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When technicolor (TC), QCD, extended technicolor (ETC), and other interactions become coupled
through their different Schwinger-Dyson equations, the solutions of these equations are modified compared
to those of the isolated equations. The change in the self-energies is similar to that obtained in the presence
of four-fermion interactions, but without their ad hoc inclusion in the theory. In this case TC and QCD self-
energies decrease logarithmically with the momenta, which allows us to build models where ETC boson
masses can be pushed to very high energies, and their effects will barely appear at present energies. Here we
present a detailed discussion of this class of TC models. We first review the Schwinger-Dyson TC and QCD
coupled equations and explain the origin of the asymptotic self-energies. We develop the basic ideas of how
viable TC models may be built along this line, where ordinary lepton masses are naturally lighter than
quark masses. One specific unified TC model associated with a necessary horizontal (or family) symmetry
is described. The values of scalar and pseudo-Goldstone boson masses in this class of models are also
discussed, as well as the value of the trilinear scalar coupling and the consistency of the models with the
experimental constraints.
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I. INTRODUCTION

Over the years there have been many attempts to solve
some of the drawbacks of the Standard Model (SM)
related to the presence of a fundamental scalar boson
(like the hierarchy problem, triviality, etc.). Some of the
proposals along these lines are interesting due to the fact
that fundamental scalar bosons fit naturally into these
models, as in supersymmetric models [1–3] and asymp-
totically safe SM extensions [4]. However, no signals of
these theories have appeared so far. The Higgs particle
found at the LHC [5,6] may be the first signal of a
fundamental scalar boson, although the possibility that
this boson is a composite one has not yet been discarded,
and in this case some of the SM problems commented
above may be alleviated.
Scalar bosons are essential to the mechanisms of chiral

and gauge symmetry breaking in the SM, but it should be
remembered that most of what we have learned about the

mechanisms of spontaneous symmetry breaking is based on
the presence of composite or pair-correlated scalar states,
as happens in the Nambu-Jona-Lasinio model, QCD chiral
symmetry breaking, and the microscopic BCS theory of
superconductivity. For instance, chiral symmetry breaking
is promoted in QCD by a nontrivial vacuum expectation
value of a fermion bilinear operator and the role of the
Higgs boson is played by the composite σ meson. These
types of gauge theory models, dubbed technicolor (TC),
were proposed 40 years ago [7,8] and reviewed in
Refs. [9,10]. The many variations of these models continue
to be studied [11–17], but no phenomenologically viable
model has been found so far.
It is clear that building SM extensions in order to solve

unknown questions (like the origin of the fermionic mass
spectra) is easier when we deal with fundamental scalar
bosons than when the spontaneous symmetry breaking is
promoted by composite scalars, even if we are far from
solving the problems related to the existence of fundamental
scalar bosons. The difficulty in models with composite scalar
boson resides in knowing the dynamics of the non-Abelian
gauge theory responsible for their formation.
We may say that the root of most TC problems lies in the

way the ordinary fermions acquire their masses, which is
shown in Fig. 1, where an ordinary fermion f couples to a
technifermion F mediated by an extended technicolor
(ETC) boson.
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Assuming a standard non-Abelian TC self-energy (ΣT)
given by [18]

ΣTðp2Þ ∝ μ3TC
p2

�
p
μTC

�
γm
; ð1Þ

where μTC is the characteristic TC dynamical mass at zero
momentum (of order the Fermi mass) and γm is the
anomalous mass dimension (which depends on the TC
coupling constant, and for an asymptotically free theory has
a small value), the ordinary fermion mass turns out to be

mf ∝
μ3TC
M2

E

; ð2Þ

whereME is the ETC gauge boson mass. In order to explain
the top-quark mass we need a small ME value, and since
ETC is one interaction that changes flavor, the simplest
model that we can imagine will inevitably lead to flavor-
changing neutral currents incompatible with the experi-
mental data (among other problems).
Solutions to the above dilemma seem to require a large

γm value [19], leading to a TC self-energy with a harder
momentum behavior, and many models along these lines
can be found in the literature [20–32]. In particular, we may
quote the work of Takeuchi [33] where the TC Schwinger-
Dyson equation (SDE) was solved with the introduction of
an ad hoc four-fermion interaction, which can lead to the
following expression for the TC self-energy:

ΣTðp2 → ∞Þ ∝ ln−δðp2=μ2TCÞ; ð3Þ

where δ is a function of the many parameters of the model.
The Takeuchi solution, when dominated by the four-
fermion interaction, is not different from the behavior of
the self-energy when a bare mass is introduced into the
theory, or from the “irregular” SDE solution [18].
Recently, we numerically solved the coupled TC [based

on an SUð2Þ group] and QCD gap equations [34], which
are depicted in Fig. 2. It turned out that both self-energies
have the same asymptotic behavior as Eq. (3). It is not
difficult to understand the origin of such behavior. In
Ref. [35] we analytically verified that the radiative correc-
tions shown in Fig. 2 act as an effective bare mass. In the
case of ordinary quarks the second diagram (b2) on the
right-hand side of Fig. 2 originates an effective mass due to
TC condensation; on the other hand, the techniquarks

obtain a tiny effective mass due to QCD condensation
[see diagram (a2) in Fig. 2], and an even larger mass due to
the other diagrams [(a3) and (a4)]. Therefore, the TC self-
energy can be described by

ΣTðp2Þ ≈ μTC½1þ δ1 ln ½ðp2 þ μ2TCÞ=μ2TC��−δ2 ; ð4Þ

where δ1 and δ2 are parameters that will depend on the
many possible SDE radiative corrections depicted in Fig. 2;
in particular, the dominant correction to the technifermion
masses will be generated by diagrams (a3) and (a4) of
Fig. 2, and by diagram (b2) in the case of ordinary fermion
masses. We get a similar expression for ordinary quarks,
and it should be noticed that the isolated infrared TC and
QCD self-energy behavior is the traditional one [the one
associated with the regular solution or Eq. (1)] with dynami-
cal masses of order μTC ≈Oð1Þ TeV and μQCD ≈ 250 MeV,
respectively, i.e., the coupledSDE system is a combination of
the regular and irregular self-energy solutions [18]. It is
interesting to recall that such behavior is indeed that which
minimizes the vacuum energy in gauge theories [36], and it
is not different from Takeuchi’s result but rather originates
from known interactions (QCD, for example).
The main consequence of the results of Refs. [34,35] [i.e.,

Eq. (4)] is that the dynamically generated masses will barely
depend on the ETC scale ME. In Ref. [34] we numerically
verified that the ordinary quark masses behave as

mQ ∝ λEμTC½1þ κ1 lnðM2
E=μ2TCÞ�−κ2 ; ð5Þ

where λE involves ETC couplings, a Casimir operator
eigenvalue, and other constants, and κi are related to the

FIG. 1. Ordinary fermion mass f in ETC models.

