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We investigate the static properties of the nucleon in the presence of strong magnetic fields and discuss
the consequent changes of the nucleon structure, based on the Skyrme model. The results show that at large
values of the magnetic field (∼1017 to 1018 G), which is supposed to appear in heavy-ion collision
experiments at RHIC energies, the soliton starts to deviate from the spherically symmetric form and its size
starts to change. At extremely large values of the magnetic field (∼1019 G), which may be found at the LHC
experiments, the soliton becomes more compact than in free space. The results also show that in the
presence of the external magnetic field, the mass of the nucleon tends to increase in general and the mass
degeneracy of the Δ isobars from isospin symmetry will be lifted. We also discuss the changes in the mass
difference between the Δ and the nucleon, ΔmΔN, due to the influence of the external magnetic field. We
find that ΔmΔN increases as the strength of the magnetic field grows.
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I. INTRODUCTION

Understanding how hadrons are modified in the presence
of various external fields is an important topic in contem-
porary physics of hadrons. In particular, it is of great
interest to investigate how the nucleon undergoes change in
a strong magnetic field, since it provides certain informa-
tion on both compact astrophysical objects and ultra-
relativistic heavy-ion collision (URHIC), which unveils
the nature of matter in the early Universe. A very strong
magnetic field may exist in a magnetar in which the
magnetic field reaches an order of BM ∼ ð1011 − 1015Þ G
[1,2].1 Even stronger magnetic fields (∼1016 to 1017 G)
may be found in the cosmological γ-ray bursts [3–5].
However, one can create even much stronger magnetic
fields in the course of relativistic heavy-ion collisions [6].
At the Relativistic Heavy-Ion Collider (RHIC), the
magnetic field could reach BM ∼ 3 × 1018 G and it may
even rise to BM ∼ 1019 G at the Large Hadron Collider

(LHC) [7–15]. Although such an extremely strong mag-
netic field exists only during a very short period of time, it
may bring about the distortion of hadrons and may change
their properties greatly.
There has been already a great deal of theoretical works

on modifications of hadrons under the influence of strong
magnetic fields [16–31]. However, while they mainly
concentrate on the modification of light and heavy meson
properties in the presence of the strong magnetic fields,
there are only few works on the changes of properties of the
nucleon [31,32]. Since Refs. [31,32] aim at describing
the neutron stars, they focus only on the modification of the
neutron in the strong magnetic fields. In the present work,
we will investigate the modifications of the nucleon and Δ
isobar properties in the presence of the strong magnetic
fields within the framework of a chiral soliton approach.
The approach provides a simple but effective way of

describing the structure of the nucleon. The main idea
arises from the seminal papers by Witten [33–35]. In the
limit of Nc → ∞ (Nc as the number of colors), the mass of
the nucleon is proportional to Nc whereas its width is of
orderOð1Þ, which indicates that the meson fluctuations can
be neglected. In this picture, a baryon arises as a topological
chiral soliton that is called skyrmion [36,37]. The nucleon
as a chiral soliton is naturally an extended object, so that
one can examine how the nucleon undergoes changes when
a very strong magnetic field is exerted on it. A theoretical
method has been developed over years, the environment
surrounding the nucleon being treated collectively. It has
been successfully applied to the description of the nucleon
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1Here BM denotes the strength of a magnetic field. Note that
we adopt the gauss (G) as the unit of the strength of the magnetic
field. 1 G corresponds to 2 × 10−20 GeV2.
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in nuclear medium [38–43], the nucleon in finite nuclei
[44], the properties of nuclear matter [45] and even to
the explanation of properties of atomic nuclei [46,47]. The
similar theoretical tool can be utilized for describing the
nucleon in the strong magnetic field.
From a technical point of view, the nucleon in an external

