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Over the past years, a Lorentz symmetry violation scheme has been implemented in the Standard Model
of particle physics in an attempt to explain important open problems. In connection with this work, we
determine the effect of two Lorentz-violating nonminimal couplings on the differential cross section for
elastic photon-photon scattering, both in the high- and low-energy regimes. Novel characteristics are
pointed out: in particular, a periodic pattern on the azimuthal angle and an energy-independent contribution
which are not present in quantum electrodynamics calculations.
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I. INTRODUCTION

The Standard Model of particle physics (SM) has been
successful over the past years in its attempt to describe
high-energy physical phenomena. The measurements car-
ried out in particle accelerators have shown a remarkable
agreement between theory and experiment. However,
despite this success, there are still open issues such as
the hierarchy, the strong CP, and the cosmological constant
problems [1,2], for which the SM offers no satisfactory
explanation. Therefore, extensions of the SM have been
proposed with the goal to clarify these phenomena,
including extra symmetries, as in grand unification models,
or supersymmetric extensions [3,4].
An alternative approach is the so-called Standard-Model

extension (SME) [5,6], which proposes a completion of
the usual SM by including new Lorentz-violating (LV)
interactions. The main idea is that vector or tensor fields
could acquire nonzero vacuum expectations values, imply-
ing that the Lorentz symmetry should be broken by these
vacuum expectation values. Possible effects in the SM
processes have already been analyzed by considering both
minimal and nonminimal LV couplings [7–11]. Up to now,
the bounds on the LV parameters are strong and corroborate
the assumed validity of Lorentz symmetry, at least at the
present cosmological time.

In this work, we shall analyze the contribution of two
nonminimal LV couplings in quantum electrodynamics
(QED), specifically to the elastic scattering between two
photons, also called elastic light-by-light (LbyL) scattering.
This paper is organized as follows: in Sec. II, we discuss

the photon-photon scattering in more detail; in Sec. III, we
introduce the nonminimal couplings which are analyzed in
this work, and, in Sec. IV, we calculate the contribution of
the nonminimal LV couplings to elastic LbyL scattering.
Finally, in Sec. V, we discuss our results.

II. ELASTIC LIGHT-BY-LIGHT SCATTERING

The interest in the nature of light and associated
phenomena have always been present in Physics. For
example, names like René Descartes, Isaac Newton,
Robert Hooke, and Christiaan Huyghens created wave
and corpuscular models for light, and quantum mechanics
brought with it the concept of wave-particle duality,
reconciling the two points of view. However, over the past
decades, new issues have continuously emerged.
Maxwell’s equations of classical electrodynamics had the

inclusion of light in the theory as a great success, but the
linearity of the equations forbids the existence of processes
allowed from the quantumpoint of view.As early as 1933, the
concern with the properties of the quantum vacuum and the
interaction between light quanta [12] opened up the era of
nonlinear electromagnetism. Theoretical work on nonlinear
electrodynamics first appeared in the 1930s with Halpern,
Born, Infeld, Euler and Heisenberg [13–16] and continued in
subsequent years [17,18]. The implemented corrections
resulted in the possibility of scattering between two photons
by means of vacuum fluctuations [15,18] and allowed the
calculation of the associated cross section [19–21].
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Nonlinear phenomena such as the scattering of a photon in
a Coulomb field [22] or the splitting of a photon in the
presence of an external field [23] were studied and were
already observed experimentally [24–29]. In fact, photon
splitting has also been studied in the context of LV in the
minimal SME [30]. For elastic LbyL scattering, experimen-
tal evidence has also been observed, but due to its small cross
section this happened only very recently [31,32]. These
nonlinear processes are represented in the lowest order by
one-loop diagrams with four external photonic legs; but, in
some cases, we replace real photons by a line representing an
external field, as the examples in Fig. 1 show.
From the six Feynman diagrams associated with elastic

LbyL scattering obtained by the different combinations of
the photonic legs, we can calculate the scattering ampli-
tudes and the differential cross section for unpolarized
photons. The loop can contain different kinds of virtual
charged particles (quarks, leptons, W� [33]), depending on
the energy available in the experiment.
Considering only QED vertices, in a low-energy regime

(ω ≪ m), the differential cross section of the process is
given by [19,20,22]

dσ
dΩ

γγ ¼ 139α4

ð180πÞ2m2

�
ω

m

�
6

ð3þ cos2θÞ2; ð1Þ

whereas in the ultrarelativistic case [34]

dσ
dΩ

γγ
¼ α4

π2ω2
log4

1

θ
; ð2Þ

that is suitable for small scattering angles (m=ω ≪ θ ≪ 1).
In both results, we are using natural units (ℏ ¼ c ¼ 1) and
m stands for the electron mass.

