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The nucleon-pion-state contribution to QCD two- and three-point functions used in lattice calculations
of the nucleon axial form factors are studied in chiral perturbation theory. For small quark masses this
contribution is expected to be the dominant excited-state contamination at large time separations. To
leading order in chiral perturbation theory the results depend on only two experimentally known low-
energy constants and the nucleon-pion-state contribution to the form factors can be estimated. The nucleon-
pion-state contribution to the axial form factor GAðQ2Þ is at the 5 percent level for a source-sink separation
of 2 fm and shows almost no dependence on the momentum transfer Q2. In contrast, for the induced
pseudoscalar form factor G̃PðQ2Þ the nucleon-pion-state contribution shows a rather strong dependence on
Q2 and leads to a 10 to 40 percent underestimation of G̃PðQ2Þ at small momentum transfers. The chiral
perturbation theory results can be used to analytically remove the nucleon-pion-state contribution from
lattice data. Performing this removal for lattice data generated by the PACS collaboration we find
agreement with experimental data and the predictions of the pion-pole dominance model. The removal
works surprisingly well even for source-sink separations as small as 1.3 fm.
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I. INTRODUCTION

Physical point simulations, i.e., simulations with quark
masses set to their physical values, eliminate the need for a
chiral extrapolation. This advantage, however, comes at a
prize. Physical point simulations are numerically demand-
ing and need substantial computer resources. The notorious
signal-to-noise problem [1,2] typically gets worse the
lighter the pion mass is, thus the euclidean time separations
in correlation functions are restricted to rather small
values.1 At the same time the excited-state contamination
due to multiparticle states involving pions grows because
the energy gap to the ground state shrinks with lighter pion
masses.
The multiparticle-state contamination involving light

pions can be studied using chiral perturbation theory
(ChPT) [5–7]. Phenomenologically relevant is the impact
of two-particle nucleon-pion (Nπ) states on nucleon
observables, and leading order (LO) results for the nucleon
mass [8], the nucleon axial, scalar and tensor charges
[9] as well as for various first moments of parton

distribution functions [10] have been calculated recently.2

In case of the nucleon mass also the three-particle Nππ-
state contribution is known and found to be negligible in
practice [13].
Here we present results of an analogous calculation for

the Nπ contamination in the nucleon axial form factors
GAðQ2Þ and G̃PðQ2Þ.3 In case of the axial form factor
GAðQ2Þ one naively expects an Nπ contamination similar
to the one in the axial charge gA ¼ GAð0Þ. More interesting
is the induced pseudoscalar form factor G̃PðQ2Þ. Lattice
calculations typically find a large excited-state contamina-
tion in this form factor, and the momentum transfer
dependence expected from the pion-pole dominance
(ppd) model is not reproduced by the lattice data. In this
case one may suspect the source to be a low-lying Nπ state,
since in ChPT there contribute tree-level diagrams where
the axial vector current directly creates or annihilates a pion
that is absorbed or ejected at either sink or source in the
three-point (3-pt) function. This potentially large contri-
bution vanishes for zero momentum transfer, thus it is
absent in the calculation of the Nπ contribution to the axial
charge gA in [9].
The results of this paper confirm these expectations. The

Nπ-state contamination inGAðQ2Þ is essentially identical to
the one in gA, leading to approximately a 5% overestimationPublished by the American Physical Society under the terms of
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1For a recently proposed method to overcome the signal-to-
noise problem see Refs. [3,4].

2Reviews covering these results are given in [11,12].
3Preliminary results were already reported in [14].
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of the form factor by the plateau estimates at a source-sink
separation of 2 fm. At the same time we find an under-
estimation of about 10% to 40% for G̃PðQ2Þ, depending
strongly on the momentum transfer. The smaller Q2 the
larger the deviation of the plateau estimate from the true form
factor. Comparing the ChPT results with recent lattice data
from the PACS collaboration [15] we observe that the Nπ-
state contamination in the lattice plateau data reproduces a
softening of the anticipated ppd behavior at smallQ2, just as
it has been observed in many lattice calculations so far.
Large excited-state effects have also been observed in the

3-pt function involving the time component A4ðxÞ of the
axial vector current. In fact, the excited-state contamination
is usually too large for this correlation function to be useful
in the determination of the axial form factors (see
Refs. [16,17], for example). Moreover, this correlation
function exhibits an unusual dependence on the operator
insertion time: Instead of approaching a constant plateau
value one observes an almost linear dependence [18].
Also these features are qualitatively explained by the

ChPTresults in this paper. Expanded in inverse powers of the
nucleonmassMN the ground state contribution is found to be
1=MN suppressed compared to the Nπ-state contribution so
that the latter dominates the 3-pt function. In addition, a
relative sign in two terms of the Nπ-state contribution leads
qualitatively to a dependence on the operator insertion time
as it is observed in the lattice data in [18].
The ChPT results derived in this paper not only explain

qualitatively various features observed in lattice simulations.
The results can be used in the analysis of numerical lattice
data to analytically remove the anticipated Nπ-state con-
tribution in the 3-pt and 2-pt functions or their ratio. We
demonstrate this for the induced pseudoscalar form factor
and show that removing the Nπ contribution leads to good
agreement with the experimental data and the pion-pole-
dominance model.
The ChPT calculation here is analogous to the one for the

axial charge in [9]. The main difference is a different
kinematic setup to accommodate a nonvanishingmomentum
transfer, as explained in Sec. II. While the calculation of the
relevant Feynman diagrams is straightforward (Secs. III and
IV), it is more difficult to assess the range of applicability of
the results, i.e., to estimate the minimal time separations that
are necessary to apply the ChPT results (Sec. V). We will
argue that this can be largely different for the two form factors
due to different systematics in GAðQ2Þ and G̃PðQ2Þ.
Eventually this can only be judged by comparing the
ChPT results with lattice data, as it is done in Sec. VI.
Our main conclusions are given in Sec. VII.

II. THE AXIAL FORM FACTORS

A. Basic definitions

We consider QCD with degenerate quark masses for the
light up and down quark. The spatial volume is assumed to

be finite with spatial extent L and periodic boundary
conditions are imposed for all spatial directions. We work
in Euclidean space time and the time extent is taken infinite,
for simplicity.
We are interested in the matrix element of the local

isovector axial vector current between single-nucleon states
of definite momentum and spin,

hNðp0;s0ÞjAa
μð0ÞjNðp;sÞi

¼ ūðp0;s0Þ
�
γμγ5GAðQ2Þ− iγ5

Qμ

2MN
G̃PðQ2Þ

�
σa

2
uðp;sÞ:

ð2:1Þ

The right-hand side shows the decomposition of the matrix
element in two form factors, the axial form factor GAðQ2Þ
and the induced pseudoscalar form factor G̃PðQ2Þ. uðp; sÞ
is an isodoublet Dirac spinor with momentum p and spin s,
and the four-momentum transfer Qμ reads

Qμ ¼ ðiEN;p⃗0 − iEN;p⃗; q⃗Þ; q⃗ ¼ p⃗0 − p⃗: ð2:2Þ

Here EN;p⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þM2

N

p
denotes the energy of a nucleon

with spatial momentum p⃗. Note that in euclidean lattice
QCD the form factors are computed for spacelike momen-
tum transfers with Q2 ¼ ðp⃗0 − p⃗Þ2 − ðEp⃗0 − Ep⃗Þ2 > 0.

B. Correlation functions

The standard procedure to compute the form factors in
lattice QCD is based on evaluating various 2-pt and 3-pt
functions. Explicitly, the nucleon 2-pt function is given by4

C2ðp⃗; tÞ ¼
Z

d3xeip⃗ x⃗ΓβαhNαðx⃗; tÞN̄βð0; 0Þi: ð2:3Þ

N, N̄ denote interpolating fields of the nucleon. Although
arbitrary to a large extent we assume them to be given by
the standard 3-quark operators (either pointlike or smeared)
that have been mapped to ChPT, see next section. The
matrix Γ acts on spinor space and reads

Γ ¼ 1þ γ4
4

ð1þ iγ5γ3Þ: ð2:4Þ

This definition corresponds to the one employed in [17] by
the ETM collaboration, but differs by a factor 1=2 from the
one used in [16], for example. This trivial difference in
normalization is irrelevant for the results of this paper.
The nucleon 3-pt function is computed with some

particular kinematics: The nucleon at the sink is chosen
to be at rest, p⃗0 ¼ 0, which implies p⃗ ¼ −q⃗. The expression
for the momentum transfer simplifies slightly in this case,

4We always use the continuum formulation for all expressions
even if we explicitly refer to quantities computed in lattice QCD.
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Q2 ¼ q⃗2 − ðMN − EN;q⃗Þ2: ð2:5Þ

In addition, we fix the isospin component of the axial
vector current to a ¼ 3, so the nucleon 3-pt function we
consider is given by

C3;μðq⃗; t; t0Þ ¼
Z

d3x
Z

d3yeiq⃗ y⃗

× ΓβαhNαðx⃗; tÞA3
μðy⃗; t0ÞN̄βð0; 0Þi: ð2:6Þ

The Euclidean times t and t0 denote the source-sink
separation and the operator insertion time, respectively.
With the 2-pt and 3-pt functions we define the generalized
ratio

Rμðq⃗; t; t0Þ ¼
C3;μðq⃗; t; t0Þ
C2ð0; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðq⃗; t − t0Þ
C2ð0; t − t0Þ

C2ð0⃗; tÞ
C2ðq⃗; tÞ

C2ð0⃗; t0Þ
C2ðq⃗; t0Þ

s
:

ð2:7Þ

This ratio is defined in such a way that, in the asymptotic
limit t; t0; t − t0 → ∞, it converges to constant asymptotic
values Πμðq⃗Þ. These are related to the form factors
according to (j ¼ 1, 2, 3)

Rjðq⃗; t; t0Þ→Πjðq⃗Þ

¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EN;q⃗ðMNþEN;q⃗Þ

p
×

�
ðMN þEN;q⃗ÞGAðQ2Þδ3j−

G̃PðQ2Þ
2MN

q3qj

�
; ð2:8Þ

R4ðq⃗; t; t0Þ→Π4ðq⃗Þ

¼ q3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EN;q⃗ðMNþEN;q⃗Þ

p �
GAðQ2ÞþMN −EN;q⃗

2MN
G̃PðQ2Þ

�
:

ð2:9Þ

C. Extracting the form factors

In the results for the asymptotic ratios in Eqs. (2.8) and
(2.9), the two form factors enter linearly and can be
extracted by solving a simple linear system. To be specific
suppose we take two 3-momenta q⃗1, q⃗2 with q21 ¼ q22 ¼ q2,
thus both correspond to the same four momentum transfer
Q2. Eq. (2.8), taken twice with two spatial indices j1, j2,
can be compactly written as Π ¼ MG with the two vectors

Π ¼
�Πj1ðq⃗1Þ
Πj2ðq⃗2Þ

�
; G ¼

�
GAðQ2Þ
G̃PðQ2Þ

�
; ð2:10Þ

and the matrix

M ¼
�
cðq2Þδ3;j1 dðq2Þq1;3q1;j1
cðq2Þδ3;j2 dðq2Þq2;3q2;j2

�
; ð2:11Þ

where the functions cðq2Þ; dðq2Þ are easily read off
from Eq. (2.8). For notational simplicity we have sup-
pressed the dependence on the two individual momenta
and components, i.e., we have abbreviated Π ¼
Πðj1; q⃗1; j2; q⃗2Þ, M ¼ Mðj1; q⃗1; j2; q⃗2Þ and G ¼ GðQ2Þ.
If Eq. (2.9) for the temporal component is part of the linear
system the explicit form for M is different.5 Provided the
spatial momenta q⃗1, q⃗2 and the components j1, j2 are
appropriately chosen the linear system has a unique
solution, given as

G ¼ M−1Π; ð2:12Þ

in terms of the inverse of M.
For our assumed setup with a finite spatial volume and

periodic boundary conditions the spatial momenta are
discrete,

q⃗ ¼ qLn⃗q; qL ¼ 2π

L
; ð2:13Þ

with the vector n⃗q having integer valued components. The
absolute value of the momentum can be labeled by the
integer nq, defined according to

q ¼ qL
ffiffiffiffiffi
nq

p
: ð2:14Þ

In a finite volume only a small number of independent
momenta are available as candidates for small q⃗1, q⃗2. All
these linear systems are equivalent and yield the same
results for the form factors. In practice one typically makes
use of this by constructing an overdetermined linear system
for the two unknown form factors, which is subsequently
solved by minimizing a suitably defined least-squares
function [16,17].

