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We investigate the potential of the Large Hadron Collider (LHC) to probe one of the most compelling
beyond the Standard Model frameworks—walking technicolor (WTC), involving strong dynamics and
having a slowly running (walking) new strong coupling. For this purpose we use recent LHC Run 2 data to
explore the full parameter space of the minimal WTC model using dilepton signatures from heavy neutral
Z0 and Z00 resonances predicted by the model. This signature is the most promising one for discovery of
WTC at the LHC for the low-intermediate values of the g̃ coupling—one of the principle parameters of
WTC. We have demonstrated complementarity of the dilepton signals from both resonances, established
the most up-to-date limit on the WTC parameter space, and provided projections for the LHC potential to
probe the WTC parameter space at higher future luminosities and upgraded energy. We have explored the
whole four-dimensional parameter space of the model and have found the most conservative limit on the
WTC scale MA above 3 TeV for the low values of g̃, which is significantly higher than previous limits
established by the LHC collaborations.
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I. INTRODUCTION

With the discovery of a Higgs boson at the Large Hadron
Collider (LHC) [1,2] it has become not only possible but
also imperative to discover the true origin of mass in the
Universe. The traditional Standard Model (SM) Higgs
mechanism of mass generation via spontaneous electro-
weak symmetry breaking (SEWSB) leads to the hierarchy
problem, associated with the large fine-tuning between
the EWSB scale and the Planck mass. Several classes of
beyond the Standard Model (BSM) theories have been
proposed to address the shortcomings of the SM, and one of
them is technicolor (TC), which is based on new strong
dynamics [3,4]. In technicolor, EWSB is generated dynami-
cally by the formation of a chiral condensate under the
new strong dynamics, providing a natural scale for mass
generation without fine-tuning. Experimental bounds from
electroweak precision data (EWPD) disfavor TC models
with QCD-like dynamics [5], so modern technicolor
models must have a modified strong coupling. Walking

technicolor (WTC) [6–11] and its recent developments
[12–18] are very compelling BSM candidates for the
underlying theory of nature. It has a strong coupling αTC
with a very slowly running (“walking”) regime between
the TC energy scale and high energy extended-TC scale.
The lightest scalar resonance of WTC can be identified
as the experimentally consistent Higgs boson, whose mass
scale is naturally generated and thus does not incur a
hierarchy problem [19,20]. WTC also provides a rich
phenomenology of composite spin-0 and multiple triplets
of composite spin-1 resonances, making this a prime
candidate for experimental particle physics searches.
Using LHC Run 1 dilepton data, the ATLAS Collabo-

ration has interpreted experimental limits on a new heavy
neutral resonance in the context of the WTC parameter
space in Refs. [21,22] using dilepton and HV searches,
respectively. These WTC interpretations have been follow-
ing the phenomenological exploration of WTC parameter
space performed in [23] for a two-dimensional (2D) bench
mark from the whole four-dimensional (4D) parameter
space of the model.
This study makes the next step in exploration of the LHC

potential to test WTC. First of all, we perform analysis
in the full 4D parameter space of the model. Second, we
study the complementarity of the dilepton signals from
both heavy neutral vector mesons of WTC and demonstrate
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its importance. In this work we focus exclusively on Drell-
Yan (DY) processes and provide justification for the single
peak analysis of current LHC constraints in the context of
this model. Finally, we are establishing here the most up-
to-date limit on WTC parameter space from LHC dilepton
searches for the whole 4D parameter space of the model,
and we give projections for the LHC potential to probe
WTC parameter space at higher integrated luminosity in
the future.
In Sec. II we discuss the WTC model together with the

constraints on its parameter space. In Sec. III we explore
the phenomenology of WTC and the LHC potential to
probe the model. Finally, in Sec. IV we summarize the
results of this work and comment on the future prospects
for WTC exploration at the LHC.

II. MINIMAL WALKING TECHNICOLOR MODEL

Throughout this paper we focus on the global symmetry
breaking pattern SUð2ÞL × SUð2ÞR → SUð2ÞV . This pat-
tern is realized by the next to minimal walking technicolor
model (NMWT) [12,14,23], which features two Dirac
fermions transforming in the two-index symmetric repre-
sentation of the technicolor gauge group SUð3Þ. However,
any technicolor model must feature SUð2ÞL × SUð2ÞR →
SUð2ÞV as a subgroup breaking pattern of the full sym-
metry breaking pattern G → H. This is required to ensure
mass generation for theW and Z bosons and to preserve an
SUð2ÞV custodial symmetry in the new strong dynamics
sector such as that in the SM Higgs sector.
More generally, theories of composite dynamics with a

technicolor limit will feature this as a global symmetry
breaking subpattern. Examples are composite Higgs and
partially composite Higgs models [24,25] with an under-
lying four-dimensional realization, e.g., [26–30]. Another
example is bosonic technicolor [31–34]. In both partially
composite Higgs models and in bosonic technicolor, the
Higgs particle is a mixture of an elementary and composite
scalar. Some aspects of how the spin-1 resonance phe-
nomenology is affected by aligning the theory away from
the technicolor vacuum in composite Higgs, and partially
composite Higgs models are given in [28,35]. In general,
the mass scale set by the Goldstone boson decay constant
of the strong interactions, Fπ , is larger in composite Higgs
models than in ordinary technicolor while it is smaller in
the bosonic technicolor models. In partially composite
Higgs models, the scale depends on the relative size of
the elementary doublet vacuum expectation value (VEV) v
and the vacuum alignment angle θ. In general Fπ in these
different composite models is determined through a con-
straint of the form

v2EW ¼ F2
πND sin2 θ þ v2; ð1Þ

where ND is the number of electroweak doublet
fermion families, θ ¼ π=2 corresponds to the technicolor

vacuum, and 0 < θ < π=2 corresponds to the composite
Higgs vacuum.
In this study we restrict ourselves to the technicolor limit,

which provides dynamical electroweak symmetry breaking
and a composite Higgs resonance, but requires a further
extension to provide SM fermion masses. The composite
Higgs resonance has been argued to be heavy in the
technicolor limit with respect to the electroweak scale,
by analogy with scalar resonances in QCD which are heavy
compared to the QCD pion decay constant. However, for
composite sectors that are not a copy of QCD it is a
nonperturbative problem to determine the lightest scalar
mass. Both model computations [14,36] and lattice simu-
lations [37,38] of models such as the NMWTmodel, which
appear to be near the conformal window, have indicated the
presence of a scalar 0þþ resonance that is much lighter than
expected from simply scaling up scalar masses in QCD.
The physics behind the origin of the fermion masses can
also play a role in reducing this TC Higgs mass to the
observed value at LHC and at the same time provide SM
Higgs-like couplings [19,20] to the SM particles. It is
possible to probe the origin of the fermion masses, whether
they are due to extended technicolor, fermion partial
compositeness, or a new elementary scalar, via the pseu-
doscalar sector of the theory, the analogues of the QCD η
and η0 resonances as discussed in [39,40].
We follow the same prescription for constructing an

effective theory of the underlying composite dynamics as
in [23,41] by introducing composite spin-1 resonances
transforming under the SUð2ÞL × SUð2ÞR global symmetry:
Two new triplets of heavy spin-1 resonances are introduced
at interaction eigenstate level AL=R as gauge fields under
SUð2ÞL=R, respectively. The SUð2ÞL is gauged as SUð2ÞW
such that the AL fields form a weak triplet analogous to the
triplet inW0 models while the AR fields are SUð2ÞW singlets.
Together with the Standard Model electroweak fields

in the gauge eigenbasis, W̃μ and B̃μ, we define chiral fields
CL=Rμ,

CLμ ≡ ALμ −
g
g̃
W̃μ; CRμ ≡ ARμ −

g0

g̃
B̃μ; ð2Þ

where g and g0 are the usual Standard Model EW coupling
constants and g̃ is the coupling constant of the NMWT gauge
interactions. These fields transform homogeneously when
the AL=R fields are introduced formally as gauge fields.
The scalar composite Higgs resonance H and the triplet

of pions πa absorbed by theW and Z bosons are introduced
as a bidoublet field under the SUð2ÞL=R symmetries
described via the 2 × 2 matrix M,

M ¼ 1ffiffiffi
2

p ½vþH þ 2iπaTa�;

M → uLMu†R; uL=R ∈ SUð2ÞL=R; ð3Þ
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where a ¼ 1, 2, 3, v ¼ μ=
ffiffiffi
λ

p
is the vacuum expectation

value associated with the breaking of the chiral symmetry,
and Ta are the generators of the SUð2Þ groups, related to
the Pauli matrices by Ta ¼ σa=2. The electroweak covar-
iant derivative of M is

DμM ¼ ∂μM − igW̃a
μTaM þ ig0MB̃μT3: ð4Þ

With these definitions we write the low-energy effective
Lagrangian of the model, up to dimension-four operators as
in [23]

Lboson ¼ −
1

2
Tr½W̃μνW̃μν� − 1

4
B̃μνB̃μν −

1

2
Tr½FLμνF

μν
L þ FRμνF

μν
R � þm2Tr½C2

Lμ þ C2
Rμ� þ

1

2
Tr½DμMDμM†�

− g̃2r2Tr½CLμMCμ
RM

†� − ig̃r3
4

Tr½CLμðMDμM† −DμMM†Þ þ CRμðM†DμM −DμM†MÞ�

þ g̃2s
4

Tr½C2
Lμ þ C2

Rμ�Tr½MM†� þ μ2

2
Tr½MM†� − λ

4
Tr½MM†�2; ð5Þ

where W̃μν and B̃μν are the SM electroweak field strength
tensors and FL=Rμν are the field strength tensors corre-
sponding to the vector meson fields.
The global symmetry breaking pattern SUð2ÞL ×