The viability of the direct detection of elastic LbyL
scattering with laser beams at SLAC was already discussed
in the 1980s [35]. Investigations of LbyL scattering on
the visible scale, with high intensity pulsed lasers [36]
obtained a first upper limit on σγγ ¼ 10−39 cm2, with
95% confidence level. Subsequently, when upgrading the
measurement with a third laser beam, the limit was
improved to 1.5 × 10−48 cm2 [37]. In this last situation,
under low-energy conditions of the experiment, the result
was 18 orders of magnitude from the result estimated by
QED (7.3 × 10−66 cm2). Another possibility was to use
x-ray pulses (high-energy limit), avoiding the QED cross
section suppressed by the sixth power of the ratio ω=m
[38,39]. In such x-ray experiments, QED cross section was
estimated in 2.5 × 10−43 cm2, the upper limit found was
1.9 × 10−23 cm2 [39].
An alternative way to inspect LbyL interactions is by

using ultraperipheral heavy-ion collisions [40–43]. Experi-
ments of ultraperipheral Pb-Pb collisions performed by the
ATLAS experiment with energies of 5.02 TeV presented
evidence of elastic LbyL scattering, and thirteen candidate
events were observed [31]. More recently, fourteen candi-
date events passing all selection requirements have been
reported by the CMS Collaboration [32]. However, since
the number of events associated with this phenomenon was
small, the analysis is still limited. Although there are already
high-precision experiments to explore properties of funda-
mental particles, such as those based on Penning traps
[44,45], we still consider valid to analyze possible signs of
LV in LbyL scattering. New LHC updates, e.g., should
improve the data availability, opening up new possibilities
for studying physics beyond the Standard Model (BSM).
Elastic LbyL scattering is used to constrain nonlinear

corrections to Maxwell electrodynamics [46] and it can
also provide contribution to the anomalous magnetic
moment of the muon [47,48], including chiral theories
[49] and quantum chromodynamics (QCD) calculations,
both for holographic models [50] and lattice QCD [51].
Furthermore, the signal of the vacuum processes are affec-
ted if new particles are coupled to photons. Searches for
physics BSM may include, for instance, axionlike particles
[52–54] and supersymmetric QED [55]. Our proposal
also aims to investigate possible evidence of physics
BSM, more specifically the search for LV by nonminimal
couplings that modify the interaction vertex, as already
developed for other QED processes [8,9].

III. NONMINIMAL COUPLINGS

In our paper, we shall introduce a nondynamical back-
ground 4-vector, ξμ, coupled nonminimally to the electro-
magnetic field strength, Fμν (or its dual, F̃μν) and the
electromagnetic current. This fixed 4-vector will then be
responsible for the breaking of Lorentz symmetry, once it
selects a privileged direction in spacetime.

FIG. 1. Illustration of one-loop photon-photon interactions:
Delbrück scattering (top-left), photon splitting (top-right) and
elastic LbyL scattering (bottom). The crosses indicate external
fields, such as Coulomb or magnetic fields, and the blob
represents the vertex.
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In an extended version of QED with the coupling
between ξμ and Fμν, our Lagrangian presents the following
dimension-5 term

LLV ¼ ξμψ̄γνψFμν; ð3Þ

where ξμ is constant, has canonical dimension of inverse
mass and is expected as a very small intensity term; LLV
is CPT-even whenever ξμ transforms under T-symmetry
as ξμ ¼ ðξ0; ξÞ → ξ0μ ¼ ð−ξ0; ξÞ. On the other hand, LLV

would be CPT-odd if ξμ ¼ ðξ0; ξÞ → ξ0μ ¼ ðξ0;−ξÞ. It
describes a sort of transition electric dipole moment, which
connects the relativistically dominant component of the
fermion bispinor with the weak relativistic component. In
terms of a standard notation among experimentalists and
many theorists who deal with Lagrangian densities includ-
ing dimension-5 operators [45,56], our background vector
can be written as

ξμ ¼ −
1

3
að5ÞαμF α: ð4Þ

Differently from minimal couplings (e.g., Carrol-Field-
Jackiw (CFJ) [57]), in this case the structure of the
fermionic current will be modified. So, with this new
coupling, together with the QED Lagrangian

LQED ¼ −
1

4
FμνFμν þ ψ̄ði=D −mÞψ ; ð5Þ

where =D ¼ γμð∂μ þ ieAμÞ, the modified inhomogeneous
Maxwell equations read as below

∂μFμν ¼ eψ̄γνψ þ ξ½ν∂μðψ̄γμ�ψÞ
¼ ðeδνμ þ ξν∂μ − ξμ∂νÞðψ̄γμψÞ ð6Þ

and

ðiγμ∂μ þmþ eγμAμ þ γμξνFμνÞψ ¼ 0: ð7Þ

Equation (6) represents the new Maxwell equations
with sources and Eq. (7) is the modified Dirac equation.
By means of Eq. (6), we can show that, in addition to the
QED electric charge Q, a modified charge Q0 will be
conserved. We have ∂νJ0ν ¼ 0, where J0ν ¼ ðeδνμ þ ξν∂μ −
ξμ∂νÞðψ̄γμψÞ and