III. EXCITED-STATE ANALYSIS

A. Preliminaries

The extraction of the form factors along the lines
sketched in the previous section hinges on the asymptotic
values of the ratios Rμðq⃗; t; t0Þ once all time separations t, t0
and t − t0 are taken to infinity. In actual lattice simulations
the time separations are finite and far from being asymp-
totically large. In that case, the 2-pt and 3-pt functions not
only contain the contributions of the lowest lying single-
nucleon state, but also of excited states with the same
quantum numbers as the nucleon. This excited-state

5In actual lattice calculations the correlation function involving
A4 is often found to be statistically very noisy and usually not
taken into account for the calculation of the form factors [16,17].
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contamination also enters the form factors if the
linear system (2.12) is solved with Rjðq⃗; t; t0Þ instead of
Πjðq⃗Þ. In other words we obtain effective form factors
Geff

A ðQ2; t; t0Þ; G̃eff
P ðQ2; t; t0Þ including an excited-state con-

tamination instead of the form factors we are interested in.
Quite generally we expect the effective form factors to be of
the form

Geff
A ðQ2; t; t0Þ ¼ GAðQ2Þ½1þ ΔGAðQ2; t; t0Þ�; ð3:1Þ

G̃eff
P ðQ2; t; t0Þ ¼ G̃PðQ2Þ½1þ ΔG̃PðQ2; t; t0Þ�; ð3:2Þ

with excited state contributionsΔGAðQ2;t;t0Þ;ΔG̃PðQ2;t;t0Þ
that vanish for t; t0; t − t0 → ∞.
For pion masses as small as in Nature one can expect

two-particle Nπ states with back-to-back momenta to cause
the dominant excited-state contamination for large but
finite time separations. This expectation rests on the naive
observation that the energy gaps between the Nπ states and
the single nucleon ground state are smaller than those one
expects from true resonance states like the Roper reso-
nance. This not only requires small pion masses but also
sufficiently large volumes such that the finite spatial
momenta (2.13) imply small energies for the lowest-lying
Nπ states. Volumes with MπL ≃ 4, often used in lattice
simulations, already fulfill this criterion [11].
In this section we derive formulas that capture the

Nπ-state contamination in the 2-pt and 3-pt functions,
the ratio Rμ and eventually in the effective form factors. In
these expressions the Nπ-state contamination is parame-
trized in terms of coefficients stemming from ratios of
various matrix elements with Nπ states as initial and/or
final states. In the next section ChPT will be used to
compute these coefficients, making the following results
useful in practice.

B. Correlation functions

We start with the 2-pt function C2ðq⃗; tÞ defined in
Eq. (2.3). Performing the standard spectral decomposition,
projected to momentum q⃗, the 2-pt function is a sum of
various contributions,

C2ðq⃗; tÞ ¼ CN
2 ðq⃗; tÞ þ CNπ

2 ðq⃗; tÞ þ…: ð3:3Þ

The first two terms on the right-hand side refer to the single
nucleon (SN) and the Nπ contributions. The ellipsis refers
to remaining contributions which we assume to be small
and negligible in the following. The SN contribution is
given by

CN
2 ðq⃗; tÞ ¼

1

2EN;q⃗
jh0jNð0ÞjNð−q⃗Þij2e−EN;q⃗jtj: ð3:4Þ

Here jNð−q⃗Þi denotes the state for a moving nucleon with
momentum −q⃗. The interpolating field Nð0Þ also excites
Nπ states with the same quantum numbers as the nucleon,
thus we obtain the nonvanishing Nπ contribution

CNπ
2 ðtÞ¼ 1

L3

X
k⃗

1

4EN;r⃗Eπ;k⃗

jh0jNð0ÞjNðr⃗Þπðk⃗Þij2e−Etotjtj:

ð3:5Þ

The sum runs over all pion momenta k⃗ that are compatible
with the periodic boundary conditions, and the nucleon
momentum is fixed to r⃗ ¼ −q⃗ − k⃗. Etot is the total energy of
the Nπ state. For weakly interacting pions Etot equals
approximately the sum EN;r⃗ þ Eπ;k⃗ of the individual
energies of the nucleon and the pion.
Since the leading SN contribution is nonzero we can

rewrite Eq. (3.3) as

C2ðq⃗; tÞ ¼ CN
2 ðq⃗; tÞ

�
1þ

X
k⃗

dðq⃗; k⃗Þe−ΔEðq⃗;k⃗Þt
�
: ð3:6Þ

The coefficient dðq⃗; k⃗Þ is essentially the ratio of the matrix
elements in Eqs. (3.5) and (3.4), and the energy gap
ΔEðq⃗; k⃗Þ reads

ΔEðq⃗; k⃗Þ ¼ Eπ;k⃗ þ EN;q⃗þk⃗ − EN;q⃗: ð3:7Þ

Here, as mentioned before, we have ignored the interaction
energy. In the next section we compute the 2-pt function in
ChPT, and to LO we will recover the result (3.7) for the
energy gap. Deviations due to the nucleon-pion interaction
will show up at higher order in the chiral expansion.
The 2-pt function enters the generalized ratio Rμðq⃗; t; t0Þ.

Introducing the short hand notation
ffiffiffiffiffiffiffiffiffi
ΠC2

p
for the square

root expression in (2.7) and expanding in powers of small
quantities we obtain

1

C2ð0; tÞ
ffiffiffiffiffiffiffiffiffi
ΠC2

p
¼ 1

CN
2 ð0; tÞ

ffiffiffiffiffiffiffiffiffiffi
ΠCN

2

q �
1þ1

2
Yðq⃗; k⃗Þ

�
; ð3:8Þ

where the function Yðq⃗; k⃗Þ contains the Nπ-state
contribution,

Yðq⃗;k⃗Þ¼
X
k⃗

ðdðq⃗;k⃗Þfe−ΔEðq⃗;k⃗Þðt−t0Þ−e−ΔEðq⃗;k⃗Þt0 −e−ΔEðq⃗;k⃗Þtg

−dð0;k⃗Þfe−ΔEð0⃗;k⃗Þðt−t0Þ−e−ΔEð0⃗;k⃗Þt0 þe−ΔEð0⃗;k⃗ÞtgÞ:
ð3:9Þ

The excited-state analysis of the 3-pt function follows
the same lines. Performing again the spectral decomposition
we find, in analogy to (3.3), the result
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C3;μðq⃗; t; t0Þ ¼ CN
3;μðq⃗; t; t0Þ þ CNπ

3;μðq⃗; t; t0Þ þ…: ð3:10Þ

As beforewe ignore all but the SNand theNπ contribution in
the following. The expressions analogous to Eqs. (3.4) and
(3.5) for CN

3;μðq⃗; t; t0Þ and CNπ
3;μðq⃗; t; t0Þ can be worked out

straightforwardly but they are slightly cumbersome. Since
they are not needed in the following we are not explicitly
showing them. Eventually we need the parametrization
analogues to (3.6), where we write (no summation over μ)

C3;μðq⃗; t; t0Þ ¼ CN
3;μðq⃗; t; t0Þð1þ Zμðq⃗; t; t0ÞÞ; ð3:11Þ

i.e., Zμ denotes the ratio CNπ
3;μðq⃗; t; t0Þ=CN

3;μðq⃗; t; t0Þ. Here we
assume and only consider the cases where the SN contribu-
tion is nonvanishing, which puts a constraint on the possible
momenta q⃗ and the index μ. The generic form for Zμðq⃗; t; t0Þ
is found as

Zμðq⃗; t; t0Þ ¼ aμðq⃗Þe−ΔEð0;−q⃗Þðt−t0Þ þ ãμðq⃗Þe−ΔEðq⃗;−q⃗Þt0

þ
X
k⃗

bμðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þ

þ
X
k⃗

b̃μðq⃗; k⃗Þe−ΔEðq⃗;k⃗Þt0

þ
X
k⃗

cμðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þe−ΔEðq⃗;k⃗Þt0 ; ð3:12Þ

with the energy gaps specified in Eq. (3.7). The coefficients
aμðq⃗Þ, ãμðq⃗Þ, bμðq⃗; k⃗Þ, b̃μðq⃗; k⃗Þ, cμðq⃗; k⃗Þ in (3.12) contain
ratios of matrix elements involving the nucleon interpolating
fields and the axial vector current. For example, the coef-
ficient bμðq⃗; k⃗Þ contains the matrix element hNπjAa

μjNiwith
theNπ state as the final state. Similarly, b̃μðq⃗; k⃗Þ contains the
matrix element with theNπ state as the initial state. Together
the bμðq⃗; k⃗Þ and b̃μðq⃗; k⃗Þ contributions form the excited-to-

ground-state contribution. Similarly, the cμðq⃗; k⃗Þ contribu-
tion is called the excited-to-excited-state contribution, since
it involves the matrix elements with Nπ states as initial and
final states.As before the sums run over themomentumof the
pion in the Nπ state. The associated nucleon momentum is
fixed bymomentumconservation and the kinematic setupwe
have chosen.
The presence of the contributions proportional to aμðq⃗Þ

and ãμðq⃗Þ deserves a comment. As it stands these are also
captured by the ones proportional to bμðq⃗;−q⃗Þ and
b̃μðq⃗;−q⃗Þ. The reason for this separation and a precise
definition of the individual coefficients will be given in the
next section when we compute the coefficients perturba-
tively in ChPT.
Taking the product of (3.11) and (3.8) we obtain the total

result for the Nπ contamination in the generalized ratios,

Rμðq⃗;t;t0Þ¼Πμðq⃗Þ
�
1þZμðq⃗;t;t0Þþ

1

2
Yðq⃗;t;t0Þ

�
; ð3:13Þ

≡Πμðq⃗Þð1þ Xμðq⃗; t; t0ÞÞ; ð3:14Þ

with Πμðq⃗Þ referring to the asymptotic values of the ratios
introduced in (2.8) and (2.9). The Nπ contamination
Xμðq⃗; t; t0Þ vanishes exponentially as the time separations
tend to infinity, so the ratios correctly approach their
asymptotic values.

