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We derive a holographic soft-wall approach in five dimensional AdS-Schwarzschild space for the
description of mesons at finite temperature. In this first application we consider the small temperature limit
and derive analytical expression for the mass spectrum of mesons with adjustable quantum numbers
n (radial number), L (angular orbital momentum) and J (total angular momentum). We explicitly separate
the contribution at zero temperature and the leading order temperature correction. The temperature
corrections arise from the temperature dependence of the dilaton parameter (which is the parameter of
spontaneous breaking of chiral symmetry related to the pseudoscalar meson decay constant) and the
warping of the AdS metric due to temperature. We extend our results to any hadron with integer spin
(tetraquarks, dibaryons, etc.). We present numerical analysis for the temperature dependence of meson
masses and form factors.
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I. INTRODUCTION

The study of hadron properties at finite temperature is a
promising task, since it allows for a deeper understanding
of the evolution of the early Universe, the formation of
hadronic matter and its phase transitions. Hadrons at finite
temperature have been considered in the past in holo-
graphic QCD (see, e.g., Refs. [1–13]). In particular,
In Ref. [1] it was shown that the deconfinement in the
anti-de Sitter approaches of quantum chromodynamics
(AdS/QCD) occurs via a first-order Hawking-Page phase
transition between low temperature thermal AdS and high
temperature black hole. The model-dependent predictions
for the deconfinement temperature in the hard (HW) and
soft-wall (SW) AdS/QCD have been obtained: THW

c ¼
122 MeV and TSW

c ¼ 191 MeV, where the SW prediction
was close to the lattice QCD prediction TLattice

c ¼ 192�
7� 4 MeV [14]. A better prediction of the SWAdS/QCD
for the deconfinement temperature was related to a more
realistic description of meson spectrum in this approach.
In Ref. [2] the gravity dual of charmonium in the strongly
coupled QCD plasma was constructed on a basis of the

SWAdS/QCD model and performing the matching of the
ultraviolet behavior of the charm current correlator to the
result of QCD. Detailed analysis of the holographic
potential forming the charmonium and its spectral function
has been presented. In Ref. [3] the free energy of the heavy
quark-antiquark pair in strongly interaction matter has
been investigated using a holographic approach formulated
with the use of the AdS/Reissner-Nordström black-hole
metric at finite temperature T and chemical potential μ. The
obtained deconfinement line in the μ − T plane was similar
to ones obtained in lattice QCD and other QCD related
approaches. In Ref. [4] a SWAdS/QCD approach with the
AdS-Schwarzschild geometry has been applied for study
the dependence of the chiral condensate on the temperature
and quark density. The main finding was that for μ below a
critical value the chiral quark condensate is decreasing with
increasing the temperature. In particular, the quark con-
densate at μ ¼ 0 vanishes at Tc ≃ 210 MeV. Increasing of
μ leads to decreasing of Tc. In Ref. [5] spectral functions of
the scalar glueball and light vector mesons have been
studied in a hot dense medium in a SWAdS/QCD approach
based on AdS/Reissner-Nordström metric. It was observed
that scalar glueball and vector mesons became unstable at
increased values of temperature and chemical potential.
Similar analysis of the vector mesons in the SWAdS/QCD
approach based using the AdS-Schwarzschild geometry
has been performed in Ref. [6]. In Refs. [7] detailed study
of thermal properties of charmonium and bottomonium
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vector mesons has been carried out in holographic
AdS/QCD The dissociation of heavy vector quarkonia
states was studied in the context of the configurational
entropy (CE) setup. It was found that CE has a specific
behavior on temperature for charmonium and bottomonium
states. In particular, for the charmonium the CE curve
increases monotonically and the probability of dissociation
of these states in the medium increases with the temper-
ature, while for the bottomonium the picture is different. In
case of the bottomonium, the CE has global minimum at
temperatures T ∼ 1.3Tc and then for higher temperatures it
increases monotonically. In Ref. [8] in-medium properties
of mesons have been studied at finite temperature and
baryon chemical potential within SW AdS/QCD model
with modified dilaton field and holographic potential (by
adding the quartic scalar term) in order to obtain the correct
form of chiral symmetry breaking and correct spectrum. In
particular, it was used a dilaton field parametrization, which
is negative quadratic in the ultraviolet limit, while becom-
ing positive quadratic in the infrared region. In Ref. [9]
different types of the SW AdS/QCD potentials have been
analyzed in order to obtain a melting temperature for
different bound states—scalar mesons, glueballs, hybrids,
and tetraquarks. One of the main findings was an obser-
vation that the melting temperature increases for hadrons
containing heavy quarks. In Ref. [10] it was proposed an
idea of a thermal dilaton—dilaton field depending on
temperature. Two thermal forms of the dilatons have been
studied which make it possible to obtain melting temper-
atures for mesons close to 180 MeV. Detailed analysis of
the deconfinement temperature for glueballs, scalar and
vector mesons in different versions of the HW and SW
AdS/QCD approaches has been performed in Ref. [11]. In
Ref. [12] the SWAdS/QCD model has been applied for the
description of the high-Tc superconductivity. In Ref. [13]
chiral phase transition has been studied in a SWAdS/QCD
model using AdS-Schwarzschild metric and incorporating
SULðNfÞ × SURðNfÞ symmetry. In particular, a detailed
analysis of the chiral condensate on temperature has been
carried out.
The main motivation for our study is to propose the