FIG. 2. The coupled systemof SDEs for TC (T ≡ technifermion)
and QCD (Q≡ quark) including ETC and electroweak or other
corrections. GðgÞ indicates a technigluon (gluon).
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self-energies that enter in the calculation of the generated
masses, which is compatible with the quark mass computed
with the help of Eq. (4). Looking at Eq. (5), it is clear that we
can push the ETC scale up to the grand unification scale (or
even the Planck scale) without large variations of the mQ

values with ME. It is also clear that the ordinary fermionic
mass hierarchy will not arise from different ME scales! The
purpose of the present work it to discuss how viable TC
models can be built in this context, as well as to verify the
phenomenological consequences of these models, and to
show how that they can be consistent with existing high-
energy data.
It is important to note that the study of SDEs is very

sophisticated, taking into account gluon-mass generation
and possibly confinement [37–41] as well as complex
vertex structures [42,43]. However, the solutions discussed
in Refs. [34,35] and in this work are related to the
asymptotic behavior produced by the effective mass of
the coupled SDE, and are not affected by the infrared
intricacies of the strongly interacting theories.
The paper is organized as follows. In Sec. II we present

one specific TCmodel, which is just an example of the many
models that can be built along the lines described in that
section. We discuss the fact that a horizontal symmetry is
necessary in this scheme. In Sec. III we discuss how a
composite scalar boson can be lighter than the typical
composition scale of the theory responsible for this particular
state. In Sec. IV we determine the order of magnitude of the
pseudo-Goldstone masses. In Sec. V we compare the value
of the TC condensate in our model with the one expected in
walking TC theories. Section VI contains a brief discussion
of possible experimental consequences of the models dis-
cussed in Sec. II, and in Sec. VII we discuss what can be
expected regarding the trilinear scalar coupling. Section VIII
contains our conclusions.

II. BUILDING TC MODELS

In Ref. [34] we briefly proposed one specific TC model,
which will be detailed here. As will be discussed at the end
of this section, there is a large class of models that can be
built along the same lines as the model described here.
The model discussed in Ref. [34] is based on the following
group structure:

SUð9ÞU ⊗ SUð3ÞH;

where the SUð9ÞU group is a non-Abelian grand unified
theory (GUT) containing the SM and a SUð4ÞTC group. The
SUð3ÞH group is a horizontal or family symmetry that is
important for generating the hierarchy of fermion masses.
There are several reasons for this particular choice. First,

the SUð9ÞU GUT will play the role of ETC, because the
generated fermion masses will weakly depend on the GUT
boson masses (here acting as “ETC” boson masses), as
shown in Eq. (5). This group also contains the standard

SUð5ÞGG Georgi-Glashow GUT [44]. Second, the SUð4ÞTC
group contained in the GUT will condense before QCD,
generating an appropriate Fermi scale necessary to break
the electroweak group. Note that this choice is based on the
most attractive channel (MAC) hypothesis [45,46], but it
can be relaxed if the GUT breaking can be promoted at very
high energies, where even fundamental scalar bosons may
be natural due to the presence of supersymmetry [1,2].
In this case we could not neglect the possibility of a small
TC group [perhaps SUð2Þ] that condenses at one mass
scale larger than the QCD one. Third, the horizontal or
family symmetry is necessary to prevent the first- and
second-generation ordinary fermions from coupling to
TC. The third fermionic generation will obtain masses
due to diagrams like the one in Fig. 1 and will be of order
λEμTC, as described below.
The SUð9ÞU group has the following anomaly free

fermionic representations [47]:

5 ⊗ ½9; 8�i ⊕ 1 ⊗ ½9; 2�i; ð6Þ

where ½8� and ½2� are antisymmetric under SUð9ÞU, and
i ¼ 1, 2, 3 is the horizontal index necessary for the
replication of the SUð3ÞH families. The decompositions
of these representations under SUð4ÞTC ⊗ SUð5ÞGG are

½9; 2�i∶

ð1; 10Þ ¼

0
BBBBBB@

0 ūiB −ūiY −uiR −diR
−ūiB 0 ūiR −uiY −diY
ūiY −ūiR 0 −uiB −diB
uiR uiY uiB 0 ēi
diR diY diB −ēi 0

1
CCCCCCA
;

ð4; 5Þ ¼

0
BBBBBB@

TiR

TiY

TiB

L̄i

N̄i

1
CCCCCCA

TC

; ð6̄; 1Þ ¼ Ni;

½9; 8�i∶

ð1; 5̄Þ ¼

0
BBBBBB@

d̄iR
d̄iY
d̄iB
ei
νei

1
CCCCCCA
; ð1; 5̄Þ ¼

0
BBBBBB@

X̄Rk

X̄Yk

X̄Bk

Ek

NEk

1
CCCCCCA

i

;

ð4̄; 1Þ ¼ T̄iε; Li; NiL:

In the fermionic content of the above model, we identify
the usual quarks as Q ¼ ðu; dÞ, while T corresponds to
techniquarks and ðL;NÞ to technileptons, where ε¼R, Y, B
is a color index, and k ¼ 1…4 indicates the generation
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number of exotic fermions that must be introduced in order
to render the model anomaly free.
The SUð3ÞH quantum numbers must be assigned such

that the quartet of technifermions that condenses in the
MAC of the product 4̄ ⊗ 4 belongs to the 6̄ representation
of the horizontal group, whereas the QCD quark conden-
sate (generated in the color product 3̄ ⊗ 3) is formed in the
triplet representation (3) of SUð3ÞH. This is nothing else
than the horizontal symmetry scheme with fundamental
scalar bosons proposed in Refs. [48–51], and it leads to a
quark mass matrix in the horizontal group basis of the form

mq ¼

0
B@

0 m1 0

m�
1 0 0

0 0 m3

1
CA; ð7Þ

where m1 and m3 indicate the first- and third-generation
quark masses.
It is instructive to show the diagrams that lead to the

different masses shown in Eq. (7). For instance, let us
assume that mq is the mass matrix of charge 2=3 quarks,
where m3 would be related to the top-quark mass. The
diagrams responsible for this mass are shown in Fig. 3.
In this figure the technifermions T and L [that condense

in the 6̄ of SUð3ÞH] give masses to the t quark whose
interaction is mediated by one SUð9Þ gauge boson. Apart
from the logarithmic term appearing in Eq. (5), this mass is

m3 ≈ 2λ9μTC; ð8Þ

where we can assume that λ9 ≈ 0.1 is the product of the
SUð9Þ coupling constant times some Casimir operator
eigenvalue, the factor of 2 accounts for both diagrams in
Fig. 3, and μTC can be assumed to be of Oð1Þ TeV. The
SUð9Þ interaction plays the role of the ETC interaction.
These naive assumptions will lead to a top-quark mass of
approximately 200 GeV. The logarithmic term appearing in
Eq. (5) [and neglected in Eq. (8)] slightly decreases the
value of our rough estimate.
Note that the first and second charge 2=3 quarks do not

couple directly to the techniquarks due to the different
SUð3ÞH quantum numbers, and at this level they remain
massless.
We can now see how the first-generation fermions obtain

their masses. In Fig. 4 we show the diagrams that are
responsible for the u-quark mass. This quark does not
couple to techniquarks at leading order, but does couple to

other ordinary quarks and itself due to the bosons of the
unified theory and the horizontal one. Its mass can be
approximated from Eq. (5) [as we did to obtain Eq. (8)] and
is given by

m1 ≈ λ5μQCD; ð9Þ

where we can assume naively that the SUð5ÞGG factor λ5 ≈
0.1 and μQCD ≈ 200 MeV, which gives a mass of order
20 MeV. Here we do not introduce a factor of 2 in Eq. (9)
due to the presence of the two diagrams in Fig. 4, because
the c-quark condensate (in the second diagram of Fig. 4)
may be smaller than the u and d condensates.1

