ 18þ 24þ 24 or 3þ 3þ 42þ 42
(with in the latter case degenerate color triplet and octet).
We will just mention these complicated possibilities here
and will not put them in our list of Sec. VI.

3. Tree-level masses down to G421

As already mentioned above, whether the breaking path
has a G421 step matters for the 210 DM representation,
because the 45ð1;1;3Þ VEV, which is necessary for this
intermediate step, contributes to the masses at tree level.
Here the four DM candidates are in (1; 1; 0), ð15; 1; 0Þ0,
(15; 1; 0), and (15; 3; 0) representations of G421, with
masses given in Table XII. The first candidate comes from
the (1; 1; 1) PS singlet and is again not interesting in a
thermal setup. The next two are a mixture of the (15; 1; 1)
and (15; 1; 3) of PS. The mixing is induced by the 45ð1;1;3Þ
VEV which breaks PS [or directly SOð10Þ] to G421. These
two candidates are not viable because one has only
radiative splittings between the color singlet and triplet,
which are too large for coannihilation to be effective. The
last candidate comes out of the (15; 3; 1) of PS. For this
candidate there is no mass contribution from the 45ð1;1;3Þ so
that we get back to the octet-triplet-singlet SUð2ÞL triplet
45 scenario VI P we got with just a 210ð1;1;1Þ VEV (and
possibly also a 54 VEV).

4. Tree-level masses down to G3211

Wewill not study in details this complex case, which can
bring two new scalar field mass contributions, from
210ð15;1;3Þ and 45ð1;1;3Þ; see Table XII. We will just make
two remarks. We first note that, obviously, when these new
contributions are subleading with respect to other ones,
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these VEVs can split the various components of an LR
multiplet (and hence of a PS multiplet too) by contributions
of order TeV, or less. This can split, in particular, any low-
scale 15 of SUð4Þc into 8þ 3þ 1, allowing one to have the
right amount of splitting for getting the relic density
through coannihilations. Second, if SOð10Þ is directly
broken into G3211, so that there are contributions only
from these 210ð15;1;3Þ and 45ð1;1;3Þ VEVs, we end up with
scenarios in which the singlet DM candidates have no
coannihilation partner and are thus overabundant, while the
wino DM candidate comes with a myriad of unwelcome
long-lived low-scale partners.

F. 2100 DM candidates

The 2100 only couples to a 54 VEV, so the discussion is
very simple:

mð1;2;2Þ ¼ m1 þ 12m54;

mð1;4;4Þ ¼ m1 þ 27m54;

mð6;1;1Þ ¼ m1 þ 2m54;

mð6;3;3Þ ¼ m1 þ 12m54;

mð200;2;2Þ ¼ m1 − 3m54;

mð50;1;1Þ ¼ m1 − 18m54: ð77Þ

There are two potential DM candidates, one bidoublet
(1; 2; 2) and one biquadruplet (1; 4; 4). The bidoublet has a
similar phenomenology to the 10 but this possibility is here
excluded because the bidoublet is accidentally degenerate
with a (6; 3; 3), so that the latter cannot be a “high-scale
partner,” as required.
The other DM candidate is the biquadruplet (1; 4; 4),

leading to the LR biquadruplet 16 scenario of Sec. VI J.

G. 126 ⊕ 126 DM candidates

These candidates bring the largest number of new particles
yet because we have to include two copies of the complex
126 in order to make all new particles massive. Equivalently,
we can discuss the vectorlike representation 126 ⊕ 126.
As can be seen from Tables VII, X, VIII, and XIII the
expressions for the masses are unwieldy. From the many
possibilities, we will only pick out one interesting scenario
that brings new qualitative features compared to the previous
candidates. Let us assume a low-scaleG3211 and pick VEVs
so thatΨ ∼ ð1; 1; 2;−6Þ is the lightest (Dirac) fermion inside
the 126 ⊕ 126 (see Table XIII). This requires scalars in
the representations 210 or 45. The fermion originates
from ð10; 1; 3Þ → ð10; 1; 2Þ → ð1; 1; 2;−6Þ via PS or
ð1; 1; 3;−6Þ → ð1; 1; 2;−6Þ under LR.
According to Eq. (5) this fermion has no hypercharge

and is hence an SM singlet, but still has couplings to the
low-scale Z0 of G3211. These interactions can then be used
to achieve the correct DM abundance [47]. A light Z0 from

G3211 has been proposed long ago as an interesting and
well-motivated benchmark [97,98]. The Z0 couplings are
orthogonal to the hypercharge combination Y ¼ TR

3 þ
ðB − LÞ=2 but still depend on the SUð2ÞR gauge coupling
gR. Taking the LR-motivated case gR ¼ gL ¼ e=sin θW
gives the explicit expression for the Z0 couplings
[97,99,100]

L ⊃ gZ0Z0
μ

�
ð1 − tan2θWÞjμ3;R −

1

2
tan2θWj

μ
B−L

�
ð78Þ

with the usual B − L current jB−L and the diagonal SUð2ÞR
current jμ3;R ¼ P

f f̄ γ
μTR

3 f, and the coupling strength is

fixed to gZ0 ¼ e=ðtan θW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2θWÞ

p Þ ≃ 0.8. The couplings
of the SM fermions are not particularly illuminating, but
our DM candidate couples simply with gZ0Ψ̄=Z0Ψ; i.e., the
tan2 θW terms cancel in the coupling. Here we have
neglected any Z-Z0 mixing for simplicity, which is in
any case required to be small to satisfy direct detection
constraints [100].
Using for example the formulas from Ref. [101] it is easy

to calculate the relevant annihilation cross sections for
freeze-out. Summing over all SM fermions (but not right-
handed neutrinos, which we assume to be heavier than the
DM) we find the nonrelativistic annihilation cross section
σvðΨ̄Ψ → f̄fÞ via s-channel Z0 to be

σv ≃
g4Z0m2

Ψ
8π

ð21 − 48tan2θW þ 40tan4θWÞ
ð4m2

Ψ −m2
Z0 Þ2 þm2

Z0Γ2
Z0

; ð79Þ

neglecting the SM fermion masses.6 For DM masses
around the Z0 resonance mΨ ∼mZ0=2 we can easily obtain
the correct relic abundance even for the multi-TeV masses
necessary to evade experimental constraints [101], as
shown already in Fig. 6 in Sec. VI Q.
Note that gR ≠ gL as well as RGE running can change

the Z0 couplings and modify the DM phenomenology. The
qualitative behavior of Fig. 6 should remain the same, and
one could at best hope to lower the Z0 mass bounds to open
up parameter space away from the resonance. This happens
also if additional light, unstable particles are present, so that
the Z0 can decay into them, which simultaneously weakens
the dilepton bounds and increases the DM annihilation
cross section.
An alternative path to this DM scenario is to break

SOð10Þ via SUð5Þ ×Uð1Þ χ → GSM × Uð1Þ χ , leaving the
Uð1Þ χ at low scales [49,50,55]. Since Ψ ∼ ð1;−10Þ under
SUð5Þ × Uð1Þ χ , it is clear that it is again an SM singlet
with Z0

χ interactions. This scenario is actually part of the
previous one, changing simply sin2 θW → 3=8 [100] in the

6If the right-handed neutrinos are light as well, we have an
additional contribution ð3g4Z0m2

Ψ=8πÞ=½ð4m2
Ψ −m2

Z0 Þ2 þm2
Z0Γ2

Z0 �.
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couplings. In the end one finds almost the same phenom-
enology as in Fig. 6, in particular still strong LHC
constraints of order 4.2 TeV on the Z0

χ [48].
This concludes our discussion of fermionic dark matter

candidates.