magnetic field is very similar to the situation when a
skyrmion is embedded into an isospin asymmetric nuclear
environment [45]. In general, one may expect that the
magnetic field will change the nucleon properties less than
the effects of isospin symmetry breaking. However, when it
comes to the very strong magnetic fields that reach the level
of URHICs at the LHC, the effects from the magnetic fields
may become sizable. In this case, they may also play a
crucial role in describing the evolution of the universe at an
early stage [48,49]. Moreover, such strong magnetic fields
will reveal certain novel features relevant to the structure of
the nucleon.
Depending on a specific configuration of the external

magnetic field, one may further expect possible non-
spherical deformations of the skyrmion in isospin and
ordinary spaces [44,46,47] from the spherically symmetric
hedgehog form corresponding to the skyrmion in free space
[37,50]. In this sense, the situation becomes even more
interesting if the nucleon properties are studied in the
presence of external isospin asymmetric nuclear environ-
ment that actually creates the strong magnetic field, that is,
if the nucleon is located inside compact stellar objects in the
presence of strong magnetic fields. The corresponding
investigation can naturally be performed by generalizing
the approach developed in Refs. [44–47] in the presence of
an additional external magnetic field. However, we will
concentrate only on the external magnetic field for sim-
plicity and leave more general and complex studies as
future works.
In the present work, we consider the homogeneous

magnetic field oriented along the axis of quantization.
This choice allows us to consider axially symmetric
solutions of the classical equation of motion for the soliton
instead of a complicated situation where the soliton has
totally an asymmetric form. Then we can employ the
technique developed already for asymmetric nuclear envi-
ronment [44,46,47]. Nevertheless, it is necessary to note
that in the present work there will be some differences at the
Lagrangian level due to the nature of the external magnetic
field influencing the properties of the nucleon under
consideration. In Refs. [44,46,47] the effect of environment
on the skyrmion properties was introduced by means of the
density functions, based on phenomenological information
taken from mesonic atoms at low densities. Further
modifications were achieved by introducing another den-
sity functions into the Lagrangian and relating them to
the properties of nuclear matter near the saturation point
ρ0 ≈ 0.16 fm−3 [45]. In the present work, the external
magnetic field will be introduced by taking into account

the U(1) gauge field into the original effective chiral
Lagrangian [51].
The present paper is organized as follows: In the next

Sec. II, we briefly discuss the Lagrangian of the model and
the axially symmetric ansatz for the solutions of field
equations. In Sec. III, we explain the variational method for
the problem and discuss the parametrizations of profile
functions. We also discuss the minimization process and
present the classical results. Then we discuss how the
baryon charge distribution is changed to a spheroidal form
under the influence of the magnetic field. In Sec. IV, we
show how to quantize the spheroidal skyrmion and discuss
the changes of the nucleon properties in the magnetic field.
In the last Sec. V we summarize the present results, draw
conclusions, and give future outlook. The explicit expres-
sions of the mass functional and the moments of inertia of
the spheroidal skyrmion can be found in the Appendix.

II. LAGRANGIAN AND ANSATZ

We start with the effective chiral Lagrangian, incorpo-
rating explicit chiral symmetry breaking [50]

L ¼ −
F2
π

16
TrLμLμ þ 1

32e2
Tr½Lμ; Lν�2

þ F2
πm2

π

16
Tr½U þ U† − 2�; ð1Þ

where the first term is called the Weinberg term and the
second onewas originally introduced by Skyrme [36], which
is also known as the Gasser-Leutwyler term in the large Nc.
The chiral current Lμ is defined as Lμ ¼ Uþ∂μU, where the
SU(2) unitary matrix U ¼ expf2iτaπa=Fπg is expressed in
terms of the Cartesian isospin-components of the pion field
πaða ¼ 1; 2; 3Þ. τa stand for the Pauli matrices in isospin
space. There are three input parameters, i.e., the pion
decay constant Fπ ¼ 108.783 MeV, the Skyrme parameter
e ¼ 4.854, and the pion mass mπ ¼ 134.977 MeV, which
are chosen in such a way that the model properly reproduces
the experimental data on themasses of the protonandneutron
with breakdown of isospin symmetry taken into account (for
the details, see Refs. [46,47]).
In order to consider the effects of the external magnetic

field we introduce the U(1) gauge field into the Lagrangian
of Eq. (1). So, the ordinary derivative is replaced by the
covariant one given in the form of

