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In our previous work we established a formalism which allows one to determine the small-x asymptotics
of any transverse momentum-dependent parton distribution function (TMD PDF) of the proton at small
values of strong coupling. In this paper we apply this formalism to the valence quark transversity TMD.
We relate the valence quark transversity to the transversely polarized dipole scattering amplitude, written in
terms of the fundamental transversely polarized “Wilson line” operator, an expression for which we derive
explicitly as well. We then write down the evolution equation for the transversely polarized dipole
amplitude. Solving that equation we arrive at the following small-x asymptotics of the valence quark

transversity in the large-Nc limit: hv1Tðx; k2TÞ ∼ h⊥v
1T ðx; k2TÞ ∼ ð1xÞ−1þ2

ffiffiffiffiffiffi
αsNc
2π

p
. This result is in agreement with

one of the two possible small-x asymptotics for the transverse structure function found previously by
Kirschner, Mankiewicz, Schäfer, and Szymanowski [Z. Phys. C 74, 501 (1997)].

DOI: 10.1103/PhysRevD.99.054033

I. INTRODUCTION

Quark transversity transverse momentum-dependent par-
ton distribution function (TMD PDF) is an interesting and
important object to study [1–6]. It provides a key insight
into the distribution of spin among the quarks in a
transversely polarized proton. Moreover, the kT integral
of the quark transversity TMD is equal to the chiral-odd
transversity parton distribution function (PDF) h1ðx;Q2Þ.
In turn, the transversity PDF h1 is related to the tensor
charge of the proton [3],

δqðQ2Þ ¼
Z

1

0

dx½hq1ðx;Q2Þ − hq̄1ðx;Q2Þ�; ð1Þ

a fundamental quantity in quantum chromodynamics
(QCD) which is also employed in the searches of physics
beyond the Standard Model. Recent phenomenological
efforts to extract the proton tensor charge from a global
fit to the available world data [7,8] led to a significant
tension between the obtained tensor charge for up (δu) and
down (δd) quarks and the results of lattice simulations.
A possible resolution of this “transverse spin puzzle” is the

possibility for small-x quarks to carry a significant amount
of transverse spin. If the quarks at values of x smaller than
those measured in experiment carry a large amount of
transverse spin, then the discrepancy between the tensor
charge values extracted from experimental data and the
lattice results may be accounted for. In this paper we will
try to understand the plausibility of this scenario by
theoretically determining the small-x asymptotics of the
quark transversity distribution.
In our previous paper [9] we developed a general method

for determining the small-x asymptotics of quark TMDs.
The developed formalism was applied to quark helicity
TMD, reproducing the results of the earlier works on the
subject [10–13]. (Gluon helicity was considered separately
in [14].) The technique developed in [9] consists of the
following steps:

(i) Starting with the operator definition of the TMD,
simplify it for the case of small x, rewriting the
TMD in terms of the “polarized dipole operator,”
involving the so-called polarized Wilson lines—
operators made of semi-infinite and finite light-
cone Wilson lines with one or more subeikonal
operator insertions.

(ii) Simultaneously with the first step, or after it, one has
to construct the explicit expressions for the relevant
polarized Wilson line operators.

(iii) Construct small-x evolution equation (or equations)
for the polarized dipole amplitude. These equations
usually close in the large-Nc and/or the large-Nc and
Nf limits.

*kovchegov.1@osu.edu
†sievertmd@lanl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 054033 (2019)

2470-0010=2019=99(5)=054033(15) 054033-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.054033&domain=pdf&date_stamp=2019-03-29
https://doi.org/10.1007/s002880050412
https://doi.org/10.1103/PhysRevD.99.054033
https://doi.org/10.1103/PhysRevD.99.054033
https://doi.org/10.1103/PhysRevD.99.054033
https://doi.org/10.1103/PhysRevD.99.054033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(iv) Solving the evolution equations one obtains the
small-x asymptotics for the polarized dipole ampli-
tude, and, through the relation found in step (i), for
the quark TMD in question.

In the case of helicity evolution, this method has been
applied to the leading small-x contribution [10–13], which
results from resumming powers of αs ln2ð1=xÞ. This
resummation parameter was originally suggested in [15]
for certain types of small-x evolution (see also [15–21]); its
resummation is usually referred to as the double logarith-
mic approximation (DLA). Here we will apply this method
to determination of small-x asymptotics for the valence
quark transversity TMD in the same DLA limit.
The paper is structured as follows. In Sec. II we will

derive an explicit expression for the quark transversely
polarized “Wilson line.” In Sec. III we will derive a relation
between the quark transversity TMD at small-x and the
transversely polarized dipole operator. The evolution equa-
tion for the transversely-polarized flavor nonsinglet dipole
operator is derived in Sec. IVA and solved in Sec. IV B,
leading to the small-x asymptotics of valence quark trans-
versity given in Eq. (73) in the large-Nc limit and in the
DLA. The result (73) is consistent with one of the two
possibilities for small-x asymptotics of the chiral-odd PDF
h1ðx;Q2Þ found in [22]. The second possibility found in
[22] is h1ðx;Q2Þ ∼ ð1=xÞ0, which resulted from resumming
the leading logarithms in x (LLA), that is, powers of
αs lnð1=xÞ: such terms are outside of the DLA precision
employed here. At the moment it appears that the LLA
kernel should enter the evolution equation(s) as an additive
correction to the DLA kernel. The solution of the evolution
equations with the leading and subleading kernels may
result in the LLA term giving a multiplicative correction to
our DLA small-x asymptotics (see [23] for an example and
further subtleties in the unpolarized evolution case), rather
than generating an additive term suggested in [22], though a
more detailed investigation is needed to clarify this issue.
This investigation is left for future work.

II. TRANSVERSELY POLARIZED
WILSON LINES

In order to get a better understanding of the transversity
observable in question we begin by constructing the
transversely polarized Wilson line operator for quarks.

This operator is defined as a transverse spin-dependent part
of the scattering amplitude for a high-energy quark on a
target. The target generates quasiclassical background quark
and gluon fields. By analogy to the helicity case, the leading
contributions to the transversely polarized Wilson line are
given by the two diagrams shown in Fig. 1. There, the black
circles denote the subeikonal transverse spin-dependent part
of the quark-gluon vertex. The high-energy quark at the top
of each diagram is moving in the light-cone “−” direction,
while the target proton is moving in the “þ” direction. [For a
4-vector vμ we define v� ¼ ðv0 � v3Þ= ffiffiffi

2
p

.]
To work with the minus-direction-moving quark we

introduce the þ ↔ − interchanged Brodsky-Lepage (BL)
spinors [24], which we will also refer to as the anti-BL
spinors:

uσðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−

q ½
ffiffiffi
2

p
p− þmγ0 þ γ0γ · p�ρðσÞ;

vσðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p−

q ½
ffiffiffi
2

p
p− −mγ0 þ γ0γ · p�ρð−σÞ; ð2Þ

where pμ ¼ ðp
2þm2

2p− ; p−; pÞ, the transverse vectors are
denotes by p ¼ ðpx; pyÞ and

ρðþ1Þ ¼ 1ffiffiffi
2

p

0
BBB@

1

0

−1
0

1
CCCA; ρð−1Þ ¼ 1ffiffiffi

2
p

0
BBB@

0

1

0

1

1
CCCA: ð3Þ

These spinors are eigenstates of W− such that W−u� ¼
∓ ðp−=2Þu�, W−v�¼�ðp−=2Þv�, with the Pauli-
Lubanski vector Wμ¼−1

2
ϵμνρσSνρpσ and Sνρ¼ði=4Þ½γν;γρ�.