H. Scalar candidates

Scalar SOð10Þmultiplets can also be stabilized by matter
parity and thus form WIMPs. In addition to the gauge
interactions, one, however, always has Higgs-portal inter-
actions with all other SOð10Þ scalars, which make a
thorough discussion involved. Still, one finds some well
known candidates, such as the inert-doublet-like (or sneu-
trinolike) ð1; 2; 1=2Þ ⊂ GSM [102–105]. These doublets can
be found in the scalar 16 [4,5] or 144; see Table II. Similar
to the bidoublet fermion case, the neutral complex scalar
here needs to split into two real scalars with a mass
difference above 200 keV in order to survive direct
detection bounds. Focusing on gauge interactions, a dis-
cussion of this candidate under a low-scale LR group can
be found in Ref. [45].
Other interesting scalar DM candidates within the 16

[4,5] or 144 are the total singlets ð1; 1; 0Þ ⊂ GSM that come
from the LR representation (1; 1; 2; 3). Much as the case
discussed in Sec. VI Q, these complex scalars do not have
any SM gauge interactions, but still couple to the Z0 of
G3211. Once again we can easily obtain the correct DM
abundance around the Z0 resonance without violating
constraints from direct detection or LHC dilepton searches,
qualitatively similar to Fig. 6. The additional Higgs-portal
couplings lead to a much wider parameter space, beyond
the scope of this paper.
Finally, the 144 also contains a complex electroweak

triplet ð1; 3; 0Þ ⊂ GSM, part of the LR multiplet (1; 3; 2; 3)
(Table IV). Using the SM gauge interactions, this can lead
to the correct relic abundance for multi-TeV masses
[53,105]. Similar to the previous paragraph, this candidate
has no hypercharge but still Z0 interactions with a low-scale
G3211 group, which can be used to push the mass further up
around the Z0 resonance. This should lead to interesting
indirect detection signatures due to Sommerfeld-enhanced
photon fluxes.

VIII. ACCIDENTAL DM STABILITY

So far we have looked at scenarios where the DM
stability is directly explained by the gauge symmetries of
the model, leading to absolute DM stability. There are also
scenarios where DM stability is only indirectly induced by
the gauge symmetries, i.e., where DM stability results
accidentally from the gauge symmetries and the particle
content of the model, such as baryon number conservation
for the proton. In our setup this could occur when matter
parity PM is spontaneously broken by scalar VEVs h16iPM

or h144iPM
. These VEVs, although not mandatory, can be

useful in the GUT symmetry breaking, so it is worthwhile
to consider their effect on DM multiplets. With matter
parity broken, all of our DM multiplets can in principle
decay into the SM fermions residing in their 16SM, but
whether this actually happens depends on the particle
content of the model. If matter parity is broken sponta-
neously, most of our fermionic DM candidates RDM are
allowed a destabilizing Yukawa interaction, h16iPM

16SM
RDM or h144iPM

16SMRDM on account of the branching
rules

16 ⊗ 16 ¼ 1 ⊕ 45 ⊕ 210;

16 ⊗ 16 ¼ 10 ⊕ 120 ⊕ 126;

16 ⊗ 144 ¼ 45 ⊕ 54 ⊕ 210 ⊕ 945 ⊕ 1050;

16 ⊗ 144 ¼ 10 ⊕ 120 ⊕ 126 ⊕ 320 ⊕ 1728; ð80Þ

which then typically leads to fast DM decay, unless the
corresponding Yukawa couplings are minuscule.
Exceptions are the DM fermion multiplets 54 and 2100,

which have no Yukawa couplings with the 16SM and a
matter-parity breaking h16iPM

. Thus they can be stable
accidentally, provided there are no other states, low scale or
high scale, which could destabilize them. The presence of a
144 scalar representation VEV h144iPM

would for example
destabilize the 54 candidate through a Yukawa coupling
h144iPM

16SM54DM. The 2100DM, on the other hand, would
still remain stable even in the presence of both h16iPM

and
h144iPM

, at least at the renormalizable level. At the non-
renormalizable level one can write down operators such as
144PM

16PM
16PM

16SM2100DM that would lead to 2100DM
decay. Such destabilizing higher-dimensional operators
could be induced by other (heavy) scalars or fermions. It
is well known that a dimension-five operator generically
leads to a far too fast DM decay (as for instance, here, an
operator 16PM

10SM16SM54DM). A dimension-six operator
also leads to fast decay, unless suppressed by a scale of the
order of the GUT scale or more. Thus, as is well
appreciated, the accidental DM stability highly depends
also on the high-energy content of the model. If stable, the
resulting DM phenomenology of the 54 or 2100 does of
course not change; only the SOð10Þ breaking path becomes
more flexible.

IX. DISCUSSION AND SUMMARY

Grand unified theories are well-motivated extensions of
the SM. They shed light on its fundamental interaction
structure and on the quantum numbers of the SM particles
under these fundamental interactions. They also provide
hints toward the understanding of the flavor structure of the
SM. Furthermore, by incorporating the Abelian hyper-
charge group into a larger non-Abelian group, they can
solve the Landau pole problem. Grand unified theories do
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not automatically lead to dark matter candidates. However,
GUTs based on SOð10Þ contain the discrete matter-parity

symmetry Z3ðB−LÞ
2 as a subgroup, thus offering a particu-

larly natural and simple explanation for the existence of
DM: if the SOð10Þ symmetry breaking path preserves
matter parity, the lightest parity-even fermion or parity-odd
scalar is automatically stable. In supersymmetric theories,
this allows us to understand the origin of R parity, which
predicts that the lightest supersymmetric particle could be a
good DM candidate. In nonsupersymmetric theories, the
same mechanism can be invoked to stabilize a DM particle
as the lightest component of a given SOð10Þmultiplet. This
multiplet has gauge interactions and is hence a prime
example for a WIMP. Here, we have studied in detail how
SOð10Þ multiplets can be broken apart in such a way that
the lightest component is a viable DM candidate, leading to
a systematic classification of DM scenarios.
As is well known, several issues, such as gauge uni-

fication or the fermion mass structure, become extremely
complex as soon as one departs from minimal grand unified
schemes. This stems from the fact that they largely depend
on the masses and interactions of the components of
basically any extra multiplet that could lie between the
electroweak and the GUT scales, depending on the sub-
group symmetry breaking scales, Yukawa couplings, mix-
ing of particles, etc. Instead, we have shown that the various
DM scenarios resulting from matter-parity stabilization are
less dependent on all of these ingredients. As we discuss at
length, the possible viable DM scenarios depend mostly
(but crucially) on the path along which SOð10Þ is broken,
and in particular on the values of the various subgroup
symmetry breaking scales. These breaking scales affect the
masses of the various SOð10Þ gauge bosons which in turn
determine the DM relic density via thermal (co)annihila-
tion. They also affect the masses of the heavy partners in
the DMmultiplet, which must be sufficiently heavy so as to
decay fast enough, as well as the tree-level and radiative
mass splittings between the various components of the
DM multiplet. In other words, each viable DM candidate
requires a certain set of scalar VEVs and SOð10Þ-breaking
paths, which thus impose conditions on the full model.
Apart from the dependence on the subgroup symmetry

breaking scales, the DM candidates have only limited
dependence on UV physics, such as on the masses and
interactions of other heavy states. This is related to the fact
that the DM phenomenology we consider (relic density,
direct and indirect detection, etc.) is infrared dominated,
modulo the presence of heavier states, which, as mediators,
could play a role for coannihilation processes. Here, we
have assumed that, apart from possible SOð10Þ gauge
bosons (which can lead to successful coannihilation if they
are lighter than ∼few 103 TeV), there are no such states, or
that their interactions are small compared to unity (e.g.,
small Yukawa couplings of fermion DM to scalar states).
For fermionic DM scenarios, the relevant interactions are

essentially gauge interactions, whose couplings are basi-
cally known. This is unlike the scalar DM scenarios, which
also involve unknown quartic scalar couplings. Thanks to
all these facts, and adopting a list of simple criteria (see
Sec. V), such as to assume a single DMmultiplet, we could
establish the above systematic determination of DM
scenarios.
A scenario which shows up in many cases from this

systematic study is a winolike DM candidate. This is not
surprising, as this is the only scenario that does not require
the existence of any subgroup broken at an intermediate
scale. The presence of intermediate subgroups, in particular
the Pati-Salam and/or LR group at relatively low scales,
allows, however, a large variety of other possible DM
candidates, leading in particular to many different scenarios
with low-scale partners. These partners, be they charged or
colored, could be discovered much more easily than the
DM particle. In particular, due to the fact that DM
candidates have a relic density set by gauge interactions,
the masses of the DM particles and partners are predicted
to lie around the ∼TeV scale, leading to potentially many
discovery opportunities at the HL-LHC or at a future
100 TeV collider. Simple examples include triplets under
SUð2ÞR, which bring charged DM partners, or an adjoint
representation of Pati-Salam’s SUð4Þ, which brings squark
and gluinolike colored partners, or LR a bidoublet/triplet
system.
We should emphasize that, even if the number of

possible scenarios is relatively large, the ways they can
account for the observed relic density are very limited:
basically, there are the wino way, the SUð2ÞR triplet, the
coannihilation with color triplets and the bidoublet or
bitriplet ways. Combinations of these basic relic density
mechanisms are also possible in some cases, allowing for
example the wino multiplet to have a mass different from
the 2.7 TeV it must have in the pure wino scenario. In this
sense, as these relic density mechanisms require specific
partners and mass scales, the SOð10Þ DM setup is quite
predictive (at least for scenarios driven by gauge inter-
actions, i.e., fermion scenarios and possibly also some
scalar DM scenarios). Many of these scenarios are already
constrained experimentally by collider and (in)direct
detection data.
Another clear trend that this analysis reveals is that the