SUð2ÞR ×Uð1ÞV → SUð2ÞV ×Uð1ÞV is triggered by the
VEV of M and provides the 3 Goldstone degrees of
freedom for the massive W and Z bosons. The heavy
vector resonances, here introduced via the AL=R triplets, can
equivalently be treated as Higgs’ed gauge fields of a
“hidden local symmetry” copy of the above global sym-
metry group [42], as discussed in [18]. The physical
spectrum of the model then consists of the two triplets
of spin-1 mesons, which in the absence of electroweak
interactions form a vector triplet V under SUð2ÞV and the
axial-vector partner triplet A, analogous to the ρ and a1
vector mesons in QCD. In this study we focus on the two
neutral resonance mass eigenstates which, in the presence
of SM electroweak interactions, we for convenience refer
to as Z0 and Z00 although these are distinct from sequential
Z0 resonances.
The spin-1 sector of the Lagrangian in Eq. (5) contains

five parameters, m, g̃, r2, r3, and s. The masses and decay
constants of the vector and axial-vector resonances, in the
limit of zero electroweak couplings, are given in terms of
these parameters as

M2
V ¼ m2 þ g̃2ðs − r2Þv2

4
; FV ¼

ffiffiffi
2

p
MV

g̃
;

M2
A ¼ m2 þ g̃2ðsþ r2Þv2

4
; FA ¼

ffiffiffi
2

p
MA

g̃
χ; ð6Þ

where

χ ≡ 1 −
v2g̃2r3
4M2

A
: ð7Þ

The technipion decay constant Fπ may be expressed in
terms of FV and FA as

F2
π ¼ ð1þ 2ωÞF2

V − F2
A; ð8Þ

with

ω≡ v2g̃2

4M2
V
ð1 − r3 þ r2Þ ð9Þ

and with Fπ ¼ 246
ffiffiffiffiffiffiffi
ND

p
GeV in technicolor models with

ND families of technifermions and no elementary doublet
scalars. Here we assume ND ¼ 1 as in the NMWT model.
We can now make use of the Weinberg sum rules (WSRs)
[43] to constrain the number of parameters in the effective
model and connect them to the underlying fermionic
dynamics.
The assumed asymptotic freedom of the effective theory

implies the first and second WSRs, respectively,Z
∞

0

dsImΠLRðsÞ ¼ 0;
Z

∞

0

dssImΠLRðsÞ ¼ 0; ð10Þ

where ΠLRðsÞ is the Lorentz invariant part of the LR
correlation function:

Πa;b
μνLRðqÞ ¼ ðqμqν − gμνq2ÞδabΠLRðq2Þ; ð11Þ

with

iΠa;b
μνLRðqÞ¼

Z
d4xeiq·x½hJaμ;VðxÞJbν;Vð0Þi−hJaμ;AðxÞJbν;Að0Þi�:

ð12Þ

Assuming that only the lowest spin-1 resonances A, V
saturate the WSRs, the vector and axial vector spectral
densities are given in terms of the spin-1 masses and decay
constants as

ImΠVðsÞ ¼ πF2
Vδðs −M2

VÞ;
ImΠAðsÞ ¼ πF2

πδðsÞ þ πF2
Aδðs −M2

AÞ: ð13Þ
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The first WSR therefore implies that ω ¼ 0 and

F2
V − F2

A ¼ F2
π: ð14Þ

In terms of the Lagranian parameter this gives the relation

r2 ¼ r3 − 1: ð15Þ

The second WSR is less dominated by the infrared
dynamics than the first WSR as seen from Eq. (10). We
therefore allow for a modification of the second WSR
encoded by the dimensionless parameter a following [44]

a
8π2

dðRÞF
4
π ¼ F2

VM
2
V − F2

AM
2
A; ð16Þ

where dðRÞ is the dimension of the gauge group repre-
sentation of the underlying technifermions. The parameter
a measures the contribution of the underlying dynamics to
the integral in Eq. (10) from intermediate energies, above
the confinement scale.
Finally the electroweak Peskin-Takeuchi S parameter is

related to a zeroth Weinberg sum rule,

S ¼ 4

Z
∞

0

ds
s
ImΠ̄LR ¼ 4π

�
F2
V

M2
V
−

F2
A

M2
A

�
: ð17Þ

Combining the first and second WSRs it follows that the a
parameter gives a negative contribution to axial-vector
mass difference M2

A −M2
V and a negative contribution to

the S parameter. We therefore expect a to be positive in a
near conformal theory yielding a smaller S-parameter and a
more degenerate axial-vector mass spectum than in QCD.
This is in line with, e.g., model computations [36,45] based
on Schwinger-Dyson analysis, but here we take it as an
assumption.
In QCD we expect a ≃ 0 while in near-conformal

theories, where the coupling constant is assumed to be
approximately constant in a region above the confinement
scale, we expect a > 0 [44].
This allows us to trade one of the Lagrangian parameters

for the S parameter via the relation

S ¼ 8π

g̃2
ð1 − χ2Þ: ð18Þ

We are left with a four-dimensional parameter space that
describes the model:MA, g̃, S, s. The Lagrangian constant s
parametrizes the interactions of the technicolor spin-1
mesons with the Higgs sector [see Eq. (5)]. Since we do
not consider the composite Higgs phenomenology, the only
relevant effect of the s parameter is on the branching ratio of
the Z0 and Z00 states into dileptons. The branching ratios into
dileptons are maximal for s ¼ 0, so we therefore restrict to
this throughout. This leaves three relevant parameters

MA; g̃; S: ð19Þ

We show the value of the a parameter in theMA, g̃ plane
for different values of S in Fig. 1. Restricting to positive
values of awe get an upper limit on the mass parameterMA
that complements the experimental limits we derive from
dilepton searches.

III. PHENOMENOLOGY AND LHC POTENTIAL
TO PROBE WTC PARAMETER SPACE

In our analysis of heavy neutral spin-1 resonances in the
NMWT parameter space, we conduct a three-dimensional
scan over MA, g̃, and S. The results in this section are
presented in the MA, g̃ parameter space for discrete values
of S such as S ¼ −0.1; 0.0;…; 0.3. The largest value, S ¼
0.3 for the range we choose, is already disfavored by
EWPD [46]; however, we include it in this work for direct
comparison to results of the previous work [23]. The
remaining limits of the scan over S ensure that the tension
with EWPD is minimized (for the zero T parameter). In this
section we present results at the benchmark S ¼ 0.1; fixed
values of S ≠ 0.1 are given in the Appendix A 4.
There is an upper bound on g̃,

g̃ <

ffiffiffiffiffiffi
8π

S

r
; ð20Þ

which follows from Eq. (17) and ensures that all physical
quantities are real as we will see below. For S ¼ 0.3, the
biggest value of S we consider here, the upper limit is
g̃ ¼ 9.15. Therefore we present all results in the MA, g̃
space with g̃ ≤ 9 to avoid unphysical parameter space.
The phenomenology of the NMWT model is explored

using the CalcHEP package [47], which allows one to perform
simple and robust analysis of tree-level collider events. The
Lagrangian for NMWTwas implemented using LanHEP [48],
from which all interaction vertices are generated for use in
CalcHEP. We focus on neutral heavy spin-1 resonances in
the Drell-Yan channel, with dileptons’ signature. The mass
spectra of the Z0=Z00 are presented in Sec. III A 1, the
coupling strength of Z0=Z00 vertices in Sec. III A 2, followed
by a discussion of the total widths and dilepton branching
ratios in Sec. III B; production and total cross sections for
DY processes of Z0=Z00 are given in Sec. III C; Sec. III D
explores the interference between the neutral resonances and
discusses the validity of reinterpreting LHC constraints for
the NMWT model; and finally, Sec. III E explores the LHC
potential to probe the WTC parameter space.

A. Masses and couplings

1. Mass spectra

Besides numerical analysis it is informative also to
perform an analytical one as we do for some masses and
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couplings to understand the qualitative properties of the
model and the limits of the parameter space. Diagonalizing
the neutral mixing matrix (see details in the Appendix A 1),
we find the Z0=Z00 masses to second order in g̃−1 take the
form

M2
Z0 ¼ M2

A

�
1þ g21 þ g22

g̃2
χ2
�
; ð21Þ

M2
Z00 ¼ M2

A

�
1þ g21 þ g22

2g̃2

��
χ2 þ g̃2F2

π

2M2
A

�
; ð22Þ

where from Eq. (18) we express χ as

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Sg̃2

8π

r
; ð23Þ

and Uð1ÞY and SUð2ÞL couplings g1 and g2 are functions
of (MA, g̃, S); see Eqs. (A26) and (A25). Both g1 and g2
have a very mild dependence on the model parameters.1

One should note that in general Z − Z0 and Z − Z00
mixing plays a very important role in constraining BSM
models. In case of just extraUð1Þ0 theory with one Z0 boson
the Z − Z0 mixing is constrained to be below about 10−3 by
the EWPD; see, e.g., [49] and references therein. In case
of the NMWT model under study with the embedded
SUð2ÞV custodial symmetry, the electroweak precision
parameters (EWPP) are under control, including the S
parameter, which is chosen to be an explicit model
parameter. In the NMWT model the Z − Z0 and Z − Z00

mixings, for example, are as large as 10−2 as one can
explicitly find using the mixing matrix given by Eq. (41) of

(a) (b)

(c) (d)

FIG. 1. Contour levels for a parameter in (MA, g̃) NMWT plane for various values of S and fixed s ¼ 0. The red-shaded region
corresponds to excluded a < 0 space.

