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It is a longstanding question whether the confinement of matter fields in QCD has an imprint in the
(gauge-dependent) correlation functions, especially the propagators. In particular, in the quenched case, a
fundamental difference could be expected between adjoint and fundamental matter. In a preceding
investigation, the propagator of a fundamental scalar was studied, showing no obvious sign of confinement.
Here, as a complement, the adjoint scalar propagator is investigated over a wide range of parameters in
the minimal Landau gauge using lattice gauge theory. This study is performed in two, three, and four
dimensions in quenched SU(2) Yang-Mills theory, both in momentum space and position space. No
conclusive difference between the two cases is found.
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I. INTRODUCTION

The confinement1 of matter in QCD is a very long-
standing problem [1]. In particular, it is especially unclear
how to read off the confinement of a particle from its
elementary correlation functions. This could be both the
propagator as well as the vertices [2–8]. Of course, the
correlation functions describing the elementary particles,
matter and gluon alike, are gauge dependent. Thus, this
question requires fixing a gauge, and thus the answer is
potentially gauge dependent. Here, this question will be
posed in a particular case, the best-studied one so far, the
Landau gauge, in particular the so-called minimal Landau
gauge [3].
A natural quantity to investigate these questions is the

spectral density. This spectral density is found to be
positivity violating for gluons [2–10]. However, the precise
form this violation takes, e.g., by a nontrivial cut structure,
complex poles, or otherwise, is not entirely settled. At any
rate, any such violation of positivity immediately implies
that the particle cannot be part of the physical state space,
and thus not observable. Sufficient, but not necessary,
conditions for violation of positivity can be either a

nonpositive definite position-space correlation function
or a nonmonotonous behavior of the derivatives of the
momentum-space correlation functions [3]. If the correla-
tion function is known both in momentum space and
position space sufficiently well, these results can be used
to constrain the type of analytic structure. For example,
an oscillatory behavior in position space and screened
behavior in momentum space points to a complex pole
structure [3].
Results for fermionic matter, especially quarks, are

intricate, see [2,8,11–13]. However, the results are com-
patible with a violation of positivity also in fermion
propagators. This is true for quarks both in the adjoint
and the fundamental representation.
Scalar matter suggests itself as a testbed of this question,2

due to the simpler Lorentz structure. For scalar matter in the
fundamental representation there have been various sug-
gestions for its behavior, which have been obtained using
continuum methods [15–22]. On the lattice a violation of
positivity has been found, though it is not entirely clear
whether its remains in the continuum and infinite-volume
limit [23]. Still, the propagator showed the presence of an
intrinsic, nonzero mass scale even if massless at tree-level,
and consequently exhibits a momentum-space propagator
similar to that of a massive particle. Thus, there is no clear
indication for confinement in the fundamental scalar sector.
On the other hand, it is naively expected that adjoint

scalar matter could show a different behavior in the
quenched case [16,22]. After all, the Wilson string tension
of the adjoint string still vanishes, due to string-breaking by
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1Confinement is here understood, if not noted otherwise, in the
sense that a particle cannot be observed as an asymptotic,
physical state. In this sense, also, QCD is confining. A definition
of confinement based on the Wilson string tension is in no
obvious way related to this. In fact, according to the Wilson string
tension, QCD is not a confining theory. See [1] for a more
detailed discussion of this difference.

2There are multiple subtleties with respect to this question in
the dynamical theory due to the possibility of a Brout-Englert-
Higgs effect, see [14]. In the present quenched case, this is not
relevant.
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FIG. 1. Unrenormalized propagator (left panels) and renormalized propagator (right panels). The top panels are for two dimensions,
the middle panels for three dimensions, and the bottom panels for four dimensions. The values aremr ¼ m ¼ 1 GeV and μ ¼ 1.5 GeV.
If the (statistical 1σ) error bars here and hereafter are not visible then they are smaller than the symbol size.
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FIG. 2. Scale dependence at mr ¼ m ¼ 1 GeV (left panels) and scheme dependence at μ ¼ 1.5 GeV (right panels) of the
renormalized propagator. The top panels are two dimensions, the middle panels three dimensions, and the bottom panels four
dimensions. The tree-level propagator is shown for comparison as a full line.
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matter-gluon hybrids. In case of the quarks, this does not
seem to lead to a differing behavior for the propagator at
a qualitative level [13,24–26]. However, adjoint quarks
have also a very different behavior when it comes to chiral
symmetry breaking, as their differing finite-temperature
behavior shows [27–29]. This may interfere with a clear
picture. Therefore, once more, it becomes interesting to
study adjoint scalar matter in the quenched case.
This will be done here. Following [23], this will be done

for a wide range of lattice parameters, and for two, three,
and four dimensions. Considering two dimensions may
seem odd at first. However, in this case the violation of

positivity for gluons appears similarly as in more dimen-
sions [10,30–32]. But gluons are not dynamical but only
pure gauge in two dimensions. At the same time, a
confinement according to the Wilson potential occurs
already for purely geometrical reasons [33]. Scalar particles
are, however, also dynamical in two dimensions. In the
fundamental case, this did not lead to any qualitative impact
[23], and scalar matter behaved in the same way in all
dimensions. It is, therefore, interesting to have a look at two
dimensions.
Three dimensions take an intermediate position. While it

is a dynamical theory in the quenched case, it has different
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FIG. 3. The wave-function renormalization constant as a function of the lattice cutoff and the lattice volume in two dimensions for
μ ¼ 1.5 GeV. The top-left panel shows the case of m ¼ mr ¼ 0 GeV, the top-right panel of m ¼ mr ¼ 0.1 GeV, the bottom-left panel
of m ¼ mr ¼ 1 GeV, and the bottom-right panel of m ¼ mr ¼ 10 GeV. The hatched band is the fit (5) with the parameters given in
Table I.
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renormalization properties than in four dimensions.
Moreover, while the four-dimensional unquenched case
is potentially trivial, this is not true in three dimensions
[34]. This could have potentially impact as well.
Again, as in [23], the quenched calculation will also

help to understand lattice artifacts and renormalization
properties of the scalar propagator beyond perturbation
theory. This is helpful in studies of the dynamical
case, which will, e.g., be relevant for studies of many
kinds of grand-unified theories on the lattice [14], for
which a host of predictions await nonperturbative
precision tests [35] after exploratory investigations in
the past [36,37].