SOð10Þ framework does not favor SM singlet DM. Indeed,
in all (fermionic) cases, with one exception, DM belongs
to a SM multiplet, so that it has low-scale partners, and a
related potentially rich phenomenology. The exception
shows up from the only complex representation under
study, where DM belongs to 126 ⊕ 126 representations
and whose relic density is determined from annihilation
driven by a low-scale Z0 gauge boson. While this scenario
can emerge from a Pati-Salam symmetry breaking path, it is
the only viable fermion scenario showing up through a
Georgi-Glashow path, given our assumptions (together
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with a simple wino scenario with all beyond-the-SM gauge
bosons at the GUT scale).
Note that, if all possibleSOð10Þ-breaking scalarVEVs are

considered, the masses of the DM partners can in most cases
be chosen to be independent of the DMmass, but predictive
relations between masses of the low-scale DM multiplet
components arise in cases with a limited number of scalar
VEVsor, if there are noVEVs, that split these components, in
the case of pure radiative mass splitting. Another conclusion
is that all the possible scenarios require a fine-tuning
qualitatively similar to the doublet-triplet splitting problem,
although a quantitatively weaker one. Even if absent at tree
level, tuning is necessary at loop level because the compo-
nents of a multiplet do not have individual protective chiral
symmetries. Ultimately, we stress that a more refined
analysis would obviously become mandatory if a hint for
SOð10Þ were to be observed, be it via proton decay or via a
WIMP through (in)direct detection signals in upcoming
experiments such as Hyper-Kamiokande, LZ, or CTA.
Beyond the scan of possible scenarios performed in this
work, such an analysis should in particular combine DM
phenomenology with the request of successful unification
and the SM fermion mass constraints.
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APPENDIX A: RENORMALIZATION GROUP
AND MASS SPLITTING

For the convenience of the reader, we collect formulas
used in the renormalization group running. For each gauge
group factor G, the associated coupling constant g evolves
according to the differential equation

dgðμÞ
d logðμÞ ¼

½gðμÞ�3
16π2

bðμÞ; ðA1Þ

μ being the renormalization scale. We restrict ourselves to
one-loop calculations, in which case each gauge coupling
runs independently, bðμÞ ¼ b being just a number that
depends on the quantum numbers of the particles with
masses below μ, which are fixed once we specify the group
G, the representation F of the chiral fermions, and the
representation S of the real scalars [106,107]:

b ¼ −
11

3
S2ðadjÞ þ

4

6
S2ðFÞ þ

1

6
S2ðSÞ: ðA2Þ

Dirac fermions and complex scalars simply count twice as
much as their chiral/real counterparts. For G ¼ SUðNÞ, the
Dynkin index of the adjoint (fundamental) is S2ðadjÞ ¼ N
(S2ðNÞ ¼ 1=2). More generally,

S2ðRÞδab ¼ tr½TaðRÞTbðRÞ�; ðA3Þ

S2ðRÞ ¼
dimðRÞ
dimðadjÞC2ðRÞ; ðA4Þ

with the representation matrices TaðRÞ and quadratic
Casimir operator C2ðRÞ. A list of these group coefficients
is given in Table Vand can also be obtained efficiently from
SUSYNO [18].
Equation (A1) can easily be solved analytically, intro-

ducing the variable α≡ g2=ð4πÞ:
1

αðμ1Þ
¼ 1

αðμ2Þ
þ b
2π

log

�
μ2
μ1

�
: ðA5Þ

At one-loop order, the MS mass M of a Majorana or
Dirac fermion in representation R runs according to

μ
dMðμÞ
dμ

¼ −
3

2π
C2ðRÞαðμÞMðμÞ: ðA6Þ

Using the one-loop result for αðμÞ, we can solve this to

MðμÞ ¼ Mðμ0Þ
�
αðμ0Þ
αðμÞ

�3C2ðRÞ
b

: ðA7Þ

The scale-independent pole mass m can then be calculated
as

m ¼ MðmÞ
�
1þ C2ðRÞαðmÞ

π

�
; ðA8Þ

evaluated at μ ¼ m ≃MðmÞ to suppress large logs. The
connection between the pole massm and the MS massM at
some high scale μ can then be obtained by combining
Eq. (A7) and Eq. (A8),

m
MðμÞ ¼

�
1þ C2ðRÞαðmÞ

π

��
αðμÞ
αðmÞ

�3C2ðRÞ
b

; ðA9Þ

which can also be written as a Taylor series in αðmÞ log
ðμ=mÞ to illustrate that we are properly resumming the
leading log terms [108]. If the fermion is charged under
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several gauge groups, the right-hand side of Eq. (A9)
becomes a product over all group factors.
The extension of this approach to three loops with the

most general gauge group and particle content can be found
in Ref. [61].
As an example, let us consider the breaking of SUð4Þ to

SUð3Þ × Uð1Þ at a scale of 1000 TeV, having the Pati-
Salam group in mind. Below the breaking scale, the SUð4Þ
gauge coupling splits into two couplings that evolve
differently [Fig. 9 (upper panel). For definiteness we
assume six copies of massless Dirac fermions in the
representation 4, which corresponds to the SM fermion
content in the Pati-Salam model. As DM we add one chiral
15, which has an SUð4Þ invariant MS mass M15 in the
SUð4Þ phase, and we assume no additional couplings to
SUð4Þ breaking scalars. Below the SUð4Þ breaking scale,
the 15 breaks into one Dirac fermion ð3; 4Þ and two
Majorana particles, ð1; 0Þ and ð8; 0Þ, all with differently
running masses, as shown in Fig. 9 (lower panel). The
boundary condition for the running is simply

M15ðμSUð4ÞÞ ¼ Mð3;4ÞðμSUð4ÞÞ ¼ Mð1;0ÞðμSUð4ÞÞ
¼ Mð8;0ÞðμSUð4ÞÞ ðA10Þ

for the MS masses at the SUð4Þ breaking scale μSUð4Þ. The
singlet ð1; 0Þ mass Mð1;0Þ is of course constant for
μ < μSUð4Þ, while the octet ð8; 0Þ experiences strong run-
ning due to the large Casimir operator and strong SUð3Þ
running. The ratio of pole masses mð8;0Þ=mð1;0Þ thus grows
if the SUð4Þ breaking scale μSUð4Þ is pushed to higher
scales, as shown in Fig. 10. The ratios can be explicitly
given by

mð8;0Þ
mð1;0Þ

¼ ðπ þ 3αSÞð6π þ 13αS logðμSUð4Þ
TeV ÞÞ27=13

36 × 61=13π40=13
;

mð3;4Þ
mð1;0Þ

¼ ð3π þ 4αSÞð6π þ 13αS logðμSUð4Þ
TeV ÞÞ81=130

9 × 212=13381=130π25=13

×
6π þ 4αS þ 33αS logðμSUð4Þ

TeV Þ
ð2π þ 11αS logðμSUð4Þ

TeV ÞÞ7=10 ; ðA11Þ

where αS is the strong coupling constant at the TeV scale.
Notice that these mass ratios remain approximately valid

even if the 15 is charged under additional gauge groups
such as SUð2ÞL × SUð2ÞR because Eq. (A9) is a simple
product of group factors. The 15 components then of course
form SUð2ÞL × SUð2ÞR multiplets that are themselves
radiatively split. For example, a (15,3) under SUð4Þ ×
SUð2ÞL → SUð3Þ × SUð2ÞL × Uð1Þ brings the massive
fermions (1; 3; 0), (3; 3; 4), and (8; 3; 0) with mass ratios
as in Fig. 10; however, each SUð2ÞL triplet is further split
by the nonzero Z and W masses in complete analogy to
the wino.

APPENDIX B: COANNIHILATION AND
CHEMICAL EQUILIBRIUM

In this Appendix, we provide some details regarding
chemical equilibrium between DM and its partners in
coannihilation scenarios. Suppose a set of n Z2-odd
particles χi with i ¼ 1;…; n. The lightest such particle,

FIG. 9. Upper panel: running of gauge couplings assuming an
SUð4Þ breaking scale of 1000 TeV. Lower panel: running of MS
masses of an SUð4Þ representation 15.

