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It was recently proposed that the electroweak hierarchy problem is absent if the generation of the Higgs
potential stems exclusively from quantum effects of heavy right-handed neutrinos which can also generate
active neutrino masses via the type-I seesaw mechanism. Hence, in this framework dubbed the “neutrino
option,” the tree-level scalar potential is assumed to vanish at high energies. Such a scenario therefore lends
itself particularly well to be embedded in a classically scale-invariant theory. In this paper we perform a
survey of models featuring conformal symmetry at the high scale. We find that the minimal framework
compatible with the neutrino option requires the Standard Model to be extended by two real scalar singlet
fields in addition to right-handed neutrinos. The spontaneous breaking of scale invariance, which induces
the dynamical generation of Majorana masses for the right-handed neutrinos, is triggered by renormaliza-
tion group effects. We identify the parameter space of the model for which a phenomenologically viable
Higgs potential and neutrino masses are generated, and for which all coupling constants remain in the
perturbative regime up to the Planck scale.
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I. INTRODUCTION

The gauge hierarchy problem is still one of the major
challenges in contemporary theoretical high-energy phys-
ics. In particular, without any new physics found at the
LHC, the simplest and most natural realizations of conven-
tional approaches toward its solution come under signifi-
cant pressure and the origin of the smallness of the Higgs
mass remains obscure. This obviously leads to an increased
interest in formulating and investigating alternative ideas
which provide methods to solve or at least alleviate the
electroweak naturalness problem.
One recent step in this direction was the realization that

the Standard Model (SM) Higgs potential can consistently
be generated via radiative corrections within a type-I
seesaw model [1–4], a scenario dubbed the “neutrino
option” [5]. Starting from the usual seesaw Lagrangian
but assuming the tree-level scalar potential to vanish in the
UV, the authors demonstrated that integrating out the heavy
right-handed neutrinos can correctly reproduce the physics
of both electroweak symmetry breaking and light active

neutrinos, if the Majorana mass scale is of order 100 PeV.
The hierarchy between the scale of the right-handed
neutrino Majorana masses and the Fermi scale is thereby
linked to the smallness of the Dirac neutrino Yukawa
coupling, so that the hierarchy problem is avoided.1

However, since there is no a priori reason for the Higgs
potential to vanish at high energies, the new challenge
is now to justify such an assumption by embedding the
described scenario in an appropriate theory without rein-
troducing severe parameter fine-tuning.
Thus, in the present work we study how to realize the

neutrino option in the framework of classically scale-
invariant models2 (see e.g., Refs. [9–15] for early basic
studies, as well as Refs. [16–37] for more recent works also
addressing different new physics issues other than the
hierarchy problem). In such theories, the tree-level
Lagrangian does not contain any explicit mass scale, which
immediately explains the absence of the Higgs mass
parameter at high energies. However, the Majorana mass
term—the crucial ingredient for the stabilization of the
electroweak scale in Ref. [5]—is then classically forbidden
as well and therefore has to be dynamically generated
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1Of course, the smallness of the aforementioned Yukawa
coupling remains to be explained, but is typically considered
less of an issue, since Yukawa couplings are renormalized
multiplicatively so that their smallness is stable under renorm-
alization group translations.

2As scale and conformal invariance are known to be classically
equivalent in any four-dimensional unitary and renormalizable
field theory [6–8], we will use both terms interchangeably, always
referring to the classical symmetry.
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via dimensional transmutation, e.g., à la Coleman-
Weinberg [38].
Importantly, the consistent implementation of a classi-

cally scale-invariant model is known to add extra theoreti-
cal constraints. On the one hand, the theory’s effective
vacuum can only be stable if bosonic quantum fluctuations
outweigh the fermionic ones. Due to the large top quark
mass this requires in practice to either extend the Standard
Model’s gauge group or to augment its scalar sector. On the
other hand, a necessary condition for avoiding the reintro-
duction of fine-tuning was shown to be the absence of any
physical thresholds between the scale of radiative sym-
metry breaking and the Planck scale [12]. At the latter,
quantum gravity effects are expected to become relevant
and possibly involving concepts beyond conventional
quantum field theory. In particular, this requirement forbids
the presence of any Landau poles in the renormalization
group flow of the model’s couplings across the aforemen-
tioned energy range [11,12].
The paper is organized as follows. In Sec. II, we provide

additional information on how the neutrino option may be
realized in a classically scale-invariant framework, as well
as on typical problems that may occur in such an approach.
In particular, we will be able to identify the minimal
consistent realization, which we then detail in Sec. III.
In Sec. IV, we find the viable parameter space of the model
where the well-known low energy physics is reproduced
and the theoretical consistency conditions are fulfilled. We
summarize our results in Sec. V.

II. THE NEUTRINO OPTION IN THE
CONFORMAL FRAMEWORK

In Ref. [5], the authors proposed a framework, dubbed the
neutrino option, in which a SM-like Higgs potential is
generated radiatively from the threshold corrections induced
after integrating out heavy right-handed neutrinos. They find
that the masses of such heavy fermions need to be of order
107 GeV to 108 GeV, with lepton portal Yukawa couplings
in the ½10−6; 10−5� range. Interestingly, with such masses and
couplings, eV-scale active neutrino masses can be generated
within the standard type-I seesaw model [1–4]. Hence, there
is an interesting connection between the neutrino mass
generation and the Higgs potential.
In this work we strive to embed the aforementioned idea

into a fully consistent and renormalizable scale-invariant
framework. In such a realization the quadratic term in the
Higgs potential, forbidden at high energies, is generated
below the scale of spontaneous conformal symmetry
breaking exclusively from the loops of heavy right-handed
neutrinos, whose Majorana masses must also be dynami-
cally generated.
In what follows we will briefly summarize a number of

considered models which did not turn out successful in
meeting the above requirements. The main purpose of such
a survey is to present valid arguments that the model