As technically the study of the adjoint propagator is quite
similar to the study of the fundamental propagator, this
paper follows closely [23]. The technical setup is given in
Sec. II. Renormalization is studied in detail in Sec. III. The
results in momentum and position space are presented in
Sec. IV. These are the main results of this work. A short
summary follows in Sec. V. Some preliminary results have
been presented in [20].

II. TECHNICAL SETUP

In the following, the propagator of a scalar particle in the
adjoint representation of SU(2) in the quenched theory will
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FIG. 4. The wave-function renormalization constant as a function of the lattice cutoff and the lattice volume in three dimensions for
μ ¼ 1.5 GeV. The top-left panel shows the case of m ¼ mr ¼ 0 GeV, the top-right panel of m ¼ mr ¼ 0.1 GeV, the bottom-left panel
of m ¼ mr ¼ 1 GeV, and the bottom-right panel of m ¼ mr ¼ 10 GeV. The hatched band is the fit (5) with the parameters given in
Table I.
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be determined in two, three, and four dimensions. The
technical setup is based on [23,30,38,39]. Thus, the gauge
action is the Wilson action for SU(2) Yang-Mills theory.
The gauge field configurations are obtained using a cycle of
heatbath and overrelaxation updates. The lattice setups are
listed in Table III in Appendix. The determination of the
lattice spacing has been performed as in [32].
Note that the limiting factor in terms of lattice volumes

has been the required amount of statistics, especially for
the position-space investigation. Though the Schwinger
function is found to be positivity-violating in Sec. III C,
it still shows (additional) exponential suppression at

large times. Since smearing alters the momentum-space
properties drastically [40], this can only be beaten by an
exponential increase in statistics. Hence, the present
investigation is primarily statistics limited. In the same
vein, physically small volumes were thus the only
possibility to reach the large momenta necessary to
investigate the logarithmic behavior of the renormaliza-
tion constants in Sec. III.
Each decorrelated configuration is fixed to minimal

Landau gauge [3] using adaptive stochastic overrelaxation
[38]. The quenched adjoint propagator has been obtained
in a similar fashion as the quenched fundamental one
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FIG. 5. The wave-function renormalization constant as a function of the lattice cutoff and the lattice volume in four dimensions for
μ ¼ 1.5 GeV. The top-left panel shows the case of m ¼ mr ¼ 0 GeV, the top-right panel of m ¼ mr ¼ 0.1 GeV, the bottom-left panel
of m ¼ mr ¼ 1 GeV, and the bottom-right panel of m ¼ mr ¼ 10 GeV. The hatched band is the fit (5) with the parameters given in
Table I.
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in [23,39]. In the continuum, it is given by the inverse of the
covariant adjoint Laplacian including the mass term

−D2 ¼ −ð∂μ þ gfabcAc
μÞ2 þm2

0;

where the fabc are the structure constants, for SU(2) just the
Levi-Civita tensor, the Aa

μ are the gauge fields, g ¼ ffiffiffiffiffiffiffiffi
4=β

p
the (bare) coupling constant, and m0 the bare mass of the
scalar. As the lattice version of this operator its naive
discretization [41]

−D2
L ¼ −

X
μ

ðUa
μðxÞδyðxþeμÞ þ Ua†

μ ðx − μÞδyðx−eμÞ − 2δxyÞ

þm2
0δxy

Ua
μbc ¼

1

2
tr ðτbU†

μτcUμÞ;

has been used, where Ua
μ are the link variables in the adjoint

representation and Uμ the usual links in the fundamental
representation. The links are transformed between both
representations using the generators τa, in the present case
the Pauli matrices. The eμ are lattice unit vectors in the
corresponding directions. Since this operator is positive
semi-definite, it can be inverted. This has been done using
the same method as for the Faddeev-Popov operator in [38].
It should be noted that even a zero mass is not a problem for
this method.3 The final result is averaged over color. The
momenta are evaluated along the4 x-axis as edge momenta
and along the xy, xyz, and xyzt diagonal directions, when
available in a given number of dimensions. This provides
access to both the lowest and highest possible momenta for
all dimensions with the least corresponding lattice artifacts
[32] without employing additional improvements [42,43].
The latter would require again higher statistics at all
momenta, e.g., to obtain sufficiently precise renormalization
constants for all volumes as well to make effective use of.
Fixing the bare mass m0 in (1) is done as in [23]: Using

the known lattice spacings, it is set to the desired tree-level
value m ¼ am0 at the ultraviolet cutoff 1=a. Four different
values will be used, zero, 100 MeV, 1 GeV, and 10 GeV.
The bare values m0 for 1 GeV physical tree-level mass are
listed in Table III. In [23], it was found that the lattice
artifacts were for all masses comparatively small, even for
zero and 10 GeV. As will be seen, this is not the case here,
and substantial discretization artifacts are encountered
independent of the bare mass. In this respect, adjoint
matter is different than fundamental matter.

III. RENORMALIZATION

A. Definition of the renormalization scheme

For the adjoint case, the same scheme will be used as
for the fundamental case [23]. For completeness, it will be
briefly repeated here. It assumes that the renormalization
can be performed as in the perturbative case [44], i.e.,
a wave-function renormalization constant and a mass
renormalization is sufficient. While discretization effects
are large it seems that this is indeed possible for sufficiently
fine lattices.
There are then two necessary renormalization constants,

a multiplicative wave-function renormalization Z, and
an additive mass renormalization δm2. The renormalized
propagator is

Dijðp2Þ ¼ δij

Zðp2 þm2
rÞ þ Πðp2Þ þ δm2

; ð1Þ

where m2
r is the renormalized mass, p2 is the momentum

and Πðp2Þ is the self-energy obtained from the unrenor-
malized color-averaged propagator Du ¼ Dii

u=Nc,

Πðp2Þ ¼ 1 − p2Duðp2Þ
Duðp2Þ ð2Þ

and, therefore, encodes the deviation from the tree-level
propagator

Du ¼
1

p2 þ Πðp2Þ :

The inclusion of the tree-level mass m2 in the self-energy
is technically convenient, as it avoids to use explicitly the
scale a.

