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Valence quark transversity at small x
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In our previous work we established a formalism which allows one to determine the small-x asymptotics
of any transverse momentum-dependent parton distribution function (TMD PDF) of the proton at small
values of strong coupling. In this paper we apply this formalism to the valence quark transversity TMD.
We relate the valence quark transversity to the transversely polarized dipole scattering amplitude, written in
terms of the fundamental transversely polarized “Wilson line” operator, an expression for which we derive
explicitly as well. We then write down the evolution equation for the transversely polarized dipole
amplitude. Solving that equation we arrive at the following small-x asymptotics of the valence quark

asNe

2= . This result is in agreement with

transversity in the large-N,. limit: hY;(x, k%) ~ hi7 (x, k%) ~ ()71+2

one of the two possible small-x asymptotics for the transverse structure function found previously by

Kirschner, Mankiewicz, Schifer, and Szymanowski [Z. Phys. C 74, 501 (1997)].
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I. INTRODUCTION

Quark transversity transverse momentum-dependent par-
ton distribution function (TMD PDF) is an interesting and
important object to study [1-6]. It provides a key insight
into the distribution of spin among the quarks in a
transversely polarized proton. Moreover, the k; integral
of the quark transversity TMD is equal to the chiral-odd
transversity parton distribution function (PDF) h;(x, Q?).
In turn, the transversity PDF £ is related to the tensor
charge of the proton [3],

o ! q 2\ 14 2
59(0?) = /0 dxlh (. 0%) — (. 0. (1)

a fundamental quantity in quantum chromodynamics
(QCD) which is also employed in the searches of physics
beyond the Standard Model. Recent phenomenological
efforts to extract the proton tensor charge from a global
fit to the available world data [7,8] led to a significant
tension between the obtained tensor charge for up (éu) and
down (6d) quarks and the results of lattice simulations.
A possible resolution of this “transverse spin puzzle” is the
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possibility for small-x quarks to carry a significant amount
of transverse spin. If the quarks at values of x smaller than
those measured in experiment carry a large amount of
transverse spin, then the discrepancy between the tensor
charge values extracted from experimental data and the
lattice results may be accounted for. In this paper we will
try to understand the plausibility of this scenario by
theoretically determining the small-x asymptotics of the
quark transversity distribution.

In our previous paper [9] we developed a general method
for determining the small-x asymptotics of quark TMDs.
The developed formalism was applied to quark helicity
TMD, reproducing the results of the earlier works on the
subject [10-13]. (Gluon helicity was considered separately
in [14].) The technique developed in [9] consists of the
following steps:

(i) Starting with the operator definition of the TMD,

simplify it for the case of small x, rewriting the
TMD in terms of the “polarized dipole operator,”
involving the so-called polarized Wilson lines—
operators made of semi-infinite and finite light-
cone Wilson lines with one or more subeikonal
operator insertions.

(i) Simultaneously with the first step, or after it, one has
to construct the explicit expressions for the relevant
polarized Wilson line operators.

(iii) Construct small-x evolution equation (or equations)
for the polarized dipole amplitude. These equations
usually close in the large-N . and/or the large-N,. and
N limits.
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FIG. 1. Transversely polarized fundamental Wilson line in the quasiclassical approximation in 9,A# = 0 Feynman gauge orin A~ = 0

gauge. The black circles denote the spin-dependent sub-sub-eikonal scattering.

(iv) Solving the evolution equations one obtains the
small-x asymptotics for the polarized dipole ampli-
tude, and, through the relation found in step (i), for
the quark TMD in question.

In the case of helicity evolution, this method has been
applied to the leading small-x contribution [10-13], which
results from resumming powers of aIn?(1/x). This
resummation parameter was originally suggested in [15]
for certain types of small-x evolution (see also [15-21]); its
resummation is usually referred to as the double logarith-
mic approximation (DLA). Here we will apply this method
to determination of small-x asymptotics for the valence
quark transversity TMD in the same DLA limit.

The paper is structured as follows. In Sec. II we will
derive an explicit expression for the quark transversely
polarized “Wilson line.” In Sec. III we will derive a relation
between the quark transversity TMD at small-x and the
transversely polarized dipole operator. The evolution equa-
tion for the transversely-polarized flavor nonsinglet dipole
operator is derived in Sec. IVA and solved in Sec. IV B,
leading to the small-x asymptotics of valence quark trans-
versity given in Eq. (73) in the large-N, limit and in the
DLA. The result (73) is consistent with one of the two
possibilities for small-x asymptotics of the chiral-odd PDF
hy(x, Q%) found in [22]. The second possibility found in
[22]is Ay (x, Q%) ~ (1/x)°, which resulted from resumming
the leading logarithms in x (LLA), that is, powers of
a,In(1/x): such terms are outside of the DLA precision
employed here. At the moment it appears that the LLA
kernel should enter the evolution equation(s) as an additive
correction to the DLA kernel. The solution of the evolution
equations with the leading and subleading kernels may
result in the LLA term giving a multiplicative correction to
our DLA small-x asymptotics (see [23] for an example and
further subtleties in the unpolarized evolution case), rather
than generating an additive term suggested in [22], though a
more detailed investigation is needed to clarify this issue.
This investigation is left for future work.

II. TRANSVERSELY POLARIZED
WILSON LINES

In order to get a better understanding of the transversity
observable in question we begin by constructing the
transversely polarized Wilson line operator for quarks.

This operator is defined as a transverse spin-dependent part
of the scattering amplitude for a high-energy quark on a
target. The target generates quasiclassical background quark
and gluon fields. By analogy to the helicity case, the leading
contributions to the transversely polarized Wilson line are
given by the two diagrams shown in Fig. 1. There, the black
circles denote the subeikonal transverse spin-dependent part
of the quark-gluon vertex. The high-energy quark at the top
of each diagram is moving in the light-cone “—" direction,
while the target proton is moving in the “+ direction. [For a
4-vector v* we define v+ = (v° + 0v3)/V/2.]