introduced in Sec. III is the minimal beyond-the-SM
framework featuring the neutrino option.
There are two distinct approaches for generating a mass

scale in a classically scale-invariant theory. One possibility
is that the symmetric tree-level scalar potential develops a
nonzero minimum via the Coleman-Weinberg mechanism
[30,38]. In contrast, a scale can also be generated non-
perturbatively if there is an interaction that grows strong
and induces condensation [22,28].
In Ref. [39], the author proposes a scenario in which a

right-handed neutrino condensate is induced by gravity.
Achieving such strong gravitational interaction between
right-handed neutrinos turns out to be only possible at
ultrahigh temperatures in the early Universe and for very
large right-handed neutrino masses. Namely, such masses
are associated to the grand unification scale which is
roughly ten orders of magnitude higher with respect to
the magnitude required for the realization of the neutrino
option.
The right-handed neutrino condensation is also feasible

in frameworks with newly introduced strong gauge inter-
actions. This was shown for instance in Ref. [40] where the
SU(3) flavor symmetry is gauged. All SM fermions are in
the triplet or antitriplet fundamental representation under
this symmetry group, whereas the newly introduced right-
handed neutrinos are assumed to live in one sextet and four
antitriplet representations. This is a minimal scenario in
which the gauged SU(3) flavor symmetry self-breaks, i.e.,
the most attractive channel in which the condensation is
expected to occur [41] is not invariant under the SU(3)
symmetry. This may appear appealing because there is no
call for any further extension of the scalar sector. However,
on the other hand, the number of required right-handed
states is vast. The SU(3) breaking scale cannot be chosen at
will since one of the corresponding pseudo-Goldstone
bosons is the axion [42]. From axion and axionlike particle
searches, a limit on the breaking scale can be set. These
constraints [43] are not compatible with symmetry breaking
at roughly 107 GeV to 108 GeV as desired in our scenario.
Motivated by the proposal in Ref. [40], we have

investigated two different classes of models in which the
right-handed neutrino mass is generated from a condensate.
First, we scrutinized the possibility of breaking scale-
invariance with a condensate induced by strong hidden
SU(2) gauge interactions. We found that the minimal
number of required right-handed neutrinos in such a model
is greatly reduced with respect to the discussed SU(3) case.
However, we inferred similar phenomenological properties
as in Ref. [40] and concluded that in the parameter space
where the flavor changing neutral currents are sufficiently
suppressed and the axion is not excluded, the connection
to the neutrino option is difficult to establish. We also
considered models with gauged SU(3) flavor symmetry
where, instead of right-handed neutrinos, heavy vectorlike
fermions are introduced. Despite the successful generation
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of the Higgs potential from condensation in this class of
models, the connection to neutrino masses is lost.
After exhausting the models involving strongly coupled

right-handed neutrinos, we move toward the realizations in
which the scale is generated perturbatively, namely via the
Coleman-Weinberg mechanism. It is well known that
radiative corrections within the scale-invariant version of
the SM can dynamically induce a scale [38,44]. However,
chiefly due to the large top quark mass, such breaking of
the conformal symmetry is not compatible with experi-
mental observations and, hence, the introduction of
beyond-the-SM physics is required. It is by now established
that in order to achieve the proper curvature of the one-loop
effective potential around its minimum, novel bosonic
degrees of freedom (d.o.f.) are necessary.
To be compatible with our scenario, we require that a

newly introduced scalar S (dubbed scalon) develops a
nonzero vacuum expectation value at scales similar to the
required right-handed neutrino mass of about 107 GeV to
108 GeV. The mass of S will be roughly two orders of
magnitude smaller (loop suppressed) with respect to the
breaking scale since S is the pseudo-Goldstone boson
associated with the spontaneously broken anomalous
conformal symmetry [45]. The unavoidable hierarchy
between the scalon and the SM Higgs masses forbids
the corresponding portal term to obtain Oð1Þ values,
making such couplings incompatible with the appealing
property of Dirac naturalness [46,47]. Motivated by the
latter, we employed the recently proposed “clockwork
theory” [48] and postulated the existence of Oð10Þ addi-
tional scalars which may be regarded as the links in the
chain with the SM Higgs and scalon at its edges. The
breaking of the conformal symmetry can be efficiently
transmitted from one side to the other assuming that only
the adjacent links interact with each other. If the strength of
such interactions is Oð0.1Þ, a small effective portal term
between the edges of the chain can be generated. However,
in addition to the aesthetically unappealing nonminimal
SM extension by a number of new scalars, this setup
features the following problem: It is required to forbid the
interaction between scalars which are not at neighboring
links, and this condition is not achievable even in the
presence of additional discrete symmetries. Hence, we
dismiss this model and continue the search for the minimal
scenario without imposing the Dirac naturalness condition
of Oð1Þ portal couplings.
The shape of the one-loop effective potential is governed

by both the fermionic and bosonic particle content. In order
to achieve a proper curvature at the minimum, the con-
tribution from the newly introduced bosons needs to prevail
over the fermion one. If the SM is extended only by one
singlet scalon field, it necessarily needs to couple to right-
handed neutrinos whose mass is generated when the scalon
obtains a nonzero vacuum expectation value. We assume
the Yukawa coupling between scalon and right-handed

neutrinos to be Oð1Þ. As argued above, the portal term
between the SM Higgs doublet and the scalon needs to be
small because otherwise the mass of the Higgs boson
would be too large, in a clear contradiction with its
discovery at the LHC [49,50]. Hence, it is necessary to
introduce a novel bosonic d.o.f. with a large coupling to the
scalon field in order to prevent the fermionic contribution
from exceeding the scalar one and thus inducing an
unphysical Higgs potential.
One of the simplest options is gauging the Abelian