Q0 ¼
Z

d3xJ00 ¼ Qþ ∂t

�Z
d3xðξ · JÞ

�
; ð8Þ

where Q ¼ e
R
d3xψ†ψ and Ji ¼ eψ†γ0γiψ . Though the

charge is defined for the free particle, the introduction of
LLV yields a new conserved 4-current, J0μ. The electric
charge, Q, conservation is not affected by the extra
contribution. From a quantum-mechanical point of view,

the coupling in Eq. (3) modifies the QED electron-photon
vertex, which now reads

Γμ ¼ eγμ − iqξμ þ iðξ · qÞγμ: ð9Þ

As previously mentioned, we can consider other non-
minimal interaction by coupling our background 4-vector
to the dual of the electromagnetic field strength [58]. The
new LV term modifying the standard QED Lagrangian
is then

LLV ¼ ξ̃μψ̄γνψF̃μν; ð10Þ

where F̃μν ¼ 1
2
εμναβFαβ and ξ̃μ has the same characteristics

defined for ξμ. Differently from the term in Eq. (3), this
term does not contribute to CP-violating decays, but it
yields a sort of transition magnetic dipole moment for the
fermions. Again, using the standard notation previously
mentioned, we have

ξ̃μ ¼ 1

6
εμναβa

ð5Þναβ
F : ð11Þ

The modified Maxwell equations becomes

∂μFμν ¼ eψ̄γνψ þ εμναβξ̃
α∂μψ̄γ

βψ

¼ ðeδνα − εναμβξ̃
μ∂βÞψ̄γαψ ð12Þ

and

ðiγμ∂μ þmþ eγμAμ þ γμξ̃νF̃μνÞψ ¼ 0; ð13Þ

an important detail here is that the QED conserved charge
does not change, i.e., Q0 ¼ Q ¼ e

R
d3xψ†ψ . In this case,

the extension of the usual QED vertex is written as

Γμ ¼ eγμ − εμανβγ
αξ̃νqβ: ð14Þ

By using those vertices, which include a deformation of
the original QED vertex, we find corrections for the
leptonic electric and magnetic dipole moments [59,60].
Since we are interested in determining the LV effects on

the elastic LbyL scattering, in the next step we shall use
Eqs. (3) and (14) to calculate scattering amplitudes and the
associated differential cross sections. This shall be done in
the sequel.

IV. ELASTIC LIGHT-BY-LIGHT SCATTERING
WITH LORENTZ SYMMETRY VIOLATION

A. F-coupling

The elastic LbyL scattering which we wish to analyze
depends on a tensor that; at the one-loop approximation, it
corresponds to the following expression,
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Tμναβðq1; q2; q3; q4Þ ¼
Z

ddp
ð2πÞd Tr½SðpÞγ

μSðp − q4Þ

× γνSðq − q4 − q3ÞγαSðp − q1Þγβ;
ð15Þ

where SðpÞ is the fermion propagator with momentum p.
The key to visualize the contribution of the LV modifica-
tion is to rewrite the vertex as

ΓμðqÞ ¼ eγαðδμα þ ie−1ξ · qδμα − ie−1qαξμÞ
¼ eγαMα

μðξ; qÞ; ð16Þ

and, since the vertex does not depend on p, i.e., the internal
momentum integrated in the loop, the contributions coming
from the LV terms factorizes. The tensor with the LV
contribution reads as follows:

Tμ0ν0α0β0
LV ðq1; q2; q3; q4Þ ¼ Tμναβðq1; q2; q3; q4Þ

×Mμ
μ0 ðξ; q1ÞMν

ν0 ðξ; q2Þ
×Mα

α0 ðξ; q3ÞMβ
β0 ðξ; q4Þ: ð17Þ

The result could also be seen from the point of view of
the coupling between the tensor Tμναβ and the redefined
polarization vectors ϵμðqiÞ. The LV modifies the polariza-
tion vectors themselves, i.e.,

ϵ0μðqÞ ¼ Mμ
αðqÞϵαðqÞ

¼ ð1þ ie−1ξ · qÞϵαðqÞ − ie−1ξμq · ϵðqÞ: ð18Þ

Considering physical external photons satisfying the
gauge condition ∂μAμ ¼ 0, we have q · ϵðqÞ ¼ 0, we reach

ϵ0μðqÞ ¼ ð1þ ie−1ξ · qÞϵαðqÞ: ð19Þ

Using the scattering matrix

MQED
λ1;λ2;λ3;λ4

¼ ðϵλ11 Þμðϵλ22 Þνðϵλ33 Þ�αðϵλ44 Þ�β
× Tμναβðq1; q2; q3; q4Þ; ð20Þ

and taking into account the LV contribution, we arrive at
the following modified scattering matrix