modification of the soft-wall model at finite temperature in
order bring it in consistency with QCD. In particular, we
argue that in order to reproduce a temperature behavior
of quark condensate one should include temperature
dependence of the dilaton field, which is the parameter
of spontaneous breaking of chiral symmetry related to the
pseudoscalar meson decay constant and the warping of the
AdS metric due to temperature. In particular, we propose
that the dilaton field has the specific T-dependence, which
is dictated by the temperature behavior of the chiral quark
condensate in QCD [15,16] derived using chiral perturba-
tion theory (ChPT) [17]. In this way we postulate the
temperature dependence of the dilaton field using its
relation to the chiral quark condensate at zero temperature.

We note that a thermal behavior of the dilaton has been
proposed before in Ref. [10], but now in our paper we do it
in a way consistent with QCD. It makes such study
important to improve understanding hadron properties at
finite temperatures.
In the present paper we are interested in the specific low

temperature limit and the derivation of analytical formulas
for the mass spectrum of mesons and their form factors. In
particular, we consider two possible sources of temperature
dependence: (1) the warping of the AdS metric due to
temperature, (2) the temperature dependence of the dilaton-
background field, which produces confinement and is
responsible for the breaking of conformal invariance and
the spontaneous breaking of chiral symmetry in holo-
graphic QCD.
We consider the propagation of a meson field MJðx; zÞ

with total angular momentum J in five dimensional AdS-
Schwarzschild space at finite temperature. The AdS-
Schwarzschild metric is specified by

ds2 ¼ e2AðzÞ
�
fTðzÞdt2 − ðdx⃗Þ2 − dz2

fTðzÞ
�

ð1Þ

where x ¼ ðt; x⃗Þ is the set of Minkowski coordinates,
z is the holographic coordinate, R is the AdS radius and
AðzÞ ¼ logðR=zÞ. Here fTðzÞ ¼ 1 − z4=z4H where zH is the
position of the event horizon, which is related to the black-
hole Hawking temperature T ¼ 1=ðπzHÞ. The latter also
represents (holography correspondence) the temperature
of the boundary field theory. The holographic coordinate
changes from 0 to zH. The AdS-Schwarzschild metric breaks
conformal invariance because of the temperature depend-
ence. At zero temperature the conformal invariance can be
broken by introducing a wall in the z-direction. In the
following we consider one of the versions of the soft-wall
AdS/QCD model [18,19]. It was developed in Refs. [20–23]
for the study of mesons, baryons and exotic states with
adjustable quantum numbers of total angular spin J, angular
orbital momentum L and radial quantum number n.
Following Ref. [18] we introduce the exponential prefactor
exp½−φðzÞ� in the effective action, containing the back-
ground (dilaton) field φðzÞ ¼ κ2z2, where κ is a scale
parameter of the order of a few hundred MeV. This dilaton
field breaks conformal invariance, produces confinement
and is responsible for the spontaneous breaking of chiral
symmetry in holographic QCD. In addition to dilaton we
introduce in the action the thermal prefactor

e−λT ðzÞ; λTðzÞ ¼ α
z2

z2H
þ γ

z4

z4H
þ ξ

κ2z6

z4H
; ð2Þ

where dimensionless parameters α, γ, and ξ parametrize the
z2, z4, and z6 thermal corrections. Later wewill show that the
parameter γ is fixed to guarantee the gauge invariance and
massless ground-state pseudoscalar mesons (π, K, η) in
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chiral limit, while the parameter ξ is fixed to drop the radial
dependence of six power in the holographic potential in our
approach. Also we will demonstrate that the parameter α
encodes the contribution of gravity to the restoration of
chiral symmetry at a critical temperature Tc. From our
analysis of this phenomena we will find (as will be seen
below) that the α parameter increases the Tc and its value
should be relatively small. A limitation to small α is also
consistent with small temperature limit. In the limit
z ≪ zH the thermal factors fTðzÞ and λTðzÞ reduce to 1,
and the AdS-Schwarzschild geometry reduces to the pure
AdS case:

ds2 ¼ e2AðzÞ½dt2 − ðdx⃗Þ2 − dz2�: ð3Þ

Therefore, there are two sources for the breaking of
conformal invariance in the soft-wall AdS/QCD model:
the dilaton field φðzÞ and the metric (warping factor
fTðzÞ and prefactor exp½−λTðzÞ�).
Recently, in Ref. [10] it was proposed to include

an additional temperature dependence of the soft-wall
AdS/QCD action via an explicit T-dependence of the
dilaton field: φðzÞ → φðz; TÞ ¼ κ2ðTÞz2. In particular, two
forms for the thermal dilaton were proposed for φðz; TÞ
behavior [10]:

φ1ðz; TÞ ¼ κ2ð1þ αTÞz2 ð4Þ

and

φ2ðz; TÞ ¼ κ21ð1þ αTÞz2 tanhðκ22ð1þ αTÞz2Þ: ð5Þ

Here we also propose a specific T-dependence of the
dilaton scaling parameter κ. We base this choice on the
idea that κ2 as a parameter of spontaneous breaking of
chiral symmetry is related in the soft-wall AdS/QCD
approach to the quark condensate. At zero temperature
one has the definition

Σ ¼ h0jq̄qj0i ¼ −NfBF2; ð6Þ

where Nf is the number of quark flavors, B is the quark
condensate parameter, and F is the pseudoscalar meson
decay constant in the chiral limit at zero temperature
(e.g., F ≃ 87 MeV for Nf ¼ 2 [15]). In particular, in the
soft-wall AdS/QCD model the dilaton parameter κ and the
decay constant F are related in the chiral limit at zero
temperature as [19,20]:

F ¼ κ

ffiffiffi
3

p

8
: ð7Þ

Substituting Eq. (7) into Eq. (6) we get a relation between
Σ and κ2:

Σ ¼ −
3NfB

64
κ2: ð8Þ

We suppose identical temperature dependence of the κ2ðTÞ
and ΣðTÞ ¼ h0jq̄qj0iT postulating the relation

κ2ðTÞ ¼ κ2
ΣðTÞ
Σ

: ð9Þ

Taking into account Eqs. (6) and (7), and the relation

ΣðTÞ ¼ −NfBðTÞF2ðTÞ ð10Þ

we can relate κ2ðTÞ with T-dependent quark condensate
parameter BðTÞ and pseudoscalar coupling constant in the
chiral limit FðTÞ as

κ2ðTÞ ¼ κ2
BðTÞ
B

F2ðTÞ
F2

¼ 64

3

BðTÞ
B

F2ðTÞ: ð11Þ

In Ref. [15], using two-loop chiral perturbation theory
(ChPT), the low-temperature dependence of the quark
condensate ΣðTÞ was established:

ΣðTÞ ¼ Σ
�
1 −

N2
f − 1

Nf

T2

12F2
−
N2

f − 1

2N2
f

�
T2

12F2

�
2

þOðT6Þ
�

¼ Σ½1þ ΔT þOðT6Þ�: ð12Þ

This result is valid for an adjustable number of quark
flavors with Nf ≥ 2 and is given as an expansion in T2.
The temperature correction to the condensate, up to

order T4, is encoded in the quantity ΔT with

ΔT ¼ δT1

T2

12F2
þ δT2

�
T2

12F2

�
2

;

δT1
¼ −

N2
f − 1

Nf
; δT2

¼ −
N2

f − 1

2N2
f

: ð13Þ

In Ref. [16] the two-loop ChPT result of Ref. [15] has been
extended to the three-loop case by the inclusion of the
higher-order OðT6Þ term:

ΣðTÞ ¼ Σ½1þ Δ̃T þOðT8Þ�;

Δ̃T ¼ ΔT þ NfðN2
f − 1Þ

�
T2

12F2

�
3

log
T
ΛΣ

: ð14Þ

The scale ΛΣ absorbs the ultraviolet divergencies in the

three-loop graphs, generated by the leading term Lð2Þ
ChPT in

the ChPT Lagrangian. The value of ΛΣ can been fixed
by the low-energy constants in the next-to-leading ChPT

Lagrangian Lð4Þ
ChPT using data. E.g., in the two-flavor case

ΛΣ has been related to the D-wave isospin zero ππ
scattering length a02, leading to ΛΣ ¼ 470� 110 MeV.
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Here we restrict to an accuracy ofOðT4Þ in the temperature
expansion of the quark condensate. Therefore, using the
relations (9) and (12) we obtain the T-dependence of the
dilaton field with

φðz; TÞ ¼ κ2ðTÞz2; κ2ðTÞ ¼ κ2½1þ ΔT þOðT6Þ�:
ð15Þ

In the following it is useful to combine the two terms, the
T-dependent dilaton field and the z2 term in the thermal
prefactor e−λT ðzÞ (2) as