DμU ¼ ∂μU þ iqeAμ½Q;U�; ð2Þ

where qe denotes the electric charge and Aμ stands for the
electromagnetic four-vector potential (e.g., see Ref. [52]).
Here the charge operator in the SU(2) framework is
defined as
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Q ¼ 1

6
I þ 1

2
τ3: ð3Þ

As mentioned above, we introduce the homogeneous
magnetic field along the quantization axis or the z direction
BM ¼ ð0; 0; BMÞ, so we fix correspondingly the gauge of
Aμ as follows

Aμ ¼
�
0;−

1

2
yBM;

1

2
xBM; 0

�
: ð4Þ

When the magnetic field is absent, the hedgehog ansatz is
imposed to be a spherically symmetric hedgehog form
U ¼ expfiτ · nPðrÞg, where the unit vector in isospin
space is chosen as a normal vector n in ordinary three
dimensional space. However, the ansatz for the skyrmion in
the presence of the magnetic field may be deformed in the
isospin and ordinary spaces deviating from the original
spherical form in the absence of external fields. The most
general form of the ansatz, which takes into account all
possible deformations, can be represented as

UðrÞ ¼ exp fiτ · NðrÞPðrÞg ð5Þ

where the normal vector in isospin space is expressed as

N ¼

0
B@

sinΘðr; θ;φÞ cosΦðr; θ;φÞ
sinΘðr; θ;φÞ sinΦðr; θ;φÞ

cosΘðr; θ;φÞ

1
CA ð6Þ

in terms of two profile functions, Θðr; θ;φÞ and Φðr; θ;φÞ.
These two profile functions and Pðr; θ;φÞ describing the
spatial extension of the pion fields will depend on all three
(radial, polar and azimuthal) variables.2 Since we choose
the magnetic field along the z direction, we have an axial
symmetry, so the profile functions P and Θ become
independent of the azimuthal angle φ, and the third profile
function Φ can be selected as φ. Thus, one has the
following axially symmetric ansatz

P ¼ Pðr; θÞ; Θ ¼ Θðr; θÞ; Φ ¼ φ ð7Þ

which will be used in the present work.

III. CLASSICAL SOLITON MASS AND
PARAMETRIZATIONS OF PROFILE FUNCTIONS

Using the configuration given in Eqs. (5)–(7), one can
find the mass of the static soliton M in the presence of the
static magnetic field BM along the z direction. The mass
functional M½P;Θ� is explicitly written by Eq. (A2) in the
Appendix. The field equations of the soliton can be derived

by variation of M with respect to P and Θ. Since their
expressions are rather lengthy and will not be used here, we
will not present them in this work. In fact, they are coupled
second-order partial differential equations of the following
type3

gðPrr; Pθθ; Pr; Pθ;Θr;Θθ; P;ΘÞ ¼ 0;

hðΘrr;Θθθ;Θr;Θθ; Pr; Pθ;Θ; PÞ ¼ 0;

and the boundary conditions are determined by the
baryon number, i.e., B ¼ 1 in the present work. The baryon
number of the axially deformed hedgehog configuration is
given by the following expression

B ¼ −
1

π

Z∞

0

dr
Zπ

0

dθðPrΘθ − PθΘrÞsin2P sinΘ: ð8Þ

Since we will use the variational method developed in
Ref. [46], we will not write the explicit expression of the
solitonic field equations, as mentioned previously. This will
simplify all unnecessary technical complexities.
However, in order to clarify the form of trial functions to

be used for a minimization process, let us for the moment
ignore the nonspherical deformation effects and assume
that the soliton has a spherical form even if it is affected by
the magnetic field. Then the equation of motion becomes
an ordinary but nonlinear differential equation. For our
purpose, we will rather concentrate on its linear approxi-
mation (r → ∞) that yields the following form

