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We investigate the effect of fermionic electroweak multiplet dark matter models on the stability of the
electroweak vacuum using two-loop renormalization group equations (RGEs) and one-loop matching
conditions. Such a treatment is crucial to obtain reliable conclusions, compared with one-loop RGEs and
tree-level matching conditions. In addition, we find that the requirement of perturbativity up to the Planck
scale would give strong and almost mass-independent constraints on the Yukawa couplings in the dark
sector. We also evaluate these models via the idea of finite naturalness for the Higgs mass fine-tuning issue.

DOI: 10.1103/PhysRevD.99.055009

I. INTRODUCTION

The discovery of the Higgs boson in 2012 at the Large
Hadron Collider (LHC) [1,2] confirms the particle content
of the standard model (SM) and the validity of the Brout-
Englert-Higgs mechanism. With present experimental val-
ues of SM parameters, if the SM is valid up to the Planck
scale (1.2 × 1019 GeV), a deeper minimumwould appear at
∼1017 GeV, indicating the electroweak (EW) vacuum is
metastable [3–6]. Nevertheless, such a situation could be
modified by new physics beyond the standard model
(BSM) at scales lower than the Planck scale. Therefore,
the requirement of a stable or metastable EW vacuum may
strongly constrain BSM models.
On the other hand, the existence of dark matter (DM) has

been established by solid astrophysical and cosmological
observations. This undoubtedly indicates that BSM physics
must exist. Among various DM candidates proposed,
weakly interacting massive particles (WIMPs) are very
compelling and have been widely studied. WIMP models
can be easily constructed by extending the SM with new
electroweak multiplets, such as minimal dark matter
models [7–14], and other models which contain more than

one SUð2ÞL multiplet [15–42]. In this paper, we focus on a
class of fermionic electroweak multiplet dark matter
(FEMDM) models which involve a dark sector with more
than one fermionic SUð2ÞL multiplet.
Specifically, we take the following three models as

illuminating examples:
(i) Singlet-doublet fermionic dark matter (SDFDM)

model: the dark sector contains one singlet Weyl
spinor and two doublet Weyl spinors;

(ii) Doublet-triplet fermionic dark matter (DTFDM)
model: the dark sector contains one triplet Weyl
spinor and two doublet Weyl spinors;

(iii) Triplet-quadruplet fermionic dark matter (TQFDM)
model: the dark sector contains one triplet Weyl
spinor and two quadruplet Weyl spinors;

After the electroweak symmetry breaking (EWSB), these
multiplets can mix with each other through Yukawa
couplings, and the mass eigenstates include neutral
Majorana fermions χ0i , singly charged fermions χ�i , and
(if in the TQFDM model) a doubly charged fermion χ��.
By imposing a discrete Z2 symmetry, the lightest neutral
fermion χ01 is stable, serving as a DM candidate.
All these additional EW multiplets can alter the high

energy behaviors of the running couplings through the
renormalization group equations (RGEs). For instance,
given the contributions of the new physical states, the
quartic couplings λ in the Higgs potential might stay
positive up to the Planck scale. In this case, these models
render a stable EW vacuum up to the Planck scale.
However, there could be an opposite effect if the new
couplings are too large. In such a case, Landau poles would
appear and render the breakdown of the theory. Thus, by
investigating the conditions for EW vacuum stability and
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Landau poles, the parameter spaces of these FEMDM
models could be constrained.
In addition, the mass term of the Higgs doublet could

receive loop corrections from Yukawa couplings with the
new states. These corrections are generally proportional to
mass squares of the new particles, so they would give rise to
a naturalness problem if the new particles are too heavy. In
this paper we will adopt an idea called finite naturalness
[43] to evaluate such a effect.
Note that some papers in the literature have studied the

above effects utilizing one-loop or two-loop RGEs, but they
concentrate on different models, such as singlet extensions
[4,41,44–47], triplet extensions [3,6], two Higgs doublet
models [48–54], and so on. Furthermore, when it comes to
the initial values of running parameters, only the tree level
matching is considered in these works. Nonetheless, it is
well known that the quartic coupling λ almost vanishes at
high energy scales in the SM, and hence the next-to-next-
to-leading-order (NNLO) corrections to λ are important to
determine the fate of the EW vacuum [5]. Therefore, the
tree-level matching seems not sufficient to accurately
determine the initial values of running parameters when
considering corrections to λ from new physics [55,56]. The
loop contributions from the dark sector deserve accurate
calculations for studying the vacuum stability problem. In
our calculations, we utilize three-loop RGEs and two-loop
matching for the SM sector [5], as well as two-loop RGEs
and one-loop matching for the dark sector.
This paper is outlined as follows. In Sec. II we give a

brief introduction of our strategy for the one-loop matching
of the dark sector. In Sec. III we study the RGE running of
dimensionless couplings in the SDFDM model and the
effects on the EW vacuum. Using the same method, the
results for the DTFDM and TQFDM models are demon-
strated in Secs. IV and V. The conclusions are given in
Sec. VI. Appendix A gives the explicit expressions for two-
loop RGEs in the FEMDM models.