1Variation in the couplings is less than 1% level across the
parameter space.
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the Appendix A 1. However, the size of the EWPP is
actually defined by the WWZ0, WWZ00, W0WZ, etc.,
couplings, which are as small as 10−3 or below because
of the cancellation and the interplay between the Z − Z0,
Z − Z00,W −W0, andW −W00 mixings due to the custodial
symmetry of the theory.
The mass spectrum of the Z0 is shown in Fig. 2(a) and

numerically presented in Table I where we also present
the Z00 mass for the 3D grid in ðMA; g̃; SÞ space. One can
see that for g̃≳ 2, MZ0 ≃M2

A as follows from Eq. (21). In
Fig. 2(b) we present the spectrum for the relative mass
difference, ΔM=MZ0 , where ΔM ¼ MZ00 −MZ0 . One can
see that MZ00 behavior is less trivial, which reflects the
“competition” of g̃ and Fπ=MA ratios in Eq. (22). For large
MA one can observe that Z0 starts to mildly depend on g̃.
This change in behavior is due to a change of state of the
Z0ðZ00Þ from mostly axial (vector) to mostly vector (axial)
[23]. Figure 2(b) clearly reflects this mass inversion for
g̃ > 1 at a fixed Minv ¼ MA, which to second order in g̃−1

takes the form

M2
inv ¼

�
1þ g21 þ g22

g̃2

�
4π

S
F2
π: ð24Þ

Using the benchmark S ¼ 0.1, the mass inversion occurs at
MA ¼ 2760 GeV, and we clearly observe this behavior in
Fig. 2(b).
The mass splitting is large at lowMA and high g̃, opening

new decay channels such as Z00 → Wþ0W−0. This is dis-
cussed further in Sec. III B.

2. Couplings

Here we explore the analytic forms of Z0 and Z00
couplings to fermions. These are composed of elements
of the neutral diagonalization matrix Nij [18], and details

of the mixing matrix calculation are included in the
Appendix A 1.
For the vertices with fermions, the coupling strengths

can be decomposed into left- and right-handed parts and
to second order in 1=g̃, and gZ0ff̄ and gZ00ff̄ couplings take
the form

gL
Z0ff̄¼

χ

2
ffiffiffi
2

p
g̃
ð−I3g22þYg21Þ; gR

Z0ff̄¼
χ

2
ffiffiffi
2

p
g̃
qfg21; ð25Þ

gL
Z00ff̄¼

1

2
ffiffiffi
2

p
g̃
ðI3g22þYg21Þ; gR

Z00ff̄¼
1

2
ffiffiffi
2

p
g̃
qfg21; ð26Þ

where I3 ¼ �1=2 is the usual third component of the
weak isospin for up and down fermions, respectively,

TABLE I. Masses of the neutral resonances at reference points
in the MA, g̃, S parameter space, displayed in the format MZ0

(MZ00 ) in GeV for each parameter space value.

MA [GeV]

S g̃ 1000 1500 2000 2500

−0.1 1 1080(1339) 1614(1984) 2148(2639) 2683(3296)
3 1016(1163) 1523(1640) 2030(2138) 2536(2643)
5 1006(1370) 1509(1808) 2012(2283) 2515(2778)
7 1003(1642) 1505(2049) 2007(2510) 2508(3001)
9 1002(1947) 1503(2334) 2005(2788) 2506(3280)

0.1 1 1078(1325) 1610(1976) 2144(2629) 2678(3283)
3 1015(1130) 1520(1590) 2023(2071) 2522(2565)
5 1005(1295) 1507(1678) 2010(2100) 2511(2543)
7 1002(1518) 1503(1821) 2004(2175) 2505(2560)
9 1001(1773) 1502(1998) 2002(2277) 2503(2591)

0.3 1 1075(1320) 1607(1968) 2139(2618) 2672(3270)
3 1013(1097) 1514(1541) 1985(2034) 2452(2540)
5 1004(1215) 1505(1537) 1898(2008) 2280(2510)
7 1001(1382) 1502(1560) 1779(2002) 2025(2503)
9 1000(1580) 1500(1593) 1611(2000) 1634(2500)

(a) (b)

FIG. 2. (a) MZ0 (GeV) (b) ΔM=MZ0 as a function of MA, g̃, at benchmark values of S ¼ 0.1 and s ¼ 0.
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Y ¼ qf − I3 is their hypercharge, and qf is the charge of
the fermions.
The parameter dependence of the Z0 and Z00 dilepton

couplings are given as a ratio to the SM gZlþl− in Figs. 3 and
4, respectively. Both L and R components of the Z0 dilepton
coupling increase as g̃ → 1; however, as the coupling is
diluted through the mixing effects between the gauge fields,
gZ0lþl− ≥ gZlþl− is never realized.
Similarly, the L component of the Z00 dilepton coupling

grows as g̃ → 1; however, this is not the case for the R
component. The R component is suppressed in comparison
to the Z0 as the mixing with the photon is smaller for γ − Z00
than for γ − Z0; such mixing effects are discussed further in
Sec. III B.
Again we see that the axial (vector) composition of the Z0

(Z00) affects both L and R coupling strengths, suppressing
the coupling as the Z0 (Z00) becomes mostly vector (axial).

B. Widths and branching ratios

The width-to-mass ratio Γ=M for Z0 and Z00 is shown
in Fig. 5.
One can see that Z0 is generically narrow in the whole

parameter space—the Γ=M is always below 10%. One
should also note that for large values of g̃ and MA < Minv
the main contribution to the width is coming from Z0 → ZH
decay as one can see from Figs. 6(a) and 6(b) where we
present (a),(b) BrðZ0Þ and (c),(d) BrðZ00Þ for all decay
channels as a function of MA at the fixed values of (a),(c)
g̃ ¼ 3 and (b),(d) g̃ ¼ 8, at benchmark values of S ¼ 0.1
and s ¼ 0. This happens because of the following asymp-
totic of gZ0ZH coupling at large g̃:

gZ0ZH ¼ −
g̃2v
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg22 þ g21ÞS

π

r
; ð27Þ

(a) (b)

FIG. 3. Coupling of Z0 to charged lepton pairs as a ratio to its SM equivalent separated into left- and right-handed components,
(a) jgLZ0lþl−=gZlþl− j, (b) jgRZ0lþl−=gZlþl− j, as a function of MA and g̃ parameters at the benchmark values of S ¼ 0.1 and s ¼ 0.

(a) (b)

FIG. 4. Coupling of Z00 to charged lepton pairs as a ratio to its SM equivalent separated into left- and right-handed components,
(a) jgLZ00lþl−=gZlþl− j, (b) jgRZ00lþl−=gZlþl− j, as a function of MA and g̃ parameters at the benchmark values of S ¼ 0.1 and s ¼ 0.
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which makes ΓðZ0Þ increase with the increase of g̃. One can
see the numerical results confirming this effect in Table II,
where we present ΓðZ0Þ and ΓðZ00Þ for the 3D grid in
ðMA; g̃; SÞ space.

For MA > Minv, Z0 “switches” its properties from pseu-
dovector to vector, and its width is enhanced then by the
Z0 → W þW− decay for large g̃ with the respective gZ0WW
coupling proportional to g̃. In the region of low values of g̃

(a) (b)

FIG. 5. (a) ΓZ0=MZ0 . (b) ΓZ00=MZ00 as a function of MA and g̃ parameters at benchmark values of S ¼ 0.1 and s ¼ 0.

(a) (b)

(c) (d)

FIG. 6. (a),(b) BrðZ0Þ and (c),(d) BrðZ00Þ for all decay channels as a function of MA at the fixed values of (a) g̃ ¼ 3, (b) g̃ ¼ 8, at
benchmark values of S ¼ 0.1 and s ¼ 0.
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and not so large values of MA the contribution from Z0 →
ff̄ also plays an important role. This also happen for small
values of S ≃ 0 as one can see from Figs. 20 and 21 in the
Appendix A, where we present additional plots for
S ¼ −0.1, 0, 0.2, and 0.3. From Fig. 5 one can see that
the picture of the width-to-mass ratio for Z00 is qualitatively
different from the one for Z0: though the Γ=M is also below
10% for g̃≲ 5, for bigger values of g̃ the Γ=M becomes
very large especially in the small MA region where g̃-
enhanced Z00 → W0W0 decay opens for vector Z00, or for
large values of MA where g̃-enhanced Z00 → ZH decay
opens for pseudovector Z00 (see Fig. 6 as well as analogous
Figs. 20 and 21 from the Appendix A 5 b). In this region Z00
does not contribute to the dilepton signature at the LHC,

and therefore this region can safely be explored and
interpreted using Z0 dilepton signature at the LHC.
Let us take a closer look at the dilepton signature and

the respective Z0 and Z00 branching ratios in 2D (MA, g̃)
parameter space, presented in Fig. 7 for S ¼ 0.1 and
Table III presenting numerical values for BrðZ0 → eþe−Þ
and BrðZ00 → eþe−Þ for the 3D grid in ðMA; g̃; SÞ space.
Besides an expected 1=g̃ suppression, in Fig. 7 one can
observe that for low values of g̃ both BrðZ0 → lþl−Þ and
BrðZ00 → lþl−Þ are enhanced above the 3% value corre-
sponding to BrðZ → lþl−Þ in SM. One can see from
Table III that, for example, for MA ¼ 1500 GeV, S ¼ 0.1
and g̃ ¼ 1 BrðZ0 → eþe−Þ ≃ 12.3% which is about 4 times
bigger than the SM value. This enhancement is related to a

TABLE II. Widths of the neutral resonances in the MA, g̃, S parameter space, displayed in the format ΓZ0 (ΓZ00 ) in
GeV for each parameter space value.