MLV
λ1;λ2;λ3;λ4

¼ ð1þ CÞMQED
λ1;λ2;λ3;λ4

; ð21Þ

where

C ¼ ie−1ðq1 þ q2 − q3 − q4Þ · ξþ e−2½−ðq1 · ξÞðq2 · ξÞ
þ ðq1 · ξÞðq3 · ξÞ þ ðq1 · ξÞðq4:ξÞ þ ðq2 · ξÞðq3 · ξÞ
þ ðq2 · ξÞðq4 · ξÞ − ðq3 · ξÞðq4 · ξÞ� þOðξ3Þ: ð22Þ

Since by momentum conservation q1 þ q2 − q3 − q4 ¼ 0,
the LVonly contributes to second order of the ξ parameter.
Finally, we have jMifj2 given by

jMLVj2 ¼ ð1þ CÞð1þ C�ÞjMQEDj2
≈ ð1þ 2ReðCÞÞjMQEDj2: ð23Þ

Choosing a reference frame where, in the Lorentz gauge,
q1 ¼ ðω; qÞ, q2 ¼ ðω;−qÞ, q3 ¼ ðω; kÞ and q4 ¼ ðω;−kÞ,
the LV contribution can be brought into the form

C ¼ e−2½ðk · ξÞ2 þ ðq · ξÞ2 þ 2ðωξ0Þ2� þOðξ3Þ: ð24Þ

where ξμ ¼ ðξ0; ξÞ. Without loss of generality, a reference
frame where the incoming photons are on the z-axis, i.e.,
q ¼ ωẑ and k · ẑ ¼ ω cos θ can be chosen. Writing ξ in an
arbitrary direction

ξ=jξj ¼ sin θξ cosϕξx̂þ sin θξ sinϕξŷþ cos θξẑ;

we have

k · ξ ¼ jξjωðsin θ sin θξ cosðϕ − ϕξÞ þ cos θ cos θξÞ
q · ξ ¼ jξjω cos θξ: ð25Þ

Taking these relations involving q, k, and ξ in terms of ω
and the angles θ, ϕ, θξ, and ϕξ, the result will be, in general,

1

4

X
jMLVj2 ≈ 1

4

X
ð1þ ω2ρ2ÞjMQEDj2; ð26Þ

where ρ2 ¼ ρ2ðθ;ϕ; θξ;ϕξÞ ¼ 2Re ðCÞ=ω2.
In so doing, the final result for the modified differential

cross section can be written as

dσγγ;ξ

dΩ
¼ 1

64π2
1

ð2ωÞ2
X

jMQEDj2

¼ dσγγQED
dΩ

ð1þ ω2ρ2ðθ;ϕ; θξ;ϕξÞÞ: ð27Þ

B. F̃-coupling

For the F̃-coupling, the analysis is the same as in the
previous section. However, the results differ due to the new
structure brought by the Levi-Civita tensor. Rewriting the
result in Eq. (14) in an analogous way to what we have
done in Eq. (16), we have

Γμ ¼ eγαðδμα − e−1εμανβξ̃
νqβÞ

¼ eγαNμ
αðξ̃; qÞ: ð28Þ

In order to calculate the differential cross section for
elastic LbyL scattering with this kind of LV term, we
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rewrite the polarization vector. But, in this case, we use the
term Nβ

α, so that

ϵ0μðqÞ ¼ Nμ
νðqÞϵνðqÞ

¼ ϵμðqÞ − ie−1εμναβξ̃
αqβϵνðqÞ; ð29Þ

and, in the same way we have done for the F-coupling, we
reach a new scattering matrix as follows

MLV
λ1;λ2;λ3;λ4

¼ ðϵλ11 Þμðϵλ22 Þνðϵλ33 Þ�αðϵλ44 Þ�βTμναβ

¼ Nμ
μ0Nν

ν0 ðN�Þαα0 ðN�Þββ0
× ðϵλ1Þμ0 ðϵλ2Þν0 ðϵλ3Þ�α0 ðϵλ4Þ�β0Tμναβ: ð30Þ

So, in a short way,

jMLVj2 ¼ ðNNÞμμ00 ðNNÞνν00 ðNNÞαα00 ðNNÞββ00
× TμναβðT�Þμ00ν00α00β00 ; ð31Þ

where ðNNÞμμ00 ¼ Nμ
μ0N

�μ0
μ00 and the contractions in paren-

theses can be expanded as

ðNNÞμμ00 ¼ δμμ00 ð1 − ðq · ξ̃Þ2Þ þ q2ðδμ0μ00 ξ̃2 − ξ̃μξ̃μ00 Þ þOðξ̃3Þ:
ð32Þ

Here, we ignore terms proportional to qμ, which cancel
contracted with any index of T due to gauge invariance.
Finally, we can find jMj2 and the differential cross section.
One more time, considering external physical photons,
we have

dσγγ;ξ̃

dΩ
¼ dσγγQED

dΩ
ð1 − ω2ρ2ðθ;ϕ; θξ̃;ϕξ̃ÞÞ; ð33Þ

where ρ is the same function found for the differential cross
section in the case of the background 4-vector ξ.
In both nonminimal couplings, the LV contributions

show up in regions where ωξ ≈ e=jρj. Since the LV
parameters come typically from high-energy effects, an
analysis in the UV limit could be more productive.
The modified vertices that we derive for the F- and