P00ðrÞ þ 2

r
P0ðrÞ − 2

r2
PðrÞ

−
�
m2

π þ
2qeBM

3

�
PðrÞ − 2ðqeBMrÞ2

15
PðrÞ ¼ 0: ð9Þ

Note that the last two terms contribute differently, depend-
ing on whether the magnetic field is strong or weak. They
will bring about interesting consequences and will play a
key role in understanding the present results later.
In general, Eq. (9) has a Gaussian form of the solution

PðrÞ ∼ 1

21=4r2
exp

�
−
qeBMr2ffiffiffiffiffi

30
p

�

×U
�
−3þ ffiffiffiffiffi

30
p

12
þ

ffiffiffiffiffi
30

p
m2

π

8qeBM
;−

1

2
;

ffiffiffiffiffi
2

15

r
qeBMr2

�
;

ð10Þ

where Uða; b; cÞ is the confluent hypergeometric function
of the second type. However, if m2

π ≫ qeBM, then one can
ignore the quadratic term in BM of Eq. (9), keeping in mind
that the soliton is localized at the finite region, i.e., even if r

2In the present work we perform all calculations in the
spherical coordinate system. 3For the definitions of Fr, Θθ etc., see the Appendix.
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is large, the last term in Eq. (9) is not important due to the
localization of solution. Then the corresponding solution
takes the Yukawa-type form

PðrÞ ∼ 1þ Ar
r2

e−Ar; A ¼ ðm2
π þ

2

3
qeBMÞ1=2: ð11Þ

We will return to the consequences arising from these two
different behaviors of the solutions, when we discuss the
results. Having analyzed the characteristics of the solutions
at this stage, we are able to choose the most appropriate
forms of the trial profile functions P and Θ.
As a result, we can apply the following approximations

for the spheroidal solutions

Pðr; θÞ ¼ 2 arctan

�
r20
r2
ð1þ ArÞ½1þ uðθÞ�

�

× exp f−β0Ar − β1qeBMr2Þg; ð12Þ

Θðr; θÞ ¼ θ þ ζðr; θÞ; ð13Þ

where r0, β0 and β1 are variational parameters.4 The
functions u and ζ satisfy the inequalities juj<1 and jζj<1
in the regions r ∈ ½0;∞Þ and θ ∈ ½0; π�. Thus, the trial
function in Eq. (12) correctly reproduces the asymptotic
forms of the solutions for both the weak and strong magnetic
fields, and provides the smooth transitions between these two
different cases. Furthermore, following the ideas ofRef. [44],
we use for the function u the following parametrization

uðθÞ ¼ qeBM

X∞
n¼1

γn cosn θ; ð14Þ

where the set fγng consists of variational parameters in
addition to those three mentioned previously. In the para-
metrization of Eq. (14), the cosine functions are chosen to
maintain the periodicity in θ. Similarly, ζ can be selected as

ζðr; θÞ ¼ qeBMre−δ
2
0
r2
X∞
n¼1

δn sinð2nθÞ; ð15Þ

where the set fδng contains the remaining part of all the
variational parameters in the present work. The prefactor
“qeBM” in Eqs. (14) and (15) is introduced from the proper
limiting consideration and will smooth the variational
process.
Note that the arguments of the sine functions in Eq. (15)

are picked out to be a multiple of 2θ in order to avoid
singularities given in the form “sinΘ= sin θ,” which can be
found in the mass functional M½P;Θ�. Furthermore, the r

dependence of ζ is singled out such that the equalities
Θð0; θÞ ¼ θ and Θð∞; θÞ ¼ θ are reproduced correctly.
The mass functional will be easily extremized in terms of
the trial functions given in Eqs. (12)–(15), and B ¼ 1
condition will be naturally satisfied.
We want to mention that, in order to keep the mini-