Uð1ÞB−L (baryon minus lepton number) symmetry group.
This is well motivated because it is already present in the
SM as a global, radiatively stable symmetry. Besides,
spontaneous Uð1ÞB−L breaking by an appropriately charged
scalon provides additional heavy bosonic d.o.f. in the form
of the massive B − L gauge boson. However, we have
found that the required small portal coupling between the
Higgs and the scalon is very unstable in this model: After
fixing it to a small value at one particular scale, it is
observed to quickly grow due to renormalization group
effects. Specifically, the portal coupling’s beta function
contains a term proportional to the kinetic mixing between
SM hypercharge and Uð1ÞB−L [51]. Even if one assumes
the kinetic mixing to vanish at some scale, it gets rapidly
generated via renormalization group effects and becomes
of order g21g

2
B−L, where g1 and gB−L are gauge couplings

associated to SM hypercharge and Uð1ÞB−L, respectively.
In conclusion, despite the potentially successful generation
of the Higgs potential and the construction of neutrino
masses, the level of fine-tuning of the scalar portal coupling
required in order to obtain λHS ≪ g21g

2
B−L at the breaking

scale is unacceptable. Therefore, we do not perform further
studies of this model.
We turn next to another minimal extension where one

further real scalar singlet is added to the Higgs potential.
Hence, the scalar sector of the model contains the SM
Higgs doublet and two singlets, namely the scalon and the
newly introduced field. With an Oð1Þ quartic coupling
between the singlets, the desired shape of the Higgs
potential around its minimum can be easily achieved.
We found this model to be the minimal scale-invariant
framework in which the neutrino option can be embedded.
In Sec. III we discuss the model in more detail, while we
present our numerical results in Sec. IV.

III. THE MODEL

We augment the SM particle content by three generations
of right handed neutrinos NR and two real scalar fields
denoted S and R, each of which transforms as a singlet
under the SM gauge group SUð3Þc × SUð2ÞL × Uð1ÞY . For
simplicity, we have assumed the existence of an additional
Z2 parity symmetry under which R has an odd charge.
Operators involving odd powers of the R field are hence not
allowed.
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Our central working assumption is that some yet
unknown theory of gravity induces classically scale-
invariant boundary conditions for the particle physics
action at the Planck scale MPl. At high energies (but below
MPl), our model is then described by the following scale-
invariant Lagrangian

L ⊇
1

2
∂μS∂μSþ 1

2
∂μR∂μRþ iN̄R=∂NR − VðH; S; RÞ

−
�
1

2
yMSN̄RNc

R þ yνL̄ H̃ NR þ H:c:

�
; ð1Þ

where H is the SM Higgs doublet (H̃ represents its charge
conjugate), L denotes the SM lepton doublet, yM is the
Yukawa coupling between right-handed neutrino fields and
S, whereas yν is the lepton portal coupling. The examina-
tion of the three-flavor active neutrino mixing structure is
beyond the scope of our numerical treatment and, hence, yν
and yM are taken identical for all flavors. Having said that,
we can constrain this model based on the prediction of the
sum of active neutrino masses [52] (see Sec. IV). The scale-
invariant scalar potential V in Eq. (1) is given by

VðH; S; RÞ ¼ λðH†HÞ2 þ λSS4 þ λRR4 þ λHSS2ðH†HÞ
þ λHRR2ðH†HÞ þ λSRS2R2; ð2Þ

with H ¼ ðGþ; ðϕþ iG0Þ= ffiffiffi
2

p Þ⊺.
A number of massive particles has been observed, hence

scale-invariance must be broken at some lower scale in
order to ensure the viability of our model. Following the
approximate, yet analytical formalism developed by
Gildener and Weinberg to investigate radiative symmetry
breaking in the presence of multiple scalar fields [45], we
assume that at a certain scale, dubbed ΛGW, the classical
potential from Eq. (2) develops a flat direction along the S
field (hereafter denoted as scalon) axis. In other words, we
impose the condition

λSðΛGWÞ ¼ 0: ð3Þ

According to Gildener and Weinberg, such a flat direction
then entails the following configuration of vacuum
expectation values when taking into account quantum
corrections

hϕi ¼ hRi ¼ 0 and hSi≡ vs ≠ 0: ð4Þ

The scalar potential3 at ΛGW then reads

Vðϕ; S; RÞ ¼ 1

2
λHSv2sϕ2 þ 1

4
λϕ4 þ λHSvsSϕ2

þ 1

2
λHSS2ϕ2 þ λSRv2sR2 þ λRR4

þ 1

2
λHRR2ϕ2 þ 2λSRvsSR2 þ λSRS2R2: ð5Þ

Due to the radiative breaking of conformal symmetry,
both NR and R obtain OðΛGWÞ masses, namely

mN ¼ yMvs and m2
R ¼ 2λSRv2s ; ð6Þ

which can be read off from Eqs. (1) and (5), respectively. The
scalon S, being the pseudo-Goldstone boson of spontane-
ously broken anomalous scale-invariance, obtains its mass at
one-loop level, i.e.,m2

S ∼ v2s=ð16π2Þ [45]. Its tree-level mass
is explicitly forbidden by the Gildener-Weinberg require-
ment given in Eq. (3).
The one-loop effective potential along the flat direction

reads [45]

V1-loop ¼ AS4 þ BS4 log

�
S2

Λ2
GW

�
; ð7Þ

where

A ¼ 1

64π2v4s

X
i

ð−1Þ2sidi ·m4
i

�
log

�
m2

i

v2s

�
−
3

2

�
;

B ¼ 1

64π2v4s

X
i

ð−1Þ2sidi ·m4
i ; ð8Þ

in MS scheme. Here, si, di andmi are spin, number of d.o.f.
and the tree-level mass (evaluated along the flat direction)
of ith particle in the theory. It is clear from Eq. (8) that
fermions and bosons pose contributions with opposite signs
where the former decrease and the latter enhance the value
of the B function which determines the curvature of the
effective potential at its minimum. The physical scenarios
are achieved for B > 0. In our model these functions read