TABLE I. Fit parameters of (5) for the wave-function renorm-
alization constants in the standard scheme. A value of 0 for Z∞
indicates that no stable fit with a nonzero value for Z∞ could be
found.

d m [GeV] Z∞ c Λ [GeV]

2 0 1.116(6) 0.058(1) 4.4(4)
2 0.1 1.118(3) 0.053(6) 4.1(3)
2 1 1.1067(8) 0.0400(14) 1.88(5)
2 10 0.997(3) 0.06401(13) 0.7(1)
3 0 0.847(16) 1.56(5) 5.56(4)
3 0.1 0.85(3) 1.56(12) 5.56(16)
3 1 0.869(5) 1.44(5) 5.58(12)
3 10 1.043(13) 0.176(11) 1.101(6)
4 0 0 7.2(7) 13(4)
4 0.1 0 6.7(5) 11(2)
4 1 0 7.1(8) 12(4)
4 10 0 6.2þ1.1

−0.9 11(4)

3In contrast to the Faddeev-Popov operator, this operator has
no trivial zero modes, and thus an inversion even at zero
momentum is possible. However, since constant modes affect
the result on a finite lattice, this is not done here, as in [23].

4Note that, where possible, the momentum directions are not
averaged, as this would require additional expensive inversions
but introducing additional correlations.
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The renormalization scheme is

Dijðμ2Þ ¼ δij

μ2 þm2
r

ð3Þ

∂Dij

∂p ðμ2Þ ¼ −
2μδij

ðμ2 þm2
rÞ2

Z ¼
2μ − dΠðp2Þ

dp ðμ2Þ
2μ

δm2 ¼
ðμ2 þm2

rÞ dΠðp
2Þ

dp ðμ2Þ − 2μΠðμ2Þ
2μ

; ð4Þ

with the renormalization scale μ. In most of the paper, the
choice μ ¼ 1.5 GeV and mr ¼ m will be made. The effect
of different choices will be investigated in Secs. III C and
IV B. Numerically, the constants are determined by linear
interpolation between the two momenta values along the
x-axis between which the actual value of μ is. The
derivative of Π is obtained by deriving the linear inter-
polation of Π between both points analytically. Errors are
determined by error propagation from the statistical boot-
strap errors of the propagator [38].
Note that the statistical errors of Z and δm2 had been

propagated back into the renormalized propagator in [23].
This is not done here. The reason is that the mass
renormalization δm2 is found to be very large in comparison
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to the fundamental case. If the error is back-propagated, this
yielded very large errors, but those were highly correlated,
i.e., substantially overestimated the statistical error. This was
seen as having almost identical values for different derived
quantities, but with error bars much larger than the curves
suggest. To avoid this correlation, only the error on Π,
determined by error propagation from the only direct lattice
measurement of the bare propagator Du in (2), was propa-
gated into the renormalized propagator (1). That can be
equally well seen as defining the renormalization constants,
rather than to determine them from the data.
Note that if at the pole location the propagator depends

only on jpj2 this is the analytically continued pole scheme.

However, as will be seen in Sec. IV, this is not the case in
general in the quenched theory.

B. Numerical results and discretization dependence

The effect of renormalization is shown in Fig. 1. It is
clearly seen that the unrenormalized propagator depends
substantially on a, the more the higher the dimension. This
dependency is almost removed by the renormalization
prescription of Sec. III A if a−1 ⪆ 2 GeV. Only a slight
dependency is left afterwards, decreasing the finer the
lattice gets. The residual dependency on a is actually
slightly larger the smaller the masses, but the general trend
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FIG. 7. The mass renormalization constant as a function of the lattice cutoff and the lattice volume in three dimensions for
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is the same. This is likely also affected by a mixing with
finite-volume effects.
Nonetheless, this remainder systematic discretization error

is substantially larger than for the fundamental case [23],
even though the dependency on a without renormalization
is in both cases similar. This will have consequences
throughout the rest of the investigation. Therefore, it will
be necessary to often assess the volume dependence and a
dependence independently, rather than just looking at the
finest lattices as it was possible in the fundamental case [23].
To the author, it is not clear where this difference originates
from, and will be taken here as an observation which has to
be taken into account when judging the results.

Note that, as in the fundamental case [23], the differences
mainly arise in the infrared, indicating that the mass
renormalization is stronger a dependent than the wave-
function renormalization, as expected from perturbation
theory. This will be confirmed below in the systematic
analysis in Sec. III D.
As in the fundamental case [23] any attempt to improve

systematic uncertainties by using more points in the
interpolation for the determination of the renormalization
constants were more than offset by the increase of the
statistical errors. In fact, the statistical fluctuation are found
to be stronger for the adjoint case than for the fundamental
case. Thus, the linear interpolation described in Sec. III A
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will be used throughout. Still, in cases where the renorm-
alization point is mainly dominated by a single of the two
points in the interpolation this can induce an additional
systematic error, as is seen, e.g., at a−1 ¼ 1.14 GeV in four
dimensions in Fig. 1. This case will happen less and less
the closer the lattice parameters are to the thermody-
namic limit.