II. MATCHING AND RUNNING

To study the evolution of a theory from a low energy
scale to a high energy scale, two ingredients are necessary:

(i) The RGEs of all the running parameters.
(ii) The initial values of these parameters at the low

energy scale where the evolution starts.
The first ingredient involves the calculations of β-functions
for the given theory; the second ingredient concerns the
matching conditions between the running parameters and
observables. In this paper, we always carry out the loop
calculations in the MS scheme, because in this scheme all
the parameters have gauge-invariant RGEs [5,57].
The β-function describing the evolution of a given

parameter ξ can be defined as

βðξÞ ¼ dξ
d ln μ

; ð1Þ

where μ is the energy scale. By expanding βðξÞ in a
perturbative series, we have

βðξÞ ¼
X
n

1

ð16π2Þn β
ðnÞðξÞ; ð2Þ

where βðnÞðξÞ indicates the contribution of the n-loop level.
For a given theory, the corresponding β-functions can be
obtained from generic expressions for a general quantum
field theory, given in Refs. [58–61]. Here we use a python
tool PYR@TE 2 [62] to calculate the β-functions in the
FEMDM models up to two-loop level. We have cross-
checked the one-loop results from PYR@TE 2 with the
results calculated by hands.
We follow the strategy in Ref. [5] to determine the MS

parameters in terms of physical observables. At first, we
work in the on-shell (OS) scheme, and express the
renormalized OS parameters directly in terms of physical
observables. Then we can derive the MS parameters from
the OS parameters. The parameters in the two schemes are
related by

θ0 ¼ θOS − δθOS ¼ θMS − δθMS ð3Þ

or

θMS ¼ θOS − δθOS þ δθMS; ð4Þ

where θ0 is the bare parameter, θOS and θMS are the
renormalized OS and MS parameters, and δθOS and
δθMS are the corresponding counterterms. By definition
δθMS only contains the divergent part 1=ϵ and γ − lnð4πÞ in
dimensional regularization with d ¼ 4 − 2ϵ. Besides, we
know that the divergent parts of δθMS and δθOS are the
same, so Eq. (4) can be simplified even further as

θMS ¼ θOS − δθOSjfin þ Δθ; ð5Þ

where δθOSjfin denotes the finite part of the quantity
involved and Δθ represents high order corrections.
Because we only demand one-loop level matching con-
ditions for the FEMDM models, we can safely ignore this
high order correction Δθ.
In the SM sector, the quantities of interests are the

quadratic and quartic couplings in the Higgs potential m2

and λ, the vacuum expectation value v, the top Yukawa
coupling yt, the SUð1ÞL and Uð1ÞY gauge couplings g2 and
gY . These parameters can be connected with physical
observables using the above strategy. In Table I we list
the related physical observables [5].
We basically follow the treatment in Ref. [5] for defining

the parameters. The Higgs potential is written as (the
subscript 0 indicates bare quantities)
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V0 ¼ −
m2

0

2
jH0j2 þ λ0jH0j4; ð6Þ

where the Higgs doublet is given by

H0 ¼
�

Gþ

ðv0 þ hþ iG0Þ= ffiffiffi
2

p
�
: ð7Þ

The relation between the Fermi constant Gμ and the bare
vacuum expectation value v0 is

Gμffiffiffi
2

p ¼ 1

2v20
ð1þ Δr0Þ: ð8Þ

In the OS scheme, the quadratic and quartic couplings of
the Higgs potential are determined by the observables Gμ

and Mh, while the top Yukawa and electroweak gauge
couplings can be fixed through the observables Mt, MW ,
MZ, and GF. The relations are

λOS¼
Gμffiffiffi
2

p M2
h; m2

OS¼M2
h; yt;OS¼2

�
Gμffiffiffi
2

p M2
t

�
1=2

; ð9Þ

g2;OS¼2ð
ffiffiffi
2

p
GμÞ1=2MW; gY;OS¼2ð

ffiffiffi
2

p
GμÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z−M2
W

q
:

ð10Þ

The one-loop counterterms of these parameters can be
deduced via Eqs. (3) and (8)–(10), leading to [5]

δð1ÞλOS ¼
Gμffiffiffi
2

p M2
h

�
Δrð1Þ0 þ 1

M2
h

�
Tð1Þ

vOS
þ δð1ÞM2

h

��
;

δð1Þm2
OS ¼ 3

Tð1Þ

vOS
þ δð1ÞM2

h; ð11Þ

δð1Þyt;OS ¼ 2

�
Gμffiffiffi
2

p M2
t

�
1=2

�
δð1ÞMt

Mt
þ Δrð1Þ0

2

�
; ð12Þ

δð1Þg2;OS ¼ ð
ffiffiffi
2

p
GμÞ1=2MW

�
δð1ÞM2

W

M2
W

þ Δrð1Þ0

�
; ð13Þ

δð1ÞgY;OS ¼ ð
ffiffiffi
2

p
GμÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z −M2
W

q

×

�
δð1ÞM2

Z − δð1ÞM2
W

M2
Z −M2

W
þ Δrð1Þ0

�
: ð14Þ

Here iT represents the sum of tadpole diagrams with
external leg extracted, and δM2

a labels the mass counterterm
for the particle a. Δr0 is given by [5]

Δr0 ¼ VW −
AWW

M2
W0

þ 2v20BW þ E þM; ð15Þ

whereMW0 is the bare mass of theW boson, AWW is theW
self-energy, VW is the vertex contribution in the muon
decay process, BW is the box contribution, E is a term due
to the renormalization of external legs, and M is a mixed
contribution due to a product of different objects among
VW , AWW , BW , and E. All quantities in Eq. (15) are
computed at zero external momentum. Thus the one-loop
term of Δr0 is given by

Δrð1Þ0 ¼ Vð1Þ
W −

Að1Þ
WW

M2
W

þ
ffiffiffi
2

p

Gμ
Bð1Þ
W þ Eð1Þ; ð16Þ

where we have usedMð1Þ ¼ 0 [5] to get rid of the last term
in Eq. (15). With Eq. (5), we can get the one-loop relations
between MS parameters and physical observables as
follows:

λMS ¼
Gμffiffiffi
2

p M2
h − δð1ÞλOSjfin; m2

MS
¼M2

h − δð1Þm2
OSjfin;

yt;MS ¼ 2

�
Gμffiffiffi
2

p M2
t

�
1=2

− δð1Þyt;OSjfin; ð17Þ

g2;MS ¼ 2ð
ffiffiffi
2

p
GμÞ1=2MW − δð1Þg2;OSjfin;

gY;MS ¼ 2ð
ffiffiffi
2

p
GμÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z −M2
W

q
− δð1ÞgY;OSjfin: ð18Þ

Note that here we only list the most important results for the
one-loop matching, and we will use these formulas to
calculate the one-loop corrections of the FEMDM models
to the SM fundamental parameters. More detailed deriva-
tions and even two-loop matching conditions can be found
in Refs. [5,69,70].