FIG. 10. Pole-mass ratios mð8;0Þ=mð1;0Þ and mð3;4Þ=mð1;0Þ of the
particles in a 15 as a function of the SUð4Þ breaking scale.
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say χ1, is a priori the DM candidate but the abundance of
the χi particles is in full generality determined by a set of
Boltzmann equations that schematically read [109,110]

dni
dt

¼ −3Hni −
X
j;f;f0

fhσijviðninj − neqi n
eq
j Þ

− ðhσ0ijvinineqf − hσ0jivinjneqf0 Þ−Γijðni − neqi Þg: ðB1Þ
Here f refers loosely to SM d.o.f. The second term on the
right-hand side involves all reactions of the type
σij ¼ σðχi χj − ff0Þ, thus including annihilation of heavier
odd particles. Such processes may play a role if these
particles are nearly as abundant as the lightest odd particle,
which translates into a condition on the mass degeneracy,
roughly ðm χj −m χ1Þ=m χ1 ≲ 10% [109]. If this is so, they
are particularly relevant if the heavier partner states have
stronger interactions and so may be the driving channel that
drains the DM abundance. A good example is colored DM
partners, as in scenarios of Secs. VI K or VI R of the present
work (see also e.g., Refs. [88,111–113]). The key condition
is that the χi particles are in chemical equilibrium amongst
themselves. This is dictated by transition cross sections of
the type σ0ij ¼ σðχif → χjf0Þ, which appear in the third
term of Eq. (B1). If such transitions are fast enough
compared to the Hubble rate, then ni=n

eq
i ¼ nj=n

eq
j . This

leads to a drastic simplification, as the set of Boltzmann
equations (B1) reduces to a single equation for the total
density of Z2-odd particles, n ¼ P

ini, whose abundance is
driven by an effective annihilation cross section [109,110].
The condition of chemical equilibrium is in general taken
for granted. For instance, it is implicit in numerical codes
such as MICROMEGAS [82]. In principle, however, one
must check whether chemical equilibrium is satisfied. In
scenarios similar to Sec. VI K coannihilation plays a crucial
role in determining the abundance of DM. For instance, in
the scenario of Sec. VI R, DM is a singlet Majorana
fermion, χ1, which comes from a 15 of SUð4ÞPS [relevant
Lagrangian given in Eq. (11)]. Its abundance may be driven
by coannihilation of its color-triplet Dirac partner χ3 into
gluons. The transitions between χ1 and χ3 involve the
heavy PS leptoquark gauge boson X (see Fig. 11), and the
requirement of chemical equilibrium sets an upper limit
on mX. This condition stems from the requirement that
Γ
χ1 χ

ðcÞ
3

≳HðTfoÞ where Γ
χ1 χ

ðcÞ
3

¼ hΓi
χ1f→ χðcÞ

3
f0 is the ther-

mally averaged transition rate of a χ1 into the colored χ3
(or, since χ1 is Majorana, its charge conjugate χðcÞ3 ) and H
is the Hubble rate at the time/temperature of freeze-out Tfo.
If this condition is not satisfied, coannihilation is ineffec-
tive. In the present case, this would imply that the χ1
particle would be overabundant if it was in thermal
equilibrium, as it has only very feeble interactions with
SM d.o.f. on its own.
For concreteness we consider the transition process χ1 þ

u → χ3 þ ν of Fig. 11, where u is a uplike quark and ν its

associated neutrino. In the limit in which the χ1 and χ3
particles are highly nonrelativistic, the rate in the thermal
bath is given by7

hΓi χ1u→ χ3ν
¼ Nc

2m1

Z
gud3pu

ð2πÞ32Eu

gνd3pν

ð2πÞ32Eν

g3d3p χ3

ð2πÞ32m3

× jMj2ð2πÞ4δ4ðp χ1 þ pu − p χ3 − pνÞ
× fuðEuÞð1 − fνðEνÞÞ; ðB2Þ

where gu; g3, and gν are the spin degeneracy factors. The
squaredmatrix element is averaged over both initial and final
spins (see [114]) and for χ1 þ u → χ3 þ ν is given by

jMj2 ≃ 2

3

g44
m4

X
m1m3EνEuð1þ cos θÞ: ðB3Þ

This is taking into account that the interaction with the PS
leptoquark boson of mass mX ≫ m1;3 is purely vectorial,
with coupling g4

ffiffiffiffiffiffiffiffi
2=3

p
at the χ1 χ3 vertex, and g4

ffiffiffiffiffiffiffiffi
1=2

p
for

the uν one [see Eq. (11)].8 Neglecting the masses of all SM
fermions we may rewrite (B2) as

hΓi χ1u→ χ3ν
¼ Nc

12π2
g44
m4

X
Δm5FðΔm=TÞ; ðB4Þ

with mass splitting Δm≡m3 −m1 and

FðxÞ≡
Z

∞

1

dz
z2ðz − 1Þ2

ð1þ ezxÞð1þ exð1−zÞÞ : ðB5Þ

The prefactor in Eq. (B4) is akin to the decay rate of χ3 in
Eq. (12), which is ∝g44Δm5=m4

X. The function F captures

FIG. 11. One possible conversion rate process relevant for
coannihilation involving the heavy Pati-Salam vector leptoquark
X. χ1 is the SM-singlet DM candidate and χ3 its color-triplet
partner that will annihilate into gluons.

7The ν Fermi-blocking factor is for preciousness, as it plays no
fundamental role in the sequel. We keep it because we can obtain
a closed analytical expression for the case of massless SM
fermions and also because quantum statistic effects are numeri-
cally significant for relativistic d.o.f.

8We neglect the heavy right-handed neutrinos here for sim-
plicity, so we have couplings only to the left-handed state, gν ¼ 1.
This together with the average over both the initial and the final
state particles properly takes into account the factor of 1=2 in the
cross section for χ1þu→ χ3þν compared to χ1 þ d → χ3 þ e,
which is obtained using gd ¼ ge ¼ 2.
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the phase space that is available at finite temperature for the
process χ1 þ u → χ3 þ ν, provided Eu − Eν ≥ Δm.9 The
integration is over z ¼ Eu=Δm. At high temperatures,
T ≫ Δm, the integral can be solved in closed form and
equals FðΔm=TÞ ≃ 7π4=30T5=Δm5, which leads to the
familiar∝T5 behavior of contact interactions at high temper-
ature:

hΓi χ1u→ χ3ν
≃ Nc

7π2

360

g44
m4

X
T5 for T ≫ Δm: ðB6Þ

Neglecting quantum statistics would change the rate by a
factor of 720=ð7π4Þ ≃ 1.06. For freeze-out, we may need to
consider also the regime T ∼ Δm, in which case the phase-
space integral is given by the following expression:

F

�
Δm
T

�
≃
3

2

T5

Δm5
e−Δm=T

×

�
15ζð5Þ þ 7ζð4ÞΔm

T
þ ζð3ÞΔm

2

T2

�
; ðB7Þ

with ζð3Þ ≃ 1.20, ζð4Þ ¼ π4=90, and ζð5Þ ≃ 1.04. Since
45ζð5Þ=2 ≃ 23.33 and 7π4=30 ≃ 22.73, this expression
actually gives an excellent fit even in the high temperature
regime.
To get a bound on mX, we take into account all the

processes that contribute to the transitions χ1 → χ3. For a
given family, these are a priori

χ1 þ u → χ3 þ ν;

χ1 þ ν̄ → χ3 þ ū; ðB8Þ
and, with a rate 2 times larger due to available right-handed
SM fermions,

χ1 þ d → χ3 þ e;

χ1 þ ē → χ3 þ d̄: ðB9Þ
For the third generation some of these processes are absent
on account of the top quark being too heavy. Neglecting
the top-quark channels, the transition rate may be approxi-
mated to be geff ¼ fðNf ¼ 2Þ × 2þ ðNf ¼ 3Þ × 4g ¼ 16

times the rate of Eq. (B4). If Tfo ≳mtop, the factor is instead
geff ¼ 18. Chemical equilibrium then amounts to requesting

geffhΓi χ1u→ χ3ν
≳HðTfoÞ; ðB10Þ

where HðTfoÞ is the expansion rate at the time of freeze-
out, taken here to be the freeze-out of the annihilation pro-
cess χ3 χ̄3 → gg. Concretely we take Tfo ≃m χ3=25 [88].