To work with transverse spin it is convenient to define
the transverse spinors which are eigenstates of W1 [25],

uχ ≡ 1ffiffiffi
2

p ½uþ þ χu−�; vχ ≡ 1ffiffiffi
2

p ½vþ þ χv−�; ð4Þ

such that W1uχ ¼ ðm=2Þχuχ , W1vχ ¼ −ðm=2Þχvχ , but
only for p ¼ 0. Hence these spinors are transverse to the
quark momentum only for p ¼ 0.

FIG. 1. Transversely polarized fundamental Wilson line in the quasiclassical approximation in ∂μAμ ¼ 0 Feynman gauge or in A− ¼ 0
gauge. The black circles denote the spin-dependent sub-sub-eikonal scattering.
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Before we start our calculation, let us also note that in the
helicity basis the transverse spin is given by the helicity-
flipping ðτÞσσ0 transverse Pauli matrices, while in the
transverse spinor basis (4) it is given by ðτ3Þχχ0, that is,
by the χδχχ0 terms. Hence we are interested in the part of the
quark scattering amplitude proportional to χδχχ0 . To help us
in the calculation, we obtain the following leading trans-
verse polarization-dependent high-energy contributions to
Dirac matrix elements of anti-BL spinors (by keeping the
χδχχ0 terms only):

ūχðpþ kÞγþuχ0 ðpÞ ⊃ −imχ
1

p− δχχ0k × S; ð5aÞ

ūχðpþ kÞγiuχ0 ðpÞ ⊃ −imχ
k−

p− δχχ0ϵ
ijSj: ð5bÞ

The transverse polarization-dependent gluon field of a
plus-direction-moving quark in ∂μAμ ¼ 0 Feynman gauge
is then1

Aa−ðxÞ ¼ −
g
2π

ta
mχ

ðpþÞ2 δðx
−Þ 1

x2⊥
δχχ0x × S; ð6aÞ

AaiðxÞ ¼ −
g
4π

ta
mχ

ðpþÞ2 ∂
þδðx−Þ ln 1

x⊥Λ
δχχ0ϵ

ijSj: ð6bÞ

Note the suppression by two powers of pþ as compared to
the eikonal field: thus the transverse polarization χδχχ0
dependence is sub-sub-eikonal. It also always comes in
with the quark mass m, in agreement with the conventional
wisdom. Here S is a unit vector in the direction of the
proton spin: in Eq. (4) we had S ¼ x̂.
As we mentioned already, the two possible contributions

to the transversely polarized quarkWilson line are shown in
Fig. 1 (see Appendix for a discussion of other possible sub-
sub-eikonal diagrams which do not contribute). We begin
by calculating the contribution of the left panel in the
∂μAμ ¼ 0 gauge, neglecting multiple eikonal gluon
exchanges first. The noneikonal gluon exchange gives

1

2p−
2

igūχðp2 þ kÞ=AðkÞuχ0 ðp2Þ

¼ igmχ

2ðp−
2 Þ2

δχχ0 ½−ik × SA−ðkÞ þ ik−A × S�

≈
gmχ

2ðp−
2 Þ2

δχχ0k × SA−ðkÞ; ð7Þ

where we only keep the χδχχ0 terms. In the last step we have
used the fact that k− ∼ 1=pþ

1 is negligibly small, constitut-
ing a sub-sub-sub-eikonal correction to the quantity of

interest. Nowm is the mass of the projectile quark at the top
of Fig. 1.
Fourier transforming into coordinate space we get

χδχ;χ0Ô
G
pol;Tðx−; xÞ≡

Z
dkþd2k⊥
ð2πÞ3 e−ik

þx−þik·x igmχ

2ðp−
2 Þ2

× ½−iδχχ0k × S�A−ðkÞ
¼ gmχ

2ðp−
2 Þ2

iδχχ0S ×∇A−ðxÞ: ð8Þ

Inserting Wilson lines to account for the multiple eikonal
gluon exchanges, we conclude that the gluon contribution
to the transversely polarized quark Wilson line is

ðVpol;T
x ÞG ¼ 2gmðpþ

1 Þ2
s2

Z þ∞

−∞
dx−Vx½þ∞; x−�

× ½iS×∇A−ðxþ ¼ 0; x−; xÞ�Vx½x−;−∞�: ð9Þ

The fundamental Wilson lines are denoted by

Vx½b−; a−� ¼ P exp

�
ig
Z

b−

a−
dx−Aþðxþ ¼ 0; x−; xÞ

�
:

ð10Þ
Noticing that ∂−Ai ¼ 0 for Ai from Eq. (6b), and that
½Ai; A−� ∼ 1=ðpþ

1 Þ4 is very strongly suppressed at high
energy, we can complete ∇iA− ¼ −∂iA− → F−i and
rewrite Eq. (9) in a gauge-covariant form,

ðVpol;T
x ÞG ¼ 2gmðpþ

1 Þ2
s2

Z þ∞

−∞
dx−

× Vx½þ∞; x−�Si½iϵijF−jðx−; xÞ�Vx½x−;−∞�:
ð11Þ

One can show explicitly that a calculation in A− ¼ 0 gauge
leads to the same result. The difference with the helicity
case [14] is that now the “transversely polarized Wilson
line” (11) is doubly suppressed at high energy and is
proportional to the quark mass m.
We next move on to the right panel in Fig. 1, switching

to the A− ¼ 0 gauge. The contribution of the first (left)
t-channel quark exchange is

1

2p−
2

ϵμ�λ ðp2 þ kÞðigÞψ̄ðkÞtaγμuχ0 ðp2Þ

¼ −
igχ0ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

p−
2

q ψ̄ðkÞta
�
δλ;−1ρðþ1Þ þ χ0δλ;1ρð−1Þ

−
mffiffiffi
2

p
p−
2

ðχ0δλ;1γ0ρð−1Þ þ δλ;−1γ
0ρðþ1ÞÞ

−
ϵ�λ · k

p−
2 þ k−

ðχ0γ0ρðþ1Þ þ γ0ρð−1ÞÞ
�
; ð12Þ

1The gluon fields are indeed gauge dependent. At this
subeikonal level and beyond, the Feynman gauge is not equiv-
alent to the A− ¼ 0 gauge. However, the operator we obtain this
way is gauge invariant (or, gauge covariant) and is the same for all
gauges in which the gluon fields do not stretch out to x− infinities
and the gauge links at infinities never contribute.
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again using the anti-BL spinors and neglecting terms
further suppressed by 1=p−

2 . Gluon polarization 4-vector

in the A− ¼ 0 gauge is ϵμλðp2 þ kÞ ¼ ðϵλ·ðp2
þkÞ

p−
2
þk− ; 0; ϵλÞ in

terms of the ðþ;−;⊥Þ and with ϵλ ¼ ð−1= ffiffiffi
2

p Þðλ; iÞ [24].
Fourier-transforming Eq. (12) yields

−
igχ0ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

p−
2

q ψ̄ðx−1 ; xÞta
�
δλ;−1ρðþ1Þ þ χ0δλ;1ρð−1Þ

−
mffiffiffi
2

p
p−
2

ðχ0δλ;1γ0ρð−1Þ þ δλ;þ1γ
0ρðþ1ÞÞ

þ i
ϵ�λ · ∇⃖
p−
2

ðχ0γ0ρðþ1Þ þ γ0ρð−1ÞÞ
�

≡ −
igffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

p−
2

q ψ̄ðx−1 ; xÞtaM⃖ðλ; χ0Þ ð13Þ

with the transverse derivative acting on the antiquark field
to its left. Note that k− → i∂− ¼ i∂þ, which we put to zero
since ψ̄ is independent of xþ in our standard eikonal
approximation: again, powers of k− correspond to terms
further suppressed at high energy. The second (right)
t-channel quark exchange in Fig. 1 gives