MA [GeV]

S g̃ 1000 1500 2000 2500

−0.1 1 2.91(35.28) 4.54(52.92) 6.68(72.28) 9.76(94.34)
3 1.29(10.79) 2.92(7.73) 7.20(12.28) 17.39(24.99)
5 1.37(180.97) 5.10(117.65) 16.44(110.57) 44.28(143.36)
7 2.89(932.69) 11.15(691.70) 35.46(648.36) 93.58(742.68)
9 6.75(3028.96) 23.56(2435.70) 69.88(2375.84) 176.01(2685.93)

0.1 1 2.72(33.70) 4.02(48.98) 5.50(64.11) 7.50(79.44)
3 0.88(4.13) 1.80(2.69) 4.74(6.40) 12.93(15.07)
5 0.79(76.29) 3.60(19.00) 12.85(14.75) 36.46(36.86)
7 1.99(350.34) 8.64(109.07) 28.30(46.82) 75.39(76.16)
9 5.66(899.79) 19.44(328.60) 55.33(124.77) 134.68(135.22)

0.3 1 2.70(32.48) 4.62(47.28) 8.91(64.77) 19.03(90.61)
3 1.87(2.75) 9.37(10.55) 34.98(37.18) 99.34(107.84)
5 5.53(30.22) 27.87(27.69) 79.15(97.60) 197.15(288.29)
7 18.16(108.87) 64.34(59.34) 113.87(195.62) 217.11(580.30)
9 72.97(125.19) 160.17(109.98) 116.31(318.94) 124.76(617.72)

(a) (b)

FIG. 7. (a) BrðZ0 → eþe−Þ. (b) BrðZ00 → eþe−Þ as a function of MA and g̃ parameters at benchmark values of S ¼ 0.1 and s ¼ 0.
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quite subtle effect that does not follow from Eq. (25), which
is valid for intermediate-large values of g̃; for g̃ ≃ 1 one can
check numerically that photon-Z0 mixing is enhanced,
while Z − Z0 is suppressed, which leads to a relative
suppression of BrðZ0 → ννÞ and BrðZ0 → qdq̄dÞ with
respect to BrðZ0 → lþl−Þ and BrðZ0 → quq̄uÞ.
Talking about all other decay channels, which actually

define BrðZ0 → eþe−Þ and BrðZ00 → eþe−Þ, there are four
more decays: qq̄, νν̄, VV, and Vh channels as one can see
from Fig. 6 (as well as analogous Figs. 20 and 21 from the
Appendix A 5 b), which are already mentioned above.
Besides the dominant role of WW and ZH channels for
largevalues of g̃, one shouldnote dips inZ0 andZ00 branchings
into these channels occurring for small-intermediate values of
g̃. This happens because the respectiveZ0ð00ÞWW andZ0ð00ÞZH

couplings change the sign around these dips, such that at the
dips the respective branchings go to zero. The reason for this
is the cancellation occurring because of the contribution
from several different terms to these couplings—from gauge
kinetic terms as well as from r2 and r3 terms from the
Lagrangian defined by Eq. (5). One should note that in the
case of such a cancellation and absence of ZH signal, which
has been explored by the ATLAS Collaboration to probe
WTC parameter space [22], the role of dilepton searches in
probingWTC parameter space becomes especially appealing
as a crucial complementary channel.

C. Cross sections

Both Z0 and Z00 can be resonantly produced in a DY
process, giving rise to dilepton signatures. The cross

TABLE III. Dielectron branching fraction of Z0, Z00 in the MA, g̃, S parameter space, displayed in the format
BrðZ0 → eþe−Þ [BrðZ00 → eþe−Þ� in %.

MA [GeV]

S g̃ 1000 1500 2000 2500

−0.1 1 10.941(3.963) 10.759(3.873) 9.854(3.749) 8.467(3.576)
3 2.226(0.782) 1.377(1.572) 0.704(1.313) 0.350(0.807)
5 0.827(0.019) 0.327(0.038) 0.134(0.052) 0.061(0.049)
7 0.217(0.002) 0.083(0.004) 0.035(0.005) 0.016(0.005)
9 0.062(0.000) 0.026(0.001) 0.012(0.001) 0.006(0.001)

0.1 1 11.788(4.080) 12.280(4.112) 12.084(4.154) 11.119(4.174)
3 2.986(1.991) 1.930(4.455) 0.903(2.487) 0.502(1.229)
5 1.171(0.042) 0.373(0.220) 0.133(0.360) 0.050(0.183)
7 0.211(0.005) 0.072(0.021) 0.029(0.058) 0.013(0.043)
9 0.038(0.001) 0.016(0.005) 0.008(0.014) 0.004(0.015)

0.3 1 11.988(4.162) 10.784(4.186) 7.532(4.040) 4.429(3.595)
3 1.255(2.910) 0.356(1.077) 0.301(0.233) 0.147(0.085)
5 0.129(0.099) 0.033(0.142) 0.058(0.016) 0.028(0.006)
7 0.012(0.016) 0.005(0.033) 0.019(0.002) 0.012(0.001)
9 0.000(0.009) 0.000(0.011) 0.010(0.000) 0.010(0.000)

(a) (b)

FIG. 8. (a) σLOðpp → Z0 → eþe−Þ (fb) and (b) σLOðpp → Z00 → eþe−Þ (fb) at ffiffiffi
s

p ¼ 13 TeV as a function of MA, g̃ at benchmark
values of S ¼ 0.1 and s ¼ 0.
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section rates are directly related to Z0 and Z00 coupling to
fermions and dilepton branching ratios discussed earlier.
Production cross sections for leading order (LO) DY pp →
Z0=Z00 → eþe− processes for LHC@13 TeV are presented
in Fig. 8 as contour levels of the cross section in ðMA; g̃Þ
space for S ¼ 0.1 (see also Figs. 24 and 25 for analogous
results for different values of S in the Appendix A 5 c) as
well as in Table IV as numerical results for the 3D
ðMA; g̃; SÞ grid. Cross sections are calculated using
CalcHEP [47] via the High Energy Physics Model
Database (HEPMDB) [50], linked to the IRIDIS4 super-
computer. The parton density function (PDF) set used is
NNPDF23 LO as_0130_QED [51], and the QCD scale Q
is set to be the dilepton invariant mass, Q ¼ Mðeþe−Þ.
The cross section has been evaluated in the narrow width
approximation (NWA) to be consistent with the latest CMS
limit [52], which we use for the interpretation of our signal
as we discuss below. In the experimental CMS paper the
cross section for Z0 models was calculated in a mass
window of �5%

ffiffiffi
s

p
at the resonance mass, following the

prescription of Ref. [53] where it was checked that for this
cut the cross section is close to the one from the NWA to
within 10%. To account for next-to-next leading order
(NNLO) QCD effects in our analysis below, the LO cross
sections are multiplied by a mass-dependent K factor that
was found using the ZWPROD program [54–56], which we
have modified to evaluate the cross sections for Z0 and W0
resonances and linked to the LHAPDF6 library [57] as
described in Ref. [58]. The resulting NNLO K factors are
presented in Table V.
From Fig. 8 one can observe for Z0 and Z00 DY cross

sections an expected 1=g̃ suppression discussed above
as well as eventual PDF suppression with the increase of
the mass of the resonances. Also, one should make an

important remark that in the large mass region for low-
intermediate values of g̃ the signal from the Z00 is higher
than the one from the Z0. This highlights the complemen-
tarity between the two resonances, indicating that the Z0
and Z00 DY processes will exclude different areas of the
parameter space. This motivates our study of both reso-
nances in conjunction, as we will exclude a greater portion
of the parameter space with combined searches.

D. Z0=Z00 interference and validity of the
reinterpretation of the LHC limits

Following our results in the previous section, we explore
the interference between the Z0 and Z00 boson, which gives
rise to the dilepton signature. This is an important point for
our study since we aim to reinterpret the LHC limits based
on a single resonance search in the dilepton channel.
Besides interference, the validity of such an interpretation
also depends on how well these resonances are separated,
their relative contribution to the signal, and their width-to-
mass ratio. As discussed, for example, in [60], the inter-
ference effects between several resonances of the model
can have a significant impact on the signal shape and can
shift the peak away from the resonant mass. In such cases,
one can no longer use the single resonance limit from LHC
for the interpretation of the signal from individual Z0 in the
theory. Let us see if this is the case of the WTC model.
In Fig. 9(a) the contour levels for pp → Z0 → eþe−

production cross section at the LHC@13 TeVas well as the
relative ratio of dilepton rates for Z0 vs Z00 production for
S ¼ 0.1 are shown. As in the recent experimental CMS
paper, the cross section for Z0 and Z00 was evaluated using
finite width and mass window of �5%

ffiffiffi
s

p
at the resonance

mass to correctly estimate the size of the Z0=Z00

TABLE IV. Cross section σðpp → Z0=Z00Þ at LO in the MA, g̃, S parameter space at
ffiffiffi
s

p ¼ 13 TeV, displayed in
the format σZ0 (σZ00) in fb for each parameter space value.