In Eqs. (8) and (9) we probably overestimated the results
when we neglected the logarithmic dependence on the
unified or “ETC” boson masses. These are very simple
calculations. To obtain better estimates we must solve the
coupled SDE and obtain good fits to the self-energies,
which would give us reasonable values for the parameters
δ1 and δ2 in the approximate expression of Eq. (4). It is
clear that this is far beyond the scope of this work.
The mass of the second quark generation will necessarily

involve the horizontal symmetry, where the coupling to
techniquarks will appear only at two-loop order. The c-quark
mass will be generated by diagrams like the ones shown in
Fig. 5, and it is expected to be 1 order of magnitude below
the typical mass of the third quark generation, due to an extra
factor λ3H ≈ 0.1 that contains the SUð3ÞH coupling constant.
In this way, we verify that the horizontal or family symmetry

FIG. 3. Diagrams contributing to the top-quark mass. FIG. 4. Diagrams contributing to the light-quark masses.

FIG. 5. Diagrams contributing to the c-quark mass.

1Note that the self-energy and the condensate values are
intimately connected, i.e., one is basically an integral of the
other. The c-quark self-energy appearing in Fig. 4 will involve
the same type of integral as the c-quark condensate. It is known
that the introduction of heavy quark masses may act to diminish
the condensate value or the amount of chiral symmetry breaking
[52]. For example, it has been determined for the s quark that
hs̄si=hūui ¼ 0.6� 0.1 [53,54]. In Ref. [55] the same effect for a
heavy fermion mass (e.g., fermion loops) was also observed as a
factor that lowers the composite Higgs boson mass. Therefore,
the second diagram of Fig. 4 is expected to have a smaller effect
in the calculation of the first-generation quark masses.
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is fundamental to generate a quark mass matrix with the
Fritzsch texture [56,57],

mq ¼

0
B@

0 m1 0

m�
1 0 m2

0 m�
2 m3

1
CA; ð10Þ

which has several good qualities of the experimentally
known quark mass matrix.
Lepton masses will appear in the same way as quark

masses. The τ lepton is the only one that will couple to
techniquarks at leading order, due to the appropriate choice
of quantum numbers of the horizontal symmetry. As a
consequence, the mass matrix for the leptonic sector is
similar to the one described above, although lepton masses
should be naturally smaller than quark masses, because
quarks end up coupling to two different condensates and a
larger number of diagrams contribute to their masses. It is
not difficult to verify the different number of SDEs between
quarks and leptons that can be generated with the Feynman
rules of the model described here.
We have not discussed the SUð9ÞU and horizontal

symmetry breaking, which we just assume happens at the
unification scale ΛSUð9Þ, which can possibly be naturally
promoted by fundamental scalar bosons. The breaking of the
GUT symmetry can also be used to produce a larger splitting
in the third fermionic generation. For instance, if in the
SUð9ÞU breaking (besides the Standard model interactions
and the TC one) we leave an extra Uð1Þ interaction, we
could have quantum numbers such that only the top quark
would be allowed to couple to the TC condensate at leading
order. In fact, the splitting (Sðt−bÞ) between the t and b quarks

Sðt−bÞ ¼
mb

mt
≈

1

40
ð11Þ

is quite large, and it is interesting that the b quark and the τ
lepton could couple at a larger order in the coupling constant
[possibly ðα29Þ], which could be accomplished by this
remaining Uð1Þ interaction that we referred to above.
More sophisticated models in which large fermionic mass
splittings and even neutrino masses can be generated were
presented in Refs. [58–62].
At this point, we hope that we have made clear the

necessity of introducing a horizontal or family symmetry.
It is necessary to prevent the first and second generations of
ordinary fermions from obtaining large masses that couple
to TC at leading order. This symmetry can be a local one,
but a global symmetry is not necessarily discarded. If the
family symmetry is local, its breaking can also happen at
very high energies and (again) may even be promoted by
fundamental scalars at the GUT or Planck scale, producing
feeble effects at lower energies.
When building a TC model the existence of grand

unification is also welcome. For example, in the model

described here a SUð5ÞGG gauge boson interaction is
fundamental to give the electron a mass, which appears
due to the electron coupling to the first-generation quark,
with exactly the same interaction that may mediate proton
decay in the SUð5ÞGG theory. There are more diagrams
contributing to the first-generation quark masses than
there are for the electron mass, which may explain why
leptons are less massive than quarks.
Concerning the possible class of models presented here, it

is also clear that a full and precise determination of the mass
spectra is quite complex. Once a GUT involving the SM
and TC is proposed, we also have to choose the horizontal
symmetry. The coupled SDE of such a model has to be
solved by determining all self-energies with their specific
infrared and ultraviolet expressions. Of course, simple
estimates can be made by approximating the calculation
of each specific fermion mass diagram by the product of the
dynamical mass involved in the diagram (TC or QCD) with
the respective coupling constants and Casimir operator eigen-
values, as performed in Eqs. (8) and (9) where a logarithmic
term was neglected.

III. SCALAR MASS

The common lore about theories with a composite scalar
boson is that its mass should be of the order of the
dynamical mass scale that forms such a particle. This
concept is related to the work of Nambu–Jona-Lasinio [63]
and was also discussed for the σ meson in QCD [64], where
the scalar composite mass appearing in one strongly
interacting theory is given by

mσ ¼ 2μQCD: ð12Þ

Equation (12) comes from the fact that at leading order the
SDE for the quark propagator is similar to the homo-
geneous Bethe-Salpeter equation (BSE) for a massless
pseudoscalar bound state ΦP

BSðp; qÞjq→0 (the pion) and a
scalar p-wave bound state ΦS

BSðp; qÞjq2¼4μ2 [the sigma
meson or the f0ð500Þ [65]], i.e.,

Σðp2Þ ≈ΦP
BSðp; qÞjq→0 ≈ΦS

BSðp; qÞjq2¼4μ2QCD
: ð13Þ

Equation (13) tells us that in QCD the σ meson must have a
mass 2μQCD ≈ 500 MeV. In TC we should expect a scalar
boson with a mass of 2 TeV, which is clearly not the case
for the observed Higgs boson [5,6].
There are two subtle points concerning the result of

Eq. (12) and the determination of the scalar composite
mass. The first one is that Eq. (12) was determined using
the homogeneous BSE. There is nothing wrong with
this. However, this gives the right result if the fermionic
self-energy that enters into the BSE is a soft one. When
the self-energy decreases slowly [as in Eq. (4)] the scalar
mass is modified by the normalization condition of
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the inhomogeneous BSE. This modification lowers the
composite scalar mass as a consequence of Eq. (4). The
second point about Eq. (12) that wewould like to note is not
exactly about the equation itself, but rather about the values
of the dynamical QCD and TCmass scales that arise at such
a scale. The QCDdynamical mass scale is usually extracted
from the hadronic spectra; for instance, it is expected to be
1=3 of the nucleon mass or 1=2 of the sigma meson mass.
However, it is not currently clear how much this spectra is
affected by gluons (or technigluons in the TC case) and
mixing among different particles. These points will be
discussed in the following subsections.