F̃-couplings manifest themselves as nonrenormalizable,
since, in this process, they are internal vertices in
Feynman diagrams. However, if LV effects are observed
on the energy scale of the currently available experiments,
we expect them to be manifestations of a more fundamental
theory at high energies. So, when we operate with this
theory below its characteristic mass scale, it is acceptable to
work with a nonrenormalizable model, taking the stand-
point that it is seen as an effective field theory valid below a
certain cutoff [61]. In this work, even when we consider
elastic LbyL scattering in the high-energy regime, we are
still considering energies far below the characteristic mass

scale of the theory. And so, the analysis performed here is
meaningful in the energy region we are concerned with.
Now, to shed light on our results, some particular cases

will be discussed and we shall demonstrate as different
particularizations considered on ξμ modify the differential
cross section of the elastic LbyL scattering.

V. DIFFERENTIAL CROSS SECTION:
LV EFFECTS

In order to visualize the LV effects on the differential
cross section of elastic LbyL scattering, we take some
particular choices for the configuration of the background
4-vector. Since the extra term ω2ρ2 is common to both
F- and F̃-couplings, with only a signal difference, we shall
only analyze the former.
The first choice is a timelike and the second one a

spacelike ξμ. We could also consider a lightlike 4-vector,
i.e., ξ ¼ ðζ; 0; 0; ζÞ. However, this third case presents a
superposition of the effects from the first two cases, so we
omit it. In practice, such divisions are arbitrary: if ξ exists, it
will be a nontrivial mixture of temporal and spacial
components.

A. Timelike background 4-vector

In the case of a timelike LV, i.e., ξμ ¼ ðξ0; 0Þ, the result
takes a simple form. The contribution will be given by
ρ2ðθ;ϕ; θξ;ϕξÞ ¼ 4e−2ξ20 and consequently

����
dσQED
dΩ
dσ
dΩ

− 1

���� ≈ 4e−2ξ20ω
2 ð34Þ

The effects of the timelike LV will show up in frequen-
cies near to ωξ ¼ eξ−10 .
Since the difference between the QED cross section and

the one modified by LV terms increases with the photon
energy, the best regime to detect possible LV signals is in
the high-energy limit, in which the QED contribution turns
down and the LV effect rises up (See Fig. 2).
By introducing cutoff parameters, Λ�, in a modified

differential cross section of the process [62], and by com-
parison between the new differential cross section and
experimental results, it is possible to parametrize deviations
from QED. As soon as experimental data for elastic LbyL
scattering are available with good precision, this analysis
can be adopted to find the values of Λ� with an adequate
confidence level. Finally, we get upper bounds for our LV
parameters in the same spirit as it has already been done for
other QED processes [8,9].

B. Spacelike background 4-vector

We next consider the case of a purely spacelike back-
ground 4-vector, i.e., ξμ ¼ ð0; ξÞ. In this particular case, we
shall investigate the angular profile of differential cross
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section in the low- and high-energy regimes for elastic
LbyL scattering.
With the choice of reference frame already adopted in the

previous Section, with ξ in an arbitrary direction, we can
split the total differential cross section as a part due to only
QED and another part due to LV, i.e.,

dσγγ;ξ

dΩ
¼ dσγγ

dΩ
þ dσγγ;ξLV

dΩ
: ð35Þ

We then verify the effects of the proposed modification
on the differential cross sections, both in the low- and in
the high-energy regime. If ω ≪ m, a general result for the
spacelike 4-vector case is written as

dσγγ;ξLV

dΩ
¼ 2jξj2

e2
139α4ω8

ð180πÞ2m8
ð3þ cos2θÞ2½ðcosθξÞ2

þ ðsinθ sinθξ cosðϕ−ϕξÞ þ cosθ cosθξÞ2�; ð36Þ

which offers a better visualization of the LV effects in the
two energy regimes.
Taking first a background vector parallel to the z axis

ðθξ ¼ 0Þ, we find

dσγγ; kLV

dΩ
¼ 2jξj2

e2
139α4ω8

ð180πÞ2m8
½9þ 15cos2θ þ 7cos4θ þ cos6θ�;

ð37Þ

from which we can see that there is a change in the angular
dependence on θ and no azimuthal dependence.
On the other hand, if we consider the background vector

on the transverse plane xy ðθξ ¼ π=2Þ, we have

dσγγ;⊥LV

dΩ
¼ 2jξj2

e2
139α4ω8

ð180πÞ2m8
½ð3þ cos2θÞðsinθ cosðϕ−ϕξÞÞ�2;

ð38Þ

whose angular profile is plotted in Fig. 3 for different
relative orientations of the background vector in the

transverse xy plane. Here, we have a clear ϕ-dependent
feature that is very distinctive relative to the profile from
QED. This distinctive angular dependence could be used as
am experimental signature to be searched for.