MA [GeV]

S g̃ 1000 1500 2000 2500

−0.1 1 6.37 × 102ð3.08 × 103Þ 1.03 × 102ð4.29 × 102Þ 23.7(83.5) 6.54(19.1)
3 3.37 × 102ð2.39 × 102Þ 49.6(52.2) 10.4(14.1) 2.66(4.31)
5 1.43 × 102ð37.1Þ 22.9(9.83) 5.29(2.84) 1.47(0.89)
7 80.2(7.89) 13.0(2.54) 3.03(0.81) 0.85(0.26)
9 53.9(2.00) 8.78(0.74) 2.05(0.25) 0.58ð8.59 × 10−2Þ

0.1 1 6.39 × 102ð3.10 × 103Þ 1.04 × 102ð4.34 × 102Þ 24.0(84.7) 6.64(19.5)
3 3.06 × 102ð2.72 × 102Þ 39.8(65.3) 5.79(20.0) 0.96(6.50)
5 1.17 × 102ð47.7Þ 18.5(14.4) 4.03(4.72) 0.81(1.89)
7 54.0(11.5) 8.75(4.70) 2.01(1.85) 0.52(0.76)
9 27.7(3.22) 4.50(1.73) 1.05(0.85) 0.29(0.41)

0.3 1 6.43 × 102ð3.12 × 103Þ 1.05 × 102ð4.40 × 102Þ 24.3(85.8) 6.75(19.8)
3 2.70 × 102ð3.15 × 102Þ 16.1(93.9) 8.68(19.0) 3.47(4.70)
5 90.4(63.2) 11.8(24.1) 6.98(3.82) 2.64(1.04)
7 27.9(17.6) 4.30(10.2) 5.18(1.09) 2.64(0.31)
9 1.35(5.65) 0.22(5.43) 5.13ð5.22 × 10−2Þ 4.79ð1.47 × 10−2Þ
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interference. Qualitatively the picture is similar for other
values of the S parameter. First of all, one can notice that
with an integrated luminosity of about 40 fb−1 (for which
the limits on dilepton resonances are publicly available),
one can expect a limit on the dilepton cross section of the
order of 0.1 fb, which translates to MA of about 3 TeV for
low g̃ values. As we will see in the following section, this
rough estimation agrees with an accurate limit we establish
later in our paper. Second, one can clearly see that the role

of Z00 becomes important and even dominant forMA above
1.5 TeV and g̃ below about 4. Figure 9(b) presents the
interference between Z0 and Z00 contributing to the dilepton
signature. One can see that the interference is at the percent
level and can be safely neglected. This is an important
condition for interpretation of the LHC limits on a single
resonance search that was the subject of phenomenological
and experimental studies for decades, for a review see
Refs. [49,61,62] and references therein. Taking this into
account as well as the fact that the Z0 contribution to
the dilepton signature is dominant, in the region of small
MA < 1 TeV we conclude that one can use LHC limits
for dilepton single resonance searches. Using similar logic,
one can see that in the region of intermediate and large
MA > 1.5 TeV where the MZ00 contribution to the dilepton
signature is dominant, one can use LHC limits for single
resonance dilepton searches in the case of Z00.
Finally, in the intermediate region of MA between 1 and

1.5 TeV when dilepton signals from Z0 and Z00 are
comparable, well separated in mass (above 10%) recalling
Z0 − Z00 mass difference from Fig. 2 and their width-to-
mass ratio is small (few percent) (Fig. 5), the LHC limits
can be applied separately to Z0 or Z00 signatures. Therefore
in the whole parameter space of interest [with
σðpp → Z0=Z00 → lþl−Þ ≃ 0.1 fb] one can use the signal
either from Z0 or Z00 to best probe the model parameter
space. This procedure sets the strategy that we use in the
following section. The statistical combination of signatures
from both resonances is outside of the scope of this paper
since it requires also the change to the procedure in setting
the limit at the experimental level.

E. Probing technicolor parameter space at the LHC

1. The setup for the LHC limits

The CMS Z0 dielectron 13 TeV limits [52] that we use for
the interpretation of the WTC parameter space are
expressed as Rσ ¼ σðpp → Z0 → eþe−Þ=σðpp → Z →
eþe−Þ, which is the ratio of the cross section for dielectron
production through a Z0 boson to the cross section for
dielectron production through a Z boson. The limits are
expressed as a ratio in order to remove the dependency on
the theoretical prediction of the Z boson cross section and
correlated experimental uncertainties.
To reproduce these limits, a simulated dataset of the

CMS mass distribution is generated using a background
probability density function:

mκeαþβmþγm2þδm3þϵm4

; ð28Þ

where κ, α, β, γ, δ and ϵ are function parameters. This
probability density function was used to describe the
dielectron mass background distribution, where the back-
ground is predominantly Drell-Yan dielectron events. A
simulated CMS dataset is obtained by normalizing the Z

TABLE V. K factors for NNLO QCD corrections to Drell-Yan
cross sections at

ffiffiffi
s

p ¼ 13 TeV evaluated with the help of the
modified ZWPROD program as described in the text, using
NNPDF23 LO as_0130_QED and NNPDF23 NNLO
as_0119_QED [59] PDFs for LO and NNLO cross sections,
respectively.

MZ0 [GeV] KNNLO

500 1.35
600 1.36
700 1.36
800 1.37
900 1.38
1000 1.39
1100 1.39
1200 1.40
1300 1.40
1400 1.41
1500 1.41
1600 1.41
1700 1.42
1800 1.42
1900 1.42
2000 1.41
2100 1.41
2200 1.41
2300 1.41
2400 1.40
2500 1.40
2600 1.39
2700 1.39
2800 1.38
2900 1.37
3000 1.36
3100 1.35
3200 1.34
3300 1.33
3400 1.32
3500 1.31
3600 1.30
3700 1.29
3800 1.28
3900 1.26
4000 1.25
4100 1.24
4200 1.22
4300 1.21
4400 1.19
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boson region (60 < mee < 120 GeV) in simulation to data.
The total number of data events corresponding to a given
integrated luminosity is NLumi. Using the above proba-
bility density function we generate hundreds of datasets,
each with a total number of events that is a Poisson
fluctuation on NLumi. For each dataset we step through
mass values and set a 95% confidence level (C.L.) limit
on Rσ . The limits are set using a Bayesian method with
an unbinned extended likelihood function. Using both
the signal and background probability density functions,
the likelihood distribution is calculated as a function
of the number of signal events for a given mass. The
95% C.L. upper limit on the number of signal events N95

for a given mass is taken to be the value such that
integrating the likelihood from 0 to N95 is 0.95 of the
total likelihood integral. This number N95 is converted to
a limit on the ratio of cross sections by dividing by the
total number of acceptance and efficiency corrected Z
bosons, the signal acceptance, and the efficiency. At
each mass point, a limit is calculated for each of the
hundreds of simulated datasets. Using the limits com-
puted from each simulated dataset, the median 95% C.L.
limit and the one and two sigma standard deviations on
the 95% C.L. limit for each mass point can be calcu-
lated. The signal probability distribution used in the
likelihood is a convolution of a Breit-Wigner function
and a Gaussian function with exponential tails to either
side. The limits are calculated in a mass window of �6
times the signal width, with this window being sym-
metrically enlarged until there is a minimum of 100
events in it.
To generate 14 TeV dataset limits, the above procedure is

repeated but the background probability density function

is multiplied by an NNPDF scale factor to convert the
13 TeV background distribution into a 14 TeV distribution.
In this work the PDF set NNPDF LO as_0130_QED is
applied.

2. LHC potential to probe walking
technicolor parameter space

With the setup described above we have evaluated
limits on the NMWT parameter space according to Run
2 at CMS. We use the 95% C.L. observed limit on
σðpp→Z0→eþe−Þ=σðpp→Z→eþe−Þ at

ffiffiffi
s

p ¼ 13 TeV
based on a dataset of integrated luminosity 36 fb−1 [52].
A similar limit is also obtained by the ATLAS
Collaboration in Ref. [63].
The SM DY cross section at NNLO is given to be

σðpp → Z=γ� → eþe−Þ ¼ 1.928 nb, which we use to con-
vert the ratio of cross sections to a limit on σðpp → Z0 →
eþe−Þ. This limit is then projected onto the ðMA; g̃Þ plane
and compared to the signal cross sections for Z0 and Z00
which we have evaluated at NNLO level. Figure 10(a)
presents the NMWT parameter space in the ðMA; g̃Þ plane
for S ¼ 0.1 which is already excluded with the recent CMS
results. One can observe an important complementarity of
Z0 and Z00; as was expected from the plots with cross
sections, Z00 extends the coverage of the LHC in the large g̃
and MA region. Analogous exclusion plots for different
values of S are presented in Figs. 26(a), 27(a), 28(a) and
29(a) for S ¼ −0.1, 0.0, 0.2, and 0.3, respectively.
We have also found the projected LHC limit for higher

integrated luminosities. To do this we have simulated the
SM DY background and have obtained an expected limit
for 36 fb−1, confirming to within a few % the CMS
expected limits using the method described in the previous
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FIG. 9. (a) The contour levels for pp → Z0 → eþe− production cross section at the LHC@13 TeV as well as the relative ratio of
dilepton rates for Z0 vs Z00 production for S ¼ 0.1. (b) The interference between Z0 and Z00 contributing to the dilepton signature from
pp → Z0=Z00 → lþl− process.
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section for the sake of its validation. Then we have obtained
analogous expected limits for 100 fb−1 at

ffiffiffi
s

p ¼ 13 TeV as
well as for 300 fb−1 and 3000 fb−1 at

ffiffiffi
s

p ¼ 14 TeV.
We follow the CMS limit setting procedure except for
mass points with less than 10 events where we set limits
using Poisson statistics. The excluded regions of the MA, g̃
parameter space are shown in Figs. 10(b), 10(c), and 10(d),
respectively. Analogous exclusion plots for different values
of S are presented in Figs. 26–29 for S ¼ −0.1, 0.0, 0.2,
and 0.3, respectively.
Already at 100 fb−1 the excluded region visibly

increases in MA and g̃ for both Z0 and Z00 resonances.
For example, for small values of g̃ it increases forMA from
3.5 TeV to about 3.8 TeV. Figure 10 also shows the
theoretical upper limit on MA imposed by the a parameter
(see Sec. II). Requiring a > 0 and combining it with the
current or projected experimental limits, one gets the full
picture of the surviving parameter space.