A. Normalization condition and the scalar mass

The BSE normalization condition in the case of a non-
Abelian gauge theory is given by [18]

2{qμ ¼ {2
Z

d4pTr

�
Pðp; pþ qÞ

� ∂
∂qμ Fðp; qÞ

�

× Pðp; pþ qÞ
�
− {2

Z
d4pd4kTr

×

�
Pðk; kþ qÞ

� ∂
∂qμ K

0ðp; k; qÞ
�
Pðp; pþ qÞ

�
;

where

K0ðp; k; qÞ ¼ 1

ð2πÞ4 Kðp; k; qÞ;

Fðp; qÞ ¼ 1

ð2πÞ4 S
−1ðpþ qÞS−1ðpÞ;

where Pðp; pþ qÞ is a solution of the homogeneous
BSE and Kðp; k; qÞ is the fermion-antifermion scattering
kernel in the ladder approximation. When the internal
momentum qμ → 0, the wave function Pðp; pþ qÞ can be
determined only through the knowledge of the fermionic
propagator:

PðpÞ ¼ SðpÞγ5
ΣðpÞ
FΠ

SðpÞ; ð14Þ

where ΣðpÞ will describe the technifermion self-
energy and it should be noticed that FΠ describes the
technipion decay constant associated with nd technifer-
mion doublets. If we identify Σðp2Þ≡ μTCfðp2Þ we
can write the normalization condition in the rainbow
approximation as

2i

�
Fπ

μTC

�
2

qμ ¼
i2

ð2πÞ4
�Z

d4pTr

�
SðpÞfðpÞγ5SðpÞ

� ∂
∂qμ S

−1ðpþ qÞS−1ðpÞ
�
SðpÞfðpÞγ5SðpÞ

�

þ i2

ð2πÞ4
Z

d4pd4kTr

�
SðkÞfðkÞγ5SðkÞ

� ∂
∂qμ Kðp; k; qÞ

�
SðpÞfðpÞγ5SðpÞ

��
: ð15Þ

Equation (15) is quite complicated, but it can be
separated into two parts:

2i

�
FΠ

μTC

�
2

qμ ¼ I0μ þ IKμ ; ð16Þ

corresponding, respectively, to the two integrals on the
right-hand side of Eq. (15). The fermion propagator given
by SðpÞ ¼ 1=½p − ΣðpÞ� can be written as

∂
∂qμ S

−1ðpþ qÞ ¼ γμ −
∂
∂qμ Σðpþ qÞ; ð17Þ

and the term ∂
∂qμ Σðpþ qÞ in the above expression may be

written as

∂Σðpþ qÞ
∂qμ ¼ ðpþ qÞμ

dΣðQ2Þ
dQ2

; ð18Þ

where Q2 ¼ ðpþ qÞμðpþ qÞμ. Considering the angle

approximation, we transform the term dΣðQ2Þ
dQ2 as

dΣðQ2Þ
dQ2

¼ dΣðp2Þ
dp2

Θðp2 − q2Þ þ dΣðq2Þ
dq2

Θðq2 − p2Þ;

ð19Þ

where Θ is the Heaviside step function. We can finally
contract Eq. (16) with qμ and compute it at q2 ¼ M2

H in
order to obtain

M2
H ¼ 4μ2TC

�
nfNTC

8π2

Z
d2p

f2ðpÞΣðpÞ
ðp2 þ Σ2ðpÞÞ2

×

�
−p2

dΣðpÞ
dp2

��
μTC
FΠ

�
2

þ IKðq2 ¼ M2
H; fðp; kÞ; g2TCðp; kÞÞ

�
; ð20Þ

where nf is the number of technifermions, NTC is the
number of technicolors, and gTC is the technicolor coupling
constant.
An expression similar to Eq. (20) was already obtained

by us in Ref. [66]. In that work we just assumed (in a totally
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ad hoc fashion) a hard momentum behavior for the TC
self-energy. The calculation here will differ not only in the
origin of the self-energy, but also in the approach we follow
to determine the value of MH. Considering the work of
Ref. [35], it becomes evident that the behavior of MH is a
result that will fundamentally depend on the boundary
conditions satisfied by the coupled system described in
Fig. 2. In Eq. (20) the UV behavior of the term

ðUVÞ lim
p2→Λ2

− p2
dΣðpÞ
dp2

ð21Þ

will be affected by the effective mass generated by diagrams
(a2), (a3), and (a4) in Fig. 2. In Ref. [35] we verified that
the UV behavior of the term in Eq. (21) is modified as αE
is different or equal to zero, and we shall comment on this
term later.
We compute MH by numerically solving the differential

coupled equations shown in Eqs. (11) and (12) of Ref. [35],
fitting the resulting solutions (all fits with R2 ¼ 0.98), and
inserting the fits into Eq. (20). We consider the TC gauge
groups SUð2ÞTC, SUð3ÞTC, and SUð4ÞTC with nf ¼ 5

fermions in the fundamental representation, μTC ¼ 1 TeV,
and use the MAC hypothesis to constrain the TC gauge
coupling and Casimir eigenvalue. Hereafter, we follow
Refs. [34,35] and use a Casimir eigenvalue CE ¼ 1 and
gauge coupling constant αE ¼ 0.032, which are quantities
related to the ETC gauge theory.
Our results forMH are shown in Table I, wherewe can see

that the normalization condition lowers the scalar mass by a
factor of Oð1=10Þ. The results are consistent with those of
Ref. [66] obtained with the naive assumption of an irregular
solution for the TC self-energy. Therefore, the effect of
radiative corrections in coupled SDEs involving a TC theory
act in order to produce a scalar composite boson with a mass
compatible with that of the observed Higgs boson.