C. Effective form factors

In practice the ratios Rμðq⃗; t; t0Þ are at our disposal for
moderately large time separations, not their asymptotic
values Πμðq⃗Þ. The Nπ state contribution present in these
ratios modifies the solution of the linear system that we
solve to extract the form factors. Instead of the true form
factors G in Eq. (2.12) we get effective form factors that
inherit the Nπ contribution and its time dependence,

Geffðq⃗; t; t0Þ ¼ M−1ðΠðQ2Þ þ ΔΠðq⃗; t; t0ÞÞ: ð3:15Þ

where the correction term on the right-hand side reads

ΔΠðq⃗; t; t0Þ ¼
�Πj1ðq⃗1ÞXj1ðq⃗1; t; t0Þ
Πj2ðq⃗2ÞXj2ðq⃗2; t; t0Þ

�
: ð3:16Þ

Equations (3.1) and (3.2), quoted at the beginning of this
section, are nothing but (3.15), slightly rewritten and with
the dependence on the momentum transfer made explicit.
The main result here is that both form factors inherit the

Nπ state contribution of the two particular ratios that we
have chosen for our linear system, and these depend on the
particular combinations j1, q⃗1 and j2, q⃗2 for the momenta
and the spatial indices of the axial vector current. This can
be interesting if there are various combinations possible
that can be used to extract the form factors and if some
combinations show significantly smaller Nπ contamina-
tions than others. We will study this question in Sec. V B.

IV. Nπ-STATE CONTRIBUTION IN CHPT

A. Preliminaries

The correlation functions and their ratios Rμ defined in
the previous section can be computed in chiral perturbation
theory (ChPT), the low-energy effective theory of QCD
[19–21]. For sufficiently large times t, t0, pion physics will
dominate the correlation functions and ChPT is expected to
provide good estimates for them. In particular, we can
obtain ChPT results for the coefficients dðq⃗; k⃗Þ in (3.6) and
aμðq⃗Þ, ãμðq⃗Þ, bμðq⃗; k⃗Þ, b̃μðq⃗; k⃗Þ, cμðq⃗; k⃗Þ in (3.12).
Such calculations have been performed and described

before, see [7–10]. Reference [9] reports a ChPT calculation
for the axial vector 3-pt function for vanishing momentum
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transfer and the Nπ-state contamination in lattice calcula-
tions of the axial charge gA ¼ GAð0Þ. The calculation
presented here is completely analogous, the main difference
is the different kinematics in the correlation functions and the
extraction of the form factors for nonvanishing Q2. The
ChPT setup with the chiral expressions for the axial vector
current and the nucleon interpolating fields is independent of
the kinematics and the same as in Ref. [9]. For completeness
and the reader’s convenience the Feynman rules are sum-
marized in Appendix A. For details, however, the reader is
referred to [9] and the reviews [11,12].
The calculation is done in covariant ChPT [22,23] to LO.

At this order the results for the various coefficients depend
on two LO low-energy coefficients (LECs) only, the pion
decay constant and the axial charge. Since these are known
phenomenologically rather precisely the LO ChPT results
are very predictive. In particular, they do not depend on the
LECs associated with the nucleon interpolating fields [24],
because these drop out at LO. It is this predictivity that
makes the LO results interesting and useful, even if the
higher order corrections are non-negligible.

B. Single nucleon contribution

Figure 1 shows the Feynman diagrams that provide the
leading SN contribution to the 2-pt and 3-pt functions and,
consequently, the ratios and the form factors. The calcu-
lation is simple and essentially establishes that we have
properly matched ChPT to QCD.
The result for the 2-pt diagram reads (we always assume

t > 0)

CN
2 ðq⃗; tÞ ¼ jα̃j2 EN;q⃗ þMN

2EN;q⃗
e−EN;q⃗t: ð4:1Þ

For q⃗ ¼ 0 we recover the result derived in Ref. [8]. The
constant α̃ is the LEC associated with the nucleon inter-
polating field. Comparing with Eq. (3.4) we can read off the
relation to the vacuum-to-nucleon matrix element,
jh0jNð0ÞjNð−q⃗Þij2 ¼ ðEN;q⃗ þMNÞjα̃j2. The constant jα̃j2
will also appear as an overall factor in the 3-pt functions,
thus it drops out in the ratios. Therefore, we set α̃ ¼ 1 from
now on, for simplicity.6

The SN contribution to the 3-pt function is the sum of the
results for diagrams (b) and (c) in Fig. 1:

CN
3;jðq⃗; t; t0Þ ¼

igA
2EN;q⃗

�
ðEN;q⃗ þMNÞδ3;j

þ 2MN

ðEN;q⃗ −MNÞ2 − E2
π;q⃗

q3qj

�

× e−MNðt−t0Þe−EN;q⃗t0 ; ð4:2Þ

CN
3;4ðq⃗; t; t0Þ ¼

q3gA
2EN;q⃗

�
1þ 2ðEN;q⃗ −MNÞMN

ðEN;q⃗ −MNÞ2 − E2
π;q⃗

�

× e−MNðt−t0Þe−EN;q⃗t0 : ð4:3Þ

With these results it is straightforward to compute the ratios
Rμ and extract the two form factors as described in Sec. II C,
and we obtain

GAðQ2Þ ¼ gA; G̃PðQ2Þ ¼ 4gA
M2

N

Q2 þM2
π
: ð4:4Þ

The result for the axial form factor agrees with the one in
Ref. [9] for vanishing momentum transfer. The result for the
induced pseudoscalar form factor agrees with the one
in Ref. [25].

C. Nπ-state contribution—general remarks

The Nπ-state contribution to the 2-pt function and the
axial vector 3-pt function with q⃗ ¼ 0 has already been
computed in the covariant formulation of BChPT, see
Refs. [8,9]. The results for the coefficients are sufficiently
compact in the full covariant form. However, already the
2-pt function is fairly cumbersome once we allow for q⃗ ≠ 0.
The expressions simplify significantly if we perform the
nonrelativistic (NR) expansion, i.e., if we expand the
nucleon energy according to

EN;q⃗ ¼ MN þ q⃗2

2MN
þ… ð4:5Þ

and keep only the first two terms. For practical uses this
should be sufficient.
The nonrelativistic expansion is slightly different for the

spatial components and μ ¼ 4. The reason is that the SN

(c)(b)(a)

FIG. 1. Feynman diagrams for the leading SN contribution in the 2-pt function (diagram a) and the 3-pt function (diagrams b) and c).
Squares represent the nucleon interpolating fields at times t and 0. The diamond stands for the axial vector current at insertion time t0.
The circle represents a vertex insertion at an intermediate space time point, and an integration over this point is implicitly assumed. The
solid (dashed) lines represent nucleon (pion) propagators in the time-momentum representation, see appendix A.

6In case different interpolating fields are employed at source
and sink jα̃j2 has to be replaced by the product α̃β̃� of two
different LECs, see Refs. [9,11] and Appendix A.
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contribution to the 3-pt function has a different non-
relativistic limit for μ ¼ j and μ ¼ 4. Performing (4.5)
in (4.3) one finds

CN
3;4ðq⃗; t; t0Þ ¼

�
gA

M2
πq3

2E2
π;q⃗MN

þ O

�
1

M3
N

��
e−MNðt−t0Þe−EN;q⃗t0 :

ð4:6Þ

Thus, the leading term is Oð1=MNÞ suppressed. On
the other hand, the SN contribution of the spatial compo-
nents in (4.2) start with O(1). The coefficients we want
compute in ChPT are the ones in Zμ, which itself is defined
as the ratio CNπ

3;μ=C
N
3;μ, cf. Eq. (3.11). We will find that the

numerator in this ratio typically starts with O(1) in the NR
expansion. Consequently, for μ ¼ 4, the inverse power
1=MN in the SN contribution shifts the NR expansion of the
ratio such that powers linear in the nucleon mass appear.

D. Nπ-state contribution—the 2-pt function

We introduced the coefficients dðq⃗; k⃗Þ in Eq. (3.6). These
coefficients can be calculated by computing the four loop
diagrams for the 2-pt function shown in Fig. 2. Following
[8,9] we separate the coefficients into a universal part and a
“reduced coefficient,”

dðq⃗; k⃗Þ ¼ 1

8ðfLÞ2Eπ;k⃗L
Dðq⃗; k⃗Þ: ð4:7Þ

The denominator contains the dimensionless combinations
fL and Eπ;k⃗L that we expect to appear in loop diagrams.7

To the order we are working here the reduced coefficients
Dðq⃗; k⃗Þ are dimensionless functions of the nucleon and
pion energies and the axial charge, see below.
As mentioned before, we perform the NR expansion,

thus we write the coefficients in the following form:

Dðq⃗; k⃗Þ ¼ D∞ðq⃗; k⃗Þ þ Eπ;k⃗

MN
Dcorrðq⃗; k⃗Þ: ð4:8Þ

The particular form of the Nπ-vertex in the interpolating
nucleon field implies that only diagram (a) contributes to

D∞ðq⃗; k⃗Þ. Contributions to the correction Dcorrðq⃗; k⃗Þ

originate in diagrams a), (b) and (c), while (d) contributes
to Oð1=M2

NÞ only and can be ignored.
The calculation parallels the one for q⃗ ¼ 0 done in

Ref. [8], and the results are

D∞ðq⃗; k⃗Þ ¼ 3g2A
k2

E2

π;k⃗

; ð4:9Þ

Dcorrðq⃗; k⃗Þ¼3gA
gAM2

πðk2þ2kqÞ−E2

π;k⃗
ðk2þkqÞ

E4

π;k⃗

: ð4:10Þ

The NR limit result D∞ðq⃗; k⃗Þ does not depend on the
injected momentum q⃗ and can directly be compared with
the result for q⃗ ¼ 0. The correction, however, does depend
on q⃗ in form of the scalar product kq ¼ k⃗ · q⃗. Setting this
scalar product to zero we obtain

Dcorrð0; k⃗Þ ¼ 3gA
k2

E2

π;k⃗

�
gA

M2
π

E2

π;k⃗

− 1

�
; ð4:11Þ

and the result for q⃗ ¼ 0 agrees with the one in Ref. [8].

E. Nπ-state contribution—the 3-pt function

Figure 3 shows the diagrams with a nonzero Nπ-state
contribution to the 3-pt functions. The first twelve loop
diagrams are the same as the ones calculated in [9] for
vanishing momentum transfer. For q⃗ ≠ 0 the two remaining
tree diagrams and diagram (c) in Fig. 1 also contribute.
For later reference it will be useful to keep the con-

tributions from the loop and the tree diagrams separate. The
coefficients bμðq⃗; k⃗Þ, b̃μðq⃗; k⃗Þ, cμðq⃗; k⃗Þ in (3.12) capture the
Nπ contribution of the loop diagrams, while the tree
diagram contribution is given by aμðq⃗Þ, ãμðq⃗Þ. For the
spatial components of the latter we introduce the NR
expansion according to

ajðq⃗Þ ¼ a∞j ðq⃗Þ þ
Eπ;q⃗

MN
acorrj ðq⃗Þ;

ãjðq⃗Þ ¼ ã∞j ðq⃗Þ þ
Eπ;q⃗

MN
ãcorrj ðq⃗Þ: ð4:12Þ

As explained before, the NR expansion for μ ¼ 4 is
“shifted” due to the normalization with CN

3;4ðq⃗; t; t0Þ given
in (4.6). Hence we introduce

(d)(c)(b)(a)

FIG. 2. Feynman diagrams for the leading Nπ contribution in the 2-pt function.