Assuming the high temperature limit of the rate of Eq. (B7)
gives a bound

mX=g4 ≲ 900 TeV

�
m1

TeV

�
3=4

ðB11Þ

on the mass of the heavy Pati-Salam particle X. Taking
g4 ≃ 1, we see that the experimental lower bound on mX ≳
2000 TeV of [34–36,115] requires considering DM masses
m1 ≳ 3 TeV.Note that the lower bound onmX can bepushed
downbyanorder ofmagnitudewhen fermionmixing is taken
into account [38,115,116], which of course opens up our
parameter space. Amore precise bound is obtained by taking
into account the dependence of the rate (B4) on the mass
splittingΔm ¼ m χ3 −m χ1 > 0. This calculation is depicted
in Fig. 12 in the planem χ1 −mX. The dotted line corresponds
to the bound (B11) in the high temperature Tfo ≫ Δm
approximation.
To have specific values for Δm, we refer to Fig. 2 of

Ref. [88], lower-left panel. In this reference, the abundance
of a singlet DM candidate through the annihilation of a
color-triplet fermion-antifermion pair into gluons is deter-
mined taking into account various effects, in particular the
Sommerfeld effect. Specifically, we make use of the light
green curve to extract values of Δm. For instance, for
m χ1 ¼ 2 TeV we have taken Δm ¼ 85 GeV. In this case,
Δm=Tfo ≈ 1 and finite Δm effects are important. For higher
DM masses, the required mass splitting is smaller and the

FIG. 12. Constraints from chemical equilibrium in the m χ1 -mX
plane. Coannihilation is ineffective in the orange region based on
condition (B10); the black dotted line is the same but uses the
simple high-temperature limit of the rate, Eq. (B7). The dashed
(blue) horizontal line is the experimental lower bound onmX . For
parameters in the region bounded by the dot-dashed (red) line the
χ3 lifetime is longer than 0.1 s and may spoil BBN; the dotted red
line is an estimate of bound-state effects. The viable parameter
space corresponds to the white region in the middle, where the
correct χ1 DM abundance can be obtained by picking the right
mass splitting [88].

9This is analogous to pþ e → nþ ν, which is relevant to
set the initial conditions for primordial nucleosynthesis; see
Kolb and Turner [there is a missing factor of 1=2mp in
Eq. (4.13) of [114] ].
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high temperature rate provides a good approximation.
The result is shown as the solid (orange) line in Fig. 12.
In the shaded (orange) region, the transitions χ1 → χ3 are
out-of-equilibrium and coannihilation is ineffective. An
immediate outcome is that the DM abundance is too large
to match the cosmological observations. The intermediate
regime, in which chemical equilibrium is barely realized, is
interesting by itself; see [117]. Clearly, finite Δm effects
tend to decrease the rate for χ1 → χ3 and thus lower the
bound on mX.
We should emphasize that the possible formation of

χ3 − χ̄3 bound states at the time of annihilation may affect
the annihilation rate and so the precise value of the mass
splitting. Such effects were not taken into account in
Ref. [88] but have been studied for the case of coannihi-
lation of squarks in Ref. [77]. The impact of bound states
on the mass splitting Δm is mild, Oð15%Þ, except for large
DM masses for which Δm decreases more slowly than
expected; see Fig. 12 and explanations in [77]. As bound
state formation tends to increase Δm, in the absence of
explicit calculations in the case of fermionic colored
partners, we have merely checked that modifying the
Δm by relative factors that follow the pattern in Fig. 12,
left panel, of [77] does not change the bounds onmX shown
in Fig. 12 much (i.e., by at most a few percent).
In Fig. 12 we also report the constraints on the lifetime of

the χ3 particle from BBN that requires τ ≲ 0.1 s [52]. The
shaded region bounded by the red dot-dashed line is
obtained using the mass splitting given in Ref. [88], as
discussed in the previous paragraph. As the lifetime of χ3 is
very sensitive to the mass splitting Δm [see Eq. (12)], the
other red dotted curve shows the limit on τ for the higher
values of the mass splitting than in Fig. 2 of Ref. [88],
anticipating possible bound-state effects. Specifically, we
have taken Δm ¼ 30 GeV at m χ1 ¼ 4 TeV and Δm ¼
10 GeV at m χ1 ¼ 5 TeV. Finally, the dashed (blue) curve
corresponds to the lower boundmX ≳ 2000 TeV of [34–36],
which could, however, be reduced. Altogether, the viable
candidates are confined between m χ1 ≃ 3 TeV and about
5 TeV, with an upper bound on the PS scale of mX ≲
3000 TeV. Notice finally that the lifetime of the χ3 particle
form χ1 ≃ 2 TeV (for whichwe takeΔm ¼ 85 GeV) is about
5 × 10−7 s, corresponding to cτ ∼ 150 m.For suchvalues, χ3
particles produced at the LHC would appear as stable R
hadrons in the detectors. The current limits are∼1.8 TeV for a
stable gluino and∼900 GeV for a stable stop [90]. Limits on a
long-lived χ3 should be somewhere in between, below the
minimum of 3 TeV for mχ3 ∼m χ1 reported in Fig. 12.
The discussion of the present Appendix brings support to

the fact that the colored triplet-DM singlet (i.e., 6þ 1 of
Sec. VI R) scenario is viable, provided the mass splitting and
the PS scale are tuned appropriately. Notice that there might
be additional enhancement factors (top-quark or right-
handed neutrino channels, k-factor enhanced next-to-leading
order corrections, bound-state effects) and that the PS-scale

limits can be weakened by playing with fermion mixing, so
the parameter space can be opened up a bit more.
Coannihilation of a singlet DM directly with an octet

partner will not work by itself due to the lack of direct
DM–octet–gauge-boson vertices, but it could do so
together with an intermediate colored triplet. This is
precisely the scenario of Sec. VI K. As it involves two
mass splittings, which affect the formation of bound states
and/or the Sommerfeld effects, we leave the determination
of the relic abundance in this scenario for other work.
Finally, the formalism may be applied to other scenarios,
for instance the case of coannihilation of an SUð2ÞR triplet
(e.g., the triplet 3 scenario of Sec. VI C).

APPENDIX C: TABLES

A chiral fermion F in an irreducible representation R
under SOð10Þ is split into a sum of representations under
the subgroup G when SOð10Þ is broken SOð10Þ → G. If F
does not couple to the scalars S that break SOð10Þ, it will
remain degenerate at tree level; but if it has a Yukawa
coupling yF̄cFS, it will receive mass splittings yhSi
proportional to the relevant Clebsch-Gordan coefficients
(calculable for example with SUSYNO [18]). All our
candidates have an SOð10Þ symmetric mass term m1,
not connected to SOð10Þ breaking. They can furthermore
couple to scalars 45, 54, and 210, all of which can obtain
SOð10Þ breaking VEVs, splitting the masses within the
fermion multiplet. We will denote the product of Yukawa
coupling times VEV as mS ∝ yhSi, normalized for each
multiplet in order to obtain simple expressions with few
fractions and square roots. If more than one Yukawa
coupling exists, we distinguish them with indices A and
B, e.g., m54;A and m54;B. If a scalar has VEVs in several
components, we distinguish them according to their G422

quantum numbers, e.g., m210ð1;1;1Þ and m210ð15;1;1Þ .
All our fermions are in a real representation of SOð10Þ

and thus massive. Depending on the subgroup, the massive
states are Dirac or Majorana fermions. In the following,mR
denotes the mass of a Majorana (Dirac) fermion if the
representation R is real (complex) under the relevant
subgroup. For a Dirac particle, there is a choice whether
one labels the particle and mass by R or R̄ [only relevant for
SUð3Þ and SUð4Þ]; we always pick the one without a bar.
Finally, the mass terms mR we give here can be negative or
even complex in general, in which case the physical masses
correspond to the absolute values (or singular values in case
of mass matrices).
There are four SOð10Þ subgroups of relevance for us:

G422, G3221, G421, and G3211. Rather than discuss them
separately, we will discuss them two at a time, starting with
G422 and G3221.

1. G422 and G3221

We start with the SOð10Þ subgroups G422 and
G3221; to keep the expressions readable, we pick a Uð1Þ
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normalization that avoids fractions, namely Uð1Þ3ðB−LÞ.
Table VI lists the chiral representations 10, 45, 54, 120,
210, and 2100 together with their tree-level mass splittings
due to VEVs down to the subgroups G422 and G3221. The
considerably lengthier representation 126 ⊕ 126 is listed in
Table VII for G422 and in Table VIII for G3221.