B. Dynamical mass scales and mixing

The most precise quantity to constrain the dynamical
mass scale in the QCD case is the pion decay constant,
which is a function of the quark self-energy. In the TC case
the technipion decay constant is related to the W and Z
gauge boson masses. However, in both cases that quantity

depends on the dynamical mass scale as well as the
functional expression for the self-energy. Therefore, we
have some freedom in pinpointing the dynamical mass
scale. Even the numerical determination of the self-energy
through SDE solutions includes the introduction of a cutoff
and specific approximations. We conclude that the calcu-
lation of the scalar boson mass depends on the functional
form of the self-energy and on the dynamical mass scale.
It is curious that in the past the scalar boson mass was
considered in order to constrain the dynamical mass scale,
i.e., in QCD the scalar σ meson mass has led to the usual
value μQCD ≈ 250 MeV, which is also approximately the
value of the QCD mass scale (ΛQCD). The problem is that
the result of Eq. (12) is modified not only by the
inhomogeneous BSE condition, but also by many other
effects as we discuss in the following.
The dynamical QCD mass scale is also thought to be

related to the nucleon mass, but even this is not certain
since we do not know how much gluons contribute to the
nucleon mass [67]. It is also not yet clear how much of the
sigma meson mass comes from mixing with heavier quark-
antiquark scalars and with glueballs [68–73], and the same
is true if we just exchange QCD with TC, which means that
the scales μQCD and μTC may be smaller than usually
thought, leading to a smaller scalar composite mass (i.e.,
the σ and the “Higgs” mass). The scalar mass can also be
modified by the effect of radiative loop corrections due to
the presence of heavy fermions, as described in Ref. [55].
These are not the only effects that modify the scalar mass

and lead to a new relation between the scalar mass and the
dynamical mass scale. There is still another effect that is
intimately related to the type of dynamical symmetry
breaking model that we discussed in the previous section.
In Sec. II we discussed a model with two composite

scalar states responsible for the chiral (and gauge) sym-
metry breaking: the scalars belonging to the 6̄ and 3
representations of the horizontal group formed by techni-
fermions and quarks, respectively. The different scalars
may mix among themselves due to electroweak or other
interactions, as already pointed out in Ref. [34].
An order-of-magnitude estimate of these mixing dia-

grams is quite lengthy, but the most important fact is that
the scalar coupling to the electroweak bosons is going to
be enhanced, when compared to the coupling calculated
when the TC self-energy is soft. Note that this effective
coupling happens when scalars and W bosons couple
through an ordinary fermion or technifermion loop. The
W coupling to fermions is the SM one, while the scalar
composite coupling to ordinary fermions was shown by
Carpenter et al. [74,75] to be proportional to gw

2MW
Σ, where

Σ is the fermionic self-energy, which now is a slowly
decreasing function of momentum and enhances the
effective coupling. If we denote a composite scalar
by ϕ, it is possible to show that the ϕϕWW effective
coupling will be proportional to [76]

TABLE I. The last column contains the composite scalar mass
determined through Eq. (20), where we used the TC self-energy
obtained by solving the coupled SDE system. The different
factors and couplings of the gap equations are described in
the text.

SUðNÞ nf MH (GeV)

2 5 105.3
3 5 141.5
4 5 148.8
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ΓϕϕWW ∝
g4Wδ

ab

M2
W

gμν

32π2

Z
dq2

Σ2
ϕ

q2
; ð22Þ

where Σϕ has to be substituted by the TC or QCD self-
energy depending on which fermion is involved in the
composite scalar. Of course, the complete calculation of
the mixing diagrams is quite model dependent but, as
commented in Ref. [34], the origin of this mixing is
another way to see how a full Fritzsch matrix pattern of
fermion masses can be generated in the type of model that
we are proposing here. It is due to this type of coupling
that the second-generation fermion masses are generated
in models with fundamental scalar bosons [48–51].
Finally, in the context where all SM symmetry breaking
is promoted by composite scalars we cannot even say how
much of the σ [or f0ð500Þ] meson mass is due to a possible
mixing with a composite Higgs boson.

IV. PSEUDO-GOLDSTONE BOSONS

In the condensation of the SUð4ÞTC group a large number
of Goldstone bosons are formed. Even if we consider other
TC groups, only three of the Goldstone bosons are absorbed
in the SM gauge breaking, and regardless of the theory we
may end up with several light composite states resulting
from the chiral symmetry breaking of the strong sector.
These pseudo-Goldstone bosons (or technipions) in the

model of Sec. II may have different quantum numbers.
They may be colored bosons (Q̄γ5λ

aQ, where λa is a color
group generator), charged bosons (L̄γ5Q), or neutral
pseudo-Goldstone bosons (N̄γ5N). These bosons receive
masses through radiative corrections, and we will verify
that, as a consequence of the logarithmic TC self-energy,
they will be heavier than usually thought, which is desired
in view of the stringent limits on light technipions [77].
In Ref. [34] we briefly commented that the technipion

masses (mΠ) are enhanced in comparison with models
where the TC self-energy does not have the form of Eq. (4).
One of the arguments is quite simple: the technifermions
obtain an effective mass (mF) of several GeV through
diagrams (a3) and (a4) of Fig. 2. Note that in our case the
condensation effect is not soft, and the calculation of these
diagrams will result in a mass that is not different from
those of the third ordinary fermionic family. In particular, in
our model there will be several contributions to these types
of diagrams. Even the neutral technifermion N will receive
contributions from TC condensation mediated by the
electroweak Z boson, and from QCD condensation due
to SUð9Þ GUT bosons. These masses, apart from small
logarithmic terms, will be roughly of order

mF ≈
X
i

λiμTC; ð23Þ

where λi represents the product of some coupling constant
times Casimir operator eigenvalue contained in any diagram

of the type (a3) or (a4) contributing to the technifermion
mass. For the colored and charged technifermions we cannot
even discard a mass as heavy or higher than the top-quark
mass. These masses will generate rather heavy technipions,
as can be verified using the Gell-Mann–Oakes–Renner
relation

m2
Π ≈mF

hψ̄TψTi
2F2

Π
; ð24Þ

where hψ̄TψTi is the TC condensate andFΠ is the technipion
decay constant. With mF of order of several GeV and
standard values for the condensate and technipion decay
constant, the technipion masses turn out to be of order of
100 GeVor higher, as discussed in Ref. [34].
Another way to see that technipion masses are enhanced is

through the calculation of a diagram that was already shown
in Ref. [34] (see Fig. 4 of that reference). Any radiative
boson exchange within a technipion modifying its mass will
necessarily involve the technipion vertex connecting it to
technifermions (ΓΠF). However, this vertex is proportional to
the technipion wave function ΦΠ

BSðp; qÞ, which at leading
order is also related to the TC self-energy as

ΦΠ
BSðp; qÞjq→0 ≈ ΣTðp2Þ; ð25Þ

which is responsible for an enhancement of this radiative
correction. An order-of-magnitude calculation of such a
diagram was presented in Ref. [34], and we will comment
later on the phenomenology of technipions with masses that
are not very different from that of the Higgs boson.