−
igχffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

p−
2

q tb
�
δλ;−1ρ

Tðþ1Þγ0 þ χδλ;1ρ
Tð−1Þγ0

−
mffiffiffi
2

p
p−
2

ðχδλ;1ρTð−1Þ þ δλ;−1ρ
Tðþ1ÞÞ

− i
ϵλ ·∇
p−
2

ðχρTðþ1Þ þ ρTð−1ÞÞ
�
ψðx−2 ; xÞ

¼ −
igffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

p−
2

q tbM⃗†ðλ; χÞγ0ψðx−2 ; xÞ: ð14Þ

Combining Eqs. (13) and (14) we write an expression
for the operator, the χ-dependent part of which would give
us the quark contribution to the transversely polarized
Wilson line:

χδχ;χ0 ðVpol;T
x Þq ⊂ −

g2pþ
1ffiffiffi

2
p

s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2
X
λ

Vx½þ∞; x−2 �

× tb½M⃗†ðλ; χÞγ0ψðx−2 ; xÞ�Uba
x ½x−2 ; x−1 �

× ½ψ̄ðx−1 ; xÞM⃖ðλ; χ0Þ� taVx½x−1 ;−∞�: ð15Þ

Here Uba
x is the adjoint Wilson line, defined by analogy to

Eq. (10). Summing over λ and expanding over 1=p−
2 to the

lowest nontrivial order we arrive at

χδχ;χ0 ðVpol;T
x Þq ⊂ −

g2pþ
1

2s

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 � tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �

�
γ5γþδχ;−χ0 þ δχ;χ0γ

þ

þ pþ
1

s

�
−2mðδχ;χ0 − iδχ;−χ0γ1γ2Þ − χ0

�
ði∂⃖x þ ∂⃖yÞ

1 − γ5

2
ð1þ iγ1γ2Þ þ ði∂x þ ∂yÞ

1 − γ5

2
ð1 − iγ1γ2Þ

�

þ χ

�
ði∂⃖x − ∂⃖yÞ

1þ γ5

2
ð1 − iγ1γ2Þ þ ði∂x − ∂yÞ

1þ γ5

2
ð1þ iγ1γ2Þ

�

þði∂⃖x − ∂⃖yÞ
1þ γ5

2
ðiγ2 − γ1Þ þ ði∂x þ ∂yÞ

1þ γ5

2
ðγ1 þ iγ2Þ

�
þO

�
1

s2

��
αβ

ψ̄αðx−1 ; xÞta Vx½x−1 ;−∞�:

ð16Þ

Since

χχ0 ¼ δχ;χ0 − δχ;−χ0 ; χ − χ0 ¼ 2χδχ;−χ0 ; χ þ χ0 ¼ 2χδχ;χ0 ð17Þ

only the χ and χ0 terms in Eq. (16) have explicit dependence on polarization. Hence we write

χδχ;χ0 ðVpol;T
x Þq ⊂ −

g2ðpþ
1 Þ2

2s2

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 � tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �

×

�
−χ0

�
ði∂⃖x þ ∂⃖yÞ

1 − γ5

2
ð1þ iγ1γ2Þ þ ði∂x þ ∂yÞ

1 − γ5

2
ð1 − iγ1γ2Þ

�

þ χ

�
ði∂⃖x − ∂⃖yÞ

1þ γ5

2
ð1 − iγ1γ2Þ þ ði∂x − ∂yÞ

1þ γ5

2
ð1þ iγ1γ2Þ

��
αβ

ψ̄αðx−1 ; xÞta Vx½x−1 ;−∞�: ð18Þ
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Equivalently, one can rewrite this as

χδχ;χ0 ðVpol;T
x Þq ⊂ −

g2ðpþ
1 Þ2

2s2
χ

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 � tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �fðδχ;χ0γ5 þ δχ;−χ0 Þ

× ½ði∂⃖x − γ5∂⃖yÞð1 − iγ5γ1γ2Þ þ ði∂x − γ5∂yÞð1þ iγ5γ1γ2Þ�gαβψ̄αðx−1 ; xÞta Vx½x−1 ;−∞�; ð19Þ

or, keeping only the χδχ;χ0 terms,

ðVpol;T
x Þq ¼ −

g2ðpþ
1 Þ2

2s2

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 � tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �

× ½ðiγ5∂⃖x − ∂⃖yÞð1 − iγ5γ1γ2Þ þ ðiγ5∂x − ∂yÞð1þ iγ5γ1γ2Þ�αβψ̄αðx−1 ; xÞta Vx½x−1 ;−∞�: ð20Þ

This result can be rewritten as

ðVpol;T
x Þq ¼ −

g2ðpþ
1 Þ2

2s2

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 � tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �

× ½ðiγ5∂⃖x − ∂⃖yÞγþγ− þ ðiγ5∂x − ∂yÞγ−γþ�αβψ̄αðx−1 ; xÞta Vx½x−1 ;−∞�: ð21Þ

To make Eq. (21) gauge invariant (or, more precisely,
gauge covariant) we can replace ∂i → Di, withDi being the
covariant derivative, since the transverse gluon field Ai of
the plus-moving target in ∂μAμ ¼ 0 Feynman gauge or in
A− ¼ 0 gauge is further suppressed by a power of energy,
giving a sub-sub-sub-eikonal contribution to Eq. (21),

which is outside the precision of our approximation. The
covariant derivatives still act only on the corresponding
spinors, with the argument of Ai in each derivative being
the same as that of the spinor the derivative is acting on.
Combining Eqs. (11) and (21) we arrive at the full

expression for the transversely polarized Wilson line

Vpol;T
x ¼ 2gmðpþ

1 Þ2
s2

Z þ∞

−∞
dx− Vx½þ∞; x−� Si½iϵijF−jðx−; xÞ�Vx½x−;−∞�

−
g2ðpþ

1 Þ2
2s2

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2Vx½þ∞; x−2 � tbψβðx−2 ; xÞUba
x ½x−2 ; x−1 �½ðiγ5S · D⃖ − S × D⃖Þγþγ−

þ ðiγ5S ·D − S ×DÞγ−γþ�αβψ̄αðx−1 ; xÞta Vx½x−1 ;−∞�: ð22Þ

The 1=s2 suppression in Eq. (22) indicates that dependence
on the transverse spin comes in as the sub-sub-eikonal
effect at high energies. This result will persist through
our analysis, leading to transversity quark TMDs being
suppressed by x2 compared to unpolarized TMDs at
small x.
Other sub-sub-eikonal diagrams, in addition to those

considered in Fig. 1, are analyzed in Appendix, with the
conclusion that they do not generate transverse spin
dependence and can be discarded.
Since the mass term cannot give the DLA evolution, only

the mass-independent term in Eq. (22) will lead to the DLA

evolution below. Hence the DLA evolution of the quark
polarized Wilson line does not generate polarized gluon
emissions. Therefore, in the DLA approximation we will
not need the transversely polarized gluon Wilson line, and
the quark one in Eq. (22) will be sufficient to construct the
evolution equations.