7Note that this definition differs slightly from the one used in
[8]. The universal factor in (4.7) does not include a factor 3 in the
numerator stemming from flavor symmetry.
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a4ðq⃗Þ ¼
MN

Eπ;q⃗
a∞4 ðq⃗Þ þ acorr4 ðq⃗Þ;

ã4ðq⃗Þ ¼
MN

Eπ;q⃗
ã∞4 ðq⃗Þ þ ãcorr4 ðq⃗Þ: ð4:13Þ

Note that the tree level diagrams do not lead to an inverse
power of the volume L3, thus there is no factor analogous to
the universal factor in (4.7). Note also that these coef-
ficients depend on one momentum only, the momentum
transfer q⃗. The results for these coefficients are as follows:

a∞j¼1;2ðq⃗Þ ¼ −
1

2
;

a∞j¼3ðq⃗Þ ¼
1

2

q23
E2
π;q⃗ − q23

¼ q23
2ðq21 þ q22 þM2

πÞ
; ð4:14Þ

and the same results for the coefficient ã∞j ðq⃗Þ,

ã∞j ðq⃗Þ ¼ a∞j ðq⃗Þ; j ¼ 1; 2; 3: ð4:15Þ

For j ¼ 1, 2 the coefficient is constant, for j ¼ 3 it can
vanish if the third component of the momentum is zero. The
simplicity of these results is a consequence of the fact that
the NR limit values stem from diagram (c) in Fig. 1 only.
The remaining two involve the Nπ vertex in the interpolat-
ing fields and are therefore expected not to contribute to the
NR limit values. This is explicitly found in the calculation.
For the corrections we find for j ¼ 1; 2; 3

acorrj ðq⃗Þ ¼ 1

2

�
M2

π

E2
π;q⃗

−
1

gA

�
a∞j ðq⃗Þ; ð4:16Þ

ãcorrj ðq⃗Þ ¼ 1

2

�
M2

π

E2
π;q⃗

�
ã∞j ðq⃗Þ: ð4:17Þ

The results are not the same for acorrj ðq⃗Þ and ãcorrj ðq⃗Þ. This
is a property of our particular kinematic setup with a
vanishing momentum p⃗0 for the nucleon in the final state. It
implies that the nucleon in diagram (n) is at rest and the
diagram vanishes identically. In diagram (m), on the other
hand, the nucleon has spatial momentum −q⃗, leading to the
contribution proportional to 1=gA in acorrμ ðq⃗Þ.
Note that the correction coefficients vanish if the leading

ones are zero. In particular, the coefficients a3ðq⃗Þ and ã3ðq⃗Þ
vanish for q⃗ ¼ 0. Therefore, the tree diagrams do not
contribute to R3ðq⃗ ¼ 0; t; t0Þ in (3.14), the ratio necessary
for the calculation of the axial charge gA [9].
For typical pion energies the correction coefficients

result in a small Oð1=MNÞ contribution. For example,
for pion energies of 280 MeV the correction coefficient is
about a quarter of the leading one. Taking into account the
suppression factor EN;q⃗=MN we roughly obtain a 10%
correction due to the correction coefficients.
The results for μ ¼ 4 are as follows:

a∞4 ðq⃗Þ¼−
E2
π;q⃗

M2
π
; acorr4 ðq⃗Þ¼−

1

2

�
1−

E2
π;q⃗

gAM2
π

�
; ð4:18Þ

ã∞4 ðq⃗Þ ¼
E2
π;q⃗

M2
π
; ãcorr4 ðq⃗Þ ¼ −

1

2
: ð4:19Þ

Note that a∞4 ðq⃗Þ ¼ −ã∞4 ðq⃗Þ, in contrast to the coefficients
for μ ¼ j, where (4.15) holds. This difference will be
responsible for a qualitatively different behavior of the ratio
R4ðq⃗; t; t0Þ involving the time component of the axial vector
current, see Sec. V C.
For the loop diagram contribution we define, in analogy

to Eq. (4.7), reduced coefficients denoted by capital letters
B; B̃ and C. These are expanded according to the NR
expansion. For the spatial components this is equivalent to
Eq. (4.8). For example,

(d)(c)(b)(a)

(h)(g)(f)(e)

(l)(k)(j)(i)

(n)(m)

FIG. 3. Feynman diagrams for the leading Nπ contribution in the 3-pt functions.
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Bjðq⃗; k⃗Þ ¼ B∞
j ðq⃗; k⃗Þ þ

Eπ;k⃗

MN
Bcorr
j ðq⃗; k⃗Þ; ð4:20Þ

and analogously for B̃j, Cj. In contrast, for μ ¼ 4, we
introduce

B4ðq⃗; k⃗Þ ¼
MN

Eπ;k⃗

B∞
4 ðq⃗; k⃗Þ þ Bcorr

4 ðq⃗; k⃗Þ; ð4:21Þ

and here too analogous expressions for the other two
coefficients.
The results for these coefficients are as follows. For the

spatial components we find

B∞
j¼1;2ðq⃗; k⃗Þ ¼ −2g2A

E2
π;q⃗

E2

π;k⃗

kjk3
qjq3

; ð4:22Þ

B∞
3 ðq⃗; k⃗Þ ¼ 2g2A

E2
π;q⃗

E2

π;k⃗

k2 þ k23
E2
π;q⃗ − q23

; ð4:23Þ

together with the relation

B̃∞
j ðq⃗; k⃗Þ ¼ B∞

j ðq⃗; k⃗Þ; j ¼ 1; 2; 3: ð4:24Þ

For the remaining coefficient we find

C∞
j ðq⃗; k⃗Þ ¼ −B∞

j ðq⃗; k⃗Þ; j ¼ 1; 2; ð4:25Þ

C∞
3 ðq⃗; k⃗Þ ¼ g2A

E2
π;q⃗

E2

π;k⃗

k2 − 2k23
E2
π;q⃗ − q23

: ð4:26Þ

Finally, for the μ ¼ 4 component the results read

B∞
4 ðq⃗; k⃗Þ ¼ −8

E2
π;q⃗k3

M2
πq3

; ð4:27Þ

B̃∞
4 ðq⃗; k⃗Þ ¼ B∞

4 ðq⃗; k⃗Þ; ð4:28Þ

C∞
4 ðq⃗; k⃗Þ ¼ 0: ð4:29Þ

The results for the correction coefficients Bcorr
j ðq⃗; k⃗Þ,

B̃corr
j ðq⃗; k⃗Þ and Ccorr

j ðq⃗; k⃗Þ are slightly cumbersome. Since
the detailed expressions reveal no additional qualitative
insights they are listed in Appendix B.

V. IMPACT ON LATTICE CALCULATIONS

A. Preliminaries

By definition, the coefficients aμðq⃗Þ, ãμðq⃗Þ, bμðq⃗; k⃗Þ,
b̃μðq⃗; k⃗Þ, cμðq⃗; k⃗Þ introduced in (3.6), (3.12) are dimension-
less. Thus, they are functions of dimensionless combina-
tions of the various input parameters. To the order we are

working here there are only four different ones, and one
possible choice is

f=MN; gA; Mπ=MN; MπL: ð5:1Þ

As mentioned before, the coefficients do not depend on the
LECs associated with the nucleon interpolating fields, since
these drop out in the ratios.
In practice the asymptotic values Πμðq⃗Þ are obtained

from fits of the expected form in Eq. (3.14) to numerical
lattice data. Instead of fits to the ratios one often finds
simultaneous fits to the 2-pt and 3-pt functions [17,26].
Without any excited-state contribution one performs fits to
constants (so-called plateau method) with Πμðq⃗Þ being an
independent fit parameter for each momentum transfer. No
additional fit parameters enter if the Nπ contribution is
included in a simultaneous fit, provided the pion mass and
decay constant have been determined separately from the
pseudoscalar 2-pt function. In that sense LO ChPT makes
definite predictions: The LO Nπ contribution is given in
terms of the LO single nucleon contribution.
In the following we use the ChPT results in a slightly

different way. The values for the combinations in (5.1) are
known rather precisely from experiment. Assuming these
values in the ChPT results we obtain estimates for the
expected impact of the Nπ contribution in lattice QCD
simulations.
The two LECs in (5.1) are the chiral limit values of the

pion decay constant and the axial charge. To LO it is
consistent to use the experimental values for these LECs
and we set gA ¼ 1.27 and f ¼ fπ ¼ 93 MeV [27]. We can
ignore the errors in these values since they are too small to
be significant for the LO estimates. Since we are mainly
interested in the Nπ contribution in physical point simu-
lations we fix the pion and nucleon masses to their physical
values. In the following it is sufficient to use the simple
estimates Mπ ¼ 140 MeV and MN ¼ 940 MeV.
We also need to fix the size of the spatial volume, and we

do this by imposing a value forMπL. In Refs. [9,10] the FV
effects of the Nπ contribution in various nucleon charges
and pdf moments were found to be very small, and we
expect the same here for the form factors. To check this we
will compare results for various volumes with MπL values
between 3 and 6.
Finally, we need to specify an upper bound on the pion

momentum in the Nπ state to truncate the sums in (3.9) and
(3.12). Following Refs. [9,10] we choose jk⃗nj≲ kmax with
kmax=Λχ ¼ 0.45, where the chiral scale Λχ is equal to 4πfπ .
Nπ states with pions satisfying this bound are called low-
momentum Nπ states. For these we expect our LO ChPT
results to work reasonably well.8 States with pion momenta
larger than the bound are called high-momentum Nπ states.