III. SDFDM MODEL

A. Model details

In the SDFDM model [16–19,21,24,28–31,37,71],
the dark sector involves colorless Weyl fermions S, D1,

TABLE I. Input values of physical observables. MW , MZ, Mh,
andMt are the pole masses of theW boson, of the Z boson, of the
Higgs boson, and of the top quark, respectively. Gμ is the Fermi
constant for μ decay, and α3 is the SUð3Þc gauge coupling at the
scale μ ¼ MZ in the MS scheme. These observables are used to
determine the SM fundamental parameters λ, m, yt, g2, and gY .

Input values of SM observables.

Observables Values

MW 80.384� 0.014 GeV [63]
MZ 91.1876� 0.0021 GeV [64]
Mh 125.15� 0.24 GeV [65]
Mt 173.34� 0.76 GeV [66]
v ¼ ð ffiffiffi

2
p

GμÞ−1=2 246.21971� 0.00006 GeV [67]

α3ðMZÞ 0.1184� 0.0007 [68]
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and D2 obeying the following (SUð2ÞL, Uð1ÞY) gauge
transformations:

S ∈ ð1; 0Þ; D1 ¼
�
D0

1

D−
1

�
∈
�
2;−

1

2

�
;

D2 ¼
�
Dþ

2

D0
2

�
∈
�
2;
1

2

�
: ð19Þ

The signs of the hypercharges of the two doublets are
opposite, making sure that the model is anomaly free. The
gauge-invariant Lagrangian is given by

L ¼ LSM þ LSD; ð20Þ

where LSM is the SM Lagrangian and

LSD ¼ iS†σ̄μ∂μS−
1

2
ðmSSSþH:c:Þ

þ iD†
1σ̄

μDμD1þ iD†
2σ̄

μDμD2 − ðmDbijDi
1D

j
2þH:c:Þ

þ y1cijSDi
1H

jþ y2dijSDi
2H̃

jþH:c: ð21Þ

In Eq. (21), mS and mD are the masses of the singlet and
doublets, y1 and y2 are Yukawa couplings in the dark
sector, and Dμ ¼ ∂μ − igWa

μτ
a − ig0YBμ is the covariant

derivative with τa being the generators for the correspond-
ing SUð2ÞL representations. H is the Higgs doublet and
H̃ ≡ iσ2H�. The constants bij, cij, and dij render the gauge
invariance of the mass and Yukawa terms. They can be
decoded from Clebsch-Gordan (CG) coefficients multi-
plied by an arbitrary normalization factor. The nonzero
values for them are

b12 ¼ 1; b21 ¼ −1; ð22Þ

c12 ¼ −1; c21 ¼ 1; ð23Þ

d12 ¼ 1; d21 ¼ −1: ð24Þ

After the EWSB, the Higgs doublet obtains a vacuum
expectation value v, resulting in mixing between the singlet
and doublets because of the Yukawa coupling terms. It is
instructive to rewrite the Lagrangian with mass eigenstates
instead of gauge eigenstates, and reform the interaction

terms with four-component spinors. Nonetheless, in this
paper we will not show all these details, which can be found
in Ref. [37].

B. RGEs and one-loop MS parameters

The evolution of various dimensionless couplings in the
SDFDM model with an energy scale μ is performed in this
subsection. We use PYR@TE 2 [62] to carry out auxiliary
calculations, and obtain RGEs at the two-loop level. The
full β-functions consist of two parts:

βtotal ¼ βSM þ βSD; ð25Þ

where βSM is the contribution of the SM sector, and βSD is
the contribution of the dark sector. βSM of SM couplings at
the three-loop level in the MS scheme can be found
in Ref. [5]. βSD at the two-loop level are listed in
Appendix A 1.
In Sec. II we have shown how to calculate one-loop MS

parameters, and now we can use Eqs. (11)–(18) to calculate
the initial values of the running couplings. Instead of
demonstrating all the details of the loop calculations, here
we give a brief description, and show some important
results for some benchmark points (BMPs).
In Eqs. (11)–(18) we can see that there are several

quantities needed for a given theory: tadpole diagrams of
the Higgs boson iT, mass counterterms of the W, Z, and
Higgs bosons, and Δr0. Here we denote the mass counter-
terms as

δð1ÞM2
W ¼ ReΠT

WWðM2
WÞ; δð1ÞZ2

Z ¼ ReΠT
ZZðM2

ZÞ;
δð1ÞM2

h ¼ ReΠhhðM2
hÞ: ð26Þ

All these self-energies are computed with on-shell external
particles, and the corresponding Feynman diagrams can be
found in Fig. 1.
As dark sector particles do not couple to SM leptons,

Eq. (15) can be further simplified as

Δrð1Þ0 ¼ −
AWW

M2
W

: ð27Þ

All the loop diagrams can be expressed via Passarino-
Veltman (PV) functions, whose numerical values are

(a) (b) (c) (d)