V. TC CONDENSATE

In the previous section and throughout this work we have
commented about the different condensates (TC and QCD),
and it is interesting to make a connection between the
several studies about the TC condensate value based on
walking TC [78] and the one we are discussing here. The
TC condensate at a high energy scale Λ is related to its
value at another scale μ by

hψ̄TψTiΛ ¼ Z−1
m hψ̄TψTiμ; ð26Þ

where Z−1
m is a renormalization constant which is given by

Z−1
m ∼

�
Λ
μ

�
γm
;

where γm is the condensate operator anomalous dimension.
It is possible to compare the condensate values for a theory

where the anomalous dimension is perturbative and small at
high energy, i.e., γm → 0 and the one with a nontrivial large
anomalous dimension, for instance, in the extreme walking
case where γm → 2. We can define the following ratio that
measures the difference between condensates in the walking
and nonwalking regimes:
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Rw ¼ hψ̄TψTiγm→2
Λ

hψ̄TψTiγm→0
Λ

: ð27Þ

Considering these extreme cases, this ratio is proportional to

Rwjγm→2 ≈
�
Λ
μ

�
2

; ð28Þ

and this expression serves as an indicator of how much the
theory is modified by the nontrivial anomalous dimension.
This kind of relation can also be used to verify how radiative
corrections appearing in Fig. 2 change the TC behavior.
The UV boundary conditions of the differential TC gap

equations modified by the radiative corrections (as can be
seen in Ref. [35]) are given by

p2
dΣðpÞ
dp2

����
Λ→∞

¼ −a
Z

Λ2

0

dk2
ΣðkÞ

k2 þ Σ2ðpÞ ; ð29Þ

where a is a factor involving the gauge coupling constant
and Casimir operator eigenvalue related to the interaction
that induces the radiative correction [e.g., constants related
to one of the diagrams (a2), (a3), or (a4) in Fig. 2]. On the
other hand, we recall that in an SUðNÞ gauge theory the
condensate can be represented by

hψ̄TψTiΛ ¼ −
N
4π2

Z
Λ2

0

dk2
ΣðkÞ

k2 þ Σ2ðkÞ : ð30Þ

These relations allow us to redefine the ratio shown in
Eq. (27) where the condensate values are determined with
and without radiative corrections, i.e., when they are
calculated with the coupled SDE system (αE ≠ 0) and
with the values of the isolated condensates (αE ¼ 0),

Rrad:cor:
w ¼ hψ̄TψTiαE≠0Λ

hψ̄TψTiαE¼0
Λ

≈
p2 dΣðpÞ

dp2 jαE≠0
Λ→∞

p2 dΣðpÞ
dp2 jαE¼0

Λ→∞

: ð31Þ

We computed Eq. (31) by considering the solutions of
the coupled and isolated SDE system in the case of theSUð3Þ
TC group, with μ ¼ 1 TeV, αE ¼ 0.032, αTC ¼ 0.87, and
CTC ¼ 4=3. The self-energies were obtained in terms of the
variable x ¼ p2=μ2 for each ETC scale ME, and the con-
densates were integrated from x ¼ 102 up to the UV cutoff
xΛ ¼ Λ2=μ2 ∼ 107. The ratio Rrad:cor:

w was fitted with R2 ¼
0.999 in the form a1½lnðM2

E=μ
2Þ�a2 and the result is

Rrad:cor:
w ∝ 7.87 × 106½lnðM2

E=μ
2Þ�−4.3: ð32Þ

If we consider the value of our cutoff (Λ2=μ2 ¼ 107), we can
verify that the effect of the radiative correction is not exactly
that of the extreme walking case shown in Eq. (28), but it is
still quite large. We again see that the effect of radiative
corrections is not that different from the effect of the ad hoc

four-fermion interactions determined by Takeuchi [33].
Moreover, if we compute the generated quark mass (mQ)
as a function of the TC condensate we obtain

mQ ≈
hψ̄TψTiαE≠0Λ

Λ2
≈ C½lnðM2

E=μ
2Þ�−κ2 ; ð33Þ

where the constant C ∼OðμÞ. This behavior is consistent
with that of Eq. (5).

VI. EXPERIMENTAL CONSTRAINTS

A. S parameter

The S parameter provides an important test for new
physics beyond the Standard Model [79]. This parameter
can be described by the absorptive part of the vector-vector
minus axial-vector–axial-vector vacuum polarization in the
following form in the case of aTCmodelwith newcomposite
vector and axial-vector mesons with massesMV andMA and
respective decay constants FV and FA [79]:

S ¼ 4

Z
∞

0

ds
s
ImΠ̄ðsÞ ¼ 4π

�
F2
V

M2
V
−

F2
A

M2
A

�
: ð34Þ

An interesting analysis of the S parameter in TC theories
was performed in Ref. [80] with the use of the Weinberg
sum rules, where the case of a conformal theory was
considered. In our case, we have a TC model which is just
a scaled QCD theory, with effective masses due to the
different SDE contributions shown in Fig. 2, besides its
dynamical mass of Oð1Þ TeV. There is no reason to expect
modifications of Eq. (34) for this type of theory, as well as
the simple extension to TC of the first and secondWeinberg
sum rules, which are respectively

F2
V − F2

A ¼ F2
Π; ð35Þ

and

F2
VM

2
V − F2

AM
2
A ¼ 0; ð36Þ

which lead to

S ¼ 4πF2
Π

�
1

M2
V
þ 1

M2
A

�
: ð37Þ

We can also apply the result of vector-meson dominance
to Eq. (37) [81], implying that M2

A ¼ 2M2
V . This relation is

not exact even in QCD, but by considering it we are at most
overestimating the S parameter, which is now be given by

S ≈
6πF2

Π
M2

V
: ð38Þ

The TC technipion decay constant is usually assumed to
be FΠ ≈ 246 GeV.
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To determine the value of S shown in Eq. (38) we must
have one estimate of the vector-meson mass. It should be
remembered that the vector-boson mass is quite large only
due to the spin-spin part of the hyperfine interactions. We
can determine the vector-boson mass by using the hyper-
fine-splitting calculation performed in the heavy quarko-
nium context in Ref. [82],

Mð3S1Þ −Mð1S0Þ ≈
8

9
ḡ2ð0Þ jψð0Þj

2

μ2
; ð39Þ

where Mð3S1Þ and Mð1S0Þ describe the masses of vector
and scalar lighter bosons, respectively. In Eq. (39), jψð0Þj2
is the meson wave function at the origin, describing a vector
boson formed by techniquarks with dynamical mass μTC.
Equation (39) seems to be reasonable even when the vector-
boson constituents are light [83].
Wemake the following assumptions. 1) TheTC theory has

an infrared frozen coupling constant ḡ2ð0Þ=4π ≈ 0.5, whose
value can be similar to several determinations of this quantity
in the QCD case (see, for instance, Ref. [84]). 2) The lightest
TC scalar boson has the samemass as theHiggs boson found
at theLHC, i.e.,Mð1S0Þ ¼ 125 GeV. 3)Thewave function is
approximated by jψð0Þj2 ≈ μ3TC ≈ 1 TeV3, consistent with
the other BSE wave functions proportional to the dynamical
fermion mass [see Eq. (13)]. As a consequence, we obtain a
vector-boson mass MV ≈ 5.71 TeV, leading to

S ≈ 0.035; ð40Þ
whose value has probably been overestimated but is still
consistentwith the experimental data (S ¼ 0.02� 0.07) [65].