FIG. 2. Photon-photon cross section profile for QED (black)
and for QED plus time-like Lorentz violation contribution with
ωξ ¼ 0.01m (gray).

FIG. 3. Instantaneous angular profile of differential cross sec-
tions for QED (top) and purely spacelike background (ξ⊥ ẑ, i.e.,
θξ ¼ 0) LV scenario, in low-energy regime. The vertical
axes are given by N0

σ ¼ ½α4ω6=m8�−1dσγγ=dΩ and Nσ ¼
½2α4jξj2ω8=e2m8�−1dσγγ;⊥LV =dΩ, with ϕξ ¼ 0 (middle) and ϕξ ¼
ϕ=2 (bottom).
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Now, we turn into the high-energy regime, under the
conditions of validity of Eq. (2). Similarly to the previous
one, taking a background vector parallel to the z axis, we
obtain

dσγγ; kLV

dΩ
¼ 2jξj2

e2
α4

π2
log4

1

θ
½1þ cos2θ�; ð39Þ

and again, more interesting is the second scenario with
a transverse background vector, in which the LV piece
becomes

dσγγ;⊥LV

dΩ
¼ 2jξj2

e2
α4

π2
log4

1

θ
ðsin2θcos2ðϕ − ϕξÞÞ: ð40Þ

This LV contribution is also plotted in Fig. 4 for different
choices of the azimuthal angle, ϕξ. One more time, we have
a anisotropic profile in the scattering cross section.
When we analyze the cases of differential cross sections

modified by a 4-vector background on the transverse plane,
the angular profile in low-energy regime for QED graphs
shows minimum values in θ ¼ π=2 while the LV surfaces
has maxima in the same θ ¼ π=2. These maxima occur in
ϕ ¼ 0, π, 2π for ξ k ẑ and in ϕ ¼ π=2, 3π=2 for ξ⊥ ẑ. Such
specifications are those in which it would be easier to
observe LV effects in experiments.
In the high-energy regime, the LV effects will be more

salient for the same ϕ ¼ 0, π, 2π for ξ k ẑ and in ϕ ¼ π=2,
3π=2 for ξ⊥ ẑ, but the smaller the value of θ the more
intense it will be the LV effects.
Furthermore, Eqs. (39) and (40) show that the extra LV

contribution up to Oðξ3Þ is energy-independent, while the
differential cross section of QED falls off with ω−2. In the
case ξ⊥ ẑ, in particular, a plateau could be observed with
experiments performed at increasingly higher energies for
small θ. It is important to remember that the limits of
validity of Eq. (2) (m=ω ≪ θ ≪ 1) must be respected.
If the whole previous analysis were developed for the

F̃-coupling, the same resulting azimuthal dependence
would be observed, but with a global minus sign, as
indicated in Eq. (33). Similar results have been reported
with this ϕ-dependence, considering nonminimal couplings
to modify the QED Lagrangian, in processes such as
Compton and Bhabha scatterings [8,9].
The above LV considerations apply for a truly fixed and

time-independent 4-vector background. These require-
ments are only explicit in an inertial frame. Due to Earth
motion, we know that this is not the case for laboratory
frames. Therefore, in considering those, the background
should vary over time. An approximately inertial frame
commonly used in the literature is the so-called Sun-
centered frame (SCF) [7].
In order to describe the 4-vector observed in the Earth

reference frame, ξlab, from ξSun, we use a Lorentz trans-
formation, i.e., ξμlab ¼ Λμ

νξ
ν
Sun, where Λμ

ν can be seen in

ref. [7]. Since the relativistic effects, quantified by β ≪ 1,
are small, we can write approximately ξ0lab ¼ ξTSun ≡ 0 and
ξilab ¼ Rijð χ; T⊕ÞξjSun where the rotation matrix depends on
the time in the SCF T⊕.

FIG. 4. Instantaneous angular profile of differential cross sec-
tions for QED (top) and purely spacelike background (ξ⊥ ẑ, i.e.,
θξ ¼ 0) LV scenario, in high-energy regime. The vertical axes are
given by N0

σ ¼ ½α4=ω2�−1dσγγ=dΩ and Nσ ¼ ½2α4jξj2=e2�−1×
dσγγ;⊥LV =dΩ, with ϕξ ¼ 0 (middle) and ϕξ ¼ ϕ=2 (bottom).
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Since experiments are usually driven by long time scales,
the LV signatures in reference frames on Earth should
correspond to the temporal average of these effects.
Therefore, ξxlab ¼ − sin χξzSun and ξzlab ¼ cos χξzSun will be
the nonvanishing spatial components, where χ is the
colatitude of the laboratory. Thus, the vector components
ξlab would be related with the background in the SCF for
any experiment.