φðz; TÞ þ αz2

z2H
¼ K2

Tz
2; ð16Þ

where

K2
T ¼ κ2ðTÞ þ α

z2H
¼ ð1þ ρTÞκ2;

ρT ¼
�
9απ2

16
þ δT1

�
T2

12F2
þ δT2

�
T2

12F2

�
2

þOðT6Þ:

ð17Þ

Note the T-dependence of BðTÞ and FðTÞ has been studied
in Refs. [15] and [24]. In particular, FðTÞ was calculated at
one-loop in Ref. [15]

FðTÞ ¼ F

�
1 −

Nf

2

T2

12F2
þOðT4Þ

�
ð18Þ

and at the level of two loops for Nf ¼ 2 in Ref. [24]

F2ðTÞ ¼ F2

�
1 −

T2

6F2
þ T4

36F4
log

ΛF

T
þOðT6Þ

�
; ð19Þ

where ΛF ¼ 2.3 GeV is the scale absorbing the ultraviolet
divergencies.
In the finite temperature case it is useful to introduce the

Regge-Wheeler (RW) tortoise coordinate r� instead of the
holographic variable z via the substitution [25,26]:

r� ¼ −
Z

dz
fTðzÞ

¼ zH
2

�
− arctan

z
zH

þ 1

2
log

1 − z=zH
1þ z=zH

�
:

ð20Þ

For convenience we will use the variable r ¼ −r�. Note that
in the low temperature limit the r coordinate can be
expanded as

r ¼ z

�
1þ t4

5
þ t8

9
þOðt12Þ

�
; t ¼ z=zH: ð21Þ

The holographic coordinate, expanded in powers of r, is

z ¼ r

�
1 −

t4r
5
þ 4

45
t8r þOðt12r Þ

�
; tr ¼ r=zH: ð22Þ

In order of accuracy, OðT4Þ, we are working we restrict
to the leading-order (LO) and next-to-leading-order
(NLO) term in the expansion of z in Eq. (22). In this case
the metric is

ds2 ¼ e2AðrÞf3=5T ðrÞ
�
dt2 −

dx⃗2

fTðrÞ
− dr2

�
;

AðrÞ ¼ logðR=rÞ; fTðrÞ ¼ 1 − r4=z4H: ð23Þ

The product of the prefactors containing dilaton field and
thermal factor λT in terms of the r variable is

P ¼ exp

�
−φTðrÞ − γ

r4

z4H
−
κ2r6

z4H

�
ξ −

2

5

��
; ð24Þ

where φTðrÞ is the dilaton field

φTðrÞ ¼ K2
Tr

2 ¼ ð1þ ρTÞκ2r2: ð25Þ

In order to suppress the r6 terms, which could later on enter
to the holographic potential defining the properties of
hadrons, we fix the parameter ξ as ξ ¼ 2=5. The parameter
γ is fixed to guarantee the gauge invariance and massless
ground-state pseudoscalar mesons (π, K, η) in chiral limit,
i.e., it should provide that r4 terms are vanish for J ¼ 0 and
J ¼ 1 and contribute only for higher spins states J ≥ 2. It
will be fixed fixed later (in next section) in the consid-
eration of the equation of motion for the AdS bulk profile.
After fixing the ξ parameter, the prefactor P reads

P ¼ exp

�
−φTðrÞ − γ

r4

z4H

�
: ð26Þ

In Eqs. (24) and (26) we drop higher-order temperature
dependent terms OðT6Þ.
From Eq. (17) we can fix the critical temperature Tc in

the soft-wall AdS/QCD model which corresponds to a
vanishing dilaton parameter K2

Tc
¼ 0. Note that in com-

parison with ChPTwe have an additional piece contributing
to chiral restoration, which comes from the warping
thermal factor induced by gravity. We expect that this
additional gravitational effect must be perturbative and
does not significantly change the QCD prediction. In
particular, QCD based on the two-loop ChPT calculation
(12) predicts the following result for the critical temper-
ature at order T4

ðTQCD
c Þ2
12F2

¼ Nf

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ 1

N2
f − 1

s
− 1

#
: ð27Þ
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TQCD
c has the power scaling behavior TQCD

c ∼ F=
ffiffiffiffiffiffi
Nf

p
at

large Nf. The thermal warping factor changes the QCD
prediction for Tc to

T2
c

12F2
¼ Nf

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ 1

N2
f − 1

− 2β þ β2

s
− 1þ β

#
; ð28Þ

where

β ¼ 9απ2

16

Nf

N2
f − 1

: ð29Þ

At large Nf and small α, Tc can be expanded as

Tc ¼ 2F

ffiffiffiffiffiffi
3

Nf

s �
1þ 9π2

32

α

Nf
þOð1=N2

fÞ
�
: ð30Þ

In Fig. 1 we plot the dependence of the quantity Rc ¼
T2
c=ð12F2Þ on the number of quark flavors Nf and the

coupling α. One can see thatRc decreaseswhenNf increases,
while it increaseswith a growth of the parameter α.Rc rapidly
grows with increasing α for Nf ¼ 2. In Figs. 2–5 we present
the 3 dimensional plots for the T-dependence of the dilaton
parameter K2