B. Horizontal symmetry

A necessary condition for the type of model that we are
proposing here is the presence of the horizontal (or family)
symmetry. This symmetry can be local, and it is only
necessary to enforce the connection between the TC sector
and the third ordinary fermionic generation, i.e., the t and b
quarks, the τ, and its neutrino. This symmetry in general
leads to flavor violations at an undesirable level; however,
in the scheme proposed here the masses of the horizontal
gauge bosons can be quite heavy, affecting only logarithmic
corrections to the fermion masses, and not producing
significant tree-level reactions that may be severely con-
strained by the experimental data. On the other hand, there
are hints of B decay anomalies [85–89] which, if confirmed,
could also set a mass scale for our horizontal symmetry.
One of the anomalies in B decays appears in the meas-

urement of the ratio between the branching fractions of the
processes B0 → K�0μþμ− and B0 → K�0eþe−, which in the
small dilepton invariant mass region is given by

RðK�Þ ¼ B0 → K�0μþμ−

B0 → K�0eþe−
¼ 0.66þ0.11

−0.07 � 0.03; ð41Þ

which is around 2.2 standard deviations away from the SM
prediction.
If such deviation is confirmed in the future, it could be

explained by a current-current interaction described by the
following effective Lagrangian:

Lh ∝ αh
λbsCμμ

M2
h

ðs̄γνPLbÞðμ̄γνμÞ; ð42Þ

where αh is the horizontal gauge coupling, λbs are mixing
angles, Mh is the horizontal gauge boson mass, and Cμμ is
a Wilson coefficient. If we naively assume the results of the
SUð3Þh horizontal model of Ref. [90] for these several
constants, we can roughly estimate thatMh should be greater
than 10 TeV. However, this is only a guess because (as said
repeatedly in the previous sections) the horizontal gauge
boson can be quite heavy, and this scale can be set to these
masses only if the anomalies remain discrepant with the SM
expectation. Otherwise, the dependence on the factor 1=M2

h
in all observables of this kind will lessen experimental
constraints originated from horizontal symmetries.
There are other possible flavor-changing neutral currents

induced by the horizontal symmetry. For instance, the
effective Lagrangian

Lh ∝ αh
λsd
M2

h

ðs̄LγνdLÞðs̄RγνdRÞ ð43Þ

is induced by one-gauge-boson exchange and contributes
to the K0 − K̄0 transition, which for λ ≈ 1=20 requires
Mh ≥ 200 TeV [91]. This contribution can be easily
evaded in our type of model simply by increasing the
horizontal gauge boson mass scale, which will not affect
the mechanism of ordinary fermion mass generation.
Therefore, a careful scrutiny of the gauge symmetry
breaking of the horizontal group will only be necessary
if the B decay anomaly is confirmed.

C. Technipion masses

The LHC collaborations already have enough data to
constrain the existence of light technipions [77]. Due to the
fact that the technifermions acquire masses of Oð100Þ GeV,
the resulting pseudo-Goldstone bosons [i.e., those generated
in the chiral breaking of the SUð4ÞTC TC gauge group
discussed in Sec. II] may be heavier than the SM Higgs
boson. Moreover, due to the choice of the horizontal
symmetry quantum numbers the technipions will mainly
couple to the third ordinary fermionic family, i.e., t and b
quarks and the τ lepton, in such a way that may easily evade
the limits found in Ref. [77] obtained from data on the SM
Higgs boson decaying into γγ and τþτ−.
The colored and charged technipions will be quite heavy

and are produced along with t and b quarks. In the case of
the decay into b quarks the branching ratio may be reduced
by a possible small coupling between this quark and the
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technipion, which will happen through the exchange of
a rather heavy gauge boson, and their signal could easily be
buried in the background. This leaves us with the lightest
technipions, which should be the neutral ones (N̄γ5N).
In this case a neutral technipion may be produced through
vector-boson fusion anddecay through theweakZZ channel.
The discussion of the TC condensate in Sec. V can be

used to estimate the neutral technipion mass (mΠ) in a
different way than in Ref. [34]. As considered in Eq. (33),
the neutral technifermion mass (mN) in terms of the TC
condensate generated by diagram (a4) of Fig. 2 is given by

mN ∼
hψ̄TψTiαE≠0Λ

Λ2
: ð44Þ

The above equation together with Eq. (24) leads to the
following estimate for the neutral technipion mass:

m2
Π ≈

ðhψ̄TψTiαE≠0Λ Þ2
2F2

ΠΛ2
: ð45Þ

AssumingSUð3ÞTC as theTCgaugegroup, hψ̄TψTiαE¼0∼μ3

with μ ¼ 1 TeV, and Rrad:cor:
w ≈7.87×106½lnðM2

E=μ
2Þ�−4.3

[defined and appearing in Eqs. (31) and (32)], we obtain

mΠ ∼ 160 GeV; ð46Þ

which is a rough estimate for the smallest pseudo-Goldstone
mass of our type ofmodel, which has not yet been eliminated
by the LHC data [77].
The fact that in our type of model the technifermions

couple preferentially to the third fermionic family and obtain
a large effective mass due ETC interactions, and that their
other couplings to ordinary fermions are always diminished
by the exchange of a very heavy horizontal or GUT gauge
boson makes the search for pseudo-Goldstone signals quite
difficult. The main hope for detecting technipions may be the
resonant production of the lightest neutral technipion and its
decay into neutral weak bosons.

VII. SCALAR BOSON TRILINEAR COUPLING

As already pointed out many years ago [92], the meas-
urement of the Higgs boson trilinear coupling is fundamental
to determining the nature of this particle. If the Higgs boson
is a composite particle its trilinear coupling may deviate
from the SM value of a fundamental scalar boson, and its
measurement can even provide a signal of the underlying
theory forming the composite state [93].
In TC or any composite scalar model the scalar trilinear

coupling is determined through its coupling to fermions.
Using Ward identities, we can show that the couplings of
the scalar boson to fermions are [75]

Gaðpþ q; pÞ ¼ −{
gW
2MW

½τaΣðpÞPR − Σðpþ qÞτaPL�;

ð47Þ
where PR;L ¼ 1

2
ð1� γ5Þ, τa is an SUð2Þ matrix, and Σ is

the fermionic self-energy in weak-isodoublet space. As in
Ref. [75], we assume that the scalar composite Higgs boson
coupling to the fermionic self-energy is saturated by the
top quark. We also do not differentiate between the two
fermion momenta p and pþ q since, in all situations of
interest, Σðpþ qÞ ≈ ΣðpÞ. Therefore, the coupling
between a composite Higgs boson and fermions at large
momenta is given by

λHffðpÞ≡ Gðp; pÞ ∼ −
gW
2MW

Σðp2Þ: ð48Þ

The trilinear coupling of the composite scalar boson is
determined by the diagram shown in Fig. 6. Assuming that
the coupling of the scalar boson to the fermions is given by
Eq. (48), we find that