FIG. 1. Self-energy diagrams of the Higgs (a),W (b), and Z (c) bosons, as well as the tadpole of the Higgs boson (d). χ indicates dark
sector particles.
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obtained using LOOPTOOLS 2.13 [72]. All the calculations
are stick to the MS scheme with the renormalization scale
setting at Mt. In Table II, we present the values of the
fundamental parameters for SM and SMþ SDFDM at
μ ¼ Mt. Here we adopt two BMPs for parameters in the
SDFDM model: BMP1 with y1 ¼ y2 ¼ 0.1, mS ¼ mD ¼
1000 GeV, and BMP2 with y1 ¼ y2 ¼ 0.6, mS ¼ mD ¼
1000 GeV. Yukawa couplings in BMP2 are larger than
those in BMP1.
With the β-functions listed in the Appendix A 1, we

solve the RGEs to give the evolution of these parameters
along with the energy scale μ. In Fig. 2 we demonstrate the
evolution of the Higgs quartic coupling λ (solid blue line)
and the Yukawa couplings y1 (solid green line) for the two
BMPs. As the one-loop β-functions of λ and y1 can

sufficient to give a better understanding of the running
behaviors, we write down their expression here:

βSDðy1Þ¼
y1

ð4πÞ2
�
5

2
y21þ4y22−

9

20
g21−

9

4
g22þ3y2t þ3y2bþy2τ

�
;

ð28Þ

βSDðλÞ¼ 1

ð4πÞ2 ½−2y
4
1−4y21y

2
2−2y42þ4λðy21þy22Þ�: ð29Þ

In Fig. 2(a) for BMP1, we find that the running value of y1
is almost invariant up to the Planck scale. This is because its
β-function is proportional to its value, and when y1 and y2
are small the running gets suppressed. In addition, because
of small y1 and y2, the contributions of the dark sector to the
running of λ are also insignificant. Thus the running values
of λ for SM (solid red line) and SMþ SDFDM (solid blue
line) are very close, and even coincide with each other at
low energy scales. In addition, the differences between tree-
level (dashed blue line) and one-loop (solid blue line)
matching is also demonstrated. More accurate numerical
analysis of such differences are given in Table III. We find
that the matching conditions are important for the minimal
running value λmin, and this would obviously influence on
the decay probability of the EW vacuum.
In Fig. 2(b) we show the evolution of λ and y1 for BMP2

(y1 ¼ y2 ¼ 0.6, mS ¼ mD ¼ 1000). Because of a large
initial value, y1 increases more and more rapidly as the
energy scale goes up. The increase of y1 lifts up λ at high
energy scales, and finally the Landau poles of λ and y1

TABLE II. Initial values of the fundamental parameters for
RGE running computed at tree level and loop level in the MS
scheme, with the renormalized scale setting at μ ¼ Mt. For
BMP1 we set y1 ¼ y2 ¼ 0.1, mS ¼ mD ¼ 1000 GeV; For
BMP2 we set y1 ¼ y2 ¼ 0.6,mS ¼ mD ¼ 1000 GeV. The super-
script * indicates that the NNNLO pure QCD effects are also
included.

Initial values for RGE running.

μ ¼ Mt λ yt g2 gY

SMLO 0.129 17 0.995 61 0.652 94 0.349 72
SMNNLO 0.126 04 0.936 90* 0.647 79 0.358 30
SMNNLOþSDFDMBMP1

NLO 0.125 53 0.933 32* 0.644 70 0.357 43
SMNNLOþSDFDMBMP2

NLO 0.133 05 0.917 78* 0.644 70 0.357 43

R
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ni
ng
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in
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log10(μ/GeV)

y1 = y2 = 0.1,    mS = mD = 1000 GeV
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(a) (b)

FIG. 2. The evolution of the Higgs quartic coupling λ (solid blue) and Yukawa coupling y1 (solid green) for the two BMPs. The labels
ðn;mÞ refer to n-loop RGEs andm-loop matching, and T indicates tree-level matching. The solid red line representing the evolution of λ
in the SM is also presented for comparison.
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appear at μ ∼ 1015 GeV, resulting in the breakdown of the
theory. In the following analysis, we will demand that the
theory remains perturbative up to the Planck scale, leading
to strong constraints on the Yukawa couplings y1 and y2.
In the above calculation, we have set the matching scale

at Q ¼ Mt. In addition, we would like to investigate the
effects of the matching scale Q on the evolution of λ. This
can be realized through the following steps: first we carry
out the coupling running with SM RGEs to the energy scale
Q, and then perform the one-loop matching and carry
out the running with SMþ SDFDM RGEs up to higher
scales. In Table IV we have compared the differences in the
evolution of λ for BMP1 (y1 ¼ y2 ¼ 0.1, mS ¼ mD ¼
1000 GeV) with Q setting at Mt, 300 GeV, 500 GeV,
and 1000 GeV, respectively. The values of λ at 103 GeV,
105 GeV, 1010 GeV, and 1016.5 GeV for each value of Q
are presented. For a low energy scale, say, μ ¼ 103 GeV,
we find that the effects of Q varying from Mt to 103 GeV
are at the order of 0.1%, but such differences will be
amplified when λ runs to high energy scales. For instance,
at μ ¼ 1016.5 GeV we find that the difference is approx-
imately the same level with that caused by the choice of
tree-level or one-loop matching. Note that the matching
scale dependence will decrease if higher order calculation
and matching get involved [56]. In the following analysis,
we will just set Q ¼ Mt.
There is another conception called finite naturalness [43]

we would like to introduce for evaluating the FEMDM

models. The idea is that we should ignore uncomputable
quadratic divergences, so that the Higgs mass is naturally
small as long as there are no heavier particles that give large
finite contributions to the Higgs mass. In this sense, the
fine-tuning Δ at one-loop level in the MS scheme can be
defined as