C. Scale and scheme dependence

Of course, the choice of scheme in Sec. III A is
completely arbitrary. To test the impact of this choice on
the propagator in momentum space both the renormalized
mass and the renormalization scale will be varied. However,
this can give only then a reasonable estimate of the effects if

TABLE II. Fit parameters of (6) for the mass renormalization
constants at μ ¼ 1.5 GeV.

d m [GeV] M [GeV] c ½GeV3−d� Λ [GeV] ϵ

2 0 −0.138ð4Þ −0.353ð8Þ Oð10−9Þ −0.415ð9Þ
2 0.1 −0.160ð4Þ −0.3348ð19Þ Oð10−7Þ −0.428ð5Þ
2 1 −0.570ð2Þ −0.1427ð11Þ Oð10−8Þ −0.591ð5Þ
2 10 −16ð2Þ 1.18(17) Oð10−4Þ 0.008(3)
3 0 −0.4117ð4Þ −1.489ð5Þ 3.055(19) 0.973(3)
3 0.1 −0.42ð5Þ −1.50ð3Þ 3.09(12) 0.978(5)
3 1 −0.670ð3Þ −1.259ð6Þ 3.266(14) 0.912(3)
3 10 −6.9ð3Þ 18.8(13) 3.1(1) 2.79(15)
4 0 −1.092ð11Þ −2.25ð7Þ 2.59(5) 1.88(3)
4 0.1 −1.094ð11Þ −2.26ð7Þ 2.59(5) 1.88(3)
4 1 −1.283ð6Þ −2.20ð7Þ 2.71(5) 1.88(3)
4 10 −5.93ð5Þ −0.065ð12Þ 0.95(5) −0.48ð8Þ
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FIG. 9. The propagator (left panel) and the dressing function (7) (right panel) in two dimensions for m ¼ mr ¼ 0 GeV and
μ ¼ 1.5 GeV.
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the range is not probing the extremes of the lattice,
requiring a sufficiently fine resolution. Also, the bare mass
should be sufficiently far away from the extremes of the
lattice. Thus, in the following the case m ¼ 1 GeV will be
considered, requiring volumes for which lattice spacings
a−1 ≳ ð2 GeVÞ−1 are available. Furthermore, for the sake
of comparability the same physical volumes will be used
as in [23].
The results are shown for both scale and scheme

dependence in Fig. 2. The dependence on the scale is
relatively mild. Because of the derivative condition (4), the
change of scale leads to a tilting of the propagator, due to its
monotonous behavior. That the strongest effect is seen in
the infrared indicates already that the largest deviation
from tree-level will be encountered there. This is also

emphasized by the scheme dependence. When introducing
a large mass scale by the renormalization a closer resem-
blance to tree-level is obtained. However, if introducing a
smaller mass scale larger deviations are seen. It appears that
there is an intrinsic mass-scale, similar to the fundamental
case [23], which adds to the mass scale introduced by the
scheme. This will be investigated, and confirmed, further in
Sec. IV. At any rate, there is little difference between the
different dimensionalities.

D. Dependence of the renormalization constants
on the volume and the cutoff

For unquenched simulations [21] it is much harder to find
lines-of-constant physics. In addition, investigating multiple
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FIG. 11. The propagator (left panel) and the dressing function (7) (right panel) in two dimensions for m ¼ mr ¼ 1 GeV and
μ ¼ 1.5 GeV. Note the different scale in the right-hand panel compared to Figs. 9 and 10.
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volumes is expensive due to the amount of configurations
necessary for spectroscopy. Hence, it is quite important to
know how renormalization needs to be performed as a
function of lattice parameters, and how it is influenced by
discretization and finite-volume artifacts. For the fundamen-
tal case [23], it was found that the functional dependence on
a−1 was of the qualitative form expected from perturbation
theory [44], and a dependence on volume was quasi
nonexistent, even for rather small volumes. This permits
to obtain high-precision renormalization constants on small
volumes to be used on larger volumes. It will be seen that the
same is true for the adjoint case. Note that in the following
only the standard scheme mr ¼ m with a renormalization
scale μ ¼ 1.5 GeV will be investigated. In other schemes,
this finding could not be true.

The wave-function renormalization is shown in Figs. 3–5
for varying dimensionalities. In all cases, it decreases
eventually with increasing 1=a. There is some finite-
volume dependence visible, especially in three dimensions.
However, this seems to be essentially only a rescaling, as
for the fundamental case [23]. The qualitative behavior
seems to be volume independent. There is also a jumping
behavior in four dimensions when a−1 crosses a critical,
volume-dependent value. This hints to a mass-scale, which
increases with increasing volume, which has to be crossed
before the asymptotic behavior can be reached. Indeed,
there is a mass scale different from the renormalized mass
present, as will be discussed in Sec. IV.
It is, therefore, useful to investigate the asymptotic

behavior at large cutoffs, thus utilizing the smallest volume.
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FIG. 13. The propagator (left panel) and the dressing function (7) (right panel) in three dimensions for m ¼ mr ¼ 0 GeV and
μ ¼ 1.5 GeV.
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FIG. 14. The propagator (left panel) and the dressing function (7) (right panel) in three dimensions for m ¼ mr ¼ 0.1 GeV and
μ ¼ 1.5 GeV.
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The slow evolution and the fundamental case [23] suggest a
logarithmic behavior. Indeed, an ansatz

ZðaÞ ¼ Z∞ þ b

ln
�

a−2þΛ2

ð1 GeVÞ2
� ð5Þ

provides a reasonable good approximation, as is visible in
Figs. 3–5. The fit parameters can be found in Table I.
There are two interesting observations. The first is that,

in four dimensions, Z∞ is zero, while it is nonzero in lower
dimensions, in agreement with perturbative expectations
[44]. Incidentally, this already hints that the adjoint scalar is
not a physical particle, due to the Oehme-Zimmermann

superconvergence relation [45]. It is also the same pattern
as in the fundamental case [23].
The second is that the fit parameters become increasingly

mass independent the higher the dimension. In particular,
within errors, they are completely mass independent in four
dimensions. This is the more remarkable as a−1 is in four
dimensions at most of the order of the largest mass.
Interestingly, also the scale Λ is quite large, much larger
than in the fundamental case [23], where it is essentially
1 GeV. This is in-line with results from the fermion sector
[13,24] as well as from glueball masses [46] which suggest
an intrinsically higher value for adjoint scales than for
fundamental scales.
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FIG. 15. The propagator (left panel) and the dressing function (7) (right panel) in three dimensions for m ¼ mr ¼ 1 GeV and
μ ¼ 1.5 GeV. Note the different scale in the right-hand panel compared to Figs. 13 and 14.
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FIG. 16. The propagator (left panel) and the dressing function (7) (right panel) in three dimensions for m ¼ mr ¼ 10 GeV and
μ ¼ 1.5 GeV. Note the different scale in the right-hand panel compared to Figs. 13 and 14.
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The situation for the mass renormalization constant,
more precisely for ðjδm2 −m2jÞ1=2, is shown in Figs. 6–8.
The results can be fitted rather well by the form