To work with the minus-direction-moving quark we
introduce the 4+ <> — interchanged Brodsky-Lepage (BL)
spinors [24], which we will also refer to as the anti-BL
spinors:

1
U,(p) = ——=[V2p~ +my° +7° - plp(o).
V2p~
1
Vo(p) = —==IV2p" =my’ +7° - plp(=0).  (2)
V2p~
pmt
where pt = (T .p~.p), the transverse vectors are

denotes by p = (p*, p’) and
1

A (3)

—
—_
_ O = O

These spinors are eigenstates of W~ such that W™u, =
F (p /2us, Wovi=x(p~/2)vy, with the Pauli-
Lubanski vector W, =—1¢,,,,5” p° and §*" = (i/4)[y*.y"].
To work with transverse spin it is convenient to define
the transverse spinors which are eigenstates of W, [25],

1 1
u, =—=\u, +yu_|, v, =—|vy +yv_], (4
xﬁhx} Zﬁhx}()
such that Wyu, = (m/2)yu,, Wyv, = —(m/2)yv,, but
only for p = 0. Hence these spinors are transverse to the
quark momentum only for p = 0.
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Before we start our calculation, let us also note that in the
helicity basis the transverse spin is given by the helicity-
flipping (z),, transverse Pauli matrices, while in the
transverse spinor basis (4) it is given by (z3),,, that is,
by the y6,,, terms. Hence we are interested in the part of the
quark scattering amplitude proportional to yd,,. To help us
in the calculation, we obtain the following leading trans-
verse polarization-dependent high-energy contributions to
Dirac matrix elements of anti-BL spinors (by keeping the
X6, terms only):

_ . 1
i,(p+k)ytu,(p) > —lmz;%rl_c xS,  (5a)

. k™ T

i, (p+k)y'u,(p) D —imx;éu/e”S/. (5b)
The transverse polarization-dependent gluon field of a

plus- dlrectlon -moving quark in 9,A* = 0 Feynman gauge

is then'

1
—-6,,x % 8§, (6a)
X

ai _ i o MY o+ — L
A% (x) = 4ﬂt (p+)28 5(x )lnXLA(S”
Note the suppression by two powers of p* as compared to
the eikonal field: thus the transverse polarization y6,,
dependence is sub-sub-eikonal. It also always comes in
with the quark mass m, in agreement with the conventional
wisdom. Here S is a unit vector in the direction of the
proton spin: in Eq. (4) we had S = *.

As we mentioned already, the two possible contributions
to the transversely polarized quark Wilson line are shown in
Fig. 1 (see Appendix for a discussion of other possible sub-
sub-eikonal diagrams which do not contribute). We begin
by calculating the contribution of the left panel in the
0,A" =0 gauge, neglecting multiple eikonal gluon
exchanges first. The noneikonal gluon exchange gives

€SI, (6b)

1
T lgu (P2 + k)A(k)u, (p2)
igmy o
:2(p—2)2 8, [—ik x SA=(k) + ik™A x §]
gmy

3 e ok X SA(R), (7)

where we only keep the x5, terms. In the last step we have
used the fact that k= ~ 1/p] is negligibly small, constitut-
ing a sub-sub-sub-eikonal correction to the quantity of

'"The gluon fields are indeed gauge dependent. At this
subeikonal level and beyond, the Feynman gauge is not equiv-
alent to the A~ = 0 gauge. However, the operator we obtain this
way is gauge invariant (or, gauge covariant) and is the same for all
gauges in which the gluon fields do not stretch out to x™ infinities
and the gauge links at infinities never contribute.

interest. Now m is the mass of the projectile quark at the top
of Fig. 1.
Fourier transforming into coordinate space we get

kordsz— —tk*x +ik-x lgm)(
(27)* 2(p3)?
x [=i8,,k x S|A” (k)

N gm)(l S X
= 2o S X VA, 8)

Inserting Wilson lines to account for the multiple eikonal
gluon exchanges, we conclude that the gluon contribution
to the transversely polarized quark Wilson line is

2 +\2 400
- 7gm(2pl ) / dx~V [+o0,x7]
s : x

x [iS x VA=(x* = 0,x7,x)] V,[x",—c0].  (9)

5 Opol T(x x)

(VEOLT)G

(5]

The fundamental Wilson lines are denoted by

b
Vi[b~,a"] = Pexp {ig/ dx AT (xt =0,x7,x)|.
(10)

Noticing that 9-A? =0 for A’ from Eq. (6b), and that
[AL, A7) ~1/(p])* is very strongly suppressed at high

energy, we can complete V,A~ = —-0'A~ - F~' and
rewrite Eq. (9) in a gauge-covariant form,
2 2 4o
(VEOLT)G _ gm(2pl ) / dx
X B .

XV [+00,x7|S[ie" F~/ (x7, x)] V [x~, —c0].
(11)

One can show explicitly that a calculation in A~ = 0 gauge
leads to the same result. The difference with the helicity
case [14] is that now the “transversely polarized Wilson
line” (11) is doubly suppressed at high energy and is
proportional to the quark mass m.