2. G421 and G3211

The same procedure can be applied to the SOð10Þ
subgroups G421 and G3211, which follow from the previous
ones by breaking SUð2ÞR → Uð1ÞR. This introduces addi-
tional VEVs and makes the expressions very lengthy. Once
again we pick Uð1Þ normalizations that avoid fractions,
namely Uð1Þ3ðB−LÞ and Uð1Þ2R.
For the group SUð3ÞC×SUð2ÞL×Uð1Þ2R×Uð1Þ3ðB−LÞ,

one ends up with 3 × 3 matrices for some of the repre-
sentations, which are tedious to diagonalize analytically.
Instead, we give the matrices here. For the 210, one finds
three representations with quantum numbers (1; 1; 0; 0),
which share a symmetric mass matrix with entries

M11 ¼ m1 −
12m45ð15;1;1Þ

7
þ 12m210ð15;1;1Þ

7
þ 24m54

7
; ðC1Þ

M12 ¼
2m45ð1;1;3Þffiffiffiffiffi

13
p −

5m45ð15;1;1Þ

7
ffiffiffiffiffi
13

p þ 40m210ð15;1;1Þ

7
ffiffiffiffiffi
13

p −
200m54

7
ffiffiffiffiffi
13

p ;

ðC2Þ

M13 ¼ 5

ffiffiffiffiffi
2

91

r
m45ð1;1;3Þ þ

ffiffiffiffiffi
2

91

r
m45ð15;1;1Þ − 8

ffiffiffiffiffi
2

91

r
m210ð15;1;1Þ

þ 40

ffiffiffiffiffi
2

91

r
m54; ðC3Þ

M22 ¼ m1 þ
14m210ð1;1;1Þ

39
þ 40m45ð1;1;3Þ

39
þ 496m45ð15;1;1Þ

273

þ 264m210ð15;1;1Þ

91
−
140m210ð15;1;3Þ

39
þ 296m54

273
; ðC4Þ

M23 ¼
5

39

ffiffiffiffiffi
14

p
m210ð1;1;1Þ þ

22

39

ffiffiffi
2

7

r
m45ð1;1;3Þ þ

10

39

ffiffiffi
2

7

r
m45ð15;1;1Þ

ðC5Þ

þ 20

13

ffiffiffi
2

7

r
m210ð15;1;1Þ −

11

39

ffiffiffiffiffi
14

p
m210ð15;1;3Þ þ

50

39

ffiffiffi
2

7

r
m54;

ðC6Þ

M33 ¼ m1 þ
25m210ð1;1;1Þ

39
−
40m45ð1;1;3Þ

39
þ 74m45ð15;1;1Þ

39

þ 44m210ð15;1;1Þ

13
þ 140m210ð15;1;3Þ

39
þ 58m54

39
; ðC7Þ

with singular values denoted byMA
s ,MB

s ,MC
s that can be

calculated straightforwardly from the given matrix.
Similarly, the representation 126 ⊕ 126 contains three
copies of ð3; 1; 0;−2Þ under SUð3ÞC × SUð2ÞL ×Uð1Þ2R×
Uð1Þ3ðB−LÞ, which have a mass matrix with entries

M11¼m1−
m210ð1;1;1Þ

3
þm45ð15;1;1Þ þ

m210ð15;1;1Þ

3
þ8m210ð15;1;3Þ

3
;

ðC8Þ

M12 ¼ −
1

3

ffiffiffi
2

p
m210ð1;1;1Þ þ

1

3

ffiffiffi
2

p
m210ð15;1;1Þ þ

2

3

ffiffiffi
2

p
m210ð15;1;3Þ ;

ðC9Þ

TABLE VI. Mass of a chiral multiplet in representation R of SOð10Þ (left) under the subgroups SUð4Þ × SUð2ÞL × SUð2ÞR (middle)
and SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1Þ3ðB−LÞ (right).

SOð10Þ SUð4Þ × SUð2ÞL × SUð2ÞR SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1Þ3ðB−LÞ
10 mð1;2;2Þ ¼ m1 þ 3m54 mð1;2;2;0Þ ¼ m1 þ 3m54

mð6;1;1Þ ¼ m1 − 2m54 mð3;1;1;−2Þ ¼ m1 − 2m54

45 mð1;1;3;0Þ ¼ m1 − 6m54 −m210ð1;1;1Þ
mð1;1;3Þ ¼ m1 − 6m54 −m210ð1;1;1Þ mð1;3;1;0Þ ¼ m1 − 6m54 þm210ð1;1;1Þ
mð1;3;1Þ ¼ m1 − 6m54 þm210ð1;1;1Þ mð3;2;2;−2Þ ¼ m1 −m54

mð6;2;2Þ ¼ m1 −m54 mð1;1;1;0Þ ¼ m1 þ 4m54 − 2m210ð15;1;1Þ
mð15;1;1Þ ¼ m1 þ 4m54 mð3;1;1;4Þ ¼ m1 þ 4m54 −m210ð15;1;1Þ

mð8;1;1;0Þ ¼ m1 þ 4m54 þm210ð15;1;1Þ
54 mð1;1;1Þ ¼ m1 þ 2m54 mð1;1;1;0Þ ¼ m1 þ 2m54

mð1;3;3Þ ¼ m1 þ 6m54 mð1;3;3;0Þ ¼ m1 þ 6m54

mð6;2;2Þ ¼ m1 þm54 mð3;2;2;−2Þ ¼ m1 þm54

mð200;1;1Þ ¼ m1 − 4m54 mð6;1;1;4Þ ¼ m1 − 4m54

mð8;1;1;0Þ ¼ m1 − 4m54

(Table continued)
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TABLE VI. (Continued)

SOð10Þ SUð4Þ × SUð2ÞL × SUð2ÞR SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1Þ3ðB−LÞ
120 mð1;2;2;0Þ ¼ m1 − 9m54

mð3;1;3;−2Þ ¼ m1 − 4m54 −m210ð1;1;1Þ
mð1;2;2Þ ¼ m1 − 9m54 mð3;3;1;−2Þ ¼ m1 − 4m54 þm210ð1;1;1Þ
mð6;1;3Þ ¼ m1 − 4m54 −m210ð1;1;1Þ mð1;1;1;−6Þ ¼ m1 þ 6m54 − 3m210ð15;1;1Þ
mð6;3;1Þ ¼ m1 − 4m54 þm210ð1;1;1Þ mð3;1;1;−2Þ ¼ m1 þ 6m54 −m210ð15;1;1Þ
mð10;1;1Þ ¼ m1 þ 6m54 mð6;1;1;−2Þ ¼ m1 þ 6m54 þm210ð15;1;1Þ
mð15;2;2Þ ¼ m1 þm54 mð1;2;2;0Þ0 ¼ m1 þm54 − 2m210ð15;1;1Þ

mð3;2;2;4Þ ¼ m1 þm54 −m210ð15;1;1Þ
mð8;2;2;0Þ ¼ m1 þm54 þmvec210ð15;1;1Þ

210 mð1;1;1;0Þ ¼ m1 þ 2m54 þ 2m210ð15;1;1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

45ð15;1;1Þ þ 4ð−5m54 þm210ð15;1;1Þ Þ2
q

mð3;2;2;−2Þ0 ¼ 5m54 −m210ð15;1;1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

45ð15;1;1Þ
þ ðm1 þ 2m54 þm210ð15;1;1Þ Þ2

q
mð1;2;2;−6Þ ¼ m1 − 3m54 þ 6m210ð15;1;1Þ

mð1;1;1Þ ¼ m1 þ 12m54 mð3;2;2;−2Þ ¼ −5m54 þm210ð15;1;1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

45ð15;1;1Þ þ ðm1 þ 2m54 þm210ð15;1;1Þ Þ2
q

mð6;2;2Þ ¼ m1 þ 7m54 mð6;2;2;−2Þ ¼ m1 − 3m54 − 2m210ð15;1;1Þ
mð10;2;2Þ ¼ m1 − 3m54 mð1;1;1;0Þ0 ¼ m1 þ 2m54 þ 2m210ð15;1;1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