8Recall that ChPT is an expansion in small pion momenta and
masses.
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These too contribute to the excited-state contamination.
However, choosing all Euclidean time separations suffi-
ciently large the contribution of the high-momentum Nπ
states is small and can be ignored. The results in
Refs. [9,10] suggest that at least a 1 fm separation between
the operator and both source and sink is necessary. This
corresponds to source-sink separations of 2 fm or larger in
the 3-pt functions. We will take this time separation as a
starting point to examine the range of applicability for our
LO ChPT results. However, we will also argue that in case
of the induced pseudoscalar form factor the results pre-
sented here can be applied at significantly smaller source-
sink separations.
Note that an upper bound jk⃗nj≲ kmax translates into a

number nk;max that depends on the spatial volume, i.e., on
MπL. The larger the volume the more discrete momenta
satisfy the bound. Table I lists nk;max for the volumes
considered in this paper.9

B. Impact on plateau estimates for the form factors

The effective form factorsGeff
A ðQ2; t; t0Þ, G̃eff

P ðQ2; t; t0Þ in
(3.1) and (3.2) depend on the source-sink separation t and
the operator insertion time t0. For fixed t we introduce the
plateau estimates that, as a function of t0, minimize the
deviation from the true form factors. The results of the last
section imply ΔGAðQ2; t; t0Þ > 0 and ΔG̃PðQ2; t; t0Þ < 0,
thus we define the plateau estimates according to

Gplat
A ðQ2; tÞ≡ min

0<t0<t
Geff

A ðQ2; t; t0Þ; ð5:2Þ

G̃plat
P ðQ2; tÞ≡ max

0<t0<t
G̃eff

P ðQ2; t; t0Þ: ð5:3Þ

These are functions of the momentum transfer and t.
Naively one expects the operator has to be located closely
to the middle between source an sink, i.e., t0 ≈ t=2. At least
for small momentum transfer that are accessible with ChPT
we will find this expectation to be true, see below. In
practice, the midpoint estimates

Gmid
A ðQ2; tÞ≡Geff

A ðQ2; t; t0 ¼ t=2Þ; ð5:4Þ

G̃mid
P ðQ2; tÞ≡ G̃eff

P ðQ2; t; t0 ¼ t=2Þ; ð5:5Þ

are close to the plateau estimates and work equally well.
As a measure for the Nπ-state contribution we introduce

the relative deviation of the plateau estimates from the true
form factors,

ϵplatA ðQ2; tÞ≡Gplat
A ðQ2; tÞ
GAðQ2Þ − 1;

ϵplatP ðQ2; tÞ≡ G̃plat
P ðQ2; tÞ
G̃PðQ2Þ − 1; ð5:6Þ

and analogously for the midpoint estimates. Figure 4 shows
ϵplatA;P for a source-sink separation of t ¼ 2 fm and small
momentum transfers below 0.25 GeV2. Without the Nπ

contribution ϵplatA;P would be equal to 0. Any deviation from
this value is the Nπ state contamination in percent. Plotted
are the results for the lowest discrete momentum transfers
allowed by various spatial volumes with MπL values
between 3 and 6.
In case of the axial form factor (dots) we can read off that

the plateau estimate overestimates GAðQ2Þ by about 5%,
essentially independent of Q2. We also reproduce the result
for vanishing momentum transfer found in [9]. In contrast,
G̃plat

P ðQ2Þ underestimates the induced pseudoscalar form
factor by about 10% to 40% (diamonds). The Q2 depend-
ence is rather pronounced, the smaller the momentum
transfer the larger the deviation from the true form factor.
A small FVeffect is noticeable in the data for ϵplatA . This is

best seen by comparing the results for MπL ¼ 3 and 6,
which have some momentum transfers in common. The
difference between these results is about half the size of the

TABLE I. nk;max and as a function of kmax=Λχ ; see main text.

kmax
Λχ

nk;max

MπL ¼ 4 MπL ¼ 4 MπL ¼ 5 MπL ¼ 6

0.45 3 5 8 12

FIG. 4. Results for ϵplatA ðQ2; tÞ (dots) and ϵplatP ðQ2; tÞ (dia-
monds) for a source-sink separation t ¼ 2 fm and momentum
transfers below 0.25 ðGeVÞ2. The discrete values for the latter are
determined by the size of the spatial volume given in terms of
MπL ¼ 3 (purple), 4 (blue), 5 (black) and 6 (red).

9See Ref. [11] for the numbers corresponding to other values
for the upper momentum bound.
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overlapping symbols. On the other hand, no FV effect is
visible in ϵplatP . An explanation for this will be given below.
Increasing the source-sink separation leads to a smaller

Nπ contamination. For example, for t ¼ 3 fm one roughly
gains a factor 1=2: ϵplatA drops to about þ2%, while ϵplatP
varies between −5% and −20%. The Q2 dependence is
qualitatively as in Fig. 4.
A few observations concerning the ChPT results are

worth pointing out. We already mentioned that the effective
form factors for some momentum transfers can be obtained
with different ratios and different 3-momenta q⃗. For
instance, the two momenta q⃗A ¼ 2π

L ð1; 0; 1Þ and q⃗B ¼
2π
L ð1; 1; 0Þ imply the same Q2, and the effective form
factors can be obtained from three inequivalent linear
systems based on three combinations of ratios:

R3ðq⃗A; t; t0Þ and R3ðq⃗B; t; t0Þ;
R1ðq⃗A; t; t0Þ and R3ðq⃗B; t; t0Þ;
R1ðq⃗A; t; t0Þ and R3ðq⃗A; t; t0Þ: ð5:7Þ

It is not obvious that all three combinations lead to the same
plateau estimates for the two form factors. One may expect
one combination being afflicted with a smaller Nπ con-
tamination than the other two. However, it turns out that all
three combinations give practically the same plateau
estimates. Table II summarizes the results for the example
given in (5.7) for two momentum transfers. Apparently, the
results for the plateau estimates, given in the last two
columns, are essentially the same in all three cases. We

conclude that in practice there is no reason to favor one case
over the other.
Figure 4 shows that the Nπ contribution in ϵplatA is

essentially independent of the momentum transfer Q2.
Therefore, the tree diagrams that vanish identically for
Q2 ¼ 0 seem to have no impact on the axial form factor for
nonzero Q2. In order to understand this we separate the
total Nπ contamination Xμ in Eq. (3.14) according to their
diagrammatic origin, i.e., we write

Xμðq⃗;t;t0Þ¼Ztree
μ ðq⃗;t;t0ÞþZloop

μ ðq⃗;t;t0Þþ1

2
Yðq⃗;tÞ: ð5:8Þ

The first (tree) part contains the first two contributions
in (3.12) involving the coefficients aμ and ãμ, the second
(loop) part the remaining three contributions in the same
equation. The Y-part stems from the Nπ contribution (3.9)
to the 2-pt functions.
Table III summarizes the relative deviations ϵmid

A;P for two
momentum transfers based on a single origin only.10 As
expected the 2-pt function contribution is small, much
smaller than the contributions from the 3-pt function. In
contrast to the latter there are no exponentials involving the
shorter time separations t0 and t − t0 in the 2-pt function,
thus the Nπ contribution in the 2-pt function is exponen-
tially more suppressed.

TABLE II. The Nπ contributions Xjðq⃗; t; t0extÞ and ϵplatA;PðQ2; tÞ in the ratios and in the effective form factors, obtained from the three
different ratio combinations specified in (5.7). Results are shown for momenta with nq ¼ 2 and nq ¼ 5 for MπL ¼ 4. The source-sink
separation is t ¼ 2 fm in all cases, and t0ext is between 0 and t such that the Nπ-state contribution in the ratio is minimal.

nq ja n⃗qa jb n⃗qb Xjaðq⃗a; t; t0extÞ Xjbðq⃗b; t; t0extÞ ϵplatA ðQ2; tÞ ϵplatP ðQ2; tÞ
2 3 (1,0,1) 3 (1,1,0) 0.207 0.045 0.045 −0.181

3 (1,0,1) 1 (1,0,1) 0.207 −0.179 0.046 −0.179
3 (1,1,0) 1 (1,0,1) 0.045 −0.179 0.045 −0.179

5 3 (2,0,1) 3 (2,1,0) 0.077 −0.046 0.046 −0.085
3 (2,0,1) 1 (2,0,1) 0.077 −0.082 0.046 −0.082
3 (2,1,0) 1 (2,0,1) 0.046 −0.082 0.046 −0.082

TABLE III. The relative deviations ϵmid
X;tree, ϵ

mid
X;loop and ϵ

mid
X;2pt for two different momentum transfers. The source-sink separation is set to

t ¼ 2 fm and MπL ¼ 4.

nq ja n⃗qa jb n⃗qb ϵmid
A;treeðQ2

n; tÞ ϵmid
A;loopðQ2

n; tÞ ϵmid
A;2ptðQ2

n; tÞ ϵmid
P;treeðQ2

n; tÞ ϵmid
P;loopðQ2

n; tÞ ϵmid
P;2ptðQ2

n; tÞ
2 3 (1,0,1) 3 (1,1,0) 0.000 0.048 −0.003 −0.179 −0.002 −0.003

3 (1,0,1) 1 (1,0,1) 0.000 0.049 −0.003 −0.179 −0.000 −0.003
3 (1,1,0) 1 (1,0,1) 0.000 0.048 −0.009 −0.179 −0.000 −0.003

5 3 (2,0,1) 3 (2,1,0) 0.000 0.050 −0.008 −0.087 −0.004 −0.008
3 (2,0,1) 1 (2,0,1) 0.000 0.050 −0.008 −0.087 −0.000 −0.008
3 (2,1,0) 1 (2,0,1) 0.000 0.050 −0.008 −0.087 −0.000 −0.008

10For the numbers in this table we have chosen the midpoint
estimates (5.4), (5.5), for simplicity. For the conclusions drawn in
this section this simplification is irrelevant.
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More striking is the following observation. In the axial
form factor the tree diagrams do not contribute, the entire
Nπ contamination stems from the loop diagrams. For the
induced pseudoscalar form factor it is the other way around,
the loop diagrams do not contribute, the dominant con-
tribution has its origin in the tree diagrams.
To understand this consider the case where the momenta

and ratios are chosen in such a way that the matrix M in
(2.11) is diagonal. Two explicit examples are given in the
third and sixth rows of Table II. In these cases Gmid

A is
proportional to R3 with a 3-momentum having q3 ¼ 0. For
such a momentum the coefficients a3ðq⃗Þ and ã3ðq⃗Þ vanish
according to Eqs. (4.12) and (4.14)–(4.17). Thus, the tree
contribution ϵmid

A;tree vanishes identically. The loop contri-
bution is dominated by the contribution proportional to the
coefficients B∞

3 and B̃∞
3 in (4.23) and (4.24). For spatial

momenta with q3 ¼ 0 the q⃗ dependence cancels exactly
and the coefficients are essentially the ones for q⃗ ¼ 0.
Therefore, the Nπ contamination in Gmid

A ðQ2; tÞ is essen-
tially as in the axial charge, the form factor for Q2 ¼ 0.
On the other hand, G̃mid

P is proportional to R1. Therefore,
the dominant tree contribution stems from a∞1 ¼ ã∞1 ¼
−1=2, cf. (4.14). This value is rather large and negative,
explaining the underestimation of G̃PðQ2Þ displayed in
Fig. 4. The loop contribution is governed by the coefficients
B∞
1 and B̃∞

1 in (4.22) and (4.24). Except for the opposite
sign these coefficients are of the same size as B∞

3 and B̃∞
3 ,

which are responsible for the nonvanishing loop contribu-
tion ϵmid

A;loop. The key observation is that even though the

individual contribution for one particular pion momentum k⃗
is nonzero, the sum over all momenta k⃗ with the same jk⃗j
vanishes because the coefficient B∞

1 is proportional to k1k3,

X
k⃗;jk⃗j¼fix

B∞
1 ðq⃗; k⃗Þ ¼ 0: ð5:9Þ

In the Nπ contribution to the ratios the sum also involves
the exponentials with the energy gaps, and including these
in (5.9) leads to a nonzero but small number on the right-
hand side. In contrast, the coefficient B∞