A ¼ 1

32π2

�
2λ2HS

�
log λHS −

3

2

�
þ 2λ2SR

�
logð2λSRÞ −

3

2

�

− 3y4M

�
log y2M −

3

2

��
;

B ¼ 2λ2HS þ 2λ2SR − 3y4M
32π2

: ð9Þ

For a fixed ΛGW, the expression for the scalon vacuum
expectation value reads

vs ¼ ΛGW · exp

�
−
1

4
−

A
2B

�
: ð10Þ

3Here we omit charged and pseudoscalar components in the
Higgs doublet which are absorbed as longitudinal d.o.f. of the SM
gauge bosons once the electroweak symmetry is broken.
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Note that since A and B are generally of the same order of
magnitude, the condensate vs is expected to be similar in size
to the Gildener-Weinberg scale, i.e., vs¼OðΛGWÞ [45].
The main goal of this paper is to demonstrate the

viability of the presented model both at low energies
(top quark mass) and all the way up to the Planck scale,
starting from the Gildener-Weinberg condition given in
Eq. (3) and the scalar potential at ΛGW [see Eq. (5)].
Namely, we require that we accurately reproduce the
parameters of the Higgs potential in the infrared.
Furthermore, none of the scalar and Yukawa couplings
from Eqs. (1) and (2) should reach nonperturbative values
in the UV. In what follows, we describe the evolution of the
parameters in our model from ΛGW toward both lower and
higher scales.
We take yM; λSR ¼ Oð1Þ and hence integrating out right-

handed neutrinos NR and the heavy scalar R directly at
ΛGW is a good approximation. After integrating out these
fields, the model’s scalar potential contains the Higgs
doublet and the scalon field and can be parametrized as

Vðϕ; SÞ ¼ −
1

2
m2ϕ2 þ 1

4
λϕ4 þ 1

2
δ1Sϕ2 þ 1

4
δ2S2ϕ2

þ κ1Sþ 1

2
m2

SS
2 þ 1

3
κ3S3 þ

1

4
κ4S4: ð11Þ

Comparing the terms in the scalar potential given in
Eqs. (5) and (11) yields the parameter values at ΛGW (still
without matching corrections). The most relevant relation
for the Higgs potential is

m2ðΛGWÞ ¼ Δm2;tree ¼ −λHSv2s ; ð12Þ

whereas the others yield

δ1ðΛGWÞ ¼ 2λHSvs; δ2ðΛGWÞ ¼ 2λHS;

κ1ðΛGWÞ ¼ 4λSv3s ¼ 0; m2
SðΛGWÞ ¼ 12λSv2s ¼ 0;

κ3ðΛGWÞ ¼ 12λSvs ¼ 0; κ4ðΛGWÞ ¼ 4λS ¼ 0: ð13Þ

Equation (12) signifies the importance of jλHSj ≪ 1 in
order to avoid unphysically large values of the Higgs mass,
given that vs is assumed to be much larger than the
electroweak scale.
For reproducing the neutrino option it is also crucial to

consider one-loop threshold corrections from integrating
out NR and R in the process of matching the full theory to
the effective one containing only SM d.o.f. augmented by
the scalon field S. We compute these threshold corrections
by making a power-law expansion of the one-loop effective
potential in ϕ and S fields [53,54]. To this end, we employ
the following field-dependent masses

m2
Rðϕ; SÞ ¼ λHRϕ

2 þ 2λSRS2;

mNðϕ; SÞ ¼
1

2

�
yMSþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2MS2 þ 2y2νϕ2

q �
; ð14Þ

where the latter term is the exact expression for right-
handed neutrino masses in a type-I seesaw model. The most
relevant one-loop threshold correction is the contribution to
the ϕ2 term in the potential and it explicitly reads

Δm2 ¼ Δm2;N þ Δm2;R

¼ 1

32π2

�
6y2νm2

N − λHRm2
R

�
1þ 2 log

m2
R

m2
N

��
; ð15Þ

where Δm2 denotes the corresponding correction to m2,
with Δm2;N and Δm2;R indicating the individual contribu-
tions from right-handed neutrinos and the scalar field R,
respectively. Specifically, the first term in Eq. (15) repre-
sents the correction to the Higgs mass arising from the
fermionic loop of active and right-handed neutrinos. This
result is in agreement with the one given in Ref. [5]. Note
that the Higgs portal coupling λHR (appearing due to scalar
corrections) needs to be smaller than y2ν as otherwise the
generated quadratic term in the Higgs potential would have
the wrong sign.4 In the case where both portal terms λHR

and λHS are of similar magnitudes, the contribution to m2

from the former is smaller with respect to the latter [given in
Eq. (12)] roughly by a one-loop suppression factor. We
postpone a more detailed discussion on the size of the
couplings in our model to Sec. IV.
After consistently including the threshold corrections,

we perform a renormalization group evolution between
ΛGW and the scalon mass scale mS using the set of beta
functions given in Eq. (A4). At the scalon scale, we then
integrate out the S field. Again, we calculate the matching
corrections up to one-loop level. Even though such effects
turn out to be less significant, because they are necessarily
proportional to λHS, we consistently include them in our
numerical setup. Below the scalon mass, the scalar poten-
tial simply reads

VðϕÞ ¼ −
1

2
m2ϕ2 þ 1

4
λϕ4; ð16Þ

where the vacuum expectation value of the Higgs field ϕ

can be expressed as v ¼
ffiffiffiffiffiffiffiffiffiffiffi
m2=λ

p
and is known to be

roughly 246 GeV.
Finally, by employing the SM renormalization group

equations in Eq. (A5), we arrive at the mass scale of the top
quark where we compare the shape of the potential to the
theoretical expectations. The viable points in the parameter