Δ ¼
m2

MS

M2
h

− 1 ¼ −
δð1Þm2

OSjfin
M2

h

; ð30Þ

and a smaller Δ means that the theory is more natural.
For example, in the SM we have m2

MS
¼ M2

h½1þ 0.133þ
βSMm lnðμ2=M2

t Þ�, where βSM
m2 ¼ 3

4
ð4y2t þ8λ−3g2−g2YÞ=ð4πÞ2

is the β-function of the quadratic coefficient of the Higgs
potential m2 at one-loop level [43]. According to Eq. (30),
we can get Δ ¼ 0.133 for the SM with the renormalization
scale setting atMt. This is a small number, and thus we can
say that the SM satisfies finite naturalness.
In Fig. 3 we demonstrate the contours of Δðμ ¼ MtÞ at

themS-mD plane for two sets of parameters: y1 ¼ 0.1, y2 ¼
0.2 (red lines) and y1 ¼ 0.4, y2 ¼ 0.2 (blue lines). For each
parameter set, the contours that correspond to Δ ¼ −1
(dashed lines) and Δ ¼ −10 (solid lines) are presented. We
find that the contours for fixed Δ shrink as the Yukawa
couplings increase, because the dark sector contributions to
the Higgs mass correction δð1Þm2

OS also increase. Therefore,
if we demand a small fine-tuning, say, jΔj < 1, there will be
upper bounds for the masses of dark sector particles.

TABLE III. Differences between tree-level (2,T) and one-loop (2,1) matching for SMþ SDFDM with BMP1
(y1 ¼ y2 ¼ 0.1, mS ¼ mD ¼ 1000 GeV) are presented. The second column list values in the SM. λmin is the
minimal value of the running λ. P0 in the last column represents the EW vacuum decay probability, which is
discussed in Sec. III C.

Differences between tree-level and one-loop matching.

λjμ¼Mt
λmin log10ðμ=GeVÞjλ¼0 log10ðμ=GeVÞjλ¼λmin

log10ðP0Þ
SM 0.126 04 −0.0147378 9.796 17.44 −539.276
BMP1(2, T) 0.126 04 −0.0117875 9.991 16.49 −737.212
BMP1(2, 1) 0.125 53 −0.0093655 10.53 16.58 −987.599

TABLE IV. Effects of the matching scale Q for BMP1 (y1 ¼ y2 ¼ 0.1, mS ¼ mD ¼ 1000 GeV) on the evolution
of λ are presented. The matching scaleQ is set atMt, 300 GeV, 500 GeV, and 1000 GeV. For each matching scale the
λ at 103 GeV, 105 GeV, 1010 GeV, and 1016.5 GeV are presented.

Effects of the matching scale Q (GeV).

Q ¼ Mt 300 500 1000

δð1Þλjfin −5.1507 × 10−4 −3.5443 × 10−4 −2.0483 × 10−4 −1.8401 × 10−6

λðμ ¼ 103 GeVÞ 9.6050 × 10−2 9.5885 × 10−2 9.5850 × 10−2 9.5949 × 10−2

λðμ ¼ 105 GeVÞ 4.8750 × 10−2 4.8234 × 10−2 4.7890 × 10−2 4.7593 × 10−2

λðμ ¼ 1010 GeVÞ 2.2502 × 10−3 1.2939 × 10−3 5.5212 × 10−4 −2.6624 × 10−4

λðμ ¼ 1016.5 GeVÞ −9.3648 × 10−3 −1.0404 × 10−2 −1.1238 × 10−2 −1.2201 × 10−2
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C. Tunneling probability and phase diagrams

The present experimental values of Mh and Mt indicate
that the SM EW vacuum might be a false vacuum, which
may decay to the true vacuum through quantum tunneling.
The present vacuum decay probability P0 is expressed
as [5,73,74]

P0 ¼ 0.15
Λ4
B

H4
0

e−SðΛBÞ; ð31Þ

where H0 ¼ 67.4 km sec−1Mpc−1 is the present Hubble
rate, and SðΛBÞ is the action of bounce of size R ¼ Λ−1

B ,
given by

SðΛBÞ ¼
8π2

3jλðΛBÞj
: ð32Þ

In practice ΛB is roughly determined by the condition
βλðΛBÞ ¼ 0, and at that energy scale the Higgs quartic
coupling λ achieves its minimum value λmin. Note that if
ΛB > MPl, we can only get a lower bound on the tunneling
probability by setting λðΛBÞ ¼ λðMPlÞ. For simplicity, we
consider neither one-loop corrections to the action S [73],
nor gravitational corrections to the tunneling rate [75].
Using the initial parameter values given in Sec. II, we

obtain λðΛBÞ and its corresponding energy scale ΛB
through analyzing the evolution of λ. Therefore, with
Eqs. (31) and (32) we can calculate the tunneling proba-
bility of the EW vacuum. In this paper, we classify different
states of the EW vacuum using the following conventions.

(i) Stable: λ > 0 for μ < MPl;
(ii) Metastable: λðΛBÞ < 0 and P0 < 1;
(iii) Unstable: λðΛBÞ < 0 and P0 > 1;
(iv) Nonperturbative: jλj > 4π before the Planck scale.1

Now we can discuss the status of the EW vacuum in the
SDFDM model. In Fig. 4(a), we display the nonperturba-
tive region (red), the unstable region (yellow), and the
metastable region (green) in the y1-y2 plane with fixed mass
parameters ofmS ¼ mD ¼ 1000 GeV. A similar plot in the
Y-M plane is demonstrated in Fig. 4(b), where Y ¼ y1 ¼ y2
and M ¼ mS ¼ mD. We can see that the nonperturbative
region is almost independent of the masses of the singlet
and doublets, while the metastable region shows a little
dependency on these mass parameters. There are two
reasons for this:
(1) the β-functions in the MS scheme is mass-indepen-

dent, meaning that the mass parameter do not
directly enter the β-functions;

(2) the mass parameters can only affect the initial values
of running parameters through the loop matching
conditions, but such a effect is only at the one
percent level or even smaller (see Table II and
Fig. 5).