T for four cases: (1) Nf ¼ 2, F ¼ 87 MeV,
(2)Nf ¼ 3,F ¼ 100 MeV, (3)Nf ¼ 4,F ¼ 130 MeV, and
(4) Nf ¼ 5, F ¼ 140 MeV. In each case the Tc regime
corresponds to the intersection of the 3 dimensional plot with
the (T, α) plane. The critical temperature for all number of
flavors is enhanced when increasing the parameter α. In
Table I we present numerical results for the critical temper-
ature for different number of flavors and for three specific
values of α ¼ 0, 0.1, 0.2. One can see that the α parameter
increases the Tc and its value should be relatively small in
order exclude its big contribution to the shift of the value of
the Tc. Note, due to expansion of the chiral condensate in

powers of T2=ð12F2Þ the analysis at small temperature can
be valid at T < 2F

ffiffiffi
3

p
≃ 300–500 MeV in case of number

of flavors varied from 2 to 5.
After these preliminaries we can formulate our approach,

starting from an effective action at finite temperature and
then considering the applications to the mass spectrum and

FIG. 1. Dependence of the critical temperature (contained in
Rc ¼ T2

c=12F2) on the number of flavors Nf and the parameter α.

FIG. 2. K2
T for Nf ¼ 2 and F ¼ 87 MeV.

FIG. 3. K2
T for Nf ¼ 3 and F ¼ 100 MeV.

FIG. 4. K2
T for Nf ¼ 4 and F ¼ 130 MeV.
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the form factors of mesons. The paper is structured as
follows. In Sec. II we present the details for the construc-
tion of an effective action at small temperatures and apply it
to the calculation of the mass spectrum and form factors of
hadrons with integer spin J (mesons, tetraquarks, dibary-
ons, etc.). In Sec. III we present numerical results for the

mass spectrum and the form factors of mesons. Finally, in
Sec. IV, we summarize the results of the paper.

II. FRAMEWORK

A. Effective action and hadron masses
at low temperatures

In this section we start with the derivation of a
five dimensional action for the boson bulk field
MN1…NJ

ðx; r; TÞ, with arbitrary total integer spin J at small
temperature T. Our formalism is based on the analogous
action at zero temperature [20] and includes the issues
discussed in the previous section. The action reads:

SM ¼ ð−ÞJ
2

Z
d4xdr

ffiffiffi
g

p
e−φTðrÞ−γr4=z4H ½∂NMN1…NJ

ðx; r; TÞ∂NMN1…NJðx; r; TÞ

− ðμ2Jðr; TÞ þ VJðr; TÞÞMN1…NJ
ðx; r; TÞMN1…NJðx; r; TÞ� ð31Þ

where ðx; rÞ is the set of four Minkowski and holographic
coordinates. The dilaton φTðrÞ and metric ds2 are specified
in Eqs. (25) and (23),

ffiffiffi
g

p ¼ ðR=rÞ5, and

VJðr; TÞ ¼
e−2AðrÞ

f3=5T ðrÞ
½φ00

TðrÞ þ ð3 − 2JÞφ0
TðrÞA0ðrÞ� ð32Þ

is the dilaton potential with F0ðrÞ ¼ dFðrÞ=dr, F00ðrÞ ¼
d2FðrÞ=dr2 and F ¼ φ; A.
The quantity μ2Jðr; TÞ is the bulk boson mass at finite

temperature, which is related to the bulk boson mass at zero
temperature μ2J as

μ2Jðr; TÞ ¼
μ2J

f3=5T ðrÞ
: ð33Þ

As is known, the μ2J is expressed in terms of the dimension
(Δ) of the interpolating operator dual to the spin-J bulk
boson field as

μ2JR
2 ¼ ðΔ − JÞðΔþ J − 4Þ: ð34Þ

We therefore have

μ2Jðr; TÞR2 ¼ 1

f3=5T ðrÞ
ðΔ − JÞðΔþ J − 4Þ: ð35Þ

For the case of bulk fields dual to the N-partonic state we
get Δ ¼ N þ L, where L ¼ max jLzj is the maximal value
of the z-component of the quark orbital angular momentum
in the light-front wave function [19]. For mesons, tetra-
quarks, and sixquarks/dibaryons we have N ¼ 2, 4, and 6,
respectively.
Using the axial gauge Mzðx; r; TÞ ¼ 0 we perform a