4In that case, the Higgs potential would not have the “Mexican
hat” shape which would forbid the Higgs mechanism. This
cannot be cured via renormalization group effects and therefore
it is crucial to have a dominant fermionic contribution in Eq. (15).
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scan are those for which the deviation of m2 and λ from
their SM values does not exceed 1%.
In order to assess the UV stability of the model for a given

parameter choice, we also perform the renormalization group
evolution from ΛGW up to the Planck scale [see Eq. (A3)]. A
consistent scenario requires no appearance of Landau poles
or absolute instabilities below this scale where quantum
gravity effects become relevant. Furthermore, the potential
from Eq. (2) must not develop a flat direction at any scale Λ0
larger than ΛGW because otherwise the scale symmetry
breaking would have occurred already at Λ0. The unwanted
Gildener-Weinberg conditions which would induce such
breaking are [45]

λ¼ 0; λS ¼ 0; λR ¼ 0;

λ2HS − 4λλS ¼ 0; λ2HR − 4λλR ¼ 0; λ2SR − 4λSλR ¼ 0;

λ2HSλRþ λ2HRλS þ λ2SRλ− λHSλHRλSR − 4λλSλR ¼ 0:

ð17Þ
In our numerical implementation, we test these relations after
each energy step in the renormalization group evolution.

IV. RESULTS

After having summarized our proposed model’s basics in
the previous section, we will now focus on the question of
whether it is feasible to correctly reproduce the known
features of low-energy Higgs and neutrino physics without
reintroducing a new fine-tuning problem. Importantly, a
consistent implementation has to satisfy the following
requirements, which hold for any realization of the neutrino
option based on classical scale invariance:
(1) The correct form of the Higgs potential at the

electroweak scale must be generated. In particular,
we require the one-loop Standard Model values of
the corresponding MS parameters [55],

m2ðmtÞ¼8748GeV2 and λðmtÞ¼0.128; ð18Þ

to be reproduced with 1% accuracy or better.
(2) Even though reproducing an accurate active neutrino

mass spectrum is beyond the scope of this work, the
current cosmological bounds on the sum of light
neutrino masses are still required to be satisfied [52]

X
mν < 0.23 eV≕Σmax

ν at 95% CL: ð19Þ

(3) The renormalization group (RG) evolution of all
parameters in the model must be free of any
Landau poles below the Planck scale. Such poles
would indicate the existence of additional physical
threshold scales in the respective energy range and
would thus necessarily reintroduce a fine-tuning
problem [12].

Obviously, the above consistency requirements will
impose constraints on the model’s parameter space,
the investigation of which is the subject of the present
section.
Specifically, we perform a numerical study based on

the solutions of the one-loop5 renormalization group
equations (RGE), which we compile in the Appendix. In
order to fully specify the RGE system we fix the model
parameters, listed in Table I, at the Gildener-Weinberg
(GW) scale. Additionally, we set λSðΛGWÞ to zero, accord-
ing to the relevant scenario of radiative symmetry breaking
[see Sec. III, Eq. (3)], and choose the gauge and top
Yukawa ðytÞ couplings such that the correct SM values
including one-loop electroweak threshold corrections are
reproduced at low energies [55]

g1ðmtÞ ¼ 0.359; g2ðmtÞ ¼ 0.648;

g3ðmtÞ ¼ 1.165; ytðmtÞ ¼ 0.958: ð20Þ

In Eq. (20), g1, g2 and g3 are the Uð1ÞY , SUð2ÞL and SUð3Þc
gauge couplings, respectively.
Starting from a parameter point thus defined at the

GW scale, our numerical code first follows the couplings’
RG evolution down towards the top mass scale, suitably
switching to appropriate effective field theory (EFT)
descriptions at the relevant physical threshold scales and
taking into account the corresponding leading-order match-
ing corrections (cf. also Sec. III). At the top mass scale, we
then check whether the constraints given in Eqs. (18) and
(19) are satisfied in accordance with items 1 and 2 of the

TABLE I. Parameter ranges used for the scatter plots in
Figs. 1–3, as well as the benchmark point on which both panels
in Fig. 4 are based on. The portal coupling λHR is throughout set
to be equal to λHS. All dimensionless couplings are MS
parameters evaluated at the given Gildener-Weinberg scale.

Parameter Range Benchmark point

ΛGW [GeV] 106…1010 3 × 108

λHS 10−16…10−9 10−12

λSR 0.0…0.5 0.30
λR 0.0…0.1 0.01
yM 0.0…0.5 0.14
yν 10−7…10−3 5.3 × 10−5

5Note that the usage of one-loop threshold corrections as in
Eq. (15) generally requires an RG evolution at the two-loop level.
However, since the present work does not aim at precision
predictions, but rather constitutes a proof of principle study, we
still employ the one-loop RGEs. Importantly, no qualitatively
new features are expected in the two-loop RG flow so that all
statements about perturbativity in the UV are anticipated to
continue to hold. Besides, the neutrino option idea was demon-
strated to be realizable both using one- and two-loop RGEs [5].
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above list. Afterwards, the couplings’ RG evolution
between the GW and the Planck scale is computed as a
further consistency test (see item 3).
In the following, we will discuss the most important

consistency constraints on the model’s parameter space in
turn, starting with those derived from the requirement of
perturbativity of all couplings below the Planck scale.
Typically, problematic Landau poles will first develop in
the RG evolution of scalar self- and portal couplings if the
corresponding initial values are too large. In our model, all
quartic self-couplings as well as the Higgs portals λHS and
λHR can or must be relatively small and are therefore
uncritical in terms of divergences. However, the portal
coupling λSR connecting the two singlet sectors has
to be substantial in order to guarantee a stable one-loop
effective potential at the GW scale, or equivalently B≥0.
Specifically, using Eq. (9) and assuming λHS ≪ λSR; y2M
implies a lower bound on λSR, namely

jλSRðΛGWÞj ≥
ffiffiffi
3

2

r
· yMðΛGWÞ2; ð21Þ

which leads to the blue exclusion region in Fig. 1. In
contrast, requiring all couplings to remain perturbative up
to the Planck scale clearly prevents the value of λSRðΛGWÞ
from becoming arbitrarily large. A simplified RG analysis
based on the relevant parameter subset ðλSR; λS; λR; yMÞ
supplemented by λSðΛGWÞ ¼ λRðΛGWÞ ¼ 0 and ΛGW ≲
1010 GeV reveals that