We next move on to the right panel in Fig. 1, switching
to the A~ = 0 gauge. The contribution of the first (left)
t-channel quark exchange is

oy € (P2 + k) (ig)w (k)t“y,u, (p2)
P
g
=-——F—y(k)t [51,_1p(+1) +2'8,p(—1)
V2y/V2p;

m
- aps (X'6,17°p(=1) + 6, _17°p(+1))
2

*
Q}L'I_C

~ S o)+ (1) . (12)
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again using the anti-BL spinors and neglecting terms
further suppressed by 1/p;. Gluon polarization 4-vector

in the A~ =0 gauge is €(p, + k) = (5‘1;(,%;@,
2

terms of the (+,—, L) and with ¢, = (=1/+v/2)(4, i) [24].
Fourier-transforming Eq. (12) yields

0, gﬂ) in

igy

2 \@pg

- \/Epg (/8,17 p(=1) + 6, 117" p(+1))

w(x7. x)t° {5/1,—1P(+1) +X'8,1p(—1)

+£%EWWM+U+WM4D]
- G )M ()

\@\/ \/§P2

with the transverse derivative acting on the antiquark field
to its left. Note that k= — i0~ = iJ.., which we put to zero
since  is independent of x' in our standard eikonal
approximation: again, powers of £~ correspond to terms
further suppressed at high energy. The second (right)
t-channel quark exchange in Fig. 1 gives

(13)

e
V24/V2p;

m
8,107 (—
\/ipg(x 1P (

Q¥wwuw+ﬂ@mﬁw;@

P>

1 {5/1,—1,0T(+1)J’0 + 18107 (—1)y°

1) +68,1p"(+1))

=W () (7. %),
V24/V2p;

Combining Egs. (13) and (14) we write an expression

for the operator, the y-dependent part of which would give

us the quark contribution to the transversely polarized

Wilson line:

26, (Ve - gp'/ dxl/_ deZV +00, 3]

x oM}

(14)

(A20)7 "y (x3. )| U x5, x7]

x [w(xp. )M (A7) 14V [x7. —00]. (15)
Here U )_’2“ is the adjoint Wilson line, defined by analogy to

Eq. (10). Summing over A and expanding over 1/p5 to the
lowest nontrivial order we arrive at

2+
1, g p Rl _ _ _
X6,y (VPO T) c __2s1 / dx / dx; Vlc[—i—oo,xz] tbl///i(xz ,X) U;“ [xz,xl]{y5y+5%_x/ + 5;(,;/7+
—00 xl’

-

+
s {—2m(5w, -

N
S e AT .
+Z|:(l x )) 27/ (1_17172>+(lax_8y)
< <1 5
i, = 3,) L (i = ') + (10, + 0,)

Since

Xx =8y =6y,

ié){,—){’}/l}/2> _)(, |:(lax + 8)1)

X=X =26,y

- 1 =9 1 =5
T (1 +iy'y?) + (i, + 0) 27/ (1-iy'y?)

1 5
i (1+ irlyz)}

only the y and ' terms in Eq. (16) have explicit dependence on polarization. Hence we write

1,
)(5)(,;(’ (VEO T)

]_

(1+177)

{—1 [( 0, +0,)

149

+x&i—i>

=i+ -0 i)

/ dxl/ dxy V [+00, 3] 1Py (x5, x) U [ixy , x7]

Ly<y+wﬁ+oQQ}me,ﬁvup—y
(16)
x+x =268,, (17)
5
00+ 0) 5 (1 =ir'7)
Pl 0V~ (18)
aff
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Equivalently, one can rewrite this as

2( 2 1t)\2
ol.T g°(py) R L _ _ el
1 VIV € =Py [ [T d o, s] M (az ) U5 71{0 1 + By

x [(i0, —7°9,)(1

or, keeping only the y6, / terms,

20 42
pol.T\4 _ _g (pl )
<V£ ) 2S2
x [(ir38, — 0,)(1 = iy’y'y?) +

This result can be rewritten as

(VT =

—ir’r'y?) + (i0x

(iy0x = 0,)(1 + ir’y!

dx2

=70, (14 iy V) }opWa(xy, X)1* Vi [x7, =],  (19)

/ dxl_/_ dx; V[+c0, x7] tbl//ﬂ(xg,g)U)_lZ“[xg,xl_]

P palx ) Va0 (20)

2[00 53] Py (x5 ) UR [x5, x7]

X [(lysax - 8})]/ I + (iysax - ay)y_y ] /jl//rl(xl ’ )t 14 [xl ’ ] (21)

To make Eq. (21) gauge invariant (or, more precisely,
gauge covariant) we can replace 0; — D;, with D; being the
covariant derivative, since the transverse gluon field A’ of
the plus-moving target in 9,A* = 0 Feynman gauge or in
A~ = 0 gauge is further suppressed by a power of energy,
giving a sub-sub-sub-eikonal contribution to Eq. (21),
|

|
which is outside the precision of our approximation. The
covariant derivatives still act only on the corresponding
spinors, with the argument of A’ in each derivative being
the same as that of the spinor the derivative is acting on.
Combining Eqgs. (11) and (21) we arrive at the full
expression for the transversely polarized Wilson line

yRoLT ( i)’ / dx= V,[+00, x7| S[ie F~/ (x=, x)]V[x~, —c0]
x 2 . x x
<25 / dxy | " dagV oo, 3] Py, x) U 17178 - D = S < D)y
+ (1755'2—§X2)7 V apWa(XT, 2)17V [x7, —c0]. (22)

The 1/s suppression in Eq. (22) indicates that dependence
on the transverse spin comes in as the sub-sub-eikonal
effect at high energies. This result will persist through
our analysis, leading to transversity quark TMDs being
suppressed by x> compared to unpolarized TMDs at
small x.

Other sub-sub-eikonal diagrams, in addition to those
considered in Fig. 1, are analyzed in Appendix, with the
conclusion that they do not generate transverse spin
dependence and can be discarded.

Since the mass term cannot give the DLA evolution, only
the mass-independent term in Eq. (22) will lead to the DLA

[
evolution below. Hence the DLA evolution of the quark
polarized Wilson line does not generate polarized gluon
emissions. Therefore, in the DLA approximation we will
not need the transversely polarized gluon Wilson line, and
the quark one in Eq. (22) will be sufficient to construct the
evolution equations.

ITII. QUARK TRANSVERSITY OPERATOR

Our goal here is to simplify the quark transversity
operator at small x. We begin with the definition of quark
transversity TMDs (see e.g. [26]):

054033-5
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hip(x, k2)+_h ! (x, k7)
S—=1

3
(277 25 —

1

i _ 1ty
= ons [ rarerip.s = 1ipou0.1 5 0

(27)

(Here M is the proton mass.) Note that the quark trans-
versity TMD is usually defined as

kZ
il (6 Kg) 5 g (. 4. (24)

whereas in Eq. (23) we have only taken the x projection of
the quark fields correlator. However, in the end we will use

Eq. (23) to determine both 4%, and /;: at small x, which
would allow one to reconstruct the transversity TMD in
Eq. (24).