Kaluza-Klein expansion for the four-dimensional trans-
verse components of the AdS fields

Mμ1…μJðx; r; TÞ ¼
X
n

Mμ1…μJ;nðxÞΦnJðr; TÞ; ð36Þ

where n is the radial quantum number and Mμ1…μJ;nðxÞ is
the tower of the Kaluza-Klein (KK) modes dual to mesons
with spin J. ΦnJðr; TÞ are their extra-dimensional profiles
(wave functions) depending on the temperature.
After straightforward calculations [21] one can derive

the Schrödinger-type equation of motion for the profile
ϕnJðr; TÞ ¼ e−BT ðrÞ=2ΦnJðr; TÞ with

FIG. 5. K2
T for Nf ¼ 5 and F ¼ 140 MeV.

TABLE I. Dependence of Tc on Nf and α.

Tc (MeV)

Nf α ¼ 0 α ¼ 0.1 α ¼ 0.2

2 230 270 329.3
3 206.1 228.2 258
4 228.9 246.6 268.8
5 219.1 232.4 248.3
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BTðrÞ¼φTðrÞþAðrÞð2J−3Þþ r4

5z4H
ð2J−3þ5γÞ: ð37Þ

Here we can fix the parameter γ. In order to suppress the
contribution of the r4 term in the holographic potential to
the mass spectrum of pseudoscalar ground state mesons
(π, K, η) and to the bulk-to-boundary propagator of the
J ¼ 1 vector fields to guarantee the charge conservation we
can fix 5γ ¼ JðJ − 3Þ þ 3. As result the BTðrÞ reads

BTðrÞ ¼ φTðrÞ þ AðrÞð2J − 3Þ þ r4

5z4H
JðJ − 1Þ ð38Þ

and at J ¼ 0 and J ¼ 1 the r4 term vanishes. In the rest
frame of the AdS field with p⃗ ¼ 0 we get

�
−

d2

dr2
þUJðr; TÞ

�
ϕnJðr; TÞ ¼ M2

nJðTÞϕnJðr; TÞ; ð39Þ

where UJðr; TÞ is the effective potential at finite temper-
ature, which can be decomposed into a zero temperature
term UJðrÞ≡UJðr; 0Þ and a temperature dependent term
ΔUJðr; TÞ

UJðr; TÞ ¼ UJðrÞ þ ΔUJðr; TÞ;

UJðrÞ ¼ κ4r2 þ 2κ2ðJ − 1Þ þ 4m2 − 1

4r2
;

ΔUJðr; TÞ ¼ 2ρTκ
2ðκ2r2 þ J − 1Þ

þ 4r2

5z4H
JðJ − 1Þðκ2r2 − JÞ; ð40Þ

where m ¼ N þ L − 2.
At zero temperature T ¼ 0 the Schrödinger-type EOM

�
−

d2

dr2
þUJðr; 0Þ

�
ϕnJðr; 0Þ ¼ M2

nJðr; 0ÞϕnJðr; 0Þ ð41Þ

has analytical solutions. The resulting wave function

ϕnJðr; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ 1Þ

Γðnþmþ 1Þ

s
κmþ1rmþ1=2e−κ

2r2=2Lm
n ðκ2r2Þ

ð42Þ

corresponds to the mass spectrum

M2
nJð0Þ ¼ 4κ2

�
nþmþ J

2

�
ð43Þ

of the bosonic hadrons composed of N constituents
with spin J, angular orbital momentum L, and the radial
quantum number n. Here we use the generalized Laguerre
polynomials

Lm
n ðxÞ ¼

x−mex

n!
dn

dxn
ðe−xxmþnÞ: ð44Þ

Temperature corrections to hadronic mass spectrum are
evaluated perturbatively considering hadronic wave func-
tions at T ¼ 0 as unperturbed solutions:

ΔM2
nJðTÞ ¼ hϕnJð0ÞjΔUJðTÞjϕnJð0Þi

¼
Z∞
0

drϕ2
nJðr; 0ÞΔUJðr; TÞ: ð45Þ

In the low temperature case the hadronic mass spectrum is

M2
nJðTÞ ¼ M2

nJð0Þ þ ΔM2
nJðTÞ;

ΔM2
nJðTÞ ¼ ρTM2

nJð0Þ þ RnJ
π4T4

κ2
;

RnJ ¼
4

5
JðJ − 1Þ½ðmþ 1Þðmþ 2Þ

þ ð6n − JÞðnþmþ 1Þ − nJ�: ð46Þ

The solution for the bulk profile ϕnJðr; TÞ reads

ϕnJðr;TÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðnþ1Þ

Γðnþmþ1Þ

s
Kmþ1

T rmþ1=2e−K
2
Tr

2=2Lm
n ðK2

Tr
2Þ:

ð47Þ

Note that the normalizable modes ΦnJðr; TÞ and ϕnJðr; TÞ
obey the following normalization conditions:

Z∞
0

dre−BTðrÞΦmJðr;TÞΦnJðr;TÞ ¼
Z∞
0

drϕmJðr;TÞϕnJðr;TÞ

¼ δmn: ð48Þ

The mode Φnðr; TÞ has the correct behavior in both the
ultraviolet (UV) and infrared (IR) limits:

ΦnJðr; TÞ ∼ rNþL−J at small r;

ΦnJðr; TÞ → 0 at large r: ð49Þ

The above formulas are valid for any set of quantum
numbers ðn; L; JÞ and number of constituents N.
Finally, in this section we include the effects of finite

quark masses for low temperatures. Following the ideas
developed in our previous papers [22,23] we can readily do
it for light mesons and tetraquarks. In particular, taking into
account the T-dependence of the light quark condensate
parameter BðTÞ, we derive the following LO quark mass
corrections:

δM2
πðTÞ ¼ 2m̂BðTÞ ð50Þ
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for the pion and

δM2
KðTÞ ¼ ðm̂þmsÞBðTÞ ð51Þ

for the kaon, where m̂ ¼ ðmu þmdÞ=2 is the average
mass of u and d quarks, ms is the strange quark mass.
The T-dependence of BðTÞ is defined by Eqs. (10),
(18), and (19).
Light nonstrange T4q, single strange T3qs, double strange

T2q2s, single nonstrange T3sq, and strange tetraquark T4s

masses get corrections, which are simply expressed in
terms of the pion and kaon masses corrections as [23]:

δM2
T4q

≡ 2δM2
π; δM2

T3qs
≡ δM2

π þ δM2
K

δM2
T2q2s

≡ 2δM2
K; δM2

T3sq
≡ 3δM2

K − δM2
π

δM2
T4s

≡ 4δM2
K − 2δM2

π: ð52Þ

B. Hadron form factors at low temperatures

In this section we derive the results for the form factors
of hadrons with integer spin (mesons, tetraquarks, six-
quarks/dibaryons, etc.) at low temperature. Following our
study in Ref. [21], we calculate hadron form factors at
low temperatures, induced by the coupling of AdS fields
dual to hadrons with external vector AdS fields dual to the
electromagnetic field. First, we calculate the vector bulk-to-
boundary propagator at low temperatures using the uni-
versal action derived in Eq. (31). The corresponding EOM
for the Fourier transform of the bulk-to-boundary propa-
gator VðQ; r; TÞ, in Euclidean metric Q2 ¼ −q2, reads:

∂r

�
e−φT ðrÞ

r
∂rVðQ; r; TÞ

�
−Q2

e−φT ðrÞ

r
VðQ; r; TÞ ¼ 0:

ð53Þ
This EOM is similar to the EOM for the case of zero
temperature and the only difference is that the temperature
dependence is absorbed in the T-dependence of the dilaton
parameter. Therefore, the solution for the bulk-to-boundary
propagator at small temperature is straightforward [27]:

VðQ; r; TÞ ¼ Γð1þ aTÞUðaT; 0; K2
Tr

2Þ

¼ K2
Tr

2

Z
1

0

dx
ð1 − xÞ2 x

aTe−K
2
Tr

2 x
1−x;

aT ¼ Q2

4K2
T
; ð54Þ

where ΓðnÞ and Uðx; y; zÞ are the gamma and Tricomi
function, respectively. Now we can calculate the form
factor FnJðQ2; TÞ depending on the Euclidean momentum
squared Q2 for bosonic hadrons with quantum numbers
ðn; J; LÞ and number of constituents N at low temperature.
The master formula is

FnJðQ2; TÞ ¼
Z

∞

0

drϕ2
nJðr; TÞVðQ; r; TÞ: ð55Þ

Note that at finite temperature the form factor FnJðQ2; TÞ
is properly normalized with FnJð0; TÞ ¼ 1 because of
Vð0; r; TÞ ¼ 1 and

R∞
0 drϕ2

nJðr;TÞ ¼ 1. Also, FnJðQ2; TÞ
has the correct power scaling at large Q2, consistent with
quark counting rules and independent of the quantum
numbers n and J, while depending on the number of
constituents N and the orbital momentum L:

FnJðQ2Þ ∼ 1

ðQ2Þmþ1
: ð56Þ

Using Eqs. (42) and (54) we get for the ground state
n ¼ 0 meson

F0JðQ2; TÞ ¼ ΓðaT þ 1ÞΓðmþ 2Þ
ΓðaT þmþ 2Þ : ð57Þ

Results for radial excitations with any value for n are
readily obtained. For example, for the first two radial
excitations n ¼ 1 and n ¼ 2 the form factors are