λSRðΛGWÞ < 0.39 ∀ yM: ð22Þ

This result reproduces our findings from the full numerical
analysis shown in Fig. 1 and thus demonstrates that λSR is
indeed limited by perturbativity. In the aforementioned
figure, the green dots indicate viable points in parameter
space, i.e., such points which satisfy all of the consistency
requirements listed before in items 1 to 3. Note, that the
upper bound on λSR from perturbativity is only necessary,
but not sufficient for full consistency: Even for subcritical
values of λSR, low-scale Landau poles can occur if, for
instance, λR is particularly large and hence enhances the RG
flow of λSR. Finally, Fig. 1 shows that the restrictions on λSR
induce a ΛGW-dependent absolute upper bound on yM and
thus also on the seesaw scale.
Now that we know that there exist consistent parameter

points without any intermediate physical thresholds
between the GW and the Planck scale, let us look for
other possible sources of fine-tuning in our model. To this
end, recall from Sec. III and Table I that the neutrino option
mechanism in the proposed framework only works if the
Dirac Yukawa coupling yν as well as the Higgs portals λHS
and λHR are tiny. Correspondingly, it is those parameters
that are the prime candidates for involving unnatural
tuning. As is well known, however, Yukawa couplings
like yν are technically natural [56] since they are protected
by chiral symmetry and are thus renormalized multiplica-
tively. In other words, if they are small at one particular
renormalization scale they will stay small at all scales.
In contrast, scalar portal couplings are generally subject

to extra additive renormalization. More precisely, Eq. (A3)
of Appendix reveals that apart from a multiplicative
component, the beta function of the Higgs-singlet portal
coupling λHS contains additive terms proportional to
λHRλSR and y2νy2M, respectively. As λHR can be of the same
order of magnitude as λHS, the former term is unproble-
matic. The term involving the Yukawa couplings, on the
other hand, cannot be made arbitrarily small for a given
λHS, since otherwise the Higgs mass is generated with the
wrong sign as evident from Eqs. (12) and (15). Specifically,
a viable parameter point at ΛGW has to satisfy

m2 < Δm2;N þ Δm2;tree ¼
�
3y2νy2M
16π2

− λHS

�
v2s ; ð23Þ

where m2 ≡m2ðmtÞ refers to the SM value quoted in
Eq. (18) and the less-than sign is a consequence of the
renormalization group running of m2, which we will discuss
in more detail at the end of the present section (cf. also the
right panel of Fig. 4). Employing that m2=v2s ≪ 1, we can
derive

λHSðΛGWÞ <
3

16π2
y2νðΛGWÞ · y2MðΛGWÞ; ð24Þ

FIG. 1. Results of our numerical study presented in the yM-λSR
plane for the parameter range given in Table I. For all displayed
points, the correct low-energy physics is reproduced. The green
points are additionally free of any Landau poles below the Planck
scale. The blue shaded area is excluded due to the fact that the
one-loop effective potential becomes unstable at ΛGW. The black
lines mark absolute upper bounds on λSRðΛGWÞ for the given
values of ΛGW.
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where, for clarity, we explicitly added the scale at which
the parameters are evaluated. Equation (24) leads to the
exclusion region in Fig. 2.
Importantly, if the product y2νy2M becomes too large, it

will enhance the RG flow of λHS. This is problematic in the
following sense: In our setup, we assume that, ultimately,
some finite theory of gravity will not only fix the classically
scale-invariant boundary conditions at the Planck scale, but
will also set the values of all dimensionless parameters in
the UV. If the RG flow of λHS is now dominated by the y2νy2M
term, the renormalized value of λHS at the GW scale will
mainly be determined by the size of y2νy2M and will generally
be of a similar order of magnitude, jλHSj ≃ y2νy2M, in stark
contrast to the consistency requirement of Eq. (24). Or put
another way, the relation of Eq. (24) is not RG invariant.
Nevertheless, it can still be realized, if λHSðMPlÞ is adjusted
in such a way as to (partially) cancel the radiative con-
tributions to λHSðΛGWÞ due to the RG flow. The necessary
tuning of λHSðMPlÞ would, however, introduce a certain
sensitivity of the physics at ΛGW to the details of the Planck
scale theory, which is deemed unnatural.
In line with the above discussion, we now define the

following measure of fine-tuning of λHS

ξ ≔
���� λHS − y2νy2M

λHS

����; ð25Þ

where all couplings are evaluated at ΛGW. Intuitively, the
value of ξ measures the amount by which the natural
relation λHS ≃ y2νy2M is violated at the GW scale and thus

indicates how finely the value of λHSðMPlÞ must be
adjusted. Clearly, the degree of fine-tuning grows the more
λHS and y2νy2M differ, as exemplified by Fig. 2. The bands
with acceptable fine-tuning are, however, densely popu-
lated, which implies the feasibility to identify viable points
with low parameter tuning for a wide range of cou-
pling sizes.
For instance, the benchmark point of Table I implies

ξBP ≃ 54, which is just above the lower limit ξmin ≃ 52 that
follows from combining Eqs. (24) and (25). An explicit
solution of the model’s RGEs reveals that in order to
reproduce the benchmark values at ΛGW including λHS ¼
10−12 necessitates jλHSðMPlÞj ¼ Oð10−10Þ. Consequently,
λHSðMPlÞ needs to be adjusted at a precision of roughly 1
part in 100.
For further investigations of our model, we will restrict

ourselves to fully consistent parameter points (in the
sense of items 1 to 3) with relatively small fine-tuning,
ξ < ξmax ≔ 100. For those points, it is then instructive to
look for possible correlations between the different param-
eters imposed by the consistency conditions discussed
before. Let us start by studying the relation between the
Dirac Yukawa coupling yν and the singlet condensate vs,
which is connected to the GW scale by Eq. (10).
Specifically, Eq. (19) implies that