δm2ðaÞ −m2 ¼ −
�
M þ ca2−d

�
ln

�
Λ2 þ a−2

ð1 GeVÞ2
��

ϵ
�

2

:

ð6Þ
The fit parameters are listed in Table II. As expected, the
dependence on a−1 is purely logarithmic in two dimen-
sions, linear in three dimensions, and quadratic in four
dimensions. In the latter cases, also, logarithmic correc-
tions appear, as expected [44,47]. The logarithms also
exhibit anomalous dimensions. In general, except in two

dimensions and aside fromM, the fit parameters are almost
independent of the bare mass. Only for the largest bare
mass this is not true, but this is conceivably a discretization
artifact. In fact, the a dependence in the latter case is
different at small 1=a, but at large 1=a the behavior starts
to change and to become similar to the ones at smaller
bare mass. This behavior is once more similar to the
fundamental case [23].5 Hence, the asymptotic behavior
seems to emerge only for a−1 ≳m.
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FIG. 17. The propagator (left panel) and the dressing function (7) (right panel) in four dimensions for m ¼ mr ¼ 0 GeV and
μ ¼ 1.5 GeV.

p [GeV]
1 10

]
-2

D
(p

) 
[G

eV

0

1

2

3

4

5

6

7

=1.5 GeVμ=m=0.1 GeV, rm

4V=(1.3 fm)

4V=(2.2 fm)

4V=(3.1 fm)

4V=(3.9 fm)

4V=(4.8 fm)

4V=(5.7 fm)

4V=(6.5 fm)

4V=(6.9 fm)

Propagator in four dimensions

p [GeV]
1 10

H
(p

)

0

0.2

0.4

0.6

0.8

1

Dressing function in four dimensions

FIG. 18. The propagator (left panel) and the dressing function (7) (right panel) in four dimensions for m ¼ mr ¼ 0.1 GeV and
μ ¼ 1.5 GeV.

5Note that for the fundamental case it was possible to fit the
leading a dependence in (6), rather than to set it to 2 − d. This did
not yield stable fits in the present case, and, therefore, this
behavior was fixed.
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Interestingly, the only parameter showing a pronounced
dependence on the mass is −M. It behaves roughly like
constantþm=d, with the characteristic constant being
roughly 0.15, 0.4, and 1 GeV in two, three, and four
dimensions, respectively. This once more indicates an
intrinsic scale.

IV. ANALYTIC STRUCTURE

A. Momentum-space properties

The results of the previous section, especially Fig. 1,
suggest that discretization artifacts are sizable, particularly
in the infrared. Thus, in the following not only the
results for the finest lattices but also at fixed a−1 will be
considered.

In addition to the propagator, the dressing function,
defined as

Hðp2Þ ¼ ðp2 þm2
rÞDðp2Þ; ð7Þ

will also be presented. The dressing function, therefore,
describes the deviation from the (renormalized) tree-level
form. By construction at μ all dressing functions equal 1.
The results are shown for two dimensions in Figs. 9–12,

for three dimensions in Figs. 13–16, and for four dimen-
sions in Figs. 17–20. From the dressing functions at large
momenta, substantial discretization artifacts are visible.
They lead to a deviation away from the continuum limit,
especially in four dimensions. This is quite similar in kind
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FIG. 19. The propagator (left panel) and the dressing function (7) (right panel) in four dimensions for m ¼ mr ¼ 1 GeV and
μ ¼ 1.5 GeV. Note the different scale in the right-hand panel compared to Figs. 17 and 18.
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to the other propagators [32] and could be improved using
the techniques described, e.g., in [42,43].
At low momenta, a marked infrared suppression com-

pared to the renormalized tree-level behavior is visible
from the propagators. This is the stronger the smaller m.

Only for m ¼ mr ¼ 10 GeV (almost) no such effect is
seen. A similar effect was also observed for the funda-
mental case [23], but it is much stronger here, suggesting a
much larger screening effect. A stronger screening in the
adjoint case than in the fundamental case is also observed
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for fermions [2,8,11–13]. In addition, there are stronger
finite-volume effects than in the fundamental case, espe-
cially at low m. They, therefore, extend to larger momenta,
up to a few hundred MeV. However, this is intertwined with
the discretization artifacts.
To study the combination of both effects in more detail, in

Fig. 21 the screening mass Dð0Þ−1=2 is shown as a function
of physical lattice extension and discretization. Note that
since the propagator has not been evaluated at zero momen-
tum, this value is obtained by a linear extrapolation of the
propagator at the two lowest nonzero momenta. There is a
quite different trend than in the fundamental case [23].
There, after some initial effects, the screening mass became
essentially volume independent.
The situation here in the adjoint case is quite different.

It is also quite different for the different numbers of
dimensions. In two dimensions, there is, except for the

coarsest lattices, little dependency on volume at fixed
lattice spacing. But there is a pronounced dependency
on the lattice spacing at fixed volume. Still, The results tend
visibly towards a finite value of about 400–500 MeV in the
continuum limit. The situation is far less obvious in three
dimensions. There a pronounced dependency on both the
lattice spacing and the physical lattice extension is seen.
It is not yet sure that the screening mass tends towards a
finite value in the thermodynamic limit. However, for the
finest and largest lattices the value is still at about 300 MeV,
and thus of comparable size to the one in two dimensions.
If it would vanish, it would need to do so substantially
faster than linear. In four dimensions, the situation changes
once more. Now the results are much less dependent on the
discretization, but show a strong dependency on the
physical volume, reaching down again to values of about
300 MeV. Once more, it is not clear if it surely extrapolates
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to a nonzero value in the thermodynamic limit, but again if
it vanishes it needs to do so much faster than linear.
Note that the trends are also surprisingly true for the

large tree-level mass of 1 GeV, though here the effect is
much weaker than for the lighter tree-level masses. Still,
this indicates a screening which intensifies with larger
volumes, while it was, more or less, constant in the
fundamental case. In particular, the screening mass is
substantially larger than zero, even for the case of zero
tree-level and renormalized mass. The size of this screening
mass in the massless case of 300–500 MeV for the largest
volume is somewhat larger than in the fundamental case,
where it was of order 200–250MeV. The same effect is also
seen for adjoint quarks in comparison to fundamental
quarks: The effective screening mass for the adjoint quarks
is much larger than for the fundamental ones, almost a