3 is proportional to
k2 þ k23, thus performing the sum (5.9) with this coefficient
we sum up positive numbers only and end up with a
sizeable nonzero result.
The particular results for the coefficients “explain” why

the tree diagrams do not contribute to ϵA and the loop
diagrams not to ϵP. However, this explanation becomes less
transparent when ϵP is obtained only from the ratios R3

with two different spatial momenta, as in the first and fourth
rows in Table II. In these cases one of the ratios R3 is
evaluated with a momentum with q3 ≠ 0. Thus, there is a
nonvanishing positive tree contribution caused by a3ðq⃗Þ
and ã3ðq⃗Þ leading to a larger Nπ contribution than in the
ratio with a momentum satisfying q3 ¼ 0 (see first and

fourth rows in Table II). Nevertheless, the linear system that
needs to be solved to obtain Geff

P is such that the
overestimation in the two ratios R3 result in an under-
estimation in Geff

P that equals the one obtained in the direct
determination based on an a combination of ratios involv-
ing R1.
That only the tree diagrams contribute to the Nπ

contamination in ϵplatP ðQ2; tÞ has two consequences. First,
it is independent of the spatial volume, because the tree
diagram contribution does not explicitly depend on the
spatial extent L, see Eqs. (4.12) to (4.19). Consequently, the
results for different MπL values in Fig. 4 fall on an smooth
curve. Second, the dominant contribution stems from
diagram (c) in Fig. 1 only, the contribution from diagrams
(m) and (n) in Fig. 3 is Oð1=MNÞ suppressed. Keeping only
the dominant contribution an excellent approximation for
ϵplatP ðQ2; tÞ is given by the simple expression

ϵplatP ðQ2; tÞ ≈ − exp

�
−Eπ;q⃗

t
2

�
: ð5:10Þ

Figure 5 shows again the results of Fig. 4 together with the
approximation (5.10). Obviously, the simple expression
captures the ϵplatP ðQ2; tÞ fairly well. The right-hand side of
(5.10) depends only on the source-sink separation and the
energy of a pion with spatial momentum q⃗. The maximal
deviation − exp½−Mπt=2� is assumed in the limit of
vanishing momentum transfer.
It is conceivable that the ChPT result for ϵplatP ðQ2; tÞ can

be applied at source-sink separations substantially smaller
than 2 fm. Recall that this bound was imposed to guarantee
a sufficient exponential suppression of the high-momentum
pion states in the loop diagrams. Since the loop contribu-
tion in ϵplatP ðQ2; tÞ essentially cancels it seems plausible that
the bound for a minimal source-sink separation can be

FIG. 5. Results for ϵplatP ðQ2; tÞ as in Fig. 4. The solid line
corresponds to the approximation in (5.10).
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relaxed significantly. We will study this issue in Sec. VI
when we compare the ChPT results with actual lattice data.

C. Impact on the ratio R4

We have already mentioned that data for the ratio
R4ðq⃗; t; t0Þ is usually not taken into account in lattice
calculations of the nucleon form factors. On one hand
the 3-pt function involving the time component A4 of the
axial vector current is found to be statistically noisy, much
noisier than for the spatial components. In addition, the
excited-state contamination in R4ðq⃗; t; t0Þ is found to be
much more severe than in the other ratios.
Figure 6 shows 1þ X4ðq⃗; t; t0Þ (red line) for a fixed

source-sink separation t ¼ 2 fm as a function of the
(shifted) operator insertion time t0 − t=2. The spatial
volume is such that MπL ¼ 4 and a momentum transfer
q⃗ with nq ¼ ð0; 0; 1Þ. Recall that X4ðq⃗; t; t0Þ vanishes for
both time separations taken to infinity, implying that for
asymptotically large t Fig. 6 should show a horizontal line
at þ1 (black dotted line). Instead we observe an almost
linear dependence on t0 with a sizeable negative slope. Note
that this behavior does not allow to define a plateau
estimate for R4ðq⃗; t; t0Þ as we have done for the effective
form factors in (5.2) and (5.3).
The first observation we can make is that the dominant

Nπ contribution stems from the tree diagrams, i.e.,
X4ðq⃗; t; t0Þ ≈ Ztree

4 ðq⃗; t; t0Þ. The latter is displayed by the
blue line in Fig. 6. The loop contributions average away
when the sum over the pion momenta is taken, the argu-
ment is the same as the one given for the form factor

G̃PðQ2; t; t0Þ in the previous section, cf. (5.9). The con-
tribution Yðq⃗; tÞ from the 2-pt function is also small
for t ¼ 2 fm.
Since the loop diagrams do not contribute to the Nπ

contribution in R4ðq⃗; t; t0Þ we expect to be able to relax our
bound t≳ 2 fm that we imposed to suppress the high-
momentum Nπ states. Only one Nπ state with a small pion
momentum jq⃗j contributes and the ChPT result is expected
to be applicable for source-sink separations smaller than
2 fm. However, recall that ChPT is not expected to work
when the operator is close to either source or sink. In other
words, in Fig. 6 we should focus on the region
with jt0 − t=2j ≈ 0.
The qualitative behavior seen in Fig. 6 is easily under-

stood. It can be traced back to the relative sign between the
coefficients a∞4 ðq⃗Þ and ã∞4 ðq⃗Þ given in (4.18) and (4.19).
Taking only these leading coefficients into account in
Ztree
4 ðq⃗; t; t0Þ and dropping the small energy difference

EN;q⃗ −MN we approximately find

Ztree
4 ðq⃗; t; t0Þ ≈ −

2MNEπ;q⃗

M2
π

exp

�
−
Eπ;q⃗t

2

�

× sinh

�
Eπ;q⃗

�
t0 −

t
2

��
; ð5:11Þ

and it is essentially this − sinh ðEπ;q⃗ðt0 − t
2
ÞÞ behavior we

observe in Fig. 6.
Note that the prefactor (5.11) is numerically fairly large,

mainly due to the factor MN=Mπ. As we already discussed
in Sec. IV C, the SN contribution in R4ðq⃗; t; t0Þ is Oð1=MNÞ
suppressed compared to the Nπ contribution. Therefore,
much larger source-sink separations are necessary to
suppress these. Figure 6 also shows the result for twice
the source-sink separation t ¼ 4 fm (brown line). Even at
this large time separation a non-negligible slope is still
visible. To make this more quantitative let us introduce the
midpoint estimate

Πmid
4 ðq⃗; tÞ ¼ R4ðq⃗; t; t0 ¼ t=2Þ ¼ Π4ðq⃗Þ½1þX4ðt; t0 ¼ t=2Þ�

ð5:12Þ

for the constantΠ4ðq⃗Þwe are interested in. The sizeableNπ
contributions manifests in poor midpoint estimates. At t ¼
2 fm (5.12) overestimates by about 90%, and this number
decreases to about 45% for t ¼ 4 fm.

D. Comment on the summation method

The summation method [28,29] starts from the ratios
Rμðq⃗; t; t0Þ and computes the integral Sμðq⃗; t; tmÞ ¼R t−tm
tm dt0Rμðq⃗; t; t0Þ. As a function of t (keeping tm fixed)
the slope is proportional to the asymptotic values ΠμðQ2Þ
one is interested in, and it defines the so-called summation
estimate for it. Using the ChPT results for the ratios the Nπ

FIG. 6. The factor 1þ X4ðq⃗; t; t0Þ (red) entering the ratio
R4ðq⃗; t; t0Þ in (3.14) as a function of the shifted operator insertion
time t0 − t=2. Result for t ¼ 2 fm, a spatial volumeMπL ¼ 4 and
the smallest nonvanishing momentum with nq⃗ ¼ ð0; 0; 1Þ. Also
shown the approximation 1þ Ztree

4 ðq⃗; t; t0Þ (blue) for the same
parameters. Analogous result (brown) for twice the source-sink
separation, t ¼ 4 fm. The black dotted line shows the expected
constant result for t → ∞.
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contribution to the summation estimate is easily computed,
see Ref. [9] where it has been done for GAð0Þ.
However, for ChPT to give a good approximation of

Rμðq⃗; t; t0Þ all time separations in the 3-pt function need to
be large. Based on the results in the last section we expect
to need a minimal time separation of about 1 fm for tm and
t − tm. In addition, we need a nonzero time interval t − 2tm
to integrate over. This implies source-sink separations of
2.5 fm or larger. For the ratios without loop diagram
contributions the necessary time separation might be
significantly smaller. Still, in actual lattice determinations
tm is mostly taken to be zero, and ChPT is not expected to
work in this case. Therefore, although interesting in
principle we do not study the summation estimate any
further in the following.

VI. COMPARISON WITH LATTICE DATA

A. Preliminaries

To compare the ChPT results for the effective form
factors with lattice QCD data we ideally need continuum
extrapolated data with a (near to) physical pion mass. The
spatial volume should be sufficiently large withMπL ≃ 3 or
larger, and the data must have been obtained with the
plateau method. Finally, the time separations in the corre-
lation functions need to be sufficiently large such that they
are dominated by pion physics.
The last issue is the real bottleneck for a comparison with

lattice data. Source-sink separations of 2 fm and larger, as
we require for the axial from factor GA, are out of reach
with current simulation techniques. However, we argued
that our ChPT results might be applicable at significantly
smaller time separations in case of G̃P and the ratio R4. For
that reason we focus on these two quantities in the
following and compare with recently published data that
roughly match our requirements [15,18].

B. Induced pseudoscalar form factor

In Ref. [15] the PACS collaboration reports plateau
estimate data for the two nucleon form factors. The results
were obtained on a 964 lattice with lattice spacing a ≈
0.085 fm and a pion mass Mπ ≈ 146 MeV. The spatial
lattice extent L ≈ 8.1 fm is rather large, corresponding to
MπL ≈ 6.0. The source-sink separation equals 15 time
slices, i.e., t ≈ 1.3 fm, and the central four time slices with
6 ≤ t=a ≤ 9 were used to obtain the plateau estimates. For
more simulation details see [15].
Figure 7 shows essentially Fig. 16 of Ref. [15]. It

displays the numerical PACS results for the renormalized
induced pseudoscalar form factor (black data points)
together with existing experimental results (blue and green
data points) and the analytic expectation by the pion-
pole-dominance (ppd) model (red dashed line). In this
model the two form factors are given by

G̃PðQ2Þ≈ 4M2
NGAðQ2Þ

Q2 þM2
π

; GAðQ2Þ≈ GAð0Þ
ð1þQ2=M2

AÞ2
:

ð6:1Þ

In Ref. [15] the value M2
A ≈ 1.04 GeV was chosen, stem-

ming from r2A ¼ 12=M2
A with rA ≈ 0.67 fm.