Σmax
ν > 3mν ≃ 3 ·

1
2
y2νv2

yMvs
; ð26Þ

where we used the type-I seesaw expression for the masses
of the three active neutrinos. Additionally employing the
previously derived fact that the Majorana Yukawa coupling
yM cannot become arbitrarily large, yM ≤ ymax

M , we obtain a
vs-dependent upper bound on yν, namely

log yν <
1

2
log vs þ

1

2
log

2ymax
M Σmax

ν

3v2
; ð27Þ

which gives rise to the upper exclusion region in the left
panel of Fig. 3. Similarly, a vs-dependent lower bound on
yν can be obtained from Eq. (23). The result is

log yν > − log vs þ log
4π

ffiffiffiffiffiffi
m2

p
ffiffiffi
3

p
ymax
M

; ð28Þ

leading to the lower exclusion region in the left panel of
Fig. 3. Finally, combining Eqs. (27) and (28), we can even
derive an absolute lower bound on the singlet condensation
scale vs

log vs >
1

3
log

8π2v2m2

ðymax
M Þ3Σmax

ν
⇒ vs ≳ 1.1 × 107 GeV: ð29Þ

In a similar spirit to above, we are now interested in the
relation between the Higgs-singlet portal coupling λHS and

FIG. 2. Results of our numerical study shown in the y2νy2M-λHS-
plane for the parameter range given in Table I. All displayed
points are consistent with low-energy phenomenology and do not
violate perturbativity in the UV, but differ in the amount of
necessary parameter tuning ξ as defined in Eq. (25) (color code).
For a detailed explanation of the shown exclusion region we refer
to the main text, in particular to Eqs. (23) and (24).
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the condensation scale vs. On the one hand, the definition
of the fine-tuning measure in Eq. (25) together with a
maximally acceptable value ξmax implies λHSð1þ ξmaxÞ ≥
y2νy2M. On the other hand, the product y2νy2M is also bounded
from below as per Eq. (28). Eventually, one obtains

log λHS > −2 log vs þ log
16π2m2

3ð1þ ξmaxÞ
; ð30Þ

giving rise to the exclusion region in the right panel of Fig. 3.
The green dots in both panels of Fig. 3 represent parameter
points for which the model is phenomenologically consistent

and perturbative in the UV, with rather moderate fine-tuning
of ξ < 100.
Lastly, it is instructive to see how thewell-known form of

a SM-like Higgs potential emerges within our classically
scale-invariant realization of the neutrino option. To this
end, we employ the benchmark point given in Table I. In
analogy to Fig. 4 in Ref. [5], the left panel of our Fig. 4
demonstrates how the correct electroweak vacuum v
develops when the RG evolution approaches the electro-
weak scale.
The details of the mechanism at play in the aforemen-

tioned process are revealed by the right panel of Fig. 4,

FIG. 3. Results of our numerical study in the vs-yν- (left) and vs-λHS-plane (right). For all displayed points, the model is
phenomenologically consistent, perturbative in the UVand involves only moderate fine-tuning of ξ < 100. For a detailed explanation of
the shown exclusion regions we refer to the main text.

FIG. 4. Left: Emergence of the Higgs potential in our classically scale-invariant realization of the neutrino option for the benchmark
point given in Table I. Right: One-loop RG evolution of the Higgs massm2 and its quartic coupling λ, including leading-order threshold
corrections at the neutrino and scalon mass scales. For comparison, we also present the RG running of the Higgs mass in the minimal
SM. The quartic Higgs coupling evolves virtually identically in both models.
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where we show the evolution of the Higgs parameters m2

(green curve) and λ (blue curve) with the MS renormaliza-
tion scale μ̄. We start at the Planck scale assuming
classically scale-invariant boundary conditions, in particu-
lar m2 ≡ 0. After radiative scale symmetry breaking at
the GW scale the right-handed neutrinos acquire a finite
mass mN ¼ OðΛGWÞ and can therefore be integrated out.
Consistently matching the full theory to the low-energy
effective theory without the heavy neutrinos at mN then
gives rise to threshold corrections, through which m2

obtains a positive value that is already of the correct order
of magnitude [cf. Eq. (15)]. Notably, with respect to the
pure SM case (red dash-dotted line) the flow ofm2 between
the right-handed neutrino and the scalon mass scale mS is
enhanced by the presence of the additional scalar singlet S
[see Eq. (A4)]. Integrating out the scalon and matching to
the SM EFT at mS again induces threshold corrections to
the Higgs potential, which are, however, negligibly small.
Below mS the RG running of m2 in our model follows that
of the minimal SM.
Finally, note that, in contrast to the Higgs mass param-

eter, the RG flow of the quartic coupling λ is virtually
unaltered compared to the pure SM case. In other words it
is neither influenced significantly by the presence of
additional d.o.f., nor by any matching corrections.