With the beam energy increase to
ffiffiffi
s

p ¼ 14 TeV and
total integrated luminosity 300 fb−1 or more the entire
range of MA that we explore is excluded in the region of
g̃ < 2, and the predictions for the final high-luminosity
run of the LHC [Fig. 10(d)] increase the exclusions in both
the MA and g̃ directions ruling out the whole parameter
space for g̃ < 3.
To see the picture of the LHC sensitivity to the whole

NMWT parameter space we have performed a scan of the
full 4D (MA, g̃; S; s) parameter space with ∼1 × 107

random points. In Fig. 11 we present the projection of
this scan into the (MA, g̃) plane, with S and s ranges
ð−0.1; 0.3Þ and ð−1; 1Þ, respectively, for LHC@13 TeVand
36 fb−1 integrated luminosity. In Fig. 11(a) we overlaid the
excluded points from Z0 or Z00 signals on top of the allowed
points to show the ðMA; g̃Þ parameter space, which is
allowed for all values of S and s parameters, while in
Fig. 11(b) we overlaid the allowed points on top of the

(a) (b)

(c) (d)

FIG. 10. Exclusion of the MA-g̃ parameter space from Z0 and Z00 DY processes at
ffiffiffi
s

p ¼ 13 TeV and luminosity of 36 fb−1 (a).
Predicted exclusion regions for the NMWT parameter space at (a)

ffiffiffi
s

p ¼ 13 TeV and L ¼ 100 fb−1, (b)
ffiffiffi
s

p ¼ 14 TeV and
L ¼ 300 fb−1, and (c)

ffiffiffi
s

p ¼ 14 TeV and L ¼ 3000 fb−1.
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excluded points to show the ðMA; g̃Þ parameter space,
which is excluded for all values of S and s parameters.
The excluded points from the Z00 cross section (dark grey)
are layered on top of those excluded by the Z0 cross section
(light grey). It is important to stress that the most
conservative limit onMA (parameter space that is excluded
for all values of S and s parameters) is about 3.1 TeV for
low values of g̃ and that this limit is significantly higher
(by about 1 TeV) than previous limits established by the
ATLAS Collaboration in Refs. [21,22] for S¼0.3, s ¼ 0
benchmark in the (MA, g̃; S; s) plane, which actually gives
one of the most optimistic limits for NMWT.

IV. CONCLUSIONS

Walking technicolor remains one of the most appealing
BSM theories involving strong dynamics. In this study we
have fully explored the 4D parameter space of WTC using
dilepton signatures from Z0=Z00 production and decay at
the LHC. This signature is the most promising one for
discovery of WTC at the LHC for the low-intermediate
values of the g̃ parameter.
We have studied the complementarity of the dilepton

signals from both heavy neutral vector resonances and have
demonstrated its importance. As a result, we have estab-
lished the most up-to-date limit on the WTC parameter
space and provided projections for the LHC potential to
probe WTC parameter space at a higher future luminosity
and upgraded energy.
Our results on the LHC potential to probe WTC

parameter space are presented in Figs. 26, 27, 10, 28,
and 29 for the (MA, g̃) plane for S ¼ −0.1, 0.0, 0.1, 0.2, and
0.3, respectively, which gives a clear idea how the proper-
ties of the model and the respective LHC reach depend on
the value of the S parameter. This extends the results found

previously for just S ¼ 0.3, which is not quite motivated in
light of the present EWPD. Moreover, as another new
element of the exploration of WTC, we have provided an
analytic description for features such as the Z0=Z00 masses,
the mass inversionMinv point, as well as some couplings in
our paper. We have also presented all these properties in the
form of figures in the (MA, g̃) plane and 3D (MA, g̃, S)
tables for clear insight into the model behavior, and for
direct comparison with prior works. We have discussed the
theoretical upper limit on MA from the requirement of
“walking” dynamics, and in combination with the exclu-
sions from experiment we have found the strongest con-
straints on WTC to date. The predicted exclusions indicate
that within the scope of the LHC, the low g̃ regions of the
WTC parameter space can be closed completely.
We have explored the effect of the S and s parameters on

the WTC exclusions using a very detailed scan of the 4D
parameter space and establishing the current LHC limit in
this 4D space which we present in Fig. 11. The results
we have found reflect the most conservative limit on MA
around 3.1 TeV, which for low values of g̃ is significantly
higher (by about 1 TeV) than previous limits established
by the ATLAS Collaboration in Refs. [21,22] for the most
optimistic benchmark with S ¼ 0.3. The complete 4D
scan also indicates the important influence of the value of
the S parameter on the dilepton signal rate, while the s
parameter has little effect on the rate of the dilepton signal but
could be important for the complementary VV and VH
signatures.
Besides the Z0 and Z00 complementarity for the explora-

tion of the dilepton signal in the low to intermediate g̃
region, it is important to note the further complementarity
of the VV and VH signatures that would allow us to probe
the large values of g̃ up to g̃≲ 10. Beyond this value, the
ratios ΓZ0;Z00=MZ0;Z00 will (with some dependence on the

(a) (b)

FIG. 11. Projections on MA, g̃ parameter space of theoretical DY Z0=Z00 cross section showing the allowed for all S and s region (a),
excluded for all S and s region (b) for the current CMS exclusion for LHC@13 TeV and 36 fb−1 integrated luminosity. Blue points are
allowed, light grey points are excluded by the Z0, and dark grey points are excluded by the Z00.
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values of S and MA) grow beyond unity as seen in
Fig. 5. Here the effective Lagrangian used is no longer
valid. Conversely the success of vector meson dominance
in QCD indicates that the effective Lagrangian is a
good description up to these values of g̃. The VV
and VH signatures are the subject of the upcoming
study [64].

ACKNOWLEDGMENTS

The authors acknowledge the use of the IRIDIS High
Performance Computing Facility, and associated support
services at the University of Southampton, in the completion
of this work. A. B. acknowledges partial support from the
STFCGrant No. ST/L000296/1. A. B. also thanks the NExT
Institute, Royal Society Leverhulme Trust Senior Research
Fellowship LT140094, Royal Society International
Exchange Grant No. IE150682 and Soton-FAPESP grant.
A. B. acknowledges partial support from the InvisiblesPlus
RISE from the European Union Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie
Grant Agreement No. 690575. A. C. acknowledges the
University of Southampton for support under the
Mayflower Scholarship Ph.D. program. A. C. acknowledges
partial support from SEPnet under the GRADnet
Scholarship award.

APPENDIX A

1. Mass matrices in NMWT

We calculate Nij by diagonalizing the bosonic mixing
matrices Eq. (A3), perturbatively calculating the eigenvalues
and eigenvectors of the matrices that diagonalize M2

C and

M2
N order by order in 1=g̃. Details of the calculation are

presented here, with the results for Cij and Nij to second
order in 1=g̃.2 At zeroth order, the eigenvalues for the γ,Z are
degenerate and m2

γ , m2
Z ¼ 0, so the eigenvectors cannot be

uniquely defined at this stage. To resolve this degeneracy we
introduce a generic parameterx that is fixed at secondorder to
be x ¼ g2=g1.
From the covariant derivative terms of the effective

bosonic Lagrangian equation (5), we construct the mixing
matrices that diagonalize to give physical masses for the
vector bosons. The Lagrangian of the vector bosons in the
mass eigenbasis is

Lmass ¼ ð W̃−
μ A−

Lμ A−
Rμ ÞM2

C

0
B@

W̃þμ

Aþμ
L

Aþμ
R

1
CA

þ 1

2
ð B̃μ W̃0

μ A0
Lμ A0

Rμ ÞM2
N

0
BBB@

B̃μ

W̃0μ

A0μ
L

A0μ
R

1
CCCA; ðA1Þ

where these mass matrices for the charged and neutral
bosons are

M2
C ¼

0
BBB@

g2
2

g̃2M
2
Vð1þωÞ − g2ffiffi

2
p

g̃
M2

Aχ − g2ffiffi
2

p
g̃
M2

V

− g2ffiffi
2

p
g̃
M2

Aχ M2
A 0

− g2ffiffi
2

p
g̃
M2

V 0 M2
V

1
CCCA; ðA2Þ

M2
N ¼

0
BBBBBBBB@

g2
1

g̃2 M
2
Vð1þ ωÞ − g1g2

g̃2 M2
Vω

g1ffiffi
2

p
g̃
M2

Aχ − g1ffiffi
2

p
g̃
M2

V

− g1g2
g̃2 M2

Vω
g2
2

g̃2 M
2
Vð1þ ωÞ − g2ffiffi

2
p

g̃
M2

Aχ − g2ffiffi
2

p
g̃
M2

V

g1ffiffi
2

p
g̃
M2

Aχ − g2ffiffi
2

p
g̃
M2

Aχ M2
A 0

− g1ffiffi
2

p
g̃
M2

V − g2ffiffi
2

p
g̃
M2

V 0 M2
V

1
CCCCCCCCA
: ðA3Þ

In order to perform the analytic diagonalization of these matrices, we perform an expansion in 1=g̃ and calculate the
eigenvectors and eigenvalues of the matrix order by order. Rephrasing the χ and M2

V parameters such that

M2
V ¼ F2

π g̃2

2
þM2

Aχ
2; χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Sg̃2

8π

r
;

wecan rewrite thesematrices in termsof the parameters of themodel thatwehaveused in this paper. Furthermore, from theWSRs
[43] we set ω ¼ 0 and fix Fπ ¼ 246 GeV, so the mass matrices are written entirely from the free parameters, MA, g̃, and S.