We choose the forward-pointing gauge link /[0, ], as
appropriate for semi-inclusive deep inelastic scattering
(SIDIS) process. In A~ = 0 gauge that we adopt from now
on, we have

U0, r] = v4[0, oo} Voo, r~]. (25)

To simplify Eq. (23) we can either repeat the analysis
from [9] or redo the SIDIS cross section calculation from
[27]. In the end we end up with the diagram B from [9]
giving the leading small-x contribution. The diagram is
depicted in Fig. 2, where shaded rectangles denote the
target shock wave in the amplitude and in the complex
conjugate amplitude, the square denotes the spin-dependent
interaction with the polarized target, and the thick hori-
zontal solid lines are the Wilson lines while the thin solid
lines are antiquark propagators. Switching to the target-
averaging notation employed in the saturation/color glass

£

)

¢
P

V] w

FIG. 2. The diagram which, along with its complex conjugate,
dominates the SIDIS cross section or, equivalently, quark TMDs
at small x.

Sy X [ @rdr e spouo.1 T )

J+a,5

>r+:0

j 20— ikr - rry/
ZS d>rdr=e™" (p, Syl (0)U[0, r] —— 3 w(r)|p. Sr)r—o

S5.,+.,1

vax = +1>r+:0' (23)

condensate (CGC) [28-34] approaches we write for the
contribution of the diagram B from Fig. 2 (cf. Eq. (10)
in [9])

Hy (0, 12 +k—h”<x &)

G [ [

X/Jlgdlé:eilo(éj—f) (%757+y1)
aff

X (a(£)1g) (g Vileo, —eolyp(0)) _, +ec. (20)

Sy=+1

Repeating the calculation steps for the helicity TMD
performed in [9] we arrive at

2

ky
il (6. k) + 4 i (.45

2pt PlydRT i (e
__ B>ed? L itk +K)-(w=0) g p=
e | e -
x> 1, (k) 77 ', (ky)

X1:X2
x(TV{ [00.~00]7, (k1) (V],) vy, (K2))s,— 1

1
x
(2xp k7 + k1) (2xp Ry +K) [k se—0.2=0.4,——k

+c.c.,

(27)

where now we chose the transverse basis for the spinors.
By analogy to helicity operators we write

Z_)){(p) (‘A/D’U)(’ (p/) =2 p_p/_ (‘S)(;(’ V;_t +)(5;(;(’ VEOLTT +-- )
(28)

The ellipsis denote the subeikonal and sub-sub-eikonal
corrections (and beyond) independent of the proton trans-
verse spin (but, in general, possibly dependent on y).
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Employing anti-BL spinors we find

(k2)27 rrylo, (ki)

1
= = [_)(15;(1;(2(2§ kS ky —ky - ky - mz)

2 /kTk;

+imé, ,,S X (ky — ky) — 010y,

X (SxkS-ky+S-kiSxky)—més, _, 8- (k + k)],

(29)

where, again, S = X is the unit vector in the direction of the
proton spin.

h?T (x, k%)

+imS x (ky + k){Tu[V Vi) - Tal[V Vi) ).

The last term in the brackets is zero [9], since

(TulV Vi) = TulVe Vi =0

(32)
for true Wilson lines, if we flip the Wilson lines in the
second trace from the complex conjugate amplitude into the
amplitude using the reflection symmetry employed in [9],
which was verified in [35] up to next-to-leading logarithms
(NLL) in x for the unpolarized evolution. We are left with

k2
() + 5 i (v, )
_4ApT &’k dky (w— _
(27/7) / #dw (2;:)31 ot Qg(kl)

1
X
Q2xpThy + k1) 2xpThy + &)
X (=28 k;S-k+ky-k—m?)
x (Ter[V VT + Ttr[vg"l*TvL])

(33)

S,=+1

The flavor-singlet and nonsinglet (valence quark) dis-
tributions are defined by

(k) = [h{p(x k) + hip(x. k3],

f

(k) = S I (e k) + by (2,3,
f

(34a)

k2 L 4p+ 2
K a2 :/dzdz &k, iy
+M2 i7 (%, k) (2r)3 bd'w (2n
x {(=28 - kyS - k+ ky - k= m2)(Tu[V VR + T VR V)

Substituting Egs. (28) and (29) into Eq. (27) we arrive at

Wy (x. k2>+k—h (e, k)

lydky g . w=0) pf -
w (2ﬂ)3 ol ki+k)-(w _)g(kl)

1
X (2xpTky +k%)(2xp+k1‘ —l—l_cz)
x {(-28-k;S-k+k k- m2)<Ttr[V§V€_Vol,T+]>

_ 4p

S,=+1

+imS x (k; +k) (Ttr[VéVLDSX:H} +c.c. (30)

Adding in the complex conjugate (where we interchange
¢ <> w after conjugation) yields

i+ 0-0) g ) !