mization process with high accuracy, it is enough to
consider only few terms in the trial functions (14) and
(15). Furthermore, the current situation is in a more
symmetric level than the case in which the nucleon is
located in a finite nucleus at a given distance from its center.
More specifically, when the nucleon is located inside the
finite nucleus, the values of the profile functions P and Θ
with the polar angle given in θ ∈ ½0; π=2� are different from
those with θ ∈ ½π=2; π�. This is due to the fact that the
external field, which is expressed by the density distribu-
tion function of the external system, depends on the radial
distance from the center of the nucleus (see Ref. [46]).
On the other hand, the present case is symmetric under
the change of the polar angles from θ ∈ ½0; π=2� to
θ ∈ ½π=2; π�, because the external magnetic field is homo-
geneously exerted along the z direction. Therefore, the
symmetry in the polar angle brings about γ2n−1 ¼ 0ðn ¼
1; 2;…Þ among fγng in Eq. (14).
We perform the variational calculation by minimizing the

complete energy functional given in Eqs. (A2) and (A3),
using the trial profile functions given in Eqs. (12) and (13).
This approach is rather accurate, because both the solutions
near the origin (r → 0) and asymptotic region (r → ∞) are
properly given. The variational parameters introduced
above connect smoothly the solution near the origin with
the asymptotic one, which reproduces almost the exact
solutions. For example, in the case of a free nucleon, we
obtain almost the same results by either using the varia-
tional approach or directly solving the differential equa-
tions. Both the results differ within 1% (e.g., see Table 1 of
Ref. [46]). In the present work, the same level of high
accuracy is achieved.
Figure 1 draws the results for the change of the classical

soliton mass due to the external magnetic field, i.e.,
MðBMÞ −Mð0Þ, where MðBMÞ and Mð0Þ denote respec-
tively the values of the mass obtained with and without the
magnetic field exerted. The mass of the classical soliton
remains constant till the strength of the magnetic field
reaches around 1017 G. However, as the magnetic field gets
stronger than 1017 G, the value of the soliton mass starts to
increase slowly till BM ≈ 1018 G. If one raises the magni-
tude of the magnetic field, then the soliton mass starts to
rise rather rapidly. When the magnitude of the magnetic
field becomes 1019 G, the soliton mass acquires approx-
imately additional 150 MeV by the external magnetic field.
Before we discuss the main results of the present work,

we want to examine the values of the variational parameters
for the profile functions. In Table I, we list their numerical
results determined at the several selected values of the

4We note that the parametrization in Eqs. (12) and (13) are
done in a most general form and indicates the different field
regimes during our variational calculations in a natural way.
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magnetic field. Among the parameters presented in Table I,
nonzero values of γn’s are responsible for the deviation of
the P equisurfaces from the spherical form, whereas δn’s
ðn > 0Þ exhibit how the shape of the profile function is
distorted from the spherically symmetric hedgehog form.
One can see from Table I that at BM ¼ 1015 G, which
characterizes the strength of the magnetic fields in magnet-
ars, the P equisurfaces already deviate from the spherically
symmetric form.
It is interesting to observe that the value of β1 is almost

intact even at the upper limit of the strength of the magnetic
fields in neutron stars (∼1017 G) [5]. However, if the
strength of the magnetic field gets stronger, then its value
is not zero anymore (see the corresponding value listed in
the last column of Table I for BM ¼ 1019 G). In order to
understand this behavior, we need to scrutinize the expo-
nential term in Eq. (12). When A in the first term is much
larger than ðrqeBMÞ2 in the second one, for example,
when r2ðqe × 1017 GÞ2 ∼ 10 MeV2 ≪ ðm2

π þ 2qeBM=3Þ≈
m2

π ∼ 0.18 GeV2 numerically, then the asymptotic solution

is not much influenced by the second term for the typical
soliton size (r ∼ 1 fm). However, when the magnetic
field is extremely strong, i.e., BM ∼ 1019 G, we find
qeBM > m2

π . Thus, the second term dominates over the
first one. It implies that the profile Pðr; θÞ will be shrunken
by the second Gaussian term and β1 is not zero anymore.
To understand the above-mentioned nature more clearly,

we will delve into the baryon charge distribution of the
axially deformed skyrmion, which is expressed as5