factor of three [13,24–26]. In this sense, the situation for the
adjoint scalars is less drastic.
At larger momenta the behavior is far less drastic. As

seen in Figs. 9–20 the propagators follow at higher
momenta more or less the expected pattern. At momenta
much larger than the renormalization scale the propagators
start again to deviate from the tree-level one. In four
dimensions, this follows from the usual logarithmic run-
ning. In lower dimensions, this is somewhat unexpected,
and in contrast to the gauge propagators [3]. This is,
however, likely due to the additional wave-function
renormalization, which compensates partly for a self-
energy contribution, and this discrepancy yields the
observed effect: Due to asymptotic freedom, at large
momenta all propagators in two and three dimensions tend
to D ¼ 1=ðZp2Þ, yielding HðpÞ ¼ 1=Z, rather than unity.
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In addition, in lower dimensions also, additional logarith-
mic corrections can arise on top of the usual power law
[47], which could potentially also contribute.

B. Schwinger function and effective mass

The Schwinger function

ΔðtÞ ¼ 1

π

Z
∞

0

dp0 cosðtp0ÞDðp2
0Þ

¼ 1

aπ
1

Nt

XNt−1

P0¼0

cos

�
2πtP0

Nt

�
DðP2

0Þ;

essentially the temporal correlator, is obtained from the
renormalized propagator. The calculation is straightforward
in principle, though requires obtaining the removed value at

zero momentum. As above, this is obtained by a linear
extrapolation of the propagator at the two lowest momenta.
Because of the relatively large statistical noise, this induces
a corresponding larger error. Systematically, any uncer-
tainty in this constant will vanish as a function of the
physical volume, as the extrapolation is done over a smaller
and smaller distance in momentum. It can, therefore, be
considered an additional finite-volume effect.
From the Schwinger function, the effective (time-

dependent) mass

meffðtÞ ¼ − ln
Δðtþ aÞ
ΔðtÞ ; ð8Þ

can be derived. If the Schwinger function decays strictly
like an exponential, this mass will be time independent and
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coincide with the pole mass [48]. On a finite lattice, for any
physical particle with a positive spectral function, this
effective mass is a monotonously decreasing function for
t ≤ L=2. Eventually, at sufficiently long time, it is just the
energy of the lightest state with which the operator has a
nonzero overlap. If the effective mass is nonmonotonously
decreasing, the spectral function has necessarily negative
contributions. Therefore it then does not describe a physical
particle.
Because of the larger systematic uncertainties, espe-

cially with respect to discretization, the interpretation
of these quantities is more involved than in the funda-
mental case. In the latter case [23], the effective masses
approached at long times a, more or less, physical
behavior, indicating a would-be pole mass of about
200–250 MeV, with indications of positivity violations

remaining at short times. The only necessity was to be
sufficiently close to the thermodynamic limit to observe a
universal behavior.
Due to the same effects which already plagued the

extraction of the screening mass in Sec. IVA, this is no
longer the case. To actually observe a unique behavior
requires to work at fixed lattice spacing. Even then, a
substantial finite-volume effect remains. As an illustration,
in Figs. 22–24 the effective mass (8) is shown at fixed
a−1 ≈ 1.5 GeV in two, three, and four dimensions, respec-
tively. As in the fundamental case [23], the effective mass
rises at short times, showing again that the particle is
unphysical. The finite-volume then eventually makes it fall
again. With increasing volume, the effective mass becomes
flatter and flatter over a longer period of time, again similar
to the fundamental case.
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FIG. 25. The maximum of the effective mass (8) in two dimensions (top-left panel), three dimensions (top-right panel), and four
dimensions (bottom panel) as a function of lattice size and lattice spacing.
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Thus, the maximum effective mass can be used as an
estimator for an upper limit of such a would-be long-time
pole mass. The result at m ¼ mr ¼ 0 GeV for this quantity
is shown in Fig. 25. In all cases, the estimator is strongly
affected by the lattice parameters. In two dimensions, the
estimator flattens out at about 500 MeVat sufficiently small
lattice spacings and large volumes. In higher dimensions, it
shows a complex combination of trends, dropping at least
below 400 MeV closest to the thermodynamic limit. The
results in three dimensions suggest that this process may
come to a finite value in the thermodynamic limit. In four
dimensions, this is harder to judge. It is hence far less
obvious if the adjoint scalar resembles at least for some
distance regime a physical, massive particle as it was in the
fundamental case [23].
The situation is quite similar for m ¼ mr ¼ 0.1 GeV,

and indeed leading to similar quantitative effects.

Especially, the values for the estimator are essentially
identical, and no trace of the differing renormalized masses
remain. Quite contrary at m ¼ mr ¼ 1 GeV the same
estimator is within some 10% independent of the lattice
parameters, and quickly converges to 1 GeV. Thus, no
additional contribution to this mass estimator is observed.
This is as in the fundamental case [23]. Hence, a large
explicit mass completely overpowers any other contribu-
tion. For the largest mass, a rise towards its value is also
seen, but as the values of a−1 are still below its value, this
does not flatten out.
From this, it can be concluded that there appears to be in

the adjoint case an additional mass generated. But because
of much stronger lattice artifacts, this needs to be handled
with much more care than in the fundamental case. Also,
its value of about 400 MeV is not so much larger than
the 250 MeV observed in the fundamental case as the
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difference between fundamental fermions and adjoint
fermions suggest.
Finally, an investigation of the scheme dependence along

the lines of [23] reveals the same pattern: It is possible to
shift the effective mass around, but it is not possible to push
it below a certain limit, no matter the tree-level mass. This
lower limit is similar for all tree-level masses and of the
same size as those shown in Fig. 25; i.e., just as in
perturbation theory, this effective mass remains not a
physical quantity but scheme dependent. Interestingly, as
is shown in Fig. 26, the flatness, of the effective mass curve
is affected by the choice of renormalization scheme. There
exists a “sweet spot” in the example at about 275 MeV,
where the effective mass becomes almost flat, except at
very short times. Thus, there exists a scheme, which makes
the adjoint scalar most “particlelike.” Note that this value is
actually independent from the tree-level mass. This mass
value is also a value consistent with where the estimator in
Fig. 25 are moving to in the thermodynamic limit.
As a flat curve would correspond to a physical particle of

this mass, the best interpretation of this observation is that
at this value ofmr the renormalization scheme becomes the
closest approximation to a pole scheme.