. (2xp* kT + k) (2xpThy + k)

Sy=+1
(31)
W (x, K7) = hip(x, k) = hip(x, k),
WS (x, k3) = i (e, K3) = B (x, K3, (34b)
The singlet version of Eq. (33) is
S (e 2) + 5 1S (e, 12)
17\* ™1 M2
_ 4 2 PRI it 110 -0 g 4
)3Z/J2§d 2)3 __‘H(kl)
5 1
(2xpTki + k) (2xp k7 + &)
X (—2§‘K1§‘/_<+]_<1 l_{—m%)
x (TueV V] + Ttr[vg‘“vg] + TuVE vy
+Ter(v, V2T (35)

Se=+1"

Define the doubly energy-rescaled transversely polarized
flavor-singlet dipole amplitude

2
zs i
TS, (z5) = <2N) Re(Ttr[Vo Vi '] Jthr[\/E"‘TVQ])SF+l
2(ptky)? LT LT
:TR <Ttr[V0Vp0 T]"'Tt[ 1 V0]>Sl:+1
(36)

with zs = 2p*ky. Further note that the integrals like

054033-7
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X X

/ > <%> <Ttr[VQVE°1’TT]>Sx:+1 (37)
[for any of the correlators in Eq. (35)] are even functions of
X0 = X; — Xo- The reason for this is slightly different from
the helicity case: in the case of helicity we could argue that
the integrals like (37) are simply functions of |x; — x,| due
to the absence of a preferred transverse direction in the
problem. Note that the target proton and the polarized
projectile quark in the dipole both have transverse spins, Sy
and Sp. Since PT symmetry requires that spin dependence
enters as a term bilinear in the two spins, we write

+ 0
fa (25 mav

= A(xlO) + B(xm)ﬁr “X108p X0+, (38)

where A and B are some scalar functions of x;y = |x; — x|
while the ellipsis denote terms like B but with either or both
scalar products replaced by a vector product of the same
vectors. We thus see that the object on the left of Eq. (38)
[along with impact-parameter integrals of other such corre-
lators in Eq. (35)] is an even function under the x; < x,
interchange.

Employing this observation along with the definition
(36) in Eq. (35) yields for the flavor-singlet case

2

k
hip(x. k3) + thTS(x’ k)

8N
%Z/dszdle

y 1
(2xpThy + ki) (2xpTky + k)

X (=28 k;S - k+ ki - k—m3)T5)(zs).

d*kydky
kr)?(27)?

e i(k, +K>'£106(k1_)

(39)

For the flavor nonsinglet case, we define the transversely
polarized flavor nonsinglet dipole amplitude

NS :(zs)2 pol. Tty pol.T v 4
T (zs) = (Ttr[VQVl ] Ttr[Vl V9]>

2N, St
2(ptky )2 L
== RV V=TV VD
(40)

which gives, for the valence-quark transversity TMDs,
NS 2 Kz LNS 2
th(x,k)—l-—h (x. k7)

8N, k. dkT
_ dZ d2 1 1
~ (2n) / o St (k)2 (22)°

el k) x0g (k7)
» 1

(2xp™ky + k) 2xp k7 + &)
x (=28 - kS - k+ k- k—m?) TN (zs).

(41)

Continuing with the nonsinglet distribution, if we simply
put x — 0 in Eq. (41), we get a nonlogarithmic (in z) but
nonzero contribution: integrating over k; we arrive at

2

ke
WhJ_NS( , k%)

1 [l d
5 5 /szonx e’ — / —Z
(2ﬂ k AZ/S

S-x -k
[ 2= _loS k+i _10 = —m2n
xm xlO

W7 (x, k%)

xlo\l/ﬁ} 5 (zs).

(42)
If T (zs, S) obeys a regular DLA-type evolution, that is if

T (z5) ~ (2s)V® (43)
with C a constant, then the z integral in Eq. (42) would be

dominated by its lower limit (for a; < 1), leading to

1\ 0
M) ~ e~ (1)

The same conclusion would be valid for any perturbative
positive power in Eq. (43). It appears that the asymptotics
(44) agrees with that found in [22].

However, the dz/z” integral in Eq. (42) is dominated by
the lower limit of the z integral, z ~ A%/s. In this limit the
antiquarks k; and &, in Fig. 2 do not live a long enough time
to get outside the shock wave, as the figure suggests. [The
antiquark lifetime is 2zp5/12 = A%/(p{L1?) ~1/p],
which is exactly the shock wave width.] We conclude that
the asymptotics (44) originates from the contribution where
the diagram B is marginally applicable. To understand it
better, we need to review the diagram where both vertices £, &
are inside the shock wave.

The contribution with £, £ inside the shock wave was
captured by the diagram A in the notation of [9]. It is
depicted in Fig. 3 here, with a sample interaction with the

~

Y
Y
7%

~

FIG. 3. The diagram where both Wilson lines originate inside
the shock wave on the different sides of the cut.
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shock waves shown explicitly too. In [9] we have shown
that all the radiative corrections to this diagram are canceled
(in DLA) by other diagrams. The contribution of the
diagram Fig. 3 without radiative corrections is constant
in x. In the case of helicity TMDs, a constant was
subleading compared to the leading small-x helicity
asymptotics, and was discarded. Now we see that a constant
in x behavior is of the same order as Eq. (44). Therefore,
diagram A has to be included in our analysis.

The constant in the x part of diagram A in Fig. 3 comes
from the instantaneous terms [24,36] in the k; and k,
propagators. To include this contribution of diagram A, we
simply have to include (or, more precisely, insert back) the
instantaneous terms into those propagators in diagram B.
One can show that the instantaneous contributions, when
added to diagram B, replace

1 1
2k + K 2k
(45)

k10(ky) = }O(k7)

1
2kTky + k3

(and also for k,) after one of the steps omitted in arriving at
Eq. (27) if we now understand the {~ and £ integrals in
Eq. (26) as including the points {~ = 0 and £~ = 0, such
that we could pick up the delta functions there. (These are
the contributions coming from diagram A.) Here )1 =

2 2
7_2% +ytky —y - k;. At small k7 we have f ~ y~ 2% such
1 - 1
that (for k7 > 0)

ki0(k7)

1 1
Uk + K 2k }
okt
ek + B)
21 1 =1

small ki’

(40)

Therefore, the instantaneous terms regulate the k] integral

2
by a lower cutoff at k| = 2% This means that Eq. (42) now
contains a new lower bound on the z integral and is

proportional to

1 /1 dz x 1 X X
- S = —0k). (47
S/ﬁ/m) Z ks kK@ @. )

Indeed Eq. (45) also contains a contribution of the
instantaneous term for k7 < 0. This part would regulate
the k7 integral in the “c.c” part of Eq. (27). Simply
including {~ =0 and & =0 contributions into both
integrals in both terms of Eq. (26) would introduce
double-counting: we have to include those points only
once, and then split the contribution of the resulting
instantaneous term between the two terms (time orderings).