VI. CONCLUDING REMARKS

In this contribution, we have investigated two specific
nonminimal Lorentz-violating couplings between the fer-
mion and gauge fields, and their effects on the differential
cross section of elastic photon-photon scattering as
described by QED. When considering the coupling with
F, a new ξ-dependent charge conservation scheme was
derived. Nevertheless, the usual electric charge conserva-
tion is not affected. In the special case where we consider
only a timelike background 4-vector, this ξ-dependent
contribution to the new charge vanishes. The coupling
with F̃ generates the same kind of contribution to the
differential cross section of elastic LbyL scattering without
modification in the charge conservation law, even in the
spacelike case.
Another advantage we can be point out is that these

couplings yield electric and magnetic transition dipole
moments, which can open up the opportunity to find upper
bounds for the parameters from processes involving neu-
trinos, for example.
In our development, we have not presented results

dependent on a general ξ, with both temporal and spatial
components. Rather, we have focused on purely timelike or
spacelike LV backgrounds. This choice—common in
works on LV—gives us differential cross section modifi-
cations which can be more easily observed. With new
experimental results, it might be possible to estimate upper
bounds for the LV parameters of our models. Since the data
stemming from experiments involving ultraperipheral
Pb-Pb collisions at LHC are expected to increase tenfold
after LHC Run 4 [31], scheduled to start in 2026, we expect

to have accurate data to find these upper bounds in the next
decade.
When we analyze the behavior of the differential cross

section in the spacelike case, we observe that new terms
bring extra angle dependences, both in θ and ϕ. The
ϕ-contribution is the most interesting one, since the
QED results are independent of azimuthal variation, and,
in our case, this is no longer necessarily true. There arises a
periodic pattern in ϕ angle in the high- and low-energy
limits (Figs. 3 and 4), and this could be a visible sign of the
Lorentz violation from an experimental point of view. This
azimuthal dependence is present in other QEDþ LV
processes, as Compton, Bhabha and Møller scatterings
[8,9] considering the couplings in Eqs. (3) and (10).
Besides that, since that the QED contribution to photon-
photon scattering decreases in the high-energy limit,
whereas the LV contribution increases, this regime would
be the most fruitful regime to search for LV effects.
One remark is in order: the LV couplings we discussed

are inspired by the CFJ model [10], but here the charged
current replaces the photon field. In this scenario, we con
sider that the effects of LV from our nonminimal coupling
should be more easily observed than in the CFJ model.
Instead of modifying the propagator of the photon field,
these nonminimal couplings modify the vertex of the
interactions between the photon and the fermionic current.
Therefore, this approach maintains the dispersion relations
of the QED massless photon. Furthermore, derivative
couplings naturally show up in high-energy limits; thus,
the nonminimal couplings we use could be observed in
high-energy experiments, as the LHC, more easily than the
minimal LV coupling.
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[50] L. Cappiello, O. Catà, and G. D’Ambrosio, The hadronic
light by light contribution to the ðg − 2Þμ with holographic
models of QCD, Phys. Rev. D 83, 093006 (2011).

ELASTIC LIGHT-BY-LIGHT SCATTERING IN A … PHYS. REV. D 99, 055006 (2019)

055006-9

https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1103/PhysRevD.86.045003
https://doi.org/10.1103/PhysRevD.86.045003
https://doi.org/10.1103/PhysRevD.94.056005
https://doi.org/10.1103/PhysRevD.94.025031
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1103/PhysRev.44.855.2
https://doi.org/10.1098/rspa.1934.0010
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1007/BF01343663
https://doi.org/10.1002/andp.19364180503
https://doi.org/10.1103/PhysRev.80.380
https://doi.org/10.1103/PhysRev.83.776
https://doi.org/10.1007/BF02735895
https://doi.org/10.1007/BF02735534
https://doi.org/10.1007/BF02735534
https://doi.org/10.1007/BF02736745
https://doi.org/10.1007/BF02736745
https://doi.org/10.1007/BF01333827
https://doi.org/10.1016/0370-2693(74)90187-7
https://doi.org/10.1016/0370-2693(74)90187-7
https://doi.org/10.1103/PhysRevD.8.3813
https://doi.org/10.1103/PhysRevD.12.206
https://doi.org/10.1016/0370-2693(75)90685-1
https://doi.org/10.1016/0370-2693(75)90685-1
https://doi.org/10.1103/PhysRevD.22.1051
https://doi.org/10.1103/PhysRevLett.89.061802
https://doi.org/10.1103/PhysRevLett.89.061802
https://doi.org/10.1016/S0370-1573(02)00030-3
https://doi.org/10.1103/PhysRevLett.91.031801
https://doi.org/10.1038/nphys4208
http://arXiv.org/abs/1810.04602
https://doi.org/10.1103/PhysRevD.47.214
https://doi.org/10.1016/0370-2693(82)90660-8
https://doi.org/10.1007/s002880050282
https://doi.org/10.1007/s002880050282
https://doi.org/10.1007/s100530050535
https://doi.org/10.1016/j.physletb.2014.03.054
https://doi.org/10.1016/j.physletb.2016.11.003
https://doi.org/10.1016/j.physletb.2016.11.003
https://doi.org/10.1103/PhysRevLett.111.080405
https://doi.org/10.1103/PhysRevLett.111.080405
https://doi.org/10.1103/PhysRevLett.116.129901
https://doi.org/10.1103/PhysRevLett.116.129901
https://doi.org/10.1103/PhysRevC.93.044907
https://doi.org/10.1063/1.4977171
https://doi.org/10.1016/j.nuclphysa.2017.05.098
https://doi.org/10.1016/S0065-2199(08)60170-0
https://doi.org/10.1103/PhysRevD.94.056008
https://doi.org/10.1103/PhysRevD.94.056008
http://arXiv.org/abs/1809.01296
https://doi.org/10.1103/PhysRevLett.23.441
https://doi.org/10.1103/PhysRevLett.23.441
https://doi.org/10.1103/PhysRevD.45.2168
https://doi.org/10.1103/PhysRevD.45.2168
https://doi.org/10.1007/JHEP06(2018)160
https://doi.org/10.1007/JHEP06(2018)160
https://doi.org/10.1103/PhysRevD.83.093006