V. CONCLUSION

Summarizing, the propagator of an adjoint scalar in the
quenched approximation has been studied in detail in
two, three, and four dimensions. It shows both stronger
modifications compared to its tree-level form as well as
much stronger influences of lattice artifacts in comparison
to a fundamental scalar [23]. Still, despite all quantitative
differences, there appears to be little qualitative difference
between both cases. Especially, in both cases a dynamical
scale generation of about a few hundred MeV has been
observed, independent of the tree-level mass. Moreover,
neither particle exhibits a behavior which looks like a
physical particle, though both approximate such a behav-
ior at long distances. In the present adjoint case, this is
much more sensitive to renormalization effects and lattice
artifacts.
What is not seen is any indication, as was originally

hoped for, which hint to an obvious connection to (Wilson)
confinement. While the fundamental and adjoint Wilson
string show, at the distance scales achieved here, qualita-
tive different behavior in sufficiently high dimensions, this
is not the case for the propagators. Especially the string
breaking in the adjoint case seems to have no direct impact.
Also, there is no difference seen for the different

dimensionality. Even though the physical picture, due to
geometric Wilson confinement or the possibility of trivi-
ality in the dynamical case as allured to in the introduction,
differs substantially between different dimensions, this
seems to have next to no qualitative impact on the
propagator. In fact, even quantitatively, there is very little
difference in the different dimensions.

While the present study cannot exclude some more
subtle hint in the propagators, the lack of any obvious
effect is unfortunate, especially when searching for a
possibility to obtain such information from low-order
correlation functions. It may still be that such information
is hidden in the vertices, as has been variously suggested
[15,49–51]. Thus, a study of the corresponding vertices is a
logical next step [20,52].
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APPENDIX: LATTICE SETUPS

The various lattice setups are listed in Table III. The
determination of the lattice spacings has been performed as
in [32].

TABLE III. Number and parameters of the configurations used,
ordered by dimension, lattice spacing, and physical volume. In all
cases, 2ð10N þ 100ðd − 1ÞÞ thermalization sweeps and 2ðN þ
10ðd − 1ÞÞ decorrelation sweeps of mixed updates [38] have been
performed, and auto-correlation times of local observables have
been monitored to be at or below one sweep. The number of
configurations were selected such as to have a reasonable small
statistical error for the renormalization constants determined in
Sec. III. The value m0 denotes the value of the mass parameter in
(1) to yield a tree-level mass of 1 GeV. The other tree-level
masses are obtained by multiplying or dividing this number by
10, or setting it to zero for tree-level mass zero.

d N β a [fm] a−1 [GeV] L [fm] m0 Config.

2 92 6.23 0.228 0.863 21 1.159 4994
2 106 6.33 0.226 0.870 24 1.149 5440
2 80 6.40 0.225 0.875 18 1.143 3957
2 58 6.45 0.224 0.879 13 1.138 3386
2 18 6.55 0.222 0.886 4.0 1.129 3661
2 122 6.60 0.221 0.890 27 1.124 4750
2 34 6.64 0.221 0.893 7.5 1.120 2970
2 68 6.64 0.221 0.893 15 1.120 3456
2 10 6.68 0.220 0.895 2.2 1.117 2192
2 50 6.68 0.220 0.895 11 1.117 3299
2 26 6.72 0.219 0.898 5.7 1.113 3410
2 42 6.73 0.219 0.900 9.2 1.112 3370
2 106 8.13 0.198 0.994 21 1.006 5440
2 122 8.24 0.197 1.00 24 0.9990 5614
2 92 8.33 0.196 1.01 18 0.9933 4104
2 68 8.70 0.191 1.03 13 0.9708 3456
2 58 8.83 0.190 1.04 11 0.9632 3386
2 80 9.03 0.188 1.05 15 0.9519 3597

(Table continued)
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TABLE III. (Continued)

d N β a [fm] a−1 [GeV] L [fm] m0 Config.