The effect of such tiny contributions on the evolution of the
Yukawa couplings y1 and y2, or on the position of the
Landau poles, is negligible, but it indeed affects the decay
rate of the EW vacuum (see Table. III). We conclude that
the requirement of perturbativity gives a strong and almost
mass-independent constraint on the Yukawa couplings,
roughly jYj≲ 0.5, and an even stronger upper bound,
roughly jYj≲ 0.3, can be obtained by demanding the
metastability of EW vacuum.
Moreover, in Fig. 6 we present the phase diagram in the

Mh-Mt plane for SMþ SDFDM with two BMPs. Similar
diagrams for SM are given in Refs. [5,69], where the SM
vacuum stability up to the Planck scale is excluded at 2.8σ.
In Fig. 6(a), we set y1 ¼ 0.1, y2 ¼ 0.2, mS ¼ 300 GeV,
mD ¼ 500 GeV, and find that the vacuum stability up to
the Planck scale in the SDFDM model is excluded at
∼2.0σ. Therefore, with relatively small y1 and y2 the EW
vacuum is more stable than the SM case. This can also be
concluded from the last column of Table III. However, in
Fig. 6(b) with y1 ¼ 0.4, y2 ¼ 0.2, mS ¼ mD ¼ 500 GeV,
we can see that the EW vacuum is more likely to be
unstable for large y1 and y2. Note that these results can also
be further understood through Fig. 4(a), as the status of the
EW vacuum is almost independent of the mass parameters
in the dark sector. In Fig. 4(a), the point ðy1; y2Þ ¼
ð0.1; 0.2Þ locates in the metastable region, while the point
ðy1; y2Þ ¼ ð0.4; 0.2Þ locates at the junction of the meta-
stable and unstable regions.
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FIG. 3. Contours of Δðμ ¼ MtÞ in the mS-mD plane with fixed
Yukawa couplings of y1 ¼ 0.1, y2 ¼ 0.2 (red lines) and y1 ¼ 0.4,
y2 ¼ 0.2 (blue lines). The solid contours correspond to Δ ¼ −10,
while the dashed contours correspond to Δ ¼ −1.

1As can be seen from Fig. 2(b), this condition is almost
equivalent to demanding no Landau pole exists when λ evolves
up to the Planck scale.
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IV. DTFDM MODEL

In the dark sector of the DTFDM model [22,30,37,38],
we introduce two SUð2ÞL Weyl doublets and one SUð2ÞL
Weyl triplet, which obey the following ðSUð2ÞL;Uð1ÞYÞ
gauge transformations:

D1 ¼
�
D0

1

D−
1

�
∈
�
2;−

1

2

�
; D2 ¼

�
Dþ

2

D0
2

�
∈
�
2;
1

2

�
;

T ¼

0
B@

Tþ

T0

−T−

1
CA ∈ ð3; 0Þ: ð33Þ

The gauge invariant Lagrangian is

L ¼ LSM þ LDT; ð34Þ
with

LDT ¼ iT†σ̄μ∂μT− ðmTaijTiTjþH:c:Þ
þ iD†

1σ̄
μDμD1þ iD†

2σ̄
μDμD2− ðmDbijDi

1D
j
2þH:c:Þ

þy1cijkTiDj
1H

kþy2dijkTiDj
2H̃

kþH:c: ð35Þ

The constants aij, bij, cijk, and dijk render the gauge
invariance of the mass and Yukawa terms, and they can be
decoded from CG coefficients multiplied by a normalizing
factor. The nonzero values are given by

a13 ¼ a31 ¼
1

2
; a22 ¼

1

2
; ð36Þ

b12 ¼ −1; b21 ¼ 1; ð37Þ

c122 ¼ c311 ¼
ffiffiffi
2

p
; c212 ¼ c221 ¼ 1; ð38Þ

d122 ¼ −d311 ¼ −
ffiffiffi
2

p
; d212 ¼ −d221 ¼ −1: ð39Þ
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FIG. 4. Status of the EW vacuum in the y1-y2 plane with mS ¼ mD ¼ 1000 GeV (a), and in the Y-M plane with Y ¼ y1 ¼ y2 and
M ¼ mS ¼ mD (b). The red region indicates the theory is nonperturbative, and the yellow (green) region indicates the EW vacuum is
unstable (metastable). The black dashed lines stand for equal parameters.
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There are four independent parameters: mT , mD, y1,
and y2. After the EWSB, the triplet and doublets
mix with each other. More details can be found in
Ref. [37].
The two-loop β-functions in the MS scheme are listed in

Appendix A 2. Using the same strategy as in Sec. III we can
study the influences of the dark sector on the stability of the
EW vacuum. Analogue results are presented in Fig. 7.