45ð15;1;1Þ þ 4ð−5m54 þm210ð15;1;1Þ Þ2
q

mð15;1;1Þ ¼ m1 − 8m54 mð3;1;1;4Þ ¼ m1 − 8m54 þ 2m210ð15;1;1Þ
mð15;1;3Þ ¼ m1 þ 2m54 þm210ð1;1;1Þ mð8;1;1;0Þ ¼ m1 − 8m54 − 2m210ð15;1;1Þ
mð15;3;1Þ ¼ m1 þ 2m54 −m210ð1;1;1Þ mð1;1;3;0Þ ¼ m1 þ 2m54 þ 2m45ð15;1;1Þ þm210ð1;1;1Þ þ 4m210ð15;1;1Þ

mð3;1;3;4Þ ¼ m1 þ 2m54 þm45ð15;1;1Þ þm210ð1;1;1Þ þ 2m210ð15;1;1Þ
mð8;1;3;0Þ ¼ m1 þ 2m54 −m45ð15;1;1Þ þm210ð1;1;1Þ − 2m210ð15;1;1Þ
mð1;3;1;0Þ ¼ m1 þ 2m54 − 2m45ð15;1;1Þ −m210ð1;1;1Þ þ 4m210ð15;1;1Þ
mð3;3;1;4Þ ¼ m1 þ 2m54 −m45ð15;1;1Þ −m210ð1;1;1Þ þ 2m210ð15;1;1Þ
mð8;3;1;0Þ ¼ m1 þ 2m54 þm45ð15;1;1Þ −m210ð1;1;1Þ − 2m210ð15;1;1Þ

2100 mð1;2;2;0Þ ¼ m1 þ 12m54

mð1;2;2Þ ¼ m1 þ 12m54 mð1;4;4;0Þ ¼ m1 þ 27m54

mð1;4;4Þ ¼ m1 þ 27m54 mð3;1;1;−2Þ ¼ m1 þ 2m54

mð6;1;1Þ ¼ m1 þ 2m54 mð3;3;3;−2Þ ¼ m1 þ 12m54

mð6;3;3Þ ¼ m1 þ 12m54 mð6;2;2;4Þ ¼ m1 − 3m54

mð200;2;2Þ ¼ m1 − 3m54 mð8;2;2;0Þ ¼ m1 − 3m54

mð50;1;1Þ ¼ m1 − 18m54 mð10;1;1;−6Þ ¼ m1 − 18m54

mð15;1;1;−2Þ ¼ m1 − 18m54

TABLE VII. Mass of a chiral 126 ⊕ 126 under the subgroup SUð4Þ × SUð2ÞL × SUð2ÞR.
SOð10Þ SUð4Þ × SUð2ÞL × SUð2ÞR
126 ⊕ 126

mð6;1;1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 12m2
54;A þ 12m2

54;B − 2
ffiffiffi
6

p ðm54;A −m54;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 6ðm54;A þm54;BÞ2
qr

mð6;1;1Þ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 12m2
54;A þ 12m2

54;B þ 2
ffiffiffi
6

p ðm54;A −m54;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 6ðm54;A þm54;BÞ2
qr

mð10;1;3Þ ¼ m1 −m210ð1;1;1Þ

mð10;3;1Þ ¼ m1 þm210ð1;1;1Þ

mð15;2;2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 3m2
54;A þ 3m2

54;B þ ffiffiffi
3

p ð−m54;A þm54;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

1 þ 3ðm54;A þm54;BÞ2
qr

mð15;2;2Þ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 3m2
54;A þ 3m2

54;B þ ffiffiffi
3

p ðm54;A −m54;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

1 þ 3ðm54;A þm54;BÞ2
qr
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M13 ¼ −4m54;A; ðC10Þ

M21 ¼ −
1

3

ffiffiffi
2

p
m210ð1;1;1Þ þ

1

3

ffiffiffi
2

p
m210ð15;1;1Þ þ

2

3

ffiffiffi
2

p
m210ð15;1;3Þ ;

ðC11Þ

M22 ¼ m1 −
2m210ð1;1;1Þ

3
þm45ð15;1;1Þ þ

2m210ð15;1;1Þ

3

−
8m210ð15;1;3Þ

3
; ðC12Þ

M23 ¼ 2
ffiffiffi
2

p
m54;A; ðC13Þ

M31 ¼ 4m54;B; ðC14Þ

M32 ¼ −2
ffiffiffi
2

p
m54;B; ðC15Þ

M33 ¼ m1 −m45ð15;1;1Þ ; ðC16Þ

and singular values that we denote as MA
t , MB

t , and MC
t .

Table IX lists the chiral representations 10, 54, and 2100
together with their tree-level mass splittings due to VEVs
down to the subgroups G421 and G3211. Table XI gives the
same for 45 and 120, andTableXII for 210. The considerably
lengthier representation 126 ⊕ 126 is listed in Table X for
G421 and in Table XIII for G3211.

TABLE VIII. Mass of a chiral 126 ⊕ 126 under the subgroup SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1Þ3ðB−LÞ.

SOð10Þ SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1Þ3ðB−LÞ
126 ⊕ 126 mð3;1;1;−2Þ ¼

h
m2

1 þm2
45ð15;1;1Þ þ 12m2

54;A þ 12m2
54;B

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

45ð15;1;1Þ
þ 6ðm54;A −m54;BÞ2Þðm2

1 þ 6ðm54;A þm54;BÞ2Þ
q i

1=2

mð3;1;1;−2Þ0 ¼
h
m2

1 þm2
45ð15;1;1Þ þ 12m2

54;A þ 12m2
54;B

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

45ð15;1;1Þ
þ 6ðm54;A −m54;BÞ2Þðm2

1 þ 6ðm54;A þm54;BÞ2Þ
q i

1=2

mð1;1;3;−6Þ ¼ m1 þ 3m45ð15;1;1Þ −m210ð1;1;1Þ þ 3m210ð15;1;1Þ

mð3;1;3;−2Þ ¼ m1 þm45ð15;1;1Þ −m210ð1;1;1Þ þm210ð15;1;1Þ

mð6;1;3;−2Þ ¼ m1 −m45ð15;1;1Þ −m210ð1;1;1Þ −m210ð15;1;1Þ

mð1;3;1;6Þ ¼ m1 − 3m45ð15;1;1Þ þm210ð1;1;1Þ þ 3m210ð15;1;1Þ

mð3;3;1;−2Þ ¼ m1 −m45ð15;1;1Þ þm210ð1;1;1Þ þm210ð15;1;1Þ

mð6;3;1;−2Þ ¼ m1 þm45ð15;1;1Þ þm210ð1;1;1Þ −m210ð15;1;1Þ

mð1;2;2;0Þ ¼
h
3m2

54;A þ 3m2
54;B þ ðm1 þ 2m210ð15;1;1Þ Þ2þ

ffiffiffi
3

p ð−m54;A þm54;BÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðm54;A þm54;BÞ2 þ 2ðm1 þ 2m210ð15;1;1Þ Þ2

q i
1=2

mð8;2;2;0Þ ¼
h
3m2

54;A þ 3m2
54;B þ ðm1 −m210ð15;1;1Þ Þ2þ

ffiffiffi
3

p ð−m54;A þm54;BÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðm54;A þm54;BÞ2 þ 2ðm1 −m210ð15;1;1Þ Þ2

q i
1=2

mð3;2;2;4Þ ¼
h
4m2

45ð15;1;1Þ þ 3m2
54;A þ 3m2

54;B þ ðm1 þm210ð15;1;1Þ Þ2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8m2

45ð15;1;1Þ þ 3ðm54;A −m54;BÞ2Þð3ðm54;A þm54;BÞ2 þ 2ðm1 þm210ð15;1;1Þ Þ2Þ
q i

1=2

mð1;2;2;0Þ0 ¼
h
3m2

54;A þ 3m2
54;B þ ðm1 þ 2m210ð15;1;1Þ Þ2þ

ffiffiffi
3

p ðm54;A −m54;BÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðm54;A þm54;BÞ2 þ 2ðm1 þ 2m210ð15;1;1Þ Þ2

q i
1=2

mð8;2;2;0Þ0 ¼
h
3m2

54;A þ 3m2
54;B þ ðm1 −m210ð15;1;1Þ Þ2þ

ffiffiffi
3

p ðm54;A −m54;BÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðm54;A þm54;BÞ2 þ 2ðm1 −m210ð15;1;1Þ Þ2

q i
1=2

mð3;2;2;4Þ0 ¼
h
4m2

45ð15;1;1Þ
þ 3m2

54;A þ 3m2
54;B þ ðm1 þm210ð15;1;1Þ Þ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8m2

45ð15;1;1Þ þ 3ðm54;A −m54;BÞ2Þð3ðm54;A þm54;BÞ2 þ 2ðm1 þm210ð15;1;1Þ Þ2Þ
q i

1=2
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TABLE IX. Mass of a chiral multiplet in representation R of SOð10Þ (left) under the subgroups SUð4Þ ×
SUð2ÞL × Uð1Þ2R (middle) and SUð3ÞC × SUð2ÞL × Uð1Þ2R × Uð1Þ3ðB−LÞ (right).