2Each of these Cij and Nij represent the mixing of the vector boson/meson states; e.g., N24 represents a mixed Z − Z00 state, and
components with i ¼ j represent the mixing of a gauge field with itself.
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Consider the diagonalization of the neutral matrixM2
N , Eq. (A3). From the logic above we see that this can be written as

M2
N¼

0
BBBBBBBBBB@

1
8
g21
�
M2

A

�
8
g̃2−

S
π

�
þ4F2

π

�
0

g1M2
A

4g̃

ffiffiffiffiffiffiffiffiffiffiffiffi
8− g̃2S

π

q
g1

8π
ffiffi
2

p
g̃
ðM2

Aðg̃2S−8πÞ−4g̃2πF2
πÞ

0 1
8
g22ðM2

Að 8g̃2−S
πÞþ4F2

πÞ −g2M2
A

4g̃

ffiffiffiffiffiffiffiffiffiffiffiffi
8− g̃2S

π

q
g2

8π
ffiffi
2

p
g̃
ðM2

Aðg̃2S−8πÞ−4g̃2πF2
πÞ

g1
8π

ffiffi
2

p
g̃
ðM2

Aðg̃2S−8πÞ−4g̃2πF2
πÞ −g2M2

A
4g̃

ffiffiffiffiffiffiffiffiffiffiffiffi
8− g̃2S

π

q
M2

A 0

g1
8π

ffiffi
2

p
g̃
ðM2

Aðg̃2S−8πÞ−4g̃2πF2
πÞ g2

8π
ffiffi
2

p
g̃
ðM2

Aðg̃2S−8πÞ−4g̃2πF2
πÞ 0 M2

Að1− g̃2S
8π Þþ1

2
g̃2F2

π

1
CCCCCCCCCCA
:

ðA4Þ

To expand in powers of 1=g̃ we can rewrite the
independent MA, S, and Fπ parameters in terms of g̃ and
dependent parameters of the model. As stated above, in the
regime of large g̃, M2

A is dominated by the r2 term of
Eq. (6); however, it is not obvious to see that in the case of
small g̃, the m2 term dominates. We can determine the
scaling of m2 from the first WSR and the definition of the
pion decay constant in NMWT. From Eq. (8) we see that F2

π

can be written in terms of M2
A=g̃

2. In the low g̃ regime this
would lead to F2

π ∝ m2=g̃2, so one would naïvely expect
Fπ ∝ 1=g̃. However, Fπ is fixed to avoid deviations from
the first WSR, so m2 must itself scale with g̃2. Finally, from
Eq. (17) we see that S can be written in terms of g̃−2.
At leading order in 1=g̃, the mass squared terms for the

neutral bosons are

M2
γ ¼ 0; M2

Z ¼ 0; M2
Z0 ¼ M2

A;

M2
Z00 ¼ M2

A

�
1 −

g̃2S
8π

�
þ 1

2
g̃2F2

π: ðA5Þ

As there are two degenerate eigenvalues ¼ 0, we must
define the eigenvectors at zeroth order with a generic term x
which is fixed only at second order in the 1=g̃ expansion.
The zeroth order eigenvectors are then

v̄0 ¼

0
BBBBBB@

xffiffiffiffiffiffiffiffi
1þx2

p 1ffiffiffiffiffiffiffiffi
1þx2

p 0 0

1ffiffiffiffiffiffiffiffi
1þx2

p − xffiffiffiffiffiffiffiffi
1þx2

p 0 0

0 0 1 0

0 0 0 1

1
CCCCCCA
: ðA6Þ

We can now construct the higher order corrections order
by order. To calculate the first order corrections, we
consider the eigenvalue equation

Mv̄ ¼ λv̄; ðA7Þ

where M ¼ M0 þM1 þM2 þ � � � is the mixing matrix,
v̄ ¼ v̄0 þ v̄1 þ v̄2 þ � � � are the eigenvectors of M, and
λ ¼ λ0 þ λ1 þ λ2 þ � � � are the eigenvalues of M. At first
order we have

ðM0 þM1Þðv̄0 þ v̄1Þ ¼ ðλ0 þ λ1Þðv̄0 þ v̄1Þ;
M0v̄1 þM1v̄0 þM1v̄1 ¼ λ0v̄1 þ λ1v̄0 þ λ1v̄1;

λ1 ¼ v̄T0 ðM0 − λ0Þv̄þ v̄T0M1v̄0;

λ1 ¼ v̄T0M1v̄0;

where we have used the zeroth order eigenvalue equation
M0v̄0 ¼ λ0v̄0 to remove zeroth order terms and have
discarded terms of order > 1.
We can immediately see that the first order eigenvalues are

λi1 ¼ 0 for all i ¼ 1;…; 4, asM2
N does not have anydiagonal

components at order 1=g̃.We do not expect to see corrections
to the squaredmasses of the vector bosons at odd order in 1=g̃
as then we would find mass terms dependent on fractional
powers in the coupling. The eigenvectors will contribute to
the second order mass corrections, and in terms of model
parameters and the unknown x we find

v̄1 ¼

0
BBBBBBBBBB@

0 0 g2−g1x
4g̃

ffiffiffiffiffiffiffiffi
1þx2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − g̃2S

π

q
g2þg1x

g̃
ffiffi
2

p ffiffiffiffiffiffiffiffi
1þx2

p

0 0 − g1þg2x

4g̃
ffiffiffiffiffiffiffiffi
1þx2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − g̃2S

π

q
g1−g2x

g̃
ffiffi
2

p ffiffiffiffiffiffiffiffi
1þx2

p

g1
4g̃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − g̃2S

π

q
− g2

4g̃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − g̃2S

π

q
0 0

− g1ffiffi
2

p
g̃

− g2ffiffi
2

p
g̃

0 0

1
CCCCCCCCCCA
: ðA8Þ
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To find the second order eigenvalues, we follow the same procedure as above, and keeping only second order terms we find

λ2 ¼ v̄T0M1v̄1 þ v̄T0M2v̄0 − v̄T0 λ1v̄1; ðA9Þ

where we use the fact that λ1 ¼ 0 to reduce this to

λ2 ¼ v̄T0M1v̄1 þ v̄T0M2v̄0: ðA10Þ

At this order we can now fix x, which turns out to be x ¼ g2=g1, and we arrive at the second order corrections to the
neutral vector boson masses:

M2
γ ¼ 0; M2

Z ¼ 1

4
ðg21 þ g22ÞF2

π; ðA11Þ

M2
Z0 ¼ g21 þ g22

16πg̃2
M2

Að8π − g̃2SÞ; M2
Z00 ¼ g21 þ g22 þ 2g̃2

16πg̃2
ðM2

Að8π − g̃2SÞ þ 4πg̃2F2
πÞ: ðA12Þ

Finally, the rotation matrices C andN can be constructed from the transpose of the sum of zeroth, first, and second order
eigenvectors:

N ¼

0
BBBBBBBBBB@

g2ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p g1ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p g1χffiffi
2

p
g̃

− g1ffiffi
2

p
g̃

g1ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p − g2ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p − g2χffiffi
2

p
g̃

− g2ffiffi
2

p
g̃

0 −
ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p
χffiffi

2
p

g̃
1 − ðg1−g2Þðg1þg2Þð2M2

Aχ
2þg̃2F2

πÞχ
g̃2M2

Að4χ2−1Þþ2g̃4F2
πffiffi

2
p

g1g2ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p
g̃

ðg1−g2Þðg1þg2Þffiffi
2

p
g̃

ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p 4ðg1−g2Þðg1þg2ÞM2
Aχ

2g̃2M2
Aðχ2−4Þþg̃4F2

π
1

1
CCCCCCCCCCA
; ðA13Þ

C ¼

0
BBBBBB@

1 − g2χffiffi
2

p
g̃

− g2ffiffi
2

p
g̃

g2χffiffi
2

p
g̃

1 g2χffiffi
2

p
g̃
ð1þ 2M2

A
2M2

Að3χ2−1Þþ3g̃2F2
π
Þ

g2ffiffi
2

p
g̃

− 3g2
2
M2

Aχ

2g̃2M2
Aðχ2−3Þþg̃4F2

π
1

1
CCCCCCA
; ðA14Þ

whereN and C diagonalize the neutral and charged mass matrices, respectively. It is the elements of these rotation matrices
that comprise the vector boson couplings in NMWT, as discussed in Sec. III A 2.

2. Dependent parameters in terms of S, MA, g̃, s

From the equations defined in Sec. II, we derive expressions for all of the dependent parameters of NMWT in terms of its
four independent parameters. Begin by constructing simultaneous equations for v and r2 parameters, the first of which
comes from rearranging Eq. (7),

v2ðr2 þ 1Þ ¼ 4M2
A

g̃2
ð1 − χÞ; ðA15Þ

and the second from Eq. (6),

M2
V −M2

A ¼ m2 −m2 þ g̃2ðs − r2Þv2
4

−
g̃2ðsþ r2Þv2

4
; ðA16Þ

ALEXANDER BELYAEV et al. PHYS. REV. D 99, 055004 (2019)

055004-18



r2v2 ¼
2

g̃2
ðM2

A −M2
VÞ: ðA17Þ

Then we resolve v by subtracting Eq. (A17) from Eq. (A15), and substituting the definitions of χ andMV from Eqs. (18)
and (A15), respectively,

v2 ¼ 1ffiffiffi
2

p
GF

þ 4M2
A

g̃2

�
1 −

g̃2S
16π

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

g̃2S
8π

r �
: ðA18Þ

Then we substitute this into Eq. (A17) to find r2,

r2 ¼
g̃2ðGFM2

AS − 2
ffiffiffi
2

p
πÞ

g̃2ð2 ffiffiffi
2

p
π −GFM2

ASÞ − 4GFM2
Að

ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π − g̃2S

p
− 4πÞ

: ðA19Þ

Now we find m in terms of the NMWT parameters from Eq. (6),

m2 ¼ M2
A −

g̃2ðsþ r2Þv2
4

; ðA20Þ

m2 ¼ g̃2ð1 − sÞð2 ffiffiffi
2

p
π −GFM2

ASÞ þ 4GFM2
Að4πð1 − sÞ þ s

ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π − g̃2S

p
Þ

16πGF
: ðA21Þ

Then we relate the Fermi constant GF to the model parameters by finding the form of Fπ . We combine the definitions of
FV and FA with the first WSR,