B0ðr; θÞ ¼ −
PrΘθ − PθΘr

2π2r2

�
sinΘ
sin θ

�
sin2 P: ð16Þ

It will explicitly reveal how the soliton undergoes defor-
mation in the presence of the strong magnetic field. In the
Fig. 2(a), we depict the profiles of the baryon charge
distributions along the z direction (θ ¼ 0), while the
Fig. 2(b) draws those in the perpendicular plane to the z
axis (θ ¼ π=2). Dotted curves correspond to the results
with BM ¼ 0, which should be spherically symmetric and
are the same in both the left and right panels. We can take
them as a reference for comparison. Taking the value of the
magnetic field to be BM ¼ 1017 G, we see that the charge
distribution of the soliton along the z direction is deformed
slightly, whereas it remains the same as that in the absence
of magnetic field as shown in the right panel. If we take
BM ¼ 1019 G, which can be realized in URHICs at the
LHC, then the baryon charge distribution displays evi-
dently the deformation of the soliton both along the z
direction and in the perpendicular plane to it.
To illuminate how the baryon charge distribution under-

goes the change as the strength of the magnetic field is
varied, we define the anisotropy of the baryon charge
distribution as

ΔB0ðrÞ≡ B0ðr; π=2Þ − B0ðr; 0Þ; ð17Þ

where B0ðr; π=2Þ represents the baryon charge distribution
in the perpendicular plane to the z axis, and B0ðr; 0Þ
denotes that along the z direction. Equation (17) shows how
the isotropy of the baryon charge distribution is broken by
the magnetic field. In the Fig. 3(a) we illustrate the results
of ΔB0 as functions of r and in the Fig. 3(b) those at r ¼
0.2 fm as a function of the magnetic field, respectively. The
results of Fig. 3(a) clearly show that when BM ¼ 1017 G,
which corresponds to the dashed curve, the soliton is more
deformed along the z direction than in the perpendicular
plane to it. Moreover, it mainly occurs in the core part of the
soliton. It implies that the baryon charge distribution will be
taken slightly as a cigar-type form, since the results of
ΔB0ðrÞ decreases in the core part. If one takes the stronger
value of the magnetic field, i.e., BM ¼ 1019 G, then the

−25

0
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150

log10(BM), G

M
(B

M
)
−

M
(0
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M

eV

FIG. 1. The change of the classical soliton mass as a function of
the external magnetic field given in the log scale. MðBMÞ and
Mð0Þ denote respectively the values of the mass obtained with
and without the magnetic field exerted.

TABLE I. Variational parameters for the profile functions P and
Θ at some selected values of the external magnetic field BM.

BM 0 1015 G 1017 G 1019 G

r0, fm2 0.956 46 0.956 41 0.952 00 0.973 24
β0 1.315 68 1.315 54 1.304 47 0.933 20
β1 0 0 0 0.219 58
γ2, fm2 0 −0.644 30 0.123 05 0.337 00
γ4, fm2 0 0.303 70 0.219 85 0.082 27
γ6, fm2 0 −0.100 19 −0.147 75 0.216 15
δ0, fm−2 4.236 04 3.900 49 2.842 56 3.211 49
δ1, fm 0 0.139 97 0.090 16 0.9366
δ2, fm 0 0.244 11 0.002 07 0.001 74 5See Eq. (8) above.
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baryon charge distribution is drastically changed from the
previous case of BM ¼ 1017 G. The core part of the soliton
undergoes the deformation in the xy plane more strongly
than along the z direction. On the other hand, when it
comes to its peripheral part, the situation is reversed. That
is, while the peripheral shape of the soliton is less distorted
than in the core part, the soliton is slightly more deformed
along the z direction in comparison with that in the
perpendicular plane to it.
To see the process of the soliton deformation more

closely, we scrutinize ΔB0 at a fixed value of r, for
example, at r ¼ 0.2 fm, as the BM field varied from
1017 G to 1019 G. The corresponding result is illustrated
in the Fig. 3(b). When the strength of the magnetic field is
given between 1017 G and 1018 G, we can clearly observe
that the core part of the soliton is more deformed in the xy
plane, compared with that along the z direction. However, if
we further increase the strength of the magnetic field close
to 1019 G, the situation becomes other way around, i.e., the
core part of the soliton is deformed more strongly along the
z direction in comparison with that in the perpendicular
plane to it.