λ3H ¼ 3g3W
64π2

�
3nF
M3

W

�Z
M2

E

0

Σ4ðp2Þp4dp2

ðp2 þ Σ2ðp2ÞÞ3 ; ð49Þ

where nF is the number of technifermions included in
the model.
The SM trilinear scalar coupling value, according to the

normalization of Ref. [94], is

λSM ¼ M2
H

2v2
: ð50Þ

Combined with the above normalization, the trilinear
coupling of Eq. (49) leads to the following scalar trilinear
coupling λ:

λ ¼ 1

6v
λ3H: ð51Þ

Considering Eqs. (49) and (51), v ¼ FΠ, and the relation

M2
W ¼ g2WF

2
Π

4
;

FIG. 6. The dominant contribution to the trilinear scalar
coupling. The blobs in this figure represent the coupling of
the composite scalar boson to fermions. The double lines
represent the composite scalar boson.
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we obtain for the trilinear coupling

λ ¼ 1

16π2

�
3nF
F4
Π

�Z
M2

E

0

Σ4ðp2Þp4dp2

ðp2 þ Σ2ðp2ÞÞ3 ; ð52Þ

which is the trilinear scalar composite coupling that can be
compared to the SM coupling of Eq. (50).
Using the results for the TC self-energy obtained in

Ref. [35] and Sec. III, which is dominated by diagrams (a1)
and (a4) of Fig. 2, we compute the trilinear coupling
presented in Eq. (52). A comparison of the trilinear
composite coupling with the SM one is shown in Fig. 7.
The composite trilinear coupling does differ from the SM
one, but only a small amount. In Fig. 7 we also show the
current LHC limits on this coupling obtained in Ref. [94]
from the ðbb̄γγÞ signal, whose values are λ < −1.3λSM ¼
−0.169 (red region) and λ > 8.7λSM ¼ 1.13 (green region).
Figure 7 reminds us that the actual result for the scalar
trilinear coupling does vary with ME, and this variation
should appear when the coupled gap equations are solved
taking into account the running of the ETC gauge coupling
constant. Of course, this will introduce only a small
variation in the curves of that figure. The white region is
not excluded yet, and this large region shows how difficult
it is to differentiate one composite scalar boson from a
fundamental one by just observing the specific coupling.

VIII. CONCLUSIONS

In Refs. [34,35] we called attention to the fact that the
self-energies of strongly interacting theories are modified
when we consider coupled SDEs including radiative
corrections. The effect of the radiative corrections is not

very different from the ad hoc introduction of effective
four-fermion interactions, as verified many years ago by
Takeuchi [33], and it leads to self-energies that decrease
logarithmically with the momentum. This effect was
reviewed in the Introduction of this work, where it was
made clear that the usual TC model building has to be
modified, where the ordinary fermion mass hierarchy is not
related to different ETC gauge boson masses.
The presence of a horizontal symmetry is mandatory in

the type of models envisaged in Sec. II. This symmetry is
necessary to give masses to only the third generation of
ordinary fermions at leading order. The model discussed in
Sec. II is based on the non-Abelian gauge group structure
SUð9ÞU ⊗ SUð3ÞH, where the SUð9ÞU group contains the
SM, an SUð5ÞGG Georgy-Glashow GUT [44], and a
SUð4ÞTC group. The SUð3ÞH horizontal symmetry was
introduced in such a way that their fermionic quantum
numbers allow only the third fermionic generation to be
coupled to the technifermions. The other fermions remain
massless at leading order. However, the first-generation
fermions obtain their masses due to the coupling with
QCD, which also has a slowly decreasing self-energy. This
is the most interesting fact of our model: the different
fermionic mass scales are dictated by the different strong
interactions present in the model! We have shown some of
the diagrams that generate the different masses, and made
rough estimates of their masses. We believe that a large
number of theories can be built along the lines of the model
of Sec. II. Precise determinations of fermion masses in this
type of model will demand a lengthy determination of
SDE coupled equations, where different self-energies can
be fitted by equations like Eq. (5).
The fact that the ETC interactions can be pushed to very

high energies apparently seems to open a path for a plethora
of TC models capable of describing the ordinary fermionic
mass spectra. The determination of fermion masses will
involve a delicate balance of different gauge group theories
for TC, ETC (or GUT), and horizontal symmetry. The
ordinary fermion mass matrix calculation will involve the
knowledge of specific Casimir eigenvalues, which will
depend on the different fermionic representations of the
different gauge groups. It will also involve the different
coupling constant values of these theories at different scales,
and the far more demanding solutions of the coupled system
of Schwinger-Dyson equations even with a minimum of
approximations. Therefore, while a new frontier may arise,
generic combinations of gauge theories and respective
fermionic representations will not be able to explain the
known fermionic spectra, meaning that an enormous engi-
neering effort will be necessary for a precise calculation of
ordinary fermion masses.
In Sec. III we discussed how the composite scalar boson

may have a mass lighter than the characteristic mass scale
of the theory that forms the composite particle. This could
explain how the observed Higgs boson mass, if composite,

FIG. 7. Experimental limits on the scalar boson trilinear
coupling, and curves of the trilinear coupling value (52) in the
case of a composite scalar boson.
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is smaller than the Fermi mass scale. Perhaps the most
important factor regarding the mass value of the scalar
composite resides in the normalization condition of the
inhomogeneous BSE, which has to be taken into account
when the self-energy is hard and not decaying as 1=p2. The
normalization condition, as shown by the results presented
in Table I, is enough to lower the scalar mass by a factor of
1=10. However, we have listed many other effects that may
also lower the scalar composite mass.
Section IV contains a brief discussion about pseudo-

Goldstone boson masses. It is just a complementary
discussion to the one already presented in Refs. [34,35],
indicating that their masses should be of the order of or
higher than that of the observed Higgs boson. Moreover,
the pseudo-Goldstone bosons couple at leading order only
to the third-generation fermions, which is another fact that
will complicate their experimental observation.
In Sec. Vwe computed the TC condensate in the coupled

SDE scenario. This calculation serves as a comparisonwith
the enhancement that appears in the TC condensate in
walking TC theories. Although the mechanism is totally
different, i.e., here the gauge theory is just a running theory,
there is also one enhancement in the condensates as a result
of a logarithmically decreasing self-energy with the
momentum. Again, it is possible to verify that the effect
is not qualitatively different from the ad hoc inclusion of a

four-fermion interaction, which is replaced by genuine
radiative corrections of known interactions.
In Sec. VI we commented on possible experimental

constraints on this type of model. The main point is that
the ETC gauge boson masses may be pushed to very high
energies and unnatural flavor-changing events will be absent.
The S parameter will be of the expected order, and should
not differ from the case of TC as a scaled QCD theory.
Complementing the discussion of Sec. IV with what was
presented in Sec. V, we estimated pseudo-Goldstone masses
and verified that they cannot yet be seen at the LHC
according the analysis of Ref. [77].
In Sec. VII we computed the trilinear scalar coupling and

verified that a signal of compositeness is far from being
observed with the present data [94], and this coupling does
not differ by a large amount from the SM value in the case
of a fundamental scalar boson. Finally, we may say that in
the scenario presented in this work there is a possibility that
the SM gauge symmetry breaking promoted dynamically
by composite scalar bosons is still alive.
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