F1JðQ2; TÞ ¼ ΓðaT þ 1ÞΓðmþ 4Þ
ΓðaT þmþ 4Þ

þ aTðmþ 1ÞΓðaT þ 2ÞΓðmþ 2Þ
ΓðaT þmþ 4Þ ; ð58Þ

F2JðQ2;TÞ ¼ ΓðaT þ 1ÞΓðmþ 6Þ
ΓðaT þmþ 6Þ

þaT
ΓðaT þ 2ÞΓðmþ 3Þ
ΓðaT þmþ 6Þ

×

�
ðmþ 5Þð2mþ 3Þþ 1

2
ðmþ 1ÞaTðaT þ 5Þ

�
:

ð59Þ

Next we can perform a small T-expansion of the form
factors. For the ground state form factor we get

F0JðQ2; TÞ ¼ F0JðQ2Þ þ ΔF0JðQ2Þ;

F0JðQ2; 0Þ ¼ Γðaþ 1ÞΓðmþ 2Þ
Γðaþmþ 2Þ ;

ΔF0JðQ2; TÞ ¼ ρTa
Γðaþ 1ÞΓðmþ 2Þ
Γðaþmþ 2Þ

× ½ψðaþmþ 2Þ − ψðaþ 1Þ�; ð60Þ

where a ¼ Q2=ð4κ2Þ and ψðnÞ ¼ Γ0ðnÞ=ΓðnÞ is the poly-
gamma function.
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III. NUMERICAL APPLICATIONS

In this section we present our numerical results for
the mass spectrum and form factors of mesons at small
temperatures and a particular choice for the parameter
α ¼ 0.2 in the dilaton parameterK2

T (17). In Fig. 6 we show
our results for the temperature dependence of meson
masses: (a) M2

0JðTÞ for n ¼ 0, L ¼ 0 and for continuous
total spin J running from 0 to 5 and (b) M2

00ðTÞ for n ¼ 0,
J ¼ 0, and for continuous orbital angular momentum L
running from 0 to 5. The temperature dependence of meson
form factor multiplied byQ2 for n ¼ 0, L ¼ 0, and J ¼ 0 is
shown in Fig. 7. A comparison for the T dependence of our
results for the ρ meson mass and pion form factor FπðQ2Þ
with results of QCD sum rules calculations [28,29] is given
in Figs. 8 and 9. We use normalizationsMρðTÞ=Mρð0Þ and
FπðQ2; TÞ=FπðQ2; 0Þ for Q2 ¼ 3 GeV2.

FIG. 7. Temperature dependence of meson form factor multi-
plied by Q2 for n ¼ 0, L ¼ 0, and J ¼ 0.

FIG. 6. T-dependence of meson masses: (a) M2
0JðTÞ for L ¼ 0 and for J ¼ 0;…; 5; (b) M2

00ðTÞ for J ¼ 0 and for L ¼ 0;…; 5.
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FIG. 8. Comparison of MρðTÞ=Mρð0Þ with result of QCD sum
rules [28].
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FIG. 9. Comparison of FπðQ2; TÞ=Fπð0; TÞ with result of QCD
sum rules [29] for Q2 ¼ 3 GeV2.
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IV. SUMMARY

We have proposed a soft-wall AdS/QCD model which
implements important features of QCD at zero and low
temperatures. In particular, we showed that the dilaton
field, being responsible for spontaneous breaking of chiral
and conformal symmetry, plays an important role in the
temperature dependence of hadronic properties. The
T-dependence coincides with the one of the quark con-
densate in QCD. In addition to the dilaton we introduce
in the action the thermal prefactor e−λT ðzÞ, where the
thermal function λTðzÞ contains z2, z4, and z6 terms.
The z4 term guarantees the gauge invariance and massless
ground-state pseudoscalar mesons in the chiral limit. The
z6 term guarantees the absence of power-six terms in the
holographic potential. The quadratic z2 term gives per-
turbative contribution to the dilaton field and to the
restoration of chiral symmetry at a critical temperature
Tc. Combining the dilaton field with the z2 term in the
λTðzÞ thermal function, we introduced the generalized
temperature dependent dilaton field. As a consequence
the thermal behavior of the generalized dilaton is

dominated by a QCD piece, plus a perturbative term
due to the z2 thermal prefactor. Using the QCD prediction
for the small T-dependence of the QCD condensate, we
predict the thermal behavior of masses and form factors
of hadrons with integer total angular momentum J.
We present numerical results for the critical temperature
(when the dilaton field is vanishing), and for the
T-dependence of masses and form factors of mesons.
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