Comparing with Fig. 4 in the SDFDMmodel, there are two
obvious differences:
(1) the contours in Fig. 7(a) are rotated by roughly 45

degrees compared to the SDFDM case;
(2) for the DTFDM model, the absolute stable region

appears, and in Fig. 7(b) the metastable region has
slightly larger dependence on the mass parameters of
the multiplets.
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FIG. 6. Regions for absolute stability (green), metastability (yellow), and instability (red) of the EW vacuum in theMh-Mt plane phase
diagrams for SMþ SDFDM are presented. Two sets of parameters are chosen: y1 ¼ 0.1, y2 ¼ 0.2,mS ¼ 300 GeV,mD ¼ 500 GeV (a)
and y1 ¼ 0.4, y2 ¼ 0.2, mS ¼ mD ¼ 500 GeV (b). The light purple ellipses denote the experimentally preferred regions forMh andMt
at 1σ, 2σ, and 3σ.
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FIG. 7. Status of the EW vacuum in the y1-y2 plane mD ¼ mT ¼ 1000 GeV (a), and in the Y-M plane with Y ¼ y1 ¼ y2 and
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vacuum is unstable, metastable, and stable, respectively. The black dashed lines stand for equal parameters.
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The first difference is caused by the β-functions of
Yukawa couplings y1 and y2, and here we list the one-loop
β-function for y1:

βDTðy1Þ ¼
y1

ð4πÞ2
�
11

2
y21 þ 2y22 −

9

20
g21

−
33

4
g22 þ 3y2t þ 3y2b þ y2τ

�
: ð40Þ

Comparing with Eq. (28), we find that the contributions of
the terms proportional to y22 are smaller, and hence the
evolution of y1 is basically independent of y2.
There are two reasons for the second difference. On the

one hand, the loop corrections to the initial parameter
values in the DTFDM model are larger than those in the
SDFDM model. This can be observed in Fig. 8(a), where
the relative corrections to yt and λ in the mD-mT plane with
fixed y1 ¼ 0.1, y2 ¼ 0.2 are presented. On the other hand,
according to Eqs. (48)–(50), we know that in the DTFDM
model g2 deceases more slowly at high scales, and becomes
larger at μ≳ 107 GeV than that in the SDFDMmodel. This
is helpful for establishing a more stable EW vacuum.

V. TQFDM MODEL

In the TQFDMmodel [27,30,39], the dark sector involves
one colorless left-handed Weyl triplet T and two colorless
left-handed Weyl quadruplets Q1 and Q2, obeying the
following ðSUð2ÞL;Uð1ÞYÞ gauge transformations:

T ¼

0
B@

Tþ

T0

−T−

1
CA ∈ ð3; 0Þ; Q1 ¼

0
BBB@

Qþ
1

Q0
1

Q−
1

Q−−
1

1
CCCA ∈

�
4;−

1

2

�
;

Q2 ¼

0
BBB@

Qþþ
2

Qþ
2

Q0
2

Q−
2

1
CCCA ∈

�
4;
1

2

�
: ð41Þ

We have the following gauge invariant Lagrangian:

L ¼ LSM þ LTQ; ð42Þ

where

LTQFDM ¼ iT†σ̄μ∂μT − ðmTaijTiTj þ H:c:Þ
þ iQ†

1σ̄
μDμQ1 þ iQ†

2σ̄
μDμQ2

− ðmQbijQi
1Q

j
2 þ H:c:Þ

þ y1cijkTiQj
1H

k þ y2dijkTiQj
2H̃

k þ H:c: ð43Þ

The constants aij, bij, cijk, and dijk can be decoded from
CG coefficients multiplied by a normalizing factor. Here we
list their nonzero values:

a13 ¼ a31 ¼
1

2
; a22 ¼ −

1

2
; ð44Þ
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FIG. 8. (a) Contours of relative corrections to yt (red lines) and λ (blue lines) in the mD-mT plane with fixed y1 ¼ 0.1 and y2 ¼ 0.2.
The solid and dashed lines indicate relative corrections of −3% and −1.5%, respectively. (b) Contours of the fine-tuning Δðμ ¼ MtÞ in
the mD-mT plane with fixed y1 ¼ 0.1, y2 ¼ 0.2 (red lines) and y1 ¼ 0.4, y2 ¼ 0.2 (blue lines). The solid lines denote Δ ¼ −10, while
the dashed lines denote Δ ¼ −1.
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b14 ¼ b32 ¼ 1; b23 ¼ b41 ¼ −1; ð45Þ

c312 ¼ −c141 ¼ 1; c222 ¼ −c231 ¼ −
ffiffiffi
2

p
ffiffiffi
3

p ;

c132 ¼ −c321 ¼
1ffiffiffi
3

p ; ð46Þ

d312 ¼ d141 ¼ 1; d222 ¼ d231 ¼ −
ffiffiffi
2

p
ffiffiffi
3

p ;

d132 ¼ d321 ¼
1ffiffiffi
3

p : ð47Þ

After the EWSB, the triplet will mix with the quadruplets
due to the Yukawa coupling terms. More details can be
found in our previous work [39]. The two-loop β-functions
in the MS scheme are listed in Appendix A 3.
We investigate the influences of the TQFDM model on

the EW vacuum, and find that the results are quite different
from the previous two similar models. This is mainly due to
the RGE of g2. For this kind of FEMDM models, the
general one-loop β-function for g2 can be written as

βtotalðg2Þ ¼ βSMðg2Þ þ
g32

ð4πÞ2
�
1
2

X
j

4

3
nfCðrÞ

�
; ð48Þ

where

βSMðg2Þ ¼
g32

ð4πÞ2
�
−
19

6

�
ð49Þ

is the contribution from the SM sector, nf is the number of
multiplets that transform under the r-dimensional repre-
sentation of SUð2ÞL, and CðrÞ is the corresponding Dynkin
index which defined as trðtar tbr Þ ¼ CðrÞδab. An additional
factor 1=2 is added because the multiplets in these models
are Weyl spinors. With this formula we can write down the
dark sector contributions in the three models:

βSDðg2Þ ¼
g3

ð4πÞ2 ·
2

3
; βDTðg2Þ ¼

g3

ð4πÞ2 · 2;