For small momentum transfers the lattice data are
incompatible with the ppd model and the experimental
data. The PACS collaboration found that the data are well
described by a ppd-inspired ansatz (black dashed line in
Fig. 7)

G̃PðQ2Þ ≈ 4M2
NGAðQ2Þ

Q2 þM2
pole

; ð6:2Þ

with Mpole ¼ 256ð17Þ MeV determined by a fit of (6.2) to
the data. This mass is about twice as large as the pion mass
in the simulation.
The plateau estimates were obtained at a single source-

sink separation t ≈ 1.3 fm. For such a small time separation
we can expect the plateau estimates to differ significantly
from the physical values at t ¼ ∞ due to the presence of
excited states. With our result ϵplatP ðQ2; tÞwe can correct the
data and analytically remove the anticipated LO Nπ-state
contamination by calculating

FIG. 7. PACS data for the momentum transfer dependence of
the renormalized induced pseudoscalar form factor. Black sym-
bols are the original plateau estimate data given in Ref. [15]. Red
symbols correspond to the data corrected according to Eq. (6.3).
The prediction of the ppd model is given by the red dashed line,
while the corrected ppd model is shown by the dashed brown line.
The pole-ansatz description according to (6.2) of the original
PACS data is given by the black dashed line.
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G̃corr
P ðQ2; tÞ≡ G̃plat

P ðQ2; tÞ
1þ ϵplatP ðQ2; tÞ ; ð6:3Þ

setting t ¼ 1.3 fm. Provided higher order corrections and
other excited-state contributions are small we expect

G̃corr
P ðQ2; tÞ ≈ G̃PðQ2Þ; ð6:4Þ

i.e., the corrected data should be close to the true form
factor.
To correct the data we can use the simple approximation

in (5.10), and the result is shown in Fig. 7 by the red
symbols.11 The corrected lattice data are in good agreement
with the experimental data and the ppd model. In fact, the
improvement is better than naively expected. For source-
sink separations as small as 1.3 fm one would not be
surprised if excited states other than two-particle Nπ states
also contribute and distort the form factor. That the
correction works very well at t ¼ 1.3 fm supports our
expectation that the ChPT results for Gplat

P ðQ2; tÞ are
applicable for source-sink separations well below 2 fm.
Instead of correcting the lattice data by removing theNπ-

state contamination we can also correct the ppd model for
the presence of the Nπ-state contamination,

GppdþNπ
P ðQ2; tÞ ¼ Gppd

P ðQ2Þ½1þ ϵplatP ðQ2; tÞ�: ð6:5Þ

The resulting curve GppdþNπ
P ðQ2; tÞ is also shown in Fig. 7

(brown dashed line). It is nearly indistinguishable from the
pole ansatz result (6.2) found by the PACS collaboration to
describe the data very well.
The correction formula (6.3) and its region of appli-

cability needs to be carefully studied before it can be
applied to extract the physical form factor G̃PðQ2Þ from
lattice data. For this data at various source-sink separations
will be extremely useful, since these will allow to check
whether the corrected data are indeed independent of the
source-sink separation, i.e., whether Eq. (6.4) is satisfied.
Reference [17] reports plateau estimate data for three

source-sink separations t ¼ 0.94, 1.13 and 1.31 fm. The
lattice ensemble was generated with two-flavor twisted
mass fermions with a pion mass Mπ ≈ 130 MeV and a
lattice spacing a ≈ 0.094 fm. The spatial volume is some-
what small satisfying MπL ¼ 2.98. For more details about
the simulation parameters we refer to [17].
Figure 8 shows the plateau estimate data (solid circles)

and the corrected data (open squares) for the lowest six
momentum transfers for all three source-sink separations.12

For the lowest three Q2 values the original data exhibit a
clear dependence on the source-sink separation, while the

corrected data are compatible with being constant as a
function of t. This is better seen in Fig. 9 where the data are
shown as a function of t. The corrected data (red symbols)
in the lower two panels are compatible with being t

FIG. 8. Plateau estimate data (solid circles) of Ref. [17] and
corrected data (open squares) for the renormalized induced
pseudoscalar form factor for three source-sink separations: t ¼
0.94 (red), t ¼ 1.13 fm (blue) and t ¼ 1.31 fm (purple).

FIG. 9. Data of Fig. 8 as a function of the source-sink
separation t for the smallest three momentum transfers: Q2 ¼
0.073 GeV2 (upper panel), 0.148 GeV2 (middle panel) and
0.217 GeV2 (lower panel). Original plateau data in blue, cor-
rected data in red.

11Throughout this section the pion mass in the ChPT results is
set to the value found for the lattice ensemble we compare with.

12I thank C. Alexandrou for sending me the plateau estimate
data.
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independent, while the original plateau data (blue symbols)
show a clear trend to increase as t becomes larger. For the
smallest Q2 value in the upper panel this is not as
convincing as for the next two larger Q2 values, but the
statistical error is also larger in this case.
The range covered by the three source-sink separations

in Fig. 9 is rather small, and more data for larger t values
would be beneficial to test the correction formula. Larger
source-sink separations are hard to achieve in simulations
with a (near to) physical pion mass. Reference [30] reports
data obtained from a single 2þ 1 flavor ensemble with
clover-improvedWilson fermions. The pion mass 317MeV
is rather heavy and the lattice spacing a ≈ 0.11 fm is also
rather course. The volume, however, is quite large satisfy-
ing MπL ≈ 5.9. For more details see Ref. [30].
Figure 10 shows the plateau estimate data G̃plat

P ðQ2; tÞ
(blue symbols) for one momentum transfer Q2 ¼
0.12 GeV2, as it is displayed in Fig. 5 of Ref. [30].13 To
a good approximation the data show a linear rise as a
function of t. The corrected data (red symbols), on the other
hand, seem to reach a plateau at t around 1 fm, but the data
point at the largest source-sink separation is slightly too
large. Still, taking into account that the pion mass is
rather heavy the simple correction formula works surpris-
ingly well.
Our comparison between lattice plateau estimate data

and the ChPT results for the Nπ state contamination in it is
not conclusive. More data at larger source-sink separations
are needed to corroborate the ChPT results presented here,
in particular to validate the correction formula (6.3) for the
removal of the Nπ-state contamination from lattice data.

Recently, the PACS collaboration published form factor
data obtained from an ensemble with a 135 MeV pion mass
and a finite volume of size ð10.8 fmÞ4. Plateau estimates for
the form factors exist for four source-sink separations, with
the largest one of about 1.35 fm. A dependence on the
source-sink separation is clearly visible and it is certainly
interesting to compare the data with the ChPT predictions
presented here.14 Nevertheless, the main conclusion we can
draw so far is that the Nπ-state contamination in G̃plat

P ðQ2Þ
results in a softening of the anticipated ppd behavior at
small Q2, a feature that has been observed in many lattice
results so far.

C. The ratio R4ðQ2;t;t0Þ
In a recent paper [18] RQCD presented data for the ratio

R4ðQ2; t; t0Þ involving the time component A4 of the axial
vector current.15 It was observed that the excited-state
contribution is strongly enhanced compared to the SN
ground-state contribution. The enhancement was so strong
that a standard multistate fit ansatz failed to account for the
excited-state contribution.
In Sec. V C we discussed the peculiar features of the ratio

R4 compared to its spatial counterparts. In particular, we
emhasized that the SN contribution is 1=MN suppressed
compared to the Nπ contribution. Therefore it is interesting
to check whether the excited-state effects in the data of
Ref. [18] can be attributed to Nπ states.
RQCD analyzed data obtained with two-flavor non-

perturbatively improved Wilson fermions. The ensemble
with the lightest pion hasMπ ≈ 150 MeV, a lattice spacing
a ≈ 0.071 fm and a finite volume satisfying MπL ≈ 3.47.
Data for the ratios are available for three source-sink
separations corresponding to t ¼ 9a, 12a and 15a. In
the following we focus on the largest value t ≈ 1.07 fm,
which, for our purposes, is still rather small.
Figure 11 shows the data for R4ðQ2; t; t0Þ (red data

points) as a function of the (shifted) operator insertion time
t0 − t=2 for fixed t ¼ 1.07 fm and for fixed momentum
transfer Q2 ¼ 0.073 GeV2.16 The data do not exhibit a
plateau and show roughly a linear dependence on t0.17

The LO ChPT result for the ratio is shown by the red
solid line in Fig. 11. The line describes the data very well.
Recall that the ChPT result is not a fit to the lattice data, it is
fixed by a few input parameters as discussed in Sec. VA.
The fact that ChPT describes the data well for all t0, even

close to source and sink, is surprising and hard to under-
stand. We argued that the time separations t − t0 and t0 need

FIG. 10. Plateau estimate data (blue symbols) of Ref. [30] and
corrected data (red symbols) as a function of the source-sink
separation t.

13I thank J. Green for sending me the data.

14Unfortunately, the data are not publicly available yet [31].
15Reference [18] is mainly formulated assuming the Minkow-

ski metric, thus the subscript 0 is used for the time component.
16I thank T.Wurm for sending me the data. In Ref. [18] the data

are displayed in Fig. 6, left panel.
17A similarly looking plot was shown by T. Schulz at the

conference Lattice 2018 [32].
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to be sufficiently large such that pion physics dominates the
3-pt function, and we naively expected a minimal separa-
tion of about 1 fm for both t − t0 and t0. Therefore, for a
source-sink separation as small as t ≈ 1 fm we may expect
ChPT to describe the 3-pt function and the ratio for t0 close
to t=2, if at all. In other words we may have expected to
roughly reproduce the slope the data exhibit in the middle
of Fig. 11. The good agreement might simply be accidental,
this possibility cannot be ruled out without a more detailed
study with additional data.
As for the induced pseudoscalar form factor data we can

analytically remove the LO Nπ contribution from the data.
In analogy to (6.3) we compute corrected data according to

Rcorr
4 ðQ2; t; t0Þ≡ R4ðQ2; t; t0Þ

1þ X4ðQ2; t; t0Þ : ð6:6Þ

Provided the NLO corrections and excited-state effects
other than Nπ are small we have [cf. (3.14)]

Rcorr
4 ðQ2; t; t0Þ ≈ Π4ðQ2Þ: ð6:7Þ

In practice we can make use of our earlier observation that
the tree diagram contribution Ztree

4 dominates X4 in (6.6).
The corrected data is shown by the black data symbols in
Fig. 11. As expected from the good agreement between the
original data and the ChPT result the corrected data is
essentially a constant as a function of t0, i.e., the data fulfill
(6.7). Note that applying the correction formula is prob-
lematic near the t0 values where the ratio develops a zero.
There deviations between the lattice data and the approxi-
mate LO ChPT results become amplified, as can be seen in
Fig. 11 for t0 − t=2 ≈ 0.15 fm.

As repeatedly said, the Nπ contribution is really the
dominant part in the ratio R4, and one has to go to much
larger source-sink separations in order to significantly
suppress it. Figure 11 also shows the ChPT results for
twice and three times the original source-sink separation,
i.e., for t ≈ 2.1 fm (red dotted line) and t ≈ 3.2 fm (blue
dotted line). Apparently, the slope of the curves goes to zero
very slowly.
The reservations we expressed at the end of the last

section apply here as well. More data at more and larger
source-sink separations are necessary to quantitatively
corroborate our findings here. Still, the LO ChPT result
for the Nπ contribution accommodates qualitatively the
features seen in lattice data for the ratio R4.

18

VII. CONCLUDING REMARKS

We have seen that the dominant Nπ-state contribution to
the two axial form factors is of different origin. In case of
G̃PðQ2Þ it stems from a single pion carrying a spatial
momentum q⃗ associated with the momentum transfer Q2.
To GAðQ2Þ, on the other hand, a whole tower of Nπ states
contributes. Diagrammatically spoken, the loop diagrams
in Fig. 3 contribute to GAðQ2Þ, while the tree diagrams
contribute to G̃PðQ2Þ. We have argued that this difference
most likely implies different minimal source-sink separa-
tions to apply the ChPT results. In case of GAðQ2Þ we still
need comparably large source-sink separations of about
2 fm or larger to sufficiently suppress the high-momentum
Nπ states. Since these states do not contribute to G̃PðQ2Þ
much smaller separations seem to be accessible in this case.
Even with this reasoning in mind the comparison of the

ChPT results with numerical lattice data in Sec. VI works
unexpectedly well. It suggests that the discrepancy between
lattice results and experimental data and the ppd model is
dominantly causes by the Nπ state-contamination. We
stress again that this conclusion needs to be consolidated
by comparisons with more lattice data. Still, the procedure
suggested in Sec. VI to analytically remove the anticipated
Nπ-state contamination seems promising.