In general, the baryon charge distribution is more
compactly deformed in the presence of the strong magnetic
field. This can be observed by comparing the solid curves
with dotted ones in the Fig. 2. Since the quadratic term with
regards to BM in Eq. (12) come into dominant play when
the magnetic field is very strong. In fact, this is related
to the quadratic term like a harmonic oscillator potential in
the approximated differential equation given in Eq. (9) in
the asymptotic limit, which plays effectively a role of a
confining potential that arises from the strong magnetic
field. The physical implications of this confining potential
are that the pions are localized and are forced to be confined
by the external strong magnetic field.
Here, it is necessary to remind that the baryon is a

topological object made of the nonlinearly interacting
pions. In this context, although the Skyrme model has
no explicit quark degrees of freedom, the obvious charged
pion localizations due to the external magnetic field will
localize also the neutral pions by means of the nonlinear
interactions. Moreover, the quantization by rotation in
isospin space infers that both the charged and neutral pions
are under the influence of the strong magnetic field. It can

(a) (b)

FIG. 2. The baryon charge distributions along the z direction as functions of r [in the left panel denoted by (a)] and those in the
perpendicular plane to the z axis as functions of r [in the right panel denoted by (b)], respectively. The solid curves depict the results with
BM ¼ 1019 G, the dashed ones draw those with BM ¼ 1017 G, and the dotted ones correspond to the case of BM ¼ 0, respectively.

(a) (b)

FIG. 3. In the left panel denoted by (a), the results of the anisotropy ΔB0ðrÞ defined in Eq. (17) as functions of r and in the right panel
denoted by (b) that of ΔB0ð0.2 fmÞ fixed at r ¼ 0.2 fm as a function of the magnetic field. Notations are the same as in Fig. 2.
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be explicitly seen from the expressions of the baryon charge
distribution (16) and the mass functional [see Eqs. (A2)
and (A3)], which do not distinguish the charged compo-
nents of the pion fields.6

We can examine the corresponding localizations of the
nonlinearly interacting pions by considering the baryon
charge distribution within a certain region. For example, we
integrate the baryon charge distribution up to 1 fm

Bð1 fmÞ ¼
Z1 fm

0

r2dr
Z

dΩB0 ð18Þ

with the magnetic field varied. Then, comparing the results
with different values of BM, we can see how the charged
pions are forced toward the core region inside a nucleon.
Taking three different values of BM, we obtain the follow-
ing results: Bð1 fmÞ ¼ 0.9014 for BM ¼ 0, Bð1 fmÞ ¼ 0.9024
for BM ¼ 1017 G and Bð1 fmÞ ¼ 0.9665 for BM ¼ 1019 G,
respectively.7 The comparison of these values indicates that
the baryon charge distribution is indeed squeezed into the
core region due to the localization of the charged pions.

IV. QUANTIZATION OF THE
SPHEROIDAL SOLITON

We are now in a position to discuss the quantization of
the axially deformed soliton, i.e., the spheroidal one and the
relevant results. The quantization of a spherically sym-
metric chiral soliton is generally performed by introducing
the zero-mode quantization with the collective coordinates
introduced [37]. As we already discussed in the previous
section, the spherical symmetry of the soliton is already
broken in the presence of the magnetic field. However, we
still have an axial symmetry as presented in Eqs. (5)–(7).
Thus, we consider independent rotations in the coordinate
and isospin spaces as follows

P ¼ PðR−1ðtÞrÞ; N ¼ IðtÞNðR−1ðtÞrÞ; ð19Þ

where R and I represent the SO (3) rotational and
isorotational matrices, respectively. Having carried out
these slow time-dependent rotations and performed the
spatial integration, we arrive at a collective Lagrangian