We conclude that the contribution of Eq. (42) is smaller
than it seems naively, being ~x rather than a constant in x.
However, at this order other terms in the full Eq. (41) may

contribute as well. If we expand Eq. (41) to order x, we
obtain

k?
R (x, k3) + WWTNS(X’ k%)

8N I d d’k
= —x 04/d2x0d2x1/ —Z/ 12
(27) ays 2 ) (2m)

X ei(l_(l+k>'510

1 [1 n 1]
B2 2k
x (=28 kS k+ki-k—m>)TN5(zs).  (48)

This contribution comes in with a logarithmic integral in z.
For the asymptotics of T%S (zs) from Eq. (43) it leads to

1
k) ~ s~ (1) e

) —1+C\/ag
which, for C > 0, would dominate over ~x contribution of
Eq. (42). We tentatively conclude that Eq. (48) may give us
the true small-x asymptotics of the flavor nonsinglet quark
transversity TMD.

Repeating the above steps for the flavor-singlet case we
arrive at

k?
hip(x.k3) + thrs(xv k)

8N U dz [ d%k
c d2 d2 / _/ 1
mr‘;/ O ey 2 ) @y

x ellki+k)xy,

=—x

1 1 n 1
BiE |2 K
X (=28 k;S - k+ ki -k —m?)T5(zs). (50)

IV. EVOLUTION OF THE FLAVOR NONSINGLET
TRANSVERSELY POLARIZED DIPOLE

A. Operator evolution

The discussion here is for the flavor nonsinglet (valence-
quark) distribution. We now want to construct the evolution
for the transversely polarized dipole amplitude

(zs)?
2

c

Tio (zs) =

1,7 LTy,
Re(Ttr[VoVP™""] = T VP VgD .

(51)

Quark mass cannot contribute to the DLA evolution:
therefore, polarized gluon emissions do not contribute.
In addition, by analogy to the flavor nonsinglet helicity case
[12], eikonal gluon exchanges do not contribute to 77 (zs)
either. We are left only with polarized soft quark emissions
contribution to the small-x evolution. Therefore we discard
the gluon-exchange term in Eq. (22) and write
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T (zs) =

4N / dxy /_ dxy Re(Ttr[ViV, [+00, x3 11y p(x7, x1 ) UL [x7, x7 ]

x [(iy’S - Dy = Sx D))y y~ + (ir’S Dy = S X D)y 1 opalx7. x0)1° Vi [x7. —00]| —c.e)g — . (52)

(Note that the operator in the angle brackets is real, but NS g o  foo
not Hermitean.) As usual, the derivatives act only on the T (z5) = - dx 1 dx;
spinors and the subscript 1 refers to them acting on |
x;. Simplifying Eq. (52) in the large-N, linearized x Re(Ttrly (Xl X 1)[( -0ty
approximation, where all fundamental traces made out 5 8 _ -
of only true Wilson lines are replaced by N, along + (i ) v [xl,x2] (2. 20)]
with replacing covariant derivatives by the partial deriv- —C.C)s - (53)
atives, we arrive at (note the sign change when moving y
past ) One step of the evolution, as pictured in Fig. 4, leads to
ST (zs) = / dXI/ dx; /d2 & kl d K ik bty ik o ik
27)*
< Re{ Ti(V ]t | R ik = )7+ ik~ Ry ) e (7))o — k) —ec.
= K + ie K +ie" = S.—+1
(54)
Integrating over k5, kl+ and k3 we get
5TNS( / / dx= /d2 dk d2k1 d2k2 el;;(l_x +ik, x2[e—12k_x2 +ik, x12Re<Tl‘(VT)ﬁ
L : k) (2a)? !
xtr[kl[ (ir'ks = k)rty™ + (irk} — k))V 4 ]kz(vz)l]]_‘:c)s +1|1<2 =0k =k; - (55)

Integrating over x7, x5 yields
2(p+)2 -2
9 (]) ) / d2x2 % Jlkzz etkiXy oty xp
8 (27) kiks (27)
x Re(Ti(V )/’tr[kl[ (ir°ks = k>)rty™ =+ (ir°kf = k) r FIR2(V) ] - c.C.)s —r1le—r—or—is- (56)

ST (z8) =

Next we evaluate the Dirac trace with the help of massless anti-BL spinors (since the mass does not contribute to the DLA
evolution at hand),

w[f1[=(ir’ks — Ky y™ + (ir'ki — k))y v j2(V,) ]
= i1y, (k) [=(ir°ks = )y Ty~ + (ir°kf — k) rtluy, (ko) iy, (ko) (V) Yy, (k)

X1X2
= 16ik7k, - kr (V5. (57)
0 0
. inhomogeneous 2
— term + b &
] 1 1
0 Ty 0~ Ty

FIG. 4. Small-x evolution of the transversely polarized dipole amplitude.
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where we have used

2\/k k;( Sy Ve + 018, VT ) (58)

and

i, (k) [=(ir° ks = )y Ty~ + (i k{ = k) vt ]uy, (k)

- 4i)(15)(].;(2]_€1 ke (59)
In the last formula the ellipsis denote the energy-suppressed
and off-diagonal in polarizations corrections, along with
mass-dependent terms which do not contribute to the DLA

evolution.
Inserting Eq. (57) into Eq. (56) we get

dk7 k7 d?ky d*k
STNS — 22 +2/d2 1% 1 2
10 (ZS) g (p ) X2 (27[)3K%]_€% (2”)2

X eikl'leg”_‘z'élzl_cl . ]_{2

X Re(Ttr[VEOl’TVI] —C.C)g i1 (60)

or, equivalently,

aN dxzdz

/

ST (zs5) = —TYS(Z's). (61)

x21

Inserting the proper DLA limits [10,12,13,20] we arrive
at the following evolution equation for the flavor nonsinglet
transversely polarized dipole amplitude:

N. [z d7
TNS 25) = TNSA,(O) zs +as c
10 ( ) 10 ( ) o Az/s z
202/7 dx?
x / O R (o), (62)
1/7's X371

with the inhomogeneous term T%S'(O)(Zs) to be found by
performing a Born-level evaluation of the amplitude. Since
our goal here is in establishing the small-x asymptotics for

the valence quark transversity, we will not need an explicit

NS.(0) (

form of T4, (zs) since it does not affect the asymptotics.