III. QUARK TRANSVERSITY OPERATOR

Our goal here is to simplify the quark transversity
operator at small x. We begin with the definition of quark
transversity TMDs (see e.g. [26]):
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hq1Tðx; k2TÞ þ
k2x
M2

h⊥q
1T ðx; k2TÞ ¼

1

ð2πÞ3
1

2

X
Sx¼�1

SjT

Z
d2rdr−eik·rhp; ST jψ̄ð0ÞU½0; r�

iσjþγ5

2
ψðrÞjp; STirþ¼0

¼ 1

ð2πÞ3
1

2

X
Sx¼�1

SjT

Z
d2rdr−eik·rhp; ST jψ̄ð0ÞU½0; r�

γ5γþγj

2
ψðrÞjp; STirþ¼0

¼ 1

ð2πÞ3
Z

d2rdr−eik·rhp; Sx ¼ þ1jψ̄ð0ÞU½0; r� γ
5γþγ1

2
ψðrÞjp; Sx ¼ þ1irþ¼0: ð23Þ

(Here M is the proton mass.) Note that the quark trans-
versity TMD is usually defined as

hq1Tðx; k2TÞ þ
k2T
2M2

h⊥q
1T ðx; k2TÞ; ð24Þ

whereas in Eq. (23) we have only taken the x projection of
the quark fields correlator. However, in the end we will use
Eq. (23) to determine both hq1T and h⊥q

1T at small x, which
would allow one to reconstruct the transversity TMD in
Eq. (24).
We choose the forward-pointing gauge link U½0; r�, as

appropriate for semi-inclusive deep inelastic scattering
(SIDIS) process. In A− ¼ 0 gauge that we adopt from now
on, we have

U½0; r� ¼ V0½0;∞�Vr½∞; r−�: ð25Þ

To simplify Eq. (23) we can either repeat the analysis
from [9] or redo the SIDIS cross section calculation from
[27]. In the end we end up with the diagram B from [9]
giving the leading small-x contribution. The diagram is
depicted in Fig. 2, where shaded rectangles denote the
target shock wave in the amplitude and in the complex
conjugate amplitude, the square denotes the spin-dependent
interaction with the polarized target, and the thick hori-
zontal solid lines are the Wilson lines while the thin solid
lines are antiquark propagators. Switching to the target-
averaging notation employed in the saturation/color glass

condensate (CGC) [28–34] approaches we write for the
contribution of the diagram B from Fig. 2 (cf. Eq. (10)
in [9])

hq1Tðx; k2TÞ þ
k2x
M2

h⊥q
1T ðx; k2TÞ

¼ 2pþ

ð2πÞ3
X
q̄

Z
0

−∞
dζ−

Z
∞

0

dξ−

×
Z

d2ζd2ξeik·ðζ−ξÞ
�
1

2
γ5γþγ1

�
αβ

× hψ̄αðξÞjq̄i hq̄jVζ½∞;−∞�ψβðζÞiSx¼þ1
þ c:c: ð26Þ

Repeating the calculation steps for the helicity TMD
performed in [9] we arrive at

hq1Tðx;k2TÞþ
k2x
M2

h⊥q
1T ðx;k2TÞ

¼−
2pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

×
X
χ1;χ2

v̄χ2ðk2Þ
1

2
γ5γþγ1vχ1ðk1Þ

×hTVij
ζ ½∞;−∞�v̄χ1ðk1ÞðV̂†

wÞjivχ2ðk2ÞiSx¼þ1

×
1

ð2xpþk−1 þk21Þð2xpþk−1 þk2Þ
				
k−
2
¼k−

1
;k2

1
¼0;k2

2
¼0;k2¼−k

þc:c:;

ð27Þ

where now we chose the transverse basis for the spinors.
By analogy to helicity operators we write

v̄χðpÞðV̂†
xÞvχ0 ðp0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
p−p0−p

ðδχχ0V†
xþχδχχ0V

pol;T†
x þ���Þ:

ð28Þ

The ellipsis denote the subeikonal and sub-sub-eikonal
corrections (and beyond) independent of the proton trans-
verse spin (but, in general, possibly dependent on χ).

FIG. 2. The diagram which, along with its complex conjugate,
dominates the SIDIS cross section or, equivalently, quark TMDs
at small x.
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Employing anti-BL spinors we find

v̄χ2ðk2Þ
1

2
γ5γþγ1vχ1ðk1Þ

¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
k−1 k

−
2

p ½−χ1δχ1χ2ð2S · k1S · k2 − k1 · k2 −m2Þ

þ imδχ1χ2S × ðk1 − k2Þ − iχ1δχ1;−χ2
× ðS × k1S · k2 þ S · k1S × k2Þ −mδχ1;−χ2S · ðk1 þ k2Þ�;

ð29Þ

where, again, S ¼ x̂ is the unit vector in the direction of the
proton spin.

Substituting Eqs. (28) and (29) into Eq. (27) we arrive at

hq1Tðx; k2TÞ þ
k2x
M2

h⊥q
1T ðx; k2TÞ

¼ 4pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

×
1

ð2xpþk−1 þ k21Þð2xpþk−1 þ k2Þ
× fð−2S · k1S · kþ k1 · k −m2ÞhTtr½VζV

pol;T†
w �i

Sx¼þ1

þ imS × ðk1 þ kÞhTtr½VζV
†
w�i

Sx¼þ1
g þ c:c: ð30Þ

Adding in the complex conjugate (where we interchange
ζ ↔ w after conjugation) yields

hq1Tðx; k2TÞ þ
k2x
M2

h⊥q
1T ðx; k2TÞ ¼

4pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

1

ð2xpþk−1 þ k21Þð2xpþk−1 þ k2Þ
× fð−2S · k1S · kþ k1 · k −m2ÞhTtr½VζV

pol;T†
w � þ T̄tr½Vpol;T

ζ V†
w�i

Sx¼þ1

þ imS × ðk1 þ kÞhTtr½VζV
†
w� − T̄tr½VζV

†
w�i

Sx¼þ1
g: ð31Þ

The last term in the brackets is zero [9], since

hTtr½VζV
†
w� − T̄tr½VζV

†
w�i

Sx¼þ1
¼ 0 ð32Þ

for true Wilson lines, if we flip the Wilson lines in the
second trace from the complex conjugate amplitude into the
amplitude using the reflection symmetry employed in [9],
which was verified in [35] up to next-to-leading logarithms
(NLL) in x for the unpolarized evolution. We are left with

hq1Tðx; k2TÞ þ
k2x
M2

h⊥q
1T ðx; k2TÞ

¼ 4pþ

ð2πÞ3
Z

d2ζd2w
d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

×
1

ð2xpþk−1 þ k21Þð2xpþk−1 þ k2Þ
× ð−2S · k1S · kþ k1 · k −m2Þ
× hTtr½VζV

pol;T†
w � þ T̄tr½Vpol;T

ζ V†
w�i

Sx¼þ1
: ð33Þ

The flavor-singlet and nonsinglet (valence quark) dis-
tributions are defined by

hS1Tðx; k2TÞ ¼
X
f

½hqf1Tðx; k2TÞ þ h
q̄f
1Tðx; k2TÞ�;

h⊥S
1T ðx; k2TÞ ¼

X
f

½h⊥qf
1T ðx; k2TÞ þ h

⊥q̄f
1T ðx; k2TÞ�; ð34aÞ

hNS
1T ðx; k2TÞ ¼ hq1Tðx; k2TÞ − hq̄1Tðx; k2TÞ;

h⊥NS
1T ðx; k2TÞ ¼ h⊥q

1T ðx; k2TÞ − h⊥q̄
1T ðx; k2TÞ: ð34bÞ

The singlet version of Eq. (33) is

hS1Tðx; k2TÞ þ
k2x
M2

h⊥S
1T ðx; k2TÞ

¼ 4pþ

ð2πÞ3
X
f

Z
d2ζd2w

d2k1dk−1
ð2πÞ3 eiðk1þkÞ·ðw−ζÞθðk−1 Þ

×
1

ð2xpþk−1 þ k21Þð2xpþk−1 þ k2Þ
× ð−2S · k1S · kþ k1 · k −m2

fÞ
× hTtr½VζV

pol;T†
w � þ Ttr½Vpol;T

w V†
ζ � þ T̄tr½Vpol;T

ζ V†
w�

þT̄tr½VwV
pol;T†
ζ �i

Sx¼þ1
: ð35Þ

Define the doubly energy-rescaled transversely polarized
flavor-singlet dipole amplitude