FIG. 11. Data for the correlation function ratio R4ðQ2; t; t0Þ (red
data points) and corrected data (black symbols) according to (6.6)
for t ≈ 1.07 fm and Q2 ¼ 0.073 GeV2. The ChPT result is given
by the red solid line. The dotted lines are the ChPT results for
t ≈ 2.1 fm (red) and t ≈ 3.2 fm (blue).

18Reference [18] proposes the use of the projected axial vector
current

A⊥
μ ¼

�
gμν −

p̄μp̄ν

p̄2

�
Aν ð6:8Þ

as a method to construct combinations of correlation functions
that suffer less from excited-state contaminations [we follow
Eq. (23) in Ref. [18] and use the Minkowski space notation in
(6.8).] As linear combinations we know the Nπ contribution in
the ratios R⊥

μ to LO ChPT from our results for the Rμ. In practice
each ratio R⊥

μ involves the Nπ state contribution of all four Rμ,
also those that stem from loop diagrams. For those we have no
reason to believe that a source-sink separation of 1 fm is large
enough for ChPT to apply, thus we refrained from comparing
lattice data for R⊥

μ with the LO ChPT results.
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Here we only studied the 3-pt functions of the axial
vector current. It is straightforward to do the analogous
calculation with the pseudoscalar density and to calculate
the Nπ-state contribution to the pseudoscalar form factor
GPðQ2Þ. Making use of the partially conserved axial vector
current (PCAC) relation the three form factors are related.
However, this relation was found to be significantly
violated by the lattice estimates for the form factors
[15,18,26,33]. The reason for this violation is not fully
understood, but with the ChPT results for the Nπ-state
contribution to all three form factors one can explicitly
check what role the two-particle Nπ states play here.
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APPENDIX A: SUMMARY
OF THE FEYNMAN RULES

We employ the covariant formulation of baryon ChPT
[22,23], and our calculations are done to LO in the chiral
expansion. To that order the chiral effective lagrangian
consists of two parts only, Leff ¼ Lð1Þ

Nπ þ Lð2Þ
ππ . Expanding

this Lagrangian in powers of pion fields and keeping
interaction terms with one pion field only we obtain

Leff ¼ Ψ̄ðγμ∂μ þMNÞΨþ 1

2
πað−∂μ∂μ þM2

πÞπa

þ igA
2f

Ψ̄γμγ5σaΨ∂μπ
a: ðA1Þ

The nucleon fields Ψ ¼ ðp; nÞT and Ψ̄ ¼ ðp̄; n̄Þ contain the
proton and the neutron fields p and n.Mπ denotes the pion
mass, while MN , gA and f are the chiral limit values of the
nucleon mass, the axial charge and the pion decay constant.
The interaction term in (A1) leads to the well known

nucleon-pion interaction vertex proportional to the axial
charge. A factor i appears here because we work in
Euclidean space-time. From the terms quadratic in the
fields one reads off the nucleon and pion propagators. We
find the time-momentum representation for the propagators
convenient. In that representation the pion propagator reads

Gabðx;yÞ¼ δabL−3
X
k⃗

1

2Eπ;k⃗

eik⃗ðx⃗−y⃗Þe−Eπ;k⃗jx0−y0j; ðA2Þ

with the pion energy given by Eπ;k⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þM2

π

q
. The

nucleon propagator Sabαβðx; yÞ is given by

Sabαβðx; yÞ ¼ δabL−3
X
k⃗

Z�
k⃗;αβ

2EN;k⃗

eik⃗ðx⃗−y⃗Þe−EN;k⃗jx0−y0j: ðA3Þ

a, b and α, β refer to the isospin and Dirac indices,
respectively. The factor Z�

k⃗
in the nucleon propagator

(spinor indices suppressed) is defined as

Z�
k⃗
¼ −ik⃗ · γ⃗ � EN;k⃗γ4 þMN; ðA4Þ

where the þ (−) sign applies to x0 > y0 (x0 < y0), and the

nucleon energy is given by EN;k⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þM2

N

q
. The sum

in both propagators runs over the discrete spatial momenta
that are compatible with periodic boundary conditions
imposed on the finite spatial volume, i.e., k⃗ ¼ 2πn⃗=L with
n⃗ having integer-valued components.
For the computation of the 3-pt function we need the

expression for the axial vector current. It can be obtained
from the known effective Lagrangian in the presence of an
external source field for the axial vector current [22], and is
found to be given by

Aa
μ ¼ gAΨ̄γμγ5σaΨ −

1

f
ϵabcπbΨ̄γμσcΨ − 2if∂μπ

a: ðA5Þ

The first two terms on the right-hand side stem from Lð1Þ
Nπ ,

the remaining one from Lð2Þ
ππ . The same expression has

already been used in Refs. [9].
Finally, the expressions for the nucleon interpolating

fields in ChPT have been derived in Ref. [24]. To LO and
up to one power in pion fields one finds

NðxÞ ¼ α̃

�
ΨðxÞ þ i

2f
πaðxÞσaγ5ΨðxÞ

�
; ðA6Þ

N̄ð0Þ ¼ β̃�
�
Ψ̄ð0Þ þ i

2f
Ψ̄ð0Þγ5σaπað0Þ

�
. ðA7Þ

These are the effective fields for the standard nucleon
interpolating fields composed of three quarks without
derivatives [34,35]. The interpolating fields not necessarily
need to be pointlike, but can also be constructed from
“smeared” quark fields. These operators map to the same
chiral expressions provided the smearing procedure is
compatible with chiral symmetry and the “smearing radius”
is small compared to the Compton wavelength of the pion.
In that case smeared interpolating fields are mapped onto
pointlike fields in ChPT just like their pointlike counter-
parts at the quark level [8,36]. The expressions differ only
by the LECs α̃, β̃. If the same interpolating fields are used at
both source and sink we find α̃ ¼ β̃.
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APPENDIX B: LO RESULTS FOR THE CORRECTION COEFFICIENTS

The correction coefficients Bcorr
j ðq⃗; k⃗Þ, B̃corr

j ðq⃗; k⃗Þ and Ccorr
j ðq⃗; k⃗Þ are introduced in Eqs. (4.20) and (4.21). The explicit

results read (j ¼ 1, 2):

Bcorr
j ðq⃗; k⃗Þ ¼ B∞

j ðq⃗; k⃗Þ
�
M2

π − kq
E2

π;k⃗

−
1

2gA

�
−
ðg2A − 2ÞE2

π;q⃗ðk3qj þ kjq3Þ
E2

π;k⃗
qjq3

ðB1Þ

Bcorr
3 ðq⃗; k⃗Þ ¼ B∞

3 ðq⃗; k⃗Þ
�
M2

π

E2

π;k⃗

−
1

2gA

�
−
E2
π;q⃗f2k2 þ ð4 − g2AÞk3q3g

E2

π;k⃗
ðE2

π;q⃗ − q23Þ
þ
E2
π;q⃗fE2

π;k⃗
ð2 − g2AÞ þ g2Aðk2 − 2k23gkq
E4

π;k⃗
ðE2

π;q⃗ − q23Þ
ðB2Þ

Bcorr
4 ðq⃗; k⃗Þ ¼ −B∞

4 ðq⃗; k⃗Þ
�
4 − 4gA þ 3g3A

8gA
þ ð2þ g2AÞk2 þ g2Akq

4E2

π;k⃗

�
− g2A

E2
π;q⃗k

2

E2

π;k⃗
M2

π
ðB3Þ

B̃corr
j ðq⃗; k⃗Þ ¼ B∞

j ðq⃗; k⃗Þ
�
M2

π − kq
E2

π;k⃗

−
1

2gA

�
−
E2
π;q⃗ððg2A þ gA − 2Þk3qj þ ðg2A − 2gA þ 2Þkjq3ÞÞ

E2

π;k⃗
qjq3

ðB4Þ

B̃corr
3 ðq⃗; k⃗Þ¼B∞

3 ðq⃗; k⃗Þ
�
M2

π

E2

π;k⃗

−
1

2gA

�
−
E2
π;q⃗f2k2þgAk3q3g
E2

π;k⃗
ðE2

π;q⃗−q23Þ
ðB5Þ

þ
E2
π;q⃗fE2

π;k⃗
ð−2 − gA þ 7g2AÞ − g2Að5k2 þ 2k23Þgkq

E4

π;k⃗
ðE2

π;q⃗ − q23Þ
ðB6Þ

B̃corr
4 ðq⃗; k⃗Þ ¼ −B∞

4 ðq⃗; k⃗Þ
�
4 − 4gA þ 3g3A

8gA
þ ð2þ g2AÞk2 þ ð4þ g2AÞkq

4E2

π;k⃗

�
−
2E2

π;q⃗ðE2

π;k⃗
ð4gA − 2Þ − g3Ak

2Þ
gAE2

π;k⃗
M2

π
ðB7Þ

Ccorr
j ðq⃗; k⃗Þ ¼ C∞

j ðq⃗; k⃗Þ
�
gA − 1

gA
−
k2 þ kq
E2

π;k⃗

�
þ
gAð2gA − 1ÞE2

π;q⃗ðk3qj þ kjq3Þ
2E2

π;k⃗
qjq3

ðB8Þ

Ccorr
3 ðq⃗; k⃗Þ ¼ C∞

3 ðq⃗; k⃗Þ
�
M2

π

E2

π;k⃗

−
1

gA

�
−
2g2AE

2
π;q⃗ðk2 − 2k23Þkq

2E4

π;k⃗
ðE2

π;q⃗ − q23Þ
þ
gAð2gA − 1ÞE2

π;q⃗ðkq − 2k3q3Þ
2E2

π;k⃗
ðE2

π;q⃗ − q23Þ
ðB9Þ

Ccorr
4 ðq⃗; k⃗Þ ¼ −g2A

E2
π;q⃗f2k3ðk2 þ kqÞ − k2q3g

E2

π;k⃗
M2

πq3
ðB10Þ

Note that all the coefficients given above are real. Together with the purely imaginary SN contribution the ratios Rμ are
purely imaginary. However, some of the loop diagrams do lead to imaginary parts in the correction coefficients, implying a
nonvanishing real part for the ratios with spatial indices. Therefore, the expressions given above apply to the ratios if we
consider, in slight contrast to (2.7), the definition

Rjðq⃗; t; t0Þ ¼
ImC3;jðq⃗; t; t0Þ

C2ð0; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðq⃗; t − t0Þ
C2ð0; t − t0Þ

C2ð0⃗; tÞ
C2ðq⃗; tÞ

C2ð0⃗; t0Þ
C2ðq⃗; t0Þ

s
; ðB11Þ

i.e., if we simply drop the real part in the ratios with j ¼ 1; 2; 3.
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