βTQðg2Þ ¼
g3

ð4πÞ2 · 8: ð50Þ

In the SDFDM and DTFDM models, βtotalðg2Þ is negative,
and g2 becomes smaller as the energy scale μ goes up. In
contrary, βtotalðg2Þ is positive in the TQFDM model, and
hence g2 becomes larger and larger as μ increases and could
hit a Landau pole at some high energy scale, and this can be
seen in Fig. 9(a), where the evolutions of y1, λ, and g2 based
on two-loop RGEs with fixed y1 ¼ y2 ¼ 0.5 and mT ¼
mQ ¼ 1000 GeV are presented. Furthermore, we can
imagine that for other similar models with EW multiplets
of higher dimensions the situations could be much worse
according to the Eq. (48).
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FIG. 9. (a) The evolutions of y1, λ, and g2 based on two-loop RGEs are presented. The notation ðn;mÞmeans n-loop RGEs andm-loop
matching. (b) Status of the EW vacuum based on two-loop RGEs in the Y-M plane where Y ¼ y1 ¼ y2 and M ¼ mT ¼ mQ. The
numbers associated with the contours denote the energy scale in GeV where λ becomes nonperturbative.
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In Fig. 9(b) we demonstrate the status of the EW vacuum
in the Y-M plane with Y ¼ y1 ¼ y2 and M ¼ mT ¼ mQ,
based on two-loop RGEs in the TQFDM model. We find
that most of the parameter space is excluded because of the
nonperturbativity of the theory. The solid lines indicate the
energy scale where λ becomes nonperturbative. Among
them, blue and green lines mean the nonperturbativity is
caused by y1ðy2Þ and g2, respectively. The allowed regions
are concentrated in a region with large masses and small
Yukawa couplings. From Fig. 10(a), we can see that in this
region g2 gets a large negative corrections, which delays the
appearance of the Landau pole. Nevertheless, in this region
the issue of finite naturalness becomes prominent, as shown
in Fig. 10(b).

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the high energy
behavior of the FEMDM models and their impacts on the
stability of the EW vacuum. The calculations for the dark
sector are carried out in the MS scheme, based on one-loop
matching at the Mt scale and two-loop RGEs. Differences
between tree-level and one-loop matching, and between
one-loop and two-loop RGEs are also compared. In
addition, we have studied the effects of different matching
scales on our results. We have found that the requirement of
a stable (or metastable) EW vacuum and perturbativity
would give strong constraints on the parameter space.
Besides, the idea of finite naturalness is important for
evaluating these FEMDM models.

For the SDFDM model, we have discussed the ration-
ality and necessity of one-loop matching, and we have
found that this had a significant effect on the stability of the
EW vacuum, deserving careful calculations. Moreover, we
have found that the effects of the matching scale Q varying
from Mt to 1000 GeVon the evolution of λ is small (≲2%)
for μ < 105 GeV. Such a Q-dependence is expected to
decrease if higher loop matching and RGEs are taken into
consideration. The requirement of perturbativity gives a
strong and almost mass-independent constraints on
Yukawa couplings (jy1j, jy2j≲ 0.5), and the constraints
from metastability are even more stronger (jy1j, jy2j ≲ 0.3).
Two phase diagrams with fixed Yukawa and mass param-
eters are exhibited to give a clear indication of the effects on
the EW vacuum stability. In addition, the contours of the
fine-tuning Δ for evaluating finite naturalness are demon-
strated, and if we let Δ vary from −1 to −10, the
corresponding upper bounds on mass parameters will vary
from 1–2 TeV to 3–5 TeV.
For the DTFDM model, general conclusions are similar

to the SDFDM case. Nonetheless, because more new states
are introduced, the corrections to the initial values of
running couplings are larger than those in the SDFDM
model. As a result, the EW vacuum can be absolute stable
for some parameter regions. Moreover, the fine-tuning Δ
receives more corrections and becomes worse.
For the TQFDM model, the situations are quite different

from the other two models because of the opposite
evolution behavior of g2. This could lead to a Landau pole
of λ before the Planck scale. We have found that the
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requirement of perturbativity can exclude most of the
parameter space, and the allowed regions are concentrated
in a region with jy1j, jy2 ≲ 0.8 and mT , mQ ≳ 5 TeV,
where the issue of finite naturalness becomes prominent.
Furthermore, if EW fermionic multiplets in higher dimen-
sional representations are introduced, the situation for the
evolution of g2 would become worse, rendering the break-
down of the theory at even lower energy scales. So from the
perspective of stability and perturbativity, the TQFDM and
other similar models with EW multiplets of higher dimen-
sions are less intriguing.
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APPENDIX: β-FUNCTIONS IN THE FEMDM
MODELS UP TO TWO-LOOP LEVEL

The β-function for a coupling can be decomposed into
two parts:

βtotal ¼ βSM þ βFEMDM; ðA1Þ
where βSM is the beta function in the SM, while βFEMDM

denotes the contribution from the dark sector in the
FEMDM models. In this work, we derive expressions
for βFEMDM up to two-loop level by utilizing the python
tool PYR@TE 2 [62]. Below we list two-loop β-functions
contributed by the dark section in each FEMDM model.
Related couplings involve gauge couplings g1 (g21¼5g2Y=3),
g2, and g3, and the Yukawa couplings yt, yb, yt, y1, and y2,
and the Higgs quartic coupling λ.

1. SDFDM model

The contribution to the β-functions up to two-loop level
in the SDFDM model are presented as follows.

βSDðg1Þ ¼
1

ð4πÞ2
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2. DTFDM model

The contribution to the β-functions up to two-loop level in the DTFDM model are listed as follows.
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3. TQFDM model

The contribution to the β-functions up to two-loop level in the TQFDM model are presented as follows.
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