V. SUMMARY AND CONCLUSIONS

In this paper we investigated classically conformal real-
izations of the neutrino option proposed in Ref. [5], where
heavy right-handed neutrinos generate both active neutrino
masses and the Higgs potential. We found that the minimal
scenario compatible with such a proposal requires us to
extend the StandardModel by two real scalar singlet fields, as
well as by right-handed neutrinos. The right-handed neutrino
masses are dynamically generated after the spontaneous
breaking of scale invariance, which, in turn, is triggered by
one of the extra scalars. The hierarchies appearing in the
described model were then argued to be naturally explained
by two different mechanisms. On the one hand, the large
separation between the Planck scale and the scale of radiative
conformal symmetry breaking is protected by classical scale
invariance [9,12]. On the other hand, the hierarchy between
the scale of spontaneous conformal symmetry breaking and
the Higgs mass is linked to the smallness of the neutrino
Yukawa coupling in the spirit of the neutrino option [5].
In order to clarify whether both of the aforementioned

stabilization mechanisms can indeed be consistently imple-
mented at the same time, we systematically investigated our
model by performing robust parameter scans. In doing so,
we found viable portions of the parameter space for which
the correct Higgs potential is reproduced and neutrino
masses compatible with the present limits are generated,
while none of the couplings becomes nonperturbative
below the Planck scale. In particular, the interplay between

Higgs and active neutrino mass constraints was revealed to
confine the Majorana mass scale to values above roughly
107 GeV. Although the presented model is thus untestable
at collider facilities, it was recently shown to feature a
strong first order scale symmetry breaking phase transition
associated with a gravitational wave signature that can be
probed at LIGO (for more details, see Ref. [57]).
In summary, we have explicitly shown how to realize the

proposal given in Ref. [5] within a consistent UV-complete
framework, namely within a particular classically scale-
invariant model. We found that the option in which the Higgs
potential stems from one-loop diagrams with right-handed
neutrinos, which also participate in the generation of active
neutrino masses, may have been chosen by Nature.
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APPENDIX: RENORMALIZATION
GROUP EQUATIONS

In this Appendix we list the one-loop renormalization
group equations (RGE) employed in our analysis. We
effectively have three sets of RGEs corresponding to the
following energy ranges:

(i) above ΛGW-full classically scale-invariant theory
including right-handed neutrinos and both scalar
singlets S and R as dynamical d.o.f.

(ii) between ΛGWand the scalon mass-EFT, in which the
right-handed neutrinos as well as the heavy scalar R
are integrated out.

(iii) below the scalon mass-EFT in which, additionally,
the scalon S is integrated out, so that the only
dynamical d.o.f. are those of the minimal Standard
Model (SM).

The convention for the beta function βz of a running
parameter z is

βz ¼ μ̄
d
dμ̄

z; ðA1Þ

where μ̄ is the MS renormalization scale. In the following
equations, the terms involving right-handed neutrino
Yukawa couplings (yM and yν) are written assuming
identical couplings of all three generations. Since all
d.o.f. beyond the SM are gauge singlets, the one-loop
RG flow of the SM gauge couplings is the same for all of
the aforementioned energy ranges, namely

16π2βg1 ¼
41

6
g31; 16π2βg2 ¼−

19

6
g32; 16π2βg3 ¼−7g33:

ðA2Þ
The remaining beta functions are listed below.
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1. RGEs above ΛGW

16π2βλ ¼ 24λ2 þ 2λ2HR þ 2λ2HS − 6y4ν − 6y4t þ
3

8
g41 þ

9

8
g42 þ

3

4
g21g

2
2 þ 12λy2ν þ 12λy2t − 3λg21 − 9λg22;

16π2βλS ¼ 72λ2S þ 2λ2HS þ 2λ2SR − 3y4M þ 12λSy2M;

16π2βλR ¼ 72λ2R þ 2λ2HR þ 2λ2SR;

16π2βλHS
¼ λHS

�
12λþ 24λS þ 8λHS þ 6y2M þ 6y2ν þ 6y2t −

3

2
g21 −

9

2
g22

�
þ 4λHRλSR − 12y2νy2M;

16π2βλHR
¼ λHR

�
12λþ 24λR þ 8λHR þ 6y2ν þ 6y2t −

3

2
g21 −

9

2
g22

�
þ 4λHSλSR;

16π2βλSR ¼ 2λSRð12λS þ 12λR þ 8λSR þ 3y2MÞ þ 4λHSλHR;

16π2βyt ¼ yt

�
9

2
y2t þ 3y2ν −

17

12
g21 −

9

4
g22 − 8g23

�
;

16π2βyM
¼ 2yMð3y2M þ y2νÞ;

16π2βyν ¼
yν
4
ð2y2M þ 18y2ν þ 12y2t − 3g21 − 9g22Þ: ðA3Þ

2. RGEs between ΛGW and the scalon mass

16π2βλ ¼ 24λ2 þ δ22
2
− 6y4t þ

3

8
g41 þ

9

8
g42 þ

3

4
g21g

2
2 þ 12λy2t − 3λg21 − 9λg22;

16π2βκ4 ¼ 18κ24 þ 2δ22;

16π2βδ2 ¼ δ2

�
12λþ 6κ4 þ 4δ2 þ 6y2t −

3

2
g21 −

9

2
g22

�
;

16π2βκ3 ¼ 6δ1δ2 þ 18κ3κ4;

16π2βδ1 ¼ δ1

�
12λþ 4δ2 þ 6y2t −

3

2
g21 −

9

2
g22

�
þ 2δ2κ3;

16π2βm2 ¼ m2

�
12λþ 6y2t −

3

2
g21 −

9

2
g22

�
− 2δ21 − δ2m2

S;

16π2βm2
S
¼ 4δ21 − 4δ2m2 þ 4κ23 þ 6κ4m2

S;

16π2βyt ¼ yt

�
9

2
y2t −

17

12
g21 −

9

4
g22 − 8g23

�
: ðA4Þ

3. RGEs below the scalon mass

16π2βλ ¼ 24λ2 − 6y4t þ
3

8
g41 þ

9

8
g42 þ

3

4
g21g

2
2 þ 12λy2t − 3λg21 − 9λg22;

16π2βm2 ¼ m2

�
12λþ 6y2t −

3

2
g21 −

9

2
g22

�
;

16π2βyt ¼ yt

�
9

2
y2t −

17

12
g21 −

9

4
g22 − 8g23

�
: ðA5Þ
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