SOð10Þ SUð4Þ × SUð2ÞL × Uð1Þ2R SUð3ÞC × SUð2ÞL × Uð1Þ2R × Uð1Þ3ðB−LÞ
10 mð1;2;1Þ ¼ m1 þ 3m54 mð1;2;1;0Þ ¼ m1 þ 3m54

mð6;1;0Þ ¼ m1 − 2m54 mð3;1;0;−2Þ ¼ m1 − 2m54

54 mð1;1;0;0Þ ¼ m1 þ 2m54

mð1;1;0Þ ¼ m1 þ 2m54 mð1;3;0;0Þ ¼ m1 þ 6m54

mð1;3;0Þ ¼ m1 þ 6m54 mð1;3;2;0Þ ¼ m1 þ 6m54

mð1;3;2Þ ¼ m1 þ 6m54 mð3;2;−1;−2Þ ¼ m1 þm54

mð6;2;1Þ ¼ m1 þm54 mð3;2;1;−2Þ ¼ m1 þm54

mð200;1;0Þ ¼ m1 − 4m54 mð6;1;0;4Þ ¼ m1 − 4m54

mð8;1;0;0Þ ¼ m1 − 4m54

2100 mð1;2;1;0Þ ¼ m1 þ 12m54

mð1;4;1;0Þ ¼ m1 þ 27m54

mð1;2;1Þ ¼ m1 þ 12m54 mð1;4;3;0Þ ¼ m1 þ 27m54

mð1;4;1Þ ¼ m1 þ 27m54 mð3;1;0;−2Þ ¼ m1 þ 2m54

mð1;4;3Þ ¼ m1 þ 27m54 mð3;3;0;−2Þ ¼ m1 þ 12m54

mð6;1;0Þ ¼ m1 þ 2m54 mð3;3;−2;−2Þ ¼ m1 þ 12m54

mð6;3;0Þ ¼ m1 þ 12m54 mð3;3;2;−2Þ ¼ m1 þ 12m54

mð6;3;2Þ ¼ m1 þ 12m54 mð6;2;−1;4Þ ¼ m1 − 3m54

mð200;2;1Þ ¼ m1 − 3m54 mð6;2;1;4Þ ¼ m1 − 3m54

mð50;1;0Þ ¼ m1 − 18m54 mð8;2;1;0Þ ¼ m1 − 3m54

mð10;1;0;−6Þ ¼ m1 − 18m54

mð15;1;0;−2Þ ¼ m1 − 18m54

TABLE X. Mass of a chiral 126 ⊕ 126 under the subgroup SUð4Þ × SUð2ÞL ×Uð1Þ2R.
SOð10Þ SUð4Þ × SUð2ÞL ×Uð1Þ2R
126 ⊕ 126

mð6;1;0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 12m2
54;A þ 12m2

54;B − 2
ffiffiffi
6

p ðm54;A −m54;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 6ðm54;A þm54;BÞ2
qr

mð6;1;0Þ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 12m2
54;A þ 12m2

54;B þ 2
ffiffiffi
6

p ðm54;A −m54;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 6ðm54;A þm54;BÞ2
qr

mð10;1;−2Þ ¼ m1 − 2m45ð1;1;3Þ −m210ð1;1;1Þ

mð10;1;0Þ ¼ m1 −m210ð1;1;1Þ

mð10;1;2Þ ¼ m1 þ 2m45ð1;1;3Þ −m210ð1;1;1Þ

mð10;3;0Þ ¼ m1 þm210ð1;1;1Þ

mð15;2;1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
45ð1;1;3Þ þ 3m2

54;A þ 3m2
54;B −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

45ð1;1;3Þ þ 3ðm54;A −m54;BÞ2Þð2m2
1 þ 3ðm54;A þm54;BÞ2Þ

qr

mð15;2;1Þ0 ¼

m2

1 þm2
45ð1;1;3Þ þ 3m2

54;A þ 3m2
54;B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

45ð1;1;3Þ þ 3ðm54;A −m54;BÞ2Þð2m2
1 þ 3ðm54;A þm54;BÞ2Þ

qr
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TABLE XI. Mass of a chiral multiplet in representation R of SOð10Þ (left) under the subgroups G421 (middle) and G3211 (right).

SOð10Þ SUð4Þ × SUð2ÞL ×Uð1Þ2R SUð3ÞC × SUð2ÞL ×Uð1Þ2R ×Uð1Þ3ðB−LÞ
45 mð1;1;0;0Þ ¼ m1 −m54 −

m210ð1;1;1Þ
2

−m210ð15;1;1Þ

− 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10m54 þm210ð1;1;1Þ − 2m210ð15;1;1Þ Þ2 þ 24m2

210ð15;1;3Þ

q
mð1;1;2;0Þ ¼ m1 − 6m54 −m210ð1;1;1Þ

mð1;1;0Þ ¼ m1 − 6m54 −m210ð1;1;1Þ mð1;3;0;0Þ ¼ m1 − 6m54 þm210ð1;1;1Þ

mð1;1;2Þ ¼ m1 − 6m54 −m210ð1;1;1Þ mð3;2;−1;−2Þ ¼ m1 −m54 þm210ð15;1;3Þ

mð1;3;0Þ ¼ m1 − 6m54 þm210ð1;1;1Þ mð3;2;1;−2Þ ¼ m1 −m54 −m210ð15;1;3Þ

mð6;2;1Þ ¼ m1 −m54 mð1;1;0;0Þ0 ¼ m1 −m54 −
m210ð1;1;1Þ

2
−m210ð15;1;1Þ

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10m54 þm210ð1;1;1Þ − 2m210ð15;1;1Þ Þ2 þ 24m2

210ð15;1;3Þ

q
mð15;1;0Þ ¼ m1 þ 4m54 mð3;1;0;4Þ ¼ m1 þ 4m54 −m210ð15;1;1Þ

mð8;1;0;0Þ ¼ m1 þ 4m54 þm210ð15;1;1Þ

120 mð1;2;1;0Þ ¼ −5m54 þm210ð15;1;1Þ

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð−m1 þ 4m54 þm210ð15;1;1Þ Þ2 − 3m2

210ð15;1;3Þ

q
mð3;1;0;−2Þ ¼ m1 þm54 −

m210ð1;1;1Þ
2

−
m210ð15;1;1Þ

2

− 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10m54 þm210ð1;1;1Þ −m210ð15;1;1Þ Þ2 þ 4m2

210ð15;1;3Þ

q
mð3;1;−2;−2Þ ¼ m1 − 4m54 −m210ð1;1;1Þ þm210ð15;1;3Þ

mð1;2;1Þ ¼ m1 − 9m54 mð3;1;2;−2Þ ¼ m1 − 4m54 −m210ð1;1;1Þ −m210ð15;1;3Þ

mð6;1;0Þ ¼ m1 − 4m54 −m210ð1;1;1Þ mð3;3;0;−2Þ ¼ m1 − 4m54 þm210ð1;1;1Þ

mð6;1;2Þ ¼ m1 − 4m54 −m210ð1;1;1Þ mð1;1;0;−6Þ ¼ m1 þ 6m54 − 3m210ð15;1;1Þ

mð6;3;0Þ ¼ m1 − 4m54 þm210ð1;1;1Þ mð3;1;0;−2Þ0 ¼ m1 þm54 −
m210ð1;1;1Þ

2
−

m210ð15;1;1Þ
2

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10m54 þm210ð1;1;1Þ −m210ð15;1;1Þ Þ2 þ 4m2

210ð15;1;3Þ

q
mð10;1;0Þ ¼ m1 þ 6m54 mð6;1;0;−2Þ ¼ m1 þ 6m54 þm210ð15;1;1Þ

mð15;2;1Þ ¼ m1 þm54 mð1;2;1;0Þ0 ¼ 5m54 −m210ð15;1;1Þ

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð−m1 þ 4m54 þm210ð15;1;1Þ Þ2 − 3m2

210ð15;1;3Þ

q
mð3;2;−1;4Þ ¼ m1 þm54 −m210ð15;1;1Þ −m210ð15;1;3Þ

mð3;2;1;4Þ ¼ m1 þm54 −m210ð15;1;1Þ þm210ð15;1;3Þ

mð8;2;1;0Þ ¼ m1 þm54 þm210ð15;1;1Þ
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