B. Solution of the evolution equations for
the transversely polarized dipole

Equation (62) is mathematically identical to the evolu-
tion equation for the Reggeon amplitude derived in [20]
[see Eq. (44) there]. Defining new variables

zs
y = In(zsxg), n ZIHP,
/= In(Z/sx3 L 63
y' = In(Z'sx3), =g (63)

we rewrite Eq. (62) as

VS (,y) =TSO (. y)

N, [n y
+(l; c/ di’]’/ dy’TNS(n’,y’).
T Jo 0

(64)

The solution is obtained by performing a double Laplace-
Mellin transform

do di

™S(n.y) = | 5=

wr]+/1y TNS 65
27i 2mi (65)

where the w and A integrals run parallel to the imaginary
axis to the right of all the singularities of the integrand. The
Laplace-Mellin transform casts Eq. (64) in the following
form:

NS, (0 (X N 1
Solving for T2 we arrive at
_NS.(0) 1
Tgi - Tw,/l 1— aN. 1 (67)
2n @l
such that
do di NS, (0 1
TNS(”’ y)= 27i 2mi wnHyTw’l( ) ] —&Ne d” (68)
2n WA

Next we integrate over @ assuming that the double Laplace-
Mellin transform of the inhomogeneous term does not
generate any poles to the right of the pole in the denom-
inator of Eq. (68). This gives the leading asymptotics

dA g N 1 NS,(0) a N 1

TVS(n,y) = — =T A

(.) /2m 5r 7 Leste 1, €XP —n+ Ay
(69)

Again assuming that the singularities of the inhomo-

geneous term are not important, we distort the A contour
into its steepest descent form, going through the saddle

point at
JasN.n

The integral is then dominated by 4 = 4 , such that

s.p.

N,
) ~ep {25 f )
7
At high energies # ~ y ~ In(zs), such that the asymptotics
of the flavor nonsinglet transversely polarized dipole
amplitude is
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FIG. 5.
from its complex conjugate.

asN¢

Tig (z5) ~ (25)°V 75" (72)

We realize that we are indeed in the situation described
by Eq. (43) with C =24/N./(2z) > 0. This means that
Eq. (48) does give us the leading small-x asymptotics for
valence transversity. Employing Eq. (72) in Eq. (48) we
conclude that

1\ —1+2y/ %
) ~ ) ~ (1) o)
This is our main result, giving us the asymptotics of valence
quark transversity. As mentioned in the Introduction, it
agrees with one of the small-x asymptotics for transversity
found in [22].

The power of 1/x in Eq. (73) is much smaller than the
intercept of the leading-order Balitsky-Fadin-Kuraev-
Lipatov [37,38] evolution equation, whole solution deter-
mines the small-x asymptotics for unpolarized TMD. This
power is also much smaller than the quark helicity intercept
found in [11,13]. Hence the Soffer bound [39] appears to be
easily satisfied by Eq. (73) at small x.

For a, = 0.3 we get from Eq. (73) with N. =3

R (x, k) ~ hag® (x, k) ~ X025, (74)

C. An alternative derivation

One may argue that the above operator method of
obtaining the small-x asymptotics of the valence quark
transversity, while powerful, lacks physics insight. To
generate the latter, we will now rederive the result (73)
using the more conventional ladder diagram technique.

Returning to the conventional BL spinors [24,36] and
using the fact that

o
() 5 rriviu, (k) =/ ptktxs,, (75)

for these spinors, we can calculate the leading-order
transversity TMD or, equivalently, one step of transversity

kT Oy

Diagrammatic representation of transversity TMD at the lowest order. The dashed line separates the light-cone wave function

evolution using the diagram squared pictured in Fig. 5.
Here we assume that the incoming quark in Fig. 5
originates somewhere in the transversely polarized proton,
and is, in turn, transversely polarized. The soft outgoing
quark is the parton whose distribution we are interested in.

In momentum space we need [with the factor of k™
coming from the use of Eq. (75)]

k+2)(,|l//1,)(,;(’
Ay

? (76)

where v, , s is the light-cone wave function, the square of
which is pictured in Fig. 5. Working in a frame with p =0
we have (see Eq. (9) in [25])

gt*

W (he2) = s K+ 8+ 401 = 00,)

- % (1= 278,y - 25,_,)|. (77)
where
m=(1-z)m
and z = k*/p™. After some algebra one readily obtains

4¢*Crzkl

k+ ! , k’ 2 =
Zﬂ( |‘///1,;(.;( (k Z)| [ki i (1 — Z)2m2]2

Ay

kty.  (78)

It has to be multiplied by the phase-space factor [34]

dktd*k +
Tt (79)
2k (2x)? pt —k*
which gives
2¢*Crzk?® dzd*k
92 FIKT <aA™K | (80)

12+ (1= 2)?m P (1= 2)2n)%
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Comparing this result with the Eq. (50) in [26] we read off
29°Crzk} 1

i = K+ (1 =2)*m*]* (1 - 2)(27)*

L
hiy =0,

(81)

in agreement with Egs. (B9) and (B10) in the same reference.
At small z and for k|, > m Eq. (80) becomes (dropping
the factor of y)

NG 2
[
A2/s ki (1-2)(2x)

Note that the z integral will become logarithmic once we
multiply this by the factor ~1/(z?s?): if the splitting of
Fig. 5 happened in the projectile dipole, then the factor of
~1/(z%s*) would have been responsible for the transverse
spin-dependent interaction of the soft quark from Fig. 5
with the transversely polarized proton target, which is
doubly suppressed at high energy.