TS
10ðzsÞ≡ðzsÞ2

2Nc
RehTtr½V0V

pol;T†
1 �þTtr½Vpol;T

1 V†
0�iSx¼þ1

¼2ðpþk−1 Þ2
Nc

RehTtr½V0V
pol;T†
1 �þTtr½Vpol;T

1 V†
0�iSx¼þ1

ð36Þ

with zs ¼ 2pþk−1 . Further note that the integrals like
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Z
d2
�
x0 þ x1

2

�
hTtr½V0V

pol;T†
1 �i

Sx¼þ1
ð37Þ

[for any of the correlators in Eq. (35)] are even functions of
x10 ¼ x1 − x0. The reason for this is slightly different from
the helicity case: in the case of helicity we could argue that
the integrals like (37) are simply functions of jx1 − x0j due
to the absence of a preferred transverse direction in the
problem. Note that the target proton and the polarized
projectile quark in the dipole both have transverse spins, ST
and SP. Since PT symmetry requires that spin dependence
enters as a term bilinear in the two spins, we writeZ

d2
�
x0 þ x1

2

�
hTtr½V0V

pol;T†
1 �i

ST

¼ Aðx10Þ þ Bðx10ÞST · x10SP · x10 þ � � � ; ð38Þ
where A and B are some scalar functions of x10 ¼ jx1 − x0j
while the ellipsis denote terms like B but with either or both
scalar products replaced by a vector product of the same
vectors. We thus see that the object on the left of Eq. (38)
[along with impact-parameter integrals of other such corre-
lators in Eq. (35)] is an even function under the x1 ↔ x0
interchange.
Employing this observation along with the definition

(36) in Eq. (35) yields for the flavor-singlet case

hS1Tðx; k2TÞ þ
k2x
M2

h⊥S
1T ðx; k2TÞ

¼ 8Nc

ð2πÞ3
X
f

Z
d2x0d2x1

d2k1dk−1
2pþðk−1 Þ2ð2πÞ3

eiðk1þkÞ·x10θðk−1 Þ

×
1

ð2xpþk−1 þ k21Þð2xpþk−1 þ k2Þ
× ð−2S · k1S · kþ k1 · k −m2

fÞTS
10ðzsÞ: ð39Þ

For the flavor nonsinglet case, we define the transversely
polarized flavor nonsinglet dipole amplitude

TNS
10 ðzsÞ≡ðzsÞ2

2Nc
RehTtr½V0V

pol;T†
1 �−Ttr½Vpol;T

1 V†
0�iSx¼þ1

¼2ðpþk−1 Þ2
Nc

RehTtr½V0V
pol;T†
1 �−Ttr½Vpol;T

1 V†
0�iSx¼þ1

ð40Þ
which gives, for the valence-quark transversity TMDs,

hNS
1T ðx; k2TÞ þ

k2x
M2

h⊥NS
1T ðx; k2TÞ

¼ 8Nc

ð2πÞ3
Z

d2x0d2x1
d2k1dk−1

2pþðk−1 Þ2ð2πÞ3
eiðk1þkÞ·x10θðk−1 Þ

×
1

ð2xpþk−1 þ k21Þð2xpþk−1 þ k2Þ
× ð−2S · k1S · kþ k1 · k −m2ÞTNS

10 ðzsÞ: ð41Þ

Continuing with the nonsinglet distribution, if we simply
put x → 0 in Eq. (41), we get a nonlogarithmic (in z) but
nonzero contribution: integrating over k1 we arrive at

hNS
1T ðx; k2TÞ þ

k2x
M2

h⊥NS
1T ðx; k2TÞ

¼ 8Nc

ð2πÞ5k2⊥

Z
d2x0d2x1eik·x10

1

s

Z
1

Λ2=s

dz
z2

×

�
−2i

S · x10
x210

S · kþ i
x10 · k
x210

−m2 ln
1

x10
ffiffiffiffiffiffiffi
xzs

p
�
TNS
10 ðzsÞ:

ð42Þ

If TNS
10 ðzs; SÞ obeys a regular DLA-type evolution, that is if

TNS
10 ðzsÞ ∼ ðzsÞC ffiffiffiffi

αs
p ð43Þ

with C a constant, then the z integral in Eq. (42) would be
dominated by its lower limit (for αs ≪ 1), leading to

hNS
1T ðx; k2TÞ ∼ h⊥NS

1T ðx; k2TÞ ∼
�
1

x

�
0

: ð44Þ

The same conclusion would be valid for any perturbative
positive power in Eq. (43). It appears that the asymptotics
(44) agrees with that found in [22].
However, the dz=z2 integral in Eq. (42) is dominated by

the lower limit of the z integral, z ∼ Λ2=s. In this limit the
antiquarks k1 and k2 in Fig. 2 do not live a long enough time
to get outside the shock wave, as the figure suggests. [The
antiquark lifetime is 2zp−

2 =⊥2 ¼ Λ2=ðpþ
1 ⊥2Þ ∼ 1=pþ

1 ,
which is exactly the shock wave width.] We conclude that
the asymptotics (44) originates from the contribution where
the diagram B is marginally applicable. To understand it
better, we need to review the diagramwhere both vertices ζ, ξ
are inside the shock wave.
The contribution with ζ, ξ inside the shock wave was

captured by the diagram A in the notation of [9]. It is
depicted in Fig. 3 here, with a sample interaction with the

FIG. 3. The diagram where both Wilson lines originate inside
the shock wave on the different sides of the cut.
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shock waves shown explicitly too. In [9] we have shown
that all the radiative corrections to this diagram are canceled
(in DLA) by other diagrams. The contribution of the
diagram Fig. 3 without radiative corrections is constant
in x. In the case of helicity TMDs, a constant was
subleading compared to the leading small-x helicity
asymptotics, and was discarded. Now we see that a constant
in x behavior is of the same order as Eq. (44). Therefore,
diagram A has to be included in our analysis.
The constant in the x part of diagram A in Fig. 3 comes

from the instantaneous terms [24,36] in the k1 and k2
propagators. To include this contribution of diagram A, we
simply have to include (or, more precisely, insert back) the
instantaneous terms into those propagators in diagram B.
One can show that the instantaneous contributions, when
added to diagram B, replace

=k1θðk−1 Þ
1

2kþk−1 þ k21
→ =k1θðk−1 Þ

1

2kþk−1 þ k21
−

1

2k−1
γ−

ð45Þ

(and also for k2) after one of the steps omitted in arriving at
Eq. (27) if we now understand the ζ− and ξ− integrals in
Eq. (26) as including the points ζ− ¼ 0 and ξ− ¼ 0, such
that we could pick up the delta functions there. (These are
the contributions coming from diagram A.) Here =k1 ¼
γ−

k2
1

2k−
1

þ γþk−1 − γ · k1. At small k−1 we have =k ≈ γ−
k2
1

2k−
1

such

that (for k−1 > 0)�
=k1θðk−1 Þ

1

2kþk−1 þ k21
−

1

2k−1
γ−
�				

small k−
1

≈ =k1
−2kþk−1

k21ð2kþk−1 þ k21Þ
: ð46Þ

Therefore, the instantaneous terms regulate the k−1 integral

by a lower cutoff at k−1 ≈ k2
1

2kþ. This means that Eq. (42) now
contains a new lower bound on the z integral and is
proportional to