[51] N. Asmussen et al., Hadronic light-by-light scattering
contribution to the muon g–2 on the lattice, EPJ Web Conf.
179, 01017 (2018).

[52] D. Bernard, On the potential of light-by-light scattering for
invisible axion detection, Nucl. Phys. B, Proc. Suppl. 72,
201 (1999).

[53] S. Knapen, T. Lin, H. K. Lou, and T. Melia, Searching
for Axionlike Particles with Ultraperipheral Heavy-Ion
Collisions, Phys. Rev. Lett. 118, 171801 (2017).

[54] C. Baldenegro, S. Fichet, G. von Gersdorff, and C.
Royon, Searching for axion-like particles with proton
tagging at the LHC, J. High Energy Phys. 06 (2018)
131.

[55] T. Binoth, E. W. N. Glover, P. Marquard, and J. J. van
der Bij, Two-loop corrections to light-by-light scattering
in supersymmetric QED, J. High Energy Phys. 05 (2002)
060.

[56] V. A. Kostelecký and Z. Li, Gauge field theories with
Lorentz-violating operators of arbitrary dimension, arXiv:
1812.11672.

[57] S. M. Carroll, G. B. Field, and R. Jackiw, Limits on Lorentz-
and parity-violating modification of electrodynamics, Phys.
Rev. D 41, 1231 (1990).

[58] H. Belich, T. Costa-Soares, M. M. Ferreira, J. A. Helayël-
Neto, and F. M. O. Moucherek, Lorentz-violating correc-
tions on the hydrogen spectrum induced by a non-minimal
coupling, Phys. Rev. D 74, 065009 (2006).

[59] P. A. Bolokhov, M. Pospelov, and M. Romalis, Electric
dipole moments as probes of CPT invariance, Phys. Rev. D
78, 057702 (2008).

[60] J. B. Araujo, R. Casana, and M.M. Ferreira, Jr., General
CPT-even dimension-five nonminimal couplings between
fermions and photons yielding EDM and MDM, Phys. Lett.
B 760, 302 (2016).

[61] J. F. Donoghue, General relativity as an effective field theory:
The leading quantum corrections, Phys. Rev. D 50, 3874
(1994).

[62] M. Derrick et al., Experimental study of the reactions
eþe− → eþe− and eþe− → γγ at 29 GeV, Phys. Rev. D
34, 3286 (1986).

Y. M. P. GOMES and J. T. GUAITOLINI JUNIOR PHYS. REV. D 99, 055006 (2019)

055006-10

https://doi.org/10.1051/epjconf/201817901017
https://doi.org/10.1051/epjconf/201817901017
https://doi.org/10.1016/S0920-5632(98)00526-X
https://doi.org/10.1016/S0920-5632(98)00526-X
https://doi.org/10.1103/PhysRevLett.118.171801
https://doi.org/10.1007/JHEP06(2018)131
https://doi.org/10.1007/JHEP06(2018)131
https://doi.org/10.1088/1126-6708/2002/05/060
https://doi.org/10.1088/1126-6708/2002/05/060
http://arXiv.org/abs/1812.11672
http://arXiv.org/abs/1812.11672
https://doi.org/10.1103/PhysRevD.41.1231
https://doi.org/10.1103/PhysRevD.41.1231
https://doi.org/10.1103/PhysRevD.74.065009
https://doi.org/10.1103/PhysRevD.78.057702
https://doi.org/10.1103/PhysRevD.78.057702
https://doi.org/10.1016/j.physletb.2016.06.070
https://doi.org/10.1016/j.physletb.2016.06.070
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.1103/PhysRevD.34.3286
https://doi.org/10.1103/PhysRevD.34.3286