2 50 9.36 0.184 1.07 9.2 0.9341 3174
2 42 9.91 0.179 1.10 7.5 0.9066 3433
2 122 10.6 0.172 1.14 21 0.8752 5248
2 106 10.9 0.170 1.16 18 0.8625 4768
2 34 11.1 0.168 1.17 5.7 0.8543 2950
2 92 11.7 0.164 1.20 15 0.8312 4994
2 80 11.8 0.163 1.21 13 0.8275 3498
2 68 11.9 0.162 1.21 11 0.8239 3456
2 58 12.4 0.159 1.24 9.2 0.8065 3304
2 26 13.1 0.154 1.28 4.0 0.7838 3410
2 50 13.8 0.150 1.31 7.5 0.7629 3174
2 122 14.3 0.148 1.34 18 0.7490 5248
2 92 15.5 0.142 1.39 13 0.7185 4930
2 106 15.5 0.142 1.39 15 0.7185 5872
2 80 16.3 0.138 1.43 11 0.7001 2279
2 42 16.8 0.136 1.45 5.7 0.6893 3350
2 68 16.9 0.135 1.46 9.2 0.6872 3420
2 58 18.4 0.130 1.52 7.5 0.6578 3304
2 122 20.3 0.123 1.60 15 0.6254 2106
2 106 20.4 0.123 1.60 13 0.6239 4032
2 18 20.6 0.122 1.61 2.2 0.6208 3660
2 92 21.5 0.120 1.65 11 0.6074 4420
2 34 22.2 0.118 1.67 4.0 0.5974 2970
2 80 23.2 0.115 1.71 9.2 0.5841 3498
2 50 23.6 0.114 1.73 5.7 0.5791 3351
2 68 25.2 0.110 1.79 7.5 0.5600 3420
2 122 26.9 0.107 1.85 13 0.5417 2106
2 106 28.4 0.104 1.90 11 0.5269 5200
2 92 30.5 0.100 1.97 9.2 0.5082 4234
2 58 31.6 0.0983 2.00 5.7 0.4991 3300
2 42 33.6 0.0953 2.07 4.0 0.4838 3680
2 80 34.7 0.0938 2.10 7.5 0.4759 3498
2 122 37.4 0.0903 2.18 11 0.4582 4372
2 106 40.4 0.0868 2.27 9.2 0.4406 4592
2 26 42.4 0.0847 2.33 2.2 0.4300 2720
2 68 43.2 0.0839 2.35 5.7 0.4260 3505
2 92 45.7 0.0816 2.42 7.5 0.4140 3848
2 50 47.4 0.0801 2.46 4.0 0.4064 3215
2 122 53.3 0.0755 2.61 9.2 0.3831 4698
2 80 59.7 0.0713 2.76 5.7 0.3618 3505
2 106 60.5 0.0708 2.78 7.5 0.3593 4240
2 58 63.7 0.0690 2.86 4.0 0.3501 3276
2 34 72.3 0.0647 3.04 2.2 0.3285 3549
2 92 78.8 0.0620 3.18 5.7 0.3146 4848
2 122 80 0.03122 3.20 7.5 0.3122 4896
2 68 87.3 0.0589 3.35 4.0 0.2988 3472
2 106 104 0.0539 3.65 5.7 0.2736 4474
2 42 110 0.0524 3.76 2.2 0.2660 3122
2 80 120 0.0502 3.93 4.0 0.02546 3631
2 50 155 0.0441 4.47 2.2 0.2239 3105
2 92 159 0.0436 4.52 4.0 0.2211 4110
2 58 209 0.0380 5.19 2.2 0.1928 3304
2 106 211 0.0378 5.21 4.0 0.1919 5184
2 68 287 0.0324 6.08 2.2 0.1644 3716
2 80 398 0.0275 7.16 2.2 0.1396 3509
2 92 526 0.0239 8.24 2.2 0.1214 5664

(Table continued)

TABLE III. (Continued)

d N β a [fm] a−1 [GeV] L [fm] m0 Config.

2 106 698 0.0208 9.49 2.2 0.1054 2784
3 60 3.30 0.234 0.841 14 1.189 2752
3 74 3.34 0.231 0.854 17 1.170 2225
3 48 3.35 0.230 0.858 11 1.166 3654
3 66 3.37 0.228 0.864 15 1.157 2816
3 8 3.40 0.225 0.874 1.8 1.144 3000
3 54 3.43 0.223 0.884 12 1.131 5623
3 14 3.44 0.222 0.887 3.1 1.127 3600
3 20 3.46 0.220 0.894 4.4 1.119 3160
3 26 3.47 0.220 0.897 5.7 1.115 2840
3 36 3.47 0.220 0.897 7.9 1.115 3300
3 42 3.47 0.220 0.897 9.2 1.115 5021
3 32 3.48 0.219 0.900 7.0 1.111 2996
3 66 3.56 0.213 0.927 14 1.079 2200
3 54 3.68 0.204 0.966 11 1.035 5538
3 74 3.69 0.203 0.969 15 1.032 2225
3 60 3.73 0.201 0.982 12 1.018 2752
3 36 3.82 0.195 1.01 7.0 0.9883 3462
3 48 3.86 0.192 1.03 9.2 0.9756 3654
3 74 3.90 0.190 1.04 14 0.9632 2225
3 42 3.92 0.189 1.04 7.9 0.9572 3450
3 60 4.01 0.183 1.07 11 0.9308 2752
3 66 4.03 0.182 1.08 12 0.9251 2816
3 32 4.10 0.178 1.10 5.7 0.9058 3006
3 54 4.25 0.171 1.15 9.2 0.8671 5304
3 26 4.28 0.169 1.16 4.4 0.8597 2840
3 42 4.33 0.167 1.18 7.0 0.8477 3277
3 66 4.33 0.167 1.18 11 0.8477 2200
3 48 4.38 0.165 1.20 7.9 0.8360 4776
3 74 4.43 0.162 1.21 12 0.8247 2225
3 54 4.83 0.147 1.34 7.9 0.7439 3744
3 48 4.84 0.146 1.35 7.0 0.7420 3600
3 36 4.52 0.159 1.24 5.7 0.8050 3300
3 20 4.60 0.155 1.27 3.1 0.7883 3160
3 60 4.64 0.154 1.28 9.2 0.7802 2496
3 74 4.77 0.149 1.32 11 0.7550 2848
3 66 5.03 0.140 1.41 9.2 0.7091 2160
3 32 5.09 0.138 1.43 4.4 0.6993 3070
3 42 5.15 0.136 1.45 5.7 0.6897 3400
3 60 5.29 0.132 1.50 7.9 0.6685 4602
3 54 5.36 0.130 1.52 7.0 0.6583 8312
3 14 5.39 0.129 1.53 1.8 0.6540 3600
3 74 5.55 0.125 1.58 9.2 0.6322 2560
3 36 5.64 0.122 1.61 4.4 0.6206 3300
3 66 5.74 0.120 1.64 7.9 0.6081 4338
3 26 5.76 0.119 1.65 3.1 0.6057 2768
3 48 5.78 0.119 1.66 5.7 0.6033 2485
3 60 5.87 0.117 1.69 7.0 0.5927 2015
3 74 6.34 0.107 1.84 7.9 0.5428 2560
3 66 6.38 0.106 1.86 7.0 0.5389 2112
3 54 6.41 0.106 1.87 5.7 0.5361 3893
3 42 6.45 0.105 1.88 4.4 0.5323 3450
3 32 6.91 0.0970 2.03 3.1 0.4925 3070
3 60 7.04 0.0950 2.07 5.7 0.4824 4050
3 74 7.06 0.0947 2.08 7.0 0.4808 2560
3 48 7.27 0.0917 2.15 4.4 0.4653 5166

(Table continued)
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