The same calculation can be repeated in the transverse
coordinate space. Starting with the coordinate-space wave
function

a . gta ). X ~ 1
Wi (x21.2) = Zm ie; - =K (ixy1)[(1 + 2)8,,

X1
+ (1 =2)5,_] —)‘(1\[_22)
x Ko(ixs,)[6,, — /15%_1,]} (83)

and assuming the small-z limit from the start we arrive at

k+Z |l///UH( |2 dZd X721

'

a,C
=y ——Lm?K, (mxy,)zdzdx3,.

(84)

Somewhat surprisingly, in arriving at Eq. (84) we had to
drop out the terms linear in x,; as integrating out to zero
after the angular part of the d?x,, integration. One could
also argue that those dropped terms were y independent.

In the DLA region of z < 1 and x,; < 1/m we obtain
the following evolution kernel:

Kaa—a4 :aS_CF/l dz dLZ%I (85)
A/s 21

if we multiply Eq. (84) by 1/z? coming from the transverse
spin-dependent interaction with the projectile. At large-N..
this is exactly the kernel of Eq. (62). In fact, Eq. (62) can be
constructed by successive iterations of the soft-quark
emission of Fig. 5. This results in the ladder with quarks
in the ¢ channel pictured in Fig. 6. In general, the DLA
evolution for transversity is not limited to ladder diagrams
[22]: however, at large N, only ladder diagrams remain in
the evolution. We, therefore, conclude that our Eq. (62)

———— 0000000000 |———

————OO00000000 ———

FIG. 6. Double-logarithmic evolution of the transversity TMD
at large N, the lowest order for which is given by Fig. 5.

corresponds to quark ladder of Fig. 6 (cf. the Reggeon
evolution of [20]).

V. CONCLUSIONS

In this work we have applied the operator formalism
developed in [9] to establishing the small-x asymptotics of
the valence quark transversity at small x. The result for the
asymptotics is given in Eq. (73) above. Our calculation
demonstrates that indeed the formalism of [9], perhaps with
minor modifications for the sub-sub-eikonal case, can be
applied to other quark TMDs to determine their small-x
asymptotics.

One a more physical side, the power of 1/x we obtain in
Eq. (73) is rather low. From using Eq. (73) in Eq. (1) it
appears likely that one would find only a rather modest
amount of the proton tensor charge residing at small-x.
Hence it is conceivable that the small-x region would not
help resolve the “transverse spin puzzle” outlined in [7].
However, a detailed phenomenological analysis is needed
for a definitive conclusion.
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APPENDIX: OTHER POSSIBLE
CONTRIBUTIONS TO TRANSVERSELY
POLARIZED QUARK WILSON LINE

Since the transverse spin dependence is sub-sub-
eikonal, one has to consider other possible sub-sub-eikonal
contributions, in addition to those considered in Sec. II.
In addition to the diagrams in Fig. 1 one has to include the

interactions are taken at the subeikonal level each, such
that, e.g., two f-channel gluon exchanges in the diagram C
combine to give a sub-sub-eikonal interaction.

Luckily all of the diagrams in Fig. 7 are independent of
the transverse spin. Using the transverse matrix elements
for BL spinors [24,36],

7 (o — Ty (n) — St (ot — Rt
diagrams shown in Fig. 7, where the f-channel gluon i (p = K)r Ty (p) = 26,/ ™ (T = K7), (Ala)
_ _ 2 . .
M;((P —k)y M;/(P) = W [5;(,;/(17;((17 — k), + (m+ le)()(m —i(p—- k)y)()))
6,y (mpox + ipy(p — k) —m(p — k) x — ip.(p = k),)]. (Alb)
_ ,. e p =k . (1 1 i
u}{(p_k)yu)(/(p)_ p+(p+_k+)|:5)(,)(/<p_++p+_k+_lm<F_p+_k+ }(62
Forr (le](F‘p+—k+ “mlor e 7)) (Ale)

one can show that the subeikonal gluon field only
contains 6, ,» and 6, _,, in contrast to the sub-sub-eikonal
gluon field in Egs. (6). Here y and y’ are transverse
polarizations of the quark in the plus-moving target
proton before and after the emission of the gluon field.
(The eikonal gluon field is proportional to &, ,/, as usual.)
There are no multiplicative factors of y and y’ in the
eikonal and subeikonal gluon fields, only 6, ,, and 6, _,.
This means that one cannot get y6, ,, and the transverse
spin dependence out of diagram C from Fig. 7. The same
is true for diagram E: the two-quark exchange at sub-
eikonal level only contains 6, ,, and 6, _, [see the first
line of Eq. (16) above]. Combining this with the sub-
eikonal contribution to the t-channel gluon exchange,
also containing §, ,» and 6, _, only, without any factors of
x or y, one again cannot generate y4, , and the transverse
spin dependence.

c D

[

The subeikonal (A~ = 0 gauge) gluon field, multiplied
by the triple-gluon vertex, contributes the following to
diagram D:

~8) y[irg x A(q) + (2k + q) - A(q) + (2k~ +q7)A* (q)].
(A2)

As far as the A dependence is concerned, the only difference
between the eikonal vertex (~8; ;) and the expression in
Eq. (A2) is in the factor of 4 in the square brackets of the
latter. Even with this correction, the contribution of the
diagram D in Fig. 7 is proportional to a linear combination
of 5, and 6,_,, and, hence, does not depend on the
transverse spin.

We conclude that the diagrams in Fig. 7 do not contribute
transverse spin dependence at the sub-sub-eikonal level in
question, and are not needed in the analysis of Sec. IL.

k+q

(000000

E

FIG. 7. Additional diagrams potentially contributing to the transversely polarized fundamental Wilson line in the quasiclassical
approximation in A~ = 0 gauge. The gray circles denote the spin-dependent subeikonal scattering.
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