1

s

Z
1

k2
1
=ðxsÞ

dz
z2

¼ x
k21

−
1

s
¼ x

k21
−

x
Q2

¼ OðxÞ: ð47Þ

Indeed Eq. (45) also contains a contribution of the
instantaneous term for k−1 < 0. This part would regulate
the k−1 integral in the “c.c.” part of Eq. (27). Simply
including ζ− ¼ 0 and ξ− ¼ 0 contributions into both
integrals in both terms of Eq. (26) would introduce
double-counting: we have to include those points only
once, and then split the contribution of the resulting
instantaneous term between the two terms (time orderings).
We conclude that the contribution of Eq. (42) is smaller

than it seems naively, being ∼x rather than a constant in x.
However, at this order other terms in the full Eq. (41) may

contribute as well. If we expand Eq. (41) to order x, we
obtain

hNS
1T ðx; k2TÞ þ

k2x
M2

h⊥NS
1T ðx; k2TÞ

¼ −x
8Nc

ð2πÞ4
Z

d2x0d2x1

Z
1

Λ2=s

dz
z

Z
d2k1
ð2πÞ2

× eiðk1þkÞ·x10 1

k21k
2

�
1

k21
þ 1

k2

�
× ð−2S · k1S · kþ k1 · k −m2ÞTNS

10 ðzsÞ: ð48Þ
This contribution comes in with a logarithmic integral in z.
For the asymptotics of TNS

10 ðzsÞ from Eq. (43) it leads to

hNS
1T ðx; k2TÞ ∼ h⊥NS

1T ðx; k2TÞ ∼
�
1

x

�
−1þC

ffiffiffiffi
αs

p
; ð49Þ

which, for C > 0, would dominate over ∼x contribution of
Eq. (42). We tentatively conclude that Eq. (48) may give us
the true small-x asymptotics of the flavor nonsinglet quark
transversity TMD.
Repeating the above steps for the flavor-singlet case we

arrive at

hS1Tðx; k2TÞ þ
k2x
M2

h⊥S
1T ðx; k2TÞ

¼ −x
8Nc

ð2πÞ4
X
f

Z
d2x0d2x1

Z
1

Λ2=s

dz
z

Z
d2k1
ð2πÞ2

× eiðk1þkÞ·x10 1

k21k
2

�
1

k21
þ 1

k2

�
× ð−2S · k1S · kþ k1 · k −m2

fÞTS
10ðzsÞ: ð50Þ

IV. EVOLUTION OF THE FLAVOR NONSINGLET
TRANSVERSELY POLARIZED DIPOLE

A. Operator evolution

The discussion here is for the flavor nonsinglet (valence-
quark) distribution. We now want to construct the evolution
for the transversely polarized dipole amplitude

TNS
10 ðzsÞ ¼

ðzsÞ2
2Nc

RehTtr½V0V
pol;T†
1 � − Ttr½Vpol;T

1 V†
0�iSx¼þ1

:

ð51Þ
Quark mass cannot contribute to the DLA evolution:
therefore, polarized gluon emissions do not contribute.
In addition, by analogy to the flavor nonsinglet helicity case
[12], eikonal gluon exchanges do not contribute to TNS

10 ðzsÞ
either. We are left only with polarized soft quark emissions
contribution to the small-x evolution. Therefore we discard
the gluon-exchange term in Eq. (22) and write
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TNS
10 ðzsÞ ¼ −

g2ðpþÞ2
4Nc

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2RehTtr½V†
0V1½þ∞; x−2 �tbψβðx−2 ; x1ÞUba

1 ½x−2 ; x−1 �

× ½ðiγ5S · D⃖1 − S × D⃖1Þγþγ− þ ðiγ5S ·D1 − S ×D1Þγ−γþ�αβψ̄αðx−1 ; x1Þta V1½x−1 ;−∞�� − c:c:iSx¼þ1: ð52Þ

(Note that the operator in the angle brackets is real, but
not Hermitean.) As usual, the derivatives act only on the
spinors and the subscript 1 refers to them acting on
x1. Simplifying Eq. (52) in the large-Nc linearized
approximation, where all fundamental traces made out
of only true Wilson lines are replaced by Nc, along
with replacing covariant derivatives by the partial deriv-
atives, we arrive at (note the sign change when moving ψ
past ψ̄)

TNS
10 ðzsÞ ¼

g2ðpþÞ2
8

Z
∞

−∞
dx−1

Z
∞

x−
1

dx−2

× RehTtr½ψ̄ðx−1 ; x1Þ½ðiγ5∂1
x − ∂1

yÞγþγ−

þ ðiγ5∂⃖1
x − ∂⃖1

yÞγ−γþ�V1½x−1 ; x−2 �ψðx−2 ; x1Þ�
− c:c:iSx¼þ1: ð53Þ

One step of the evolution, as pictured in Fig. 4, leads to

δTNS
10 ðzsÞ ¼ −

g2ðpþÞ2
8

Z
0

−∞
dx−1

Z
∞

0

dx−2

Z
d2x2

d4k1
ð2πÞ4

d4k2
ð2πÞ4 e

ikþ
1
x−
1
þik1·x21e−ik

þ
2
x−
2
þik2·x12

×Re



TiðV†

1Þjitr
�

i=k1
k21 þ iϵ

½−ðiγ5kx2 − ky2Þγþγ− þ ðiγ5kx1 − ky1Þγ−γþ�
i=k2

k22 þ iϵ
ðV̂2Þij

�
ð2πÞδðk−1 − k−2 Þ− c:c:

�
Sx¼þ1

:

ð54Þ

Integrating over k−2 , k
þ
1 and kþ2 we get

δTNS
10 ðzsÞ ¼ −

g2ðpþÞ2
8

Z
0

−∞
dx−1

Z
∞

0

dx−2

Z
d2x2

dk−1 d
2k1

ð2πÞ3ð2k−1 Þ2
d2k2
ð2πÞ2 e

i
k2
1

2k−
1
x−
1
þik1·x21e

−i
k2
2

2k−
1
x−
2
þik2·x12RehTiðV†

1Þji

× tr½=k1½−ðiγ5kx2 − ky2Þγþγ− þ ðiγ5kx1 − ky1Þγ−γþ�=k2ðV̂2Þij� − c:c:iSx¼þ1jk2
1
¼k2

2
¼0;k−

1
¼k−

2
: ð55Þ

Integrating over x−1 , x
−
2 yields

δTNS
10 ðzsÞ ¼

g2ðpþÞ2
8

Z
d2x2

dk−1 d
2k1

ð2πÞ3k21k22
d2k2
ð2πÞ2 e

ik1·x21eik2·x12

× RehTiðV†
1Þjitr½=k1½−ðiγ5kx2 − ky2Þγþγ− þ ðiγ5kx1 − ky1Þγ−γþ�=k2ðV̂2Þij� − c:c:iSx¼þ1jk2

1
¼k2

2
¼0;k−

1
¼k−

2
: ð56Þ

Next we evaluate the Dirac trace with the help of massless anti-BL spinors (since the mass does not contribute to the DLA
evolution at hand),

tr½=k1½−ðiγ5kx2 − ky2Þγþγ− þ ðiγ5kx1 − ky1Þγ−γþ�=k2ðV̂2Þij�
¼

X
χ1;χ2

ūχ1ðk1Þ½−ðiγ5kx2 − ky2Þγþγ− þ ðiγ5kx1 − ky1Þγ−γþ�uχ2ðk2Þūχ2ðk2ÞðV̂2Þijuχ1ðk1Þ

¼ 16ik−1 k1 · k2ðVpol;T
2 Þij; ð57Þ

FIG. 4. Small-x evolution of the transversely polarized dipole amplitude.
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where we have used

ūχ1ðk2ÞðV̂xÞuχ2ðk1Þ
¼ 2

ffiffiffiffiffiffiffiffiffiffi
k−1 k

−
2

p ðδχ1;χ2Vx þ χ1δχ1;χ2V
pol;T
x þ � � �Þ ð58Þ

and

ūχ1ðk1Þ½−ðiγ5kx2 − ky2Þγþγ− þ ðiγ5kx1 − ky1Þγ−γþ�uχ2ðk2Þ
¼ 4iχ1δχ1;χ2k1 · k2 þ � � � : ð59Þ