F2
π ¼

2M2
V

g̃2
−
2M2

A

g̃2
χ2; ðA22Þ

and substitute the definition of χ from Eq. (7),

F2
π ¼

2

g̃

�
v2g̃2r3

2
−
v4g̃4r23
16M2

A
− ðr3 − 1Þ v

2g̃2

2

�
: ðA23Þ

Finally, we arrive at the expression for Fπ,

F2
π ¼ v2

�
1 −

v2g̃2r23
8M2

A

�
: ðA24Þ

3. Solving for EW couplings

The other important quantities to derive analytic formulas for are the EW equivalent couplings g1 and g2 in terms of the
independent parameters. These couplings can be derived as roots of the characteristic equation for the Z boson eigenvalue;
i.e., we can solve the equation det½M2

N −M2
Z� ¼ 0. Taking the absolute values of the roots, we find two solutions to this

equation that correspond to the couplings g2 and g1, respectively,

g2 ¼ g̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg̃2 − 2e2ÞabM2

Z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abM2

Zð2e2M2
Z þ g̃2bÞðaðg̃2M2

Z − 2e2bÞ þ 2e2M4
Aχ

2Þ
p

M2
Vað4e2 þ g̃2ðb −M2

ZÞÞ −M4
Aχ

2ð2e2M2
Z þ g̃2bÞÞ

s
; ðA25Þ

g1 ¼ g̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg̃2 − 2e2ÞabM2

Z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abM2

Zð2e2M2
Z þ g̃2bÞðaðg̃2M2

Z − 2e2bÞ þ 2e2M4
Aχ

2Þ
p

M2
Vað4e2 þ g̃2ðb −M2

ZÞÞ −M4
Aχ

2ð2e2M2
Z þ g̃2bÞÞ

s
; ðA26Þ

where a ¼ ðM2
A −M2

ZÞ, b ¼ ðM2
V −M2

ZÞ, and we have not replaced MV and χ, as they are purely functions of the
independent parameters and not of either g1 or g2.
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4. Effect of S on Z0=Z00 properties

Here we provide the additional figures and information relevant to the phenomenological study presented in this paper.
Throughout the paper we have chosen S ¼ 0.1 and s ¼ 0 as the benchmark parameter space values, and the effect of
varying S is discussed here. As s is the Lagrangian parameter that quantifies Higgs interactions with the WTC gauge
bosons, we continue to assume s ¼ 0 throughout.

5. Mass spectra

Figures 12 and 13 presentMZ0 and ΔM=MZ0 , respectively, for different values of S. The main feature to note is the mass
inversionMinv defined by Eq. (24) such thatM2

inv ∝ 1=S. The inversion point withΔ ≃ 0 can be seen in Fig. 13 where the Z0

is axial vector below the inversion point and vector above it. One can observe the inversion only for large values of S ¼ 0.2
and 0.3 for the MA around 2 and 1.6 TeV, respectively, according to Eq. (24).

(a) (b)

(c) (d)

FIG. 12. MZ0 (GeV) as a function of MA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and
(d) S ¼ 0.3, respectively, and s ¼ 0 throughout.
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(a) (b)

(c) (d)

FIG. 13. ΔM=MZ0 as a function ofMA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3,
respectively, and s ¼ 0 throughout.
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a. Couplings

In Figs. 14–17 we present the L-R components of the dilepton couplings for the Z0 and Z00, respectively, for different
values of S. These are analogous to the couplings presented in Sec. III A 2, where the analytic form for the coupling
components are also presented. The S dependence of these couplings is implicit in χ, g1, and g2, and the effect on the
parameter space dependence for varying S is presented here.

(a) (b)

(c) (d)

FIG. 14. Left-handed component of the coupling of Z0 to charged lepton pairs as a ratio to its SM equivalent, jgZ0lþl−=gZlþl− j, as a
function of MA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3, respectively.
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(a) (b)

(c) (d)

FIG. 15. Right-handed component of the coupling of Z0 to charged lepton pairs as a ratio to its SM equivalent, jgZ0lþl−=gZlþl− j, as a
function of MA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3, respectively.
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(a) (b)

(c) (d)

FIG. 16. Left-handed component of the coupling of Z00 to charged lepton pairs as a ratio to its SM equivalent, jgZ00lþl−=gZlþl− j, as a
function of MA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3, respectively.
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(a) (b)

(c) (d)

FIG. 17. Right-handed component of the coupling of Z00 to charged lepton pairs as a ratio to its SM equivalent, jgZ00lþl−=gZlþl− j, as a
function of MA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3, respectively.
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b. Widths and branching ratios

The width-to-mass ratio for Z0 and Z00 for different S are shown in Figs. 18 and 19. The widths largely show similar
behavior to those at the benchmark value of S ¼ 0.1 (Fig. 5), with the exception of S ¼ 0. At S ¼ 0, the Z0 width-to-mass
ratio is very small (less than % level), so the Z0 resonance is always narrow at this S. The Z00 also has a narrower width for
much of the parameter space at S ¼ 0; however, the region of ΓZ00 ≥ MZ00 nevertheless appears in the region with low MA
and high g̃.

(a) (b)

(c) (d)

FIG. 18. ΓZ0=MZ0 as a function ofMA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3,
respectively.
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(a) (b)

(c) (d)

FIG. 19. ΓZ00=MZ00 as a function ofMA and g̃ parameters for the fixed values of (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3,
respectively.
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The branching ratio spectra for the Z0 with g̃ ¼ 3, 8 is presented in Figs. 20 and 21, and for the Z00 with g̃ ¼ 3, 8—in
Figs. 22 and 23 for various values of S. The features of the branching ratio spectra such as the dips in the VV=Vh
channels are discussed in Sec. III B, and again we note that the Z00 → W0þW0− channel is opened at low MA, high g̃ at all
values of S. Also note that for the Z0, at S ¼ 0 where the resonance is very narrow, the dilepton and diquark branching
ratios are boosted and are the dominant decay channels across the whole (MA, g̃) parameter space.

(a) (b)

(c) (d)

FIG. 20. BrðZ0Þ for all decay channels as a function of MA at fixed value of g̃ ¼ 3 for (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and
(d) S ¼ 0.3, respectively.
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(a) (b)

(c) (d)

FIG. 21. BrðZ0Þ for all decay channels as a function of MA at fixed value of g̃ ¼ 8 for (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and
(d) S ¼ 0.3, respectively.
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(a) (b)

(c) (d)

FIG. 22. BrðZ00Þ for all decay channels as a function of MA at fixed value of g̃ ¼ 3 for (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and
(d) S ¼ 0.3, respectively.
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(a) (b)

(c) (d)

FIG. 23. BrðZ00Þ for all decay channels as a function of MA at fixed value of g̃ ¼ 8 for (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and
(d) S ¼ 0.3, respectively.
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Again, the mass inversion point can also be identified as the point at which the WþW− and Zh branching ratios have a
crossing point, hence the lack of crossing point at S ¼ −0.1, 0.

c. Cross sections

The DY production cross sections at LO for pp → Z0 → eþe− pp → Z00 → eþe− processes are presented in Figs. 24 and
25, respectively, as contour levels of the cross section in ðMA; g̃Þ space for different S.

(a) (b)

(c) (d)

FIG. 24. DY production cross sections at LO for pp → Z0 → eþe− for (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3,
respectively.
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(a) (b)

(c) (d)

FIG. 25. DY production cross sections at LO for pp → Z00 → eþe− for (a) S ¼ −0.1, (b) S ¼ 0.0, (c) S ¼ 0.2, and (d) S ¼ 0.3,
respectively.
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6. Effect of S on parameter space exclusions

As noted in Sec. IV, the S parameter could be of great importance in determining the excluded region of WTC parameter
space. As such, we present a set of figures for each discrete S in which we show the current and future limits on the
WTC parameter space for fixed S. This is for direct comparison to the exclusions quoted and discussed in Sec. III E 2.
Figures 26–29 show the excluded regions of MA, g̃ for S ¼ −0.1, 0, 0.2, 0.3, respectively.

(a) (b)

(c) (d)

FIG. 26. Exclusion of the MA,g̃ parameter space from Z0 and Z00 DY processes at
ffiffiffi
s

p ¼ 13 TeV and luminosity of 36 fb−1 (a).
Predicted exclusion regions for the NMWT parameter space at (a)

ffiffiffi
s

p ¼ 13 TeV and L ¼ 100 fb−1, (b)
ffiffiffi
s

p ¼ 14 TeV and
L ¼ 300 fb−1, and (c)

ffiffiffi
s

p ¼ 14 TeV and L ¼ 3000 fb−1.
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The projected limits depend strongly on the S parameter, and for large S, the limit from dilepton searches at the LHC
covers less of the parameter space, while the theoretical limit requiring a > 0 excludes a large portion of theMA parameter
space from above.

(a) (b)

(c) (d)

FIG. 27. Exclusion of the MA,g̃ parameter space from Z0 and Z00 DY processes at
ffiffiffi
s

p ¼ 13 TeV and luminosity of 36 fb−1 (a).
Predicted exclusion regions for the NMWT parameter space at (a)

ffiffiffi
s

p ¼ 13 TeV and L ¼ 100 fb−1, (b)
ffiffiffi
s

p ¼ 14 TeV and
L ¼ 300 fb−1, and (c)

ffiffiffi
s

p ¼ 14 TeV and L ¼ 3000 fb−1.
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(a) (b)

(c) (d)

FIG. 28. Exclusion of the MA,g̃ parameter space from Z0 and Z00 DY processes at
ffiffiffi
s

p ¼ 13 TeV and luminosity of 36 fb−1 (a).
Predicted exclusion regions for the NMWT parameter space at (a)

ffiffiffi
s

p ¼ 13 TeV and L ¼ 100 fb−1, (b)
ffiffiffi
s

p ¼ 14 TeV and
L ¼ 300 fb−1, and (c)

ffiffiffi
s

p ¼ 14 TeV and L ¼ 3000 fb−1.
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