In the last formula the ellipsis denote the energy-suppressed
and off-diagonal in polarizations corrections, along with
mass-dependent terms which do not contribute to the DLA
evolution.
Inserting Eq. (57) into Eq. (56) we get

δTNS
10 ðzsÞ ¼ −2g2ðpþÞ2

Z
d2x2

dk−1 k
−
1 d

2k1
ð2πÞ3k21k22

d2k2
ð2πÞ2

× eik1·x21eik2·x12k1 · k2

× RehTtr½Vpol;T
2 V†

1� − c:c:iSx¼þ1; ð60Þ

or, equivalently,

δTNS
10 ðzsÞ ¼

αsNc

2π2

Z
d2x2
x221

dz0

z0
TNS
21 ðz0sÞ: ð61Þ

Inserting the proper DLA limits [10,12,13,20] we arrive
at the following evolution equation for the flavor nonsinglet
transversely polarized dipole amplitude:

TNS
10 ðzsÞ ¼ TNS;ð0Þ

10 ðzsÞ þ αsNc

2π

Z
z

Λ2=s

dz0

z0

×
Z

x2
10
z=z0

1=z0s

dx221
x221

TNS
21 ðz0sÞ; ð62Þ

with the inhomogeneous term TNS;ð0Þ
10 ðzsÞ to be found by

performing a Born-level evaluation of the amplitude. Since
our goal here is in establishing the small-x asymptotics for
the valence quark transversity, we will not need an explicit

form of TNS;ð0Þ
10 ðzsÞ since it does not affect the asymptotics.

B. Solution of the evolution equations for
the transversely polarized dipole

Equation (62) is mathematically identical to the evolu-
tion equation for the Reggeon amplitude derived in [20]
[see Eq. (44) there]. Defining new variables

y ¼ lnðzsx210Þ; η ¼ ln
zs
Λ2

;

y0 ¼ lnðz0sx221Þ; η0 ¼ ln
z0s
Λ2

; ð63Þ

we rewrite Eq. (62) as

TNSðη;yÞ¼TNS;ð0Þðη;yÞþαsNc

2π

Z
η

0

dη0
Z

y

0

dy0TNSðη0;y0Þ:

ð64Þ

The solution is obtained by performing a double Laplace-
Mellin transform

TNSðη; yÞ ¼
Z

dω
2πi

dλ
2πi

eωηþλyTNS
ω;λ ð65Þ

where the ω and λ integrals run parallel to the imaginary
axis to the right of all the singularities of the integrand. The
Laplace-Mellin transform casts Eq. (64) in the following
form:

TNS
ω;λ ¼ TNS;ð0Þ

ω;λ þ αsNc

2π

1

ωλ
TNS
ω;λ: ð66Þ

Solving for TNS
ω;λ we arrive at

TNS
ω;λ ¼ TNS;ð0Þ

ω;λ
1

1 − αsNc
2π

1
ωλ

ð67Þ

such that

TNSðη; yÞ ¼
Z

dω
2πi

dλ
2πi

eωηþλyTNS;ð0Þ
ω;λ

1

1 − αsNc
2π

1
ωλ

: ð68Þ

Next we integrate overω assuming that the double Laplace-
Mellin transform of the inhomogeneous term does not
generate any poles to the right of the pole in the denom-
inator of Eq. (68). This gives the leading asymptotics

TNSðη; yÞ ¼
Z

dλ
2πi

αsNc

2π

1

λ
TNS;ð0Þ

αsNc
2π

1
λ;λ
exp

�
αsNc

2π

1

λ
ηþ λy

�
:

ð69Þ

Again assuming that the singularities of the inhomo-
geneous term are not important, we distort the λ contour
into its steepest descent form, going through the saddle
point at

λs:p: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αsNc

2π

η

y

s
: ð70Þ

The integral is then dominated by λ ¼ λs:p: such that

TNSðη; yÞ ∼ exp

�
2

ffiffiffiffiffiffiffiffiffiffi
αsNc

2π

r ffiffiffiffiffi
ηy

p �
: ð71Þ

At high energies η ≈ y ∼ lnðzsÞ, such that the asymptotics
of the flavor nonsinglet transversely polarized dipole
amplitude is
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TNS
10 ðzsÞ ∼ ðzsÞ2

ffiffiffiffiffiffi
αsNc
2π

p
: ð72Þ

We realize that we are indeed in the situation described
by Eq. (43) with C ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc=ð2πÞ

p
> 0. This means that

Eq. (48) does give us the leading small-x asymptotics for
valence transversity. Employing Eq. (72) in Eq. (48) we
conclude that

hNS
1T ðx; k2TÞ ∼ h⊥NS

1T ðx; k2TÞ ∼
�
1

x

�
−1þ2

ffiffiffiffiffiffi
αsNc
2π

p
: ð73Þ

This is our main result, giving us the asymptotics of valence
quark transversity. As mentioned in the Introduction, it
agrees with one of the small-x asymptotics for transversity
found in [22].
The power of 1=x in Eq. (73) is much smaller than the

intercept of the leading-order Balitsky-Fadin-Kuraev-
Lipatov [37,38] evolution equation, whole solution deter-
mines the small-x asymptotics for unpolarized TMD. This
power is also much smaller than the quark helicity intercept
found in [11,13]. Hence the Soffer bound [39] appears to be
easily satisfied by Eq. (73) at small x.
For αs ¼ 0.3 we get from Eq. (73) with Nc ¼ 3

hNS
1T ðx; k2TÞ ∼ h⊥NS

1T ðx; k2TÞ ∼ x0.243: ð74Þ

C. An alternative derivation

One may argue that the above operator method of
obtaining the small-x asymptotics of the valence quark
transversity, while powerful, lacks physics insight. To
generate the latter, we will now rederive the result (73)
using the more conventional ladder diagram technique.
Returning to the conventional BL spinors [24,36] and

using the fact that

ūχðpÞ
1

2
γ5γþγ1uχ0 ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
pþkþ

p
χδχ;χ0 ð75Þ

for these spinors, we can calculate the leading-order
transversity TMD or, equivalently, one step of transversity

evolution using the diagram squared pictured in Fig. 5.
Here we assume that the incoming quark in Fig. 5
originates somewhere in the transversely polarized proton,
and is, in turn, transversely polarized. The soft outgoing
quark is the parton whose distribution we are interested in.
In momentum space we need [with the factor of kþ

coming from the use of Eq. (75)]

kþ
X
λ;χ0

χ0jψλ;χ;χ0 j2; ð76Þ

where ψλ;χ;χ0 is the light-cone wave function, the square of
which is pictured in Fig. 5. Working in a frame with p ¼ 0

we have (see Eq. (9) in [25])

ψa
λχχ0 ðk; zÞ ¼

gta

k2 þ m̃2

�
ϵ�λ · kðð1þ zÞδχ;χ0 þ λð1 − zÞδχ;−χ0 Þ

−
m̃ffiffiffi
2

p ð1 − zÞχðδχ;χ0 − λδχ;−χ0 Þ
�
; ð77Þ

where

m̃≡ ð1 − zÞm

and z ¼ kþ=pþ. After some algebra one readily obtains

kþ
X
λ;χ0

χ0jψλ;χ;χ0 ðk; zÞj2 ¼
4g2CFzk2⊥

½k2⊥ þ ð1 − zÞ2m2�2 k
þχ: ð78Þ

It has to be multiplied by the phase-space factor [34]

dkþd2k⊥
2kþð2πÞ3

pþ

pþ − kþ
ð79Þ

which gives

2g2CFzk2⊥
½k2⊥ þ ð1 − zÞ2m2�2 χ

dzd2k⊥
ð1 − zÞð2πÞ3 : ð80Þ

FIG. 5. Diagrammatic representation of transversity TMD at the lowest order. The dashed line separates the light-cone wave function
from its complex conjugate.
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Comparing this result with the Eq. (50) in [26] we read off

hq1T ¼ 2g2CFzk2⊥
½k2⊥ þ ð1 − zÞ2m2�2

1

ð1 − zÞð2πÞ3 ; h⊥q
1T ¼ 0;

ð81Þ
in agreement with Eqs. (B9) and (B10) in the same reference.
At small z and for k⊥ ≫ m Eq. (80) becomes (dropping

the factor of χ)Z
1

Λ2=s
dz z

Z ffiffi
s

p

m

d2k⊥
k2⊥

2g2CF

ð1 − zÞð2πÞ3 : ð82Þ

Note that the z integral will become logarithmic once we
multiply this by the factor ∼1=ðz2s2Þ: if the splitting of
Fig. 5 happened in the projectile dipole, then the factor of
∼1=ðz2s2Þ would have been responsible for the transverse
spin-dependent interaction of the soft quark from Fig. 5
with the transversely polarized proton target, which is
doubly suppressed at high energy.
The same calculation can be repeated in the transverse

coordinate space. Starting with the coordinate-space wave
function

ψa
λχχ0 ðx21; zÞ ¼

gta

2π
m̃

�
iϵ�λ ·

x21
x21

K1ðm̃x21Þ½ð1þ zÞδχ;χ0

þ λð1 − zÞδχ;−χ0 � −
χð1 − zÞffiffiffi

2
p

× K0ðm̃x21Þ½δχ;χ0 − λδχ;−χ0 �
�

ð83Þ

and assuming the small-z limit from the start we arrive at

kþ
X
λ;χ0

χ0jψλ;χ;χ0 j2
dzd2x21

4π
¼ χ

αsCF

π
m2K1ðmx21Þ2zdzdx221:

ð84Þ
Somewhat surprisingly, in arriving at Eq. (84) we had to
drop out the terms linear in x21 as integrating out to zero
after the angular part of the d2x21 integration. One could
also argue that those dropped terms were χ independent.
In the DLA region of z ≪ 1 and x21 ≪ 1=m we obtain

the following evolution kernel:

Kqq̄→qq̄ ¼ αsCF

π

Z
1

Λ2=s

dz
z

Z
dx221
x221

; ð85Þ

if we multiply Eq. (84) by 1=z2 coming from the transverse
spin-dependent interaction with the projectile. At large-Nc
this is exactly the kernel of Eq. (62). In fact, Eq. (62) can be
constructed by successive iterations of the soft-quark
emission of Fig. 5. This results in the ladder with quarks
in the t channel pictured in Fig. 6. In general, the DLA
evolution for transversity is not limited to ladder diagrams
[22]: however, at large Nc only ladder diagrams remain in
the evolution. We, therefore, conclude that our Eq. (62)

corresponds to quark ladder of Fig. 6 (cf. the Reggeon
evolution of [20]).

V. CONCLUSIONS

In this work we have applied the operator formalism
developed in [9] to establishing the small-x asymptotics of
the valence quark transversity at small x. The result for the
asymptotics is given in Eq. (73) above. Our calculation
demonstrates that indeed the formalism of [9], perhaps with
minor modifications for the sub-sub-eikonal case, can be
applied to other quark TMDs to determine their small-x
asymptotics.
One a more physical side, the power of 1=x we obtain in

Eq. (73) is rather low. From using Eq. (73) in Eq. (1) it
appears likely that one would find only a rather modest
amount of the proton tensor charge residing at small-x.
Hence it is conceivable that the small-x region would not
help resolve the “transverse spin puzzle” outlined in [7].
However, a detailed phenomenological analysis is needed
for a definitive conclusion.
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FIG. 6. Double-logarithmic evolution of the transversity TMD
at large Nc, the lowest order for which is given by Fig. 5.
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APPENDIX: OTHER POSSIBLE
CONTRIBUTIONS TO TRANSVERSELY
POLARIZED QUARK WILSON LINE

Since the transverse spin dependence is sub-sub-
eikonal, one has to consider other possible sub-sub-eikonal
contributions, in addition to those considered in Sec. II.
In addition to the diagrams in Fig. 1 one has to include the
diagrams shown in Fig. 7, where the t-channel gluon

interactions are taken at the subeikonal level each, such
that, e.g., two t-channel gluon exchanges in the diagram C
combine to give a sub-sub-eikonal interaction.
Luckily all of the diagrams in Fig. 7 are independent of

the transverse spin. Using the transverse matrix elements
for BL spinors [24,36],

ūχðp − kÞγþuχ0 ðpÞ ¼ 2δχ;χ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþðpþ − kþÞ

p
; ðA1aÞ

ūχðp − kÞγ−uχ0 ðpÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pþðpþ − kþÞp ½δχ;χ0 ðpxðp − kÞx þ ðmþ ipyχÞðm − iðp − kÞyχÞÞÞ

þδχ;−χ0 ðmpxχ þ ipyðp − kÞx −mðp − kÞxχ − ipxðp − kÞyÞ�; ðA1bÞ

ūχðp − kÞγiuχ0 ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþðpþ − kþÞ

p �
δχ;χ0

�
pi

pþ þ ðp − kÞi
pþ − kþ

− im

�
1

pþ −
1

pþ − kþ

�
χδi2

�

þδχ;−χ0

�
iϵij

�
pj

pþ −
ðp − kÞj
pþ − kþ

�
−m

�
1

pþ −
1

pþ − kþ

�
χδi1

��
; ðA1cÞ

one can show that the subeikonal gluon field only
contains δχ;χ0 and δχ;−χ0 , in contrast to the sub-sub-eikonal
gluon field in Eqs. (6). Here χ and χ0 are transverse
polarizations of the quark in the plus-moving target
proton before and after the emission of the gluon field.
(The eikonal gluon field is proportional to δχ;χ0 , as usual.)
There are no multiplicative factors of χ and χ0 in the
eikonal and subeikonal gluon fields, only δχ;χ0 and δχ;−χ0 .
This means that one cannot get χδχ;χ0 and the transverse
spin dependence out of diagram C from Fig. 7. The same
is true for diagram E: the two-quark exchange at sub-
eikonal level only contains δχ;χ0 and δχ;−χ0 [see the first
line of Eq. (16) above]. Combining this with the sub-
eikonal contribution to the t-channel gluon exchange,
also containing δχ;χ0 and δχ;−χ0 only, without any factors of
χ or χ0, one again cannot generate χδχ;χ0 and the transverse
spin dependence.

The subeikonal (A− ¼ 0 gauge) gluon field, multiplied
by the triple-gluon vertex, contributes the following to
diagram D:

∼δλ;λ0 ½iλq × AðqÞ þ ð2kþ qÞ · AðqÞ þ ð2k− þ q−ÞAþðqÞ�:
ðA2Þ

As far as the λ dependence is concerned, the only difference
between the eikonal vertex (∼δλ;λ0) and the expression in
Eq. (A2) is in the factor of λ in the square brackets of the
latter. Even with this correction, the contribution of the
diagram D in Fig. 7 is proportional to a linear combination
of δχ;χ0 and δχ;−χ0 , and, hence, does not depend on the
transverse spin.
We conclude that the diagrams in Fig. 7 do not contribute

transverse spin dependence at the sub-sub-eikonal level in
question, and are not needed in the analysis of Sec. II.

FIG. 7. Additional diagrams potentially contributing to the transversely polarized fundamental Wilson line in the quasiclassical
approximation in A− ¼ 0 gauge. The gray circles denote the spin-dependent subeikonal scattering.
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