L ¼ −M þ ω2
1 þ ω2

2

2
Λωω;12 − ðω1Ω1 þ ω2Ω2ÞΛωΩ;12

þΩ2
1 þ Ω2

2

2
ΛΩΩ;12 þ

ðω3 − Ω3Þ2
2

ΛωΩ;33: ð20Þ

Here ωi and Ωi denote the angular velocities in isospin and
coordinate spaces, respectively. The explicit expressions of
the functionals Λ½P;Θ� can be found in the Appendix.
Defining the canonical conjugate variables in the body-

fixed reference system as

Ti ¼
∂L
∂ωi

and Ji ¼
∂L
∂Ωi

; ð21Þ

we derive from the time-dependent Lagrangian in Eq. (20)
the collective Hamiltonian as

Ĥ ¼ M þ T̂2
3

2ΛωΩ;33
þ ðT̂1Ĵ1 þ T̂2Ĵ2ÞΛωΩ;12

Λωω;12ΛΩΩ;12 − Λ2
ωΩ;12

þ ðT̂2
1 þ T̂2

2ÞΛΩΩ;12 þ ðĴ21 þ Ĵ22ÞΛωω;12

2ðΛωω;12ΛΩΩ;12 − Λ2
ωΩ;12Þ

: ð22Þ

Diagonalizing the Hamiltonian of Eq. (22), we obtain the
baryon eigenstates jT; T3; J; J3i and the energies of the
axially deformed nucleon and the Δ isobar:

E¼Mþ T2
3

2ΛωΩ;33

þΛΩΩ;12þΛωω;12−2ΛωΩ;12

2ðΛωω;12ΛΩΩ;12−Λ2
ωΩ;12Þ

ðTðTþ1Þ−T2
3Þ: ð23Þ

From the third term of Eq. (23), one observes that in the
presence of the external magnetic field the degeneracy in
the energy between the different isospin states of the Δ
isobar are partially lifted. For example, the proton and
neutrons are still in degeneracy, i.e., mp ¼ mn, while the Δ
isobar isospin states are partially split, i.e., mΔþþ ¼ mΔ− ≠
mΔþ ¼ mΔ0 .
The results for the masses of baryons at certain values of

the magnetic field BM are listed in Table II. As in the case of
the classical soliton, the masses of the nucleons and Δ
isobars are almost intact till the strength of the magnetic
field is reached at around 1017 G. Keeping in mind that the
magnetic field in magnetars is approximately BM¼1015G,
the baryon masses are almost not changed. However, if one
further increases the strength of BM, the masses of all the
nucleons and Δ isobars start to grow. At BM ¼ 1017 G the
change of the baryon mass is already not negligible. Then,
when it is reached to BM ¼ 1019 G, the masses increase by

TABLE II. Masses of baryons at some selected values of the
external magnetic field BM. All masses are given in units of MeV.

BM 0 1015 G 1017 G 1019 G

mn;p 939.8035 939.8212 941.5769 1113.4133
mΔþþ;Δ− 1233.6770 1233.6951 1236.5624 1530.4224
mΔþ;Δ0 1233.6770 1233.6949 1236.3618 1507.7573

6There is yet another effect of the magnetic field on the quarks
inside the neutral pion trough the wave function deformations.
This effect comes from higher-order corrections with respect to
the external magnetic field, which is not considered in this work.

7Of course, we get B ¼ 1 in all cases if one integrates properly
all over the region, as it should be.
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about 15–20%. Note that Δ-isobar states actually remain
degenerate even though the magnetic field gets very
strong. Only at very large values of the magnetic field,
the degeneracy of the Δ isobars will be partially lifted as
discussed above.
In Fig. 4 we show how the masses of the baryons will be

changed as BM increases. The results look very similar to
the change of the classical soliton mass as shown in Fig. 1.
However, the rates of the increment in the masses of the
baryons are still different. The reason can be found in the
changes of the moments of inertia.8 Since the soliton is
deformed in the presence of the strong magnetic fields, the
magnitudes of the moments of inertia are decreased. It
indicates that not only the baryon charge distribution is
changed but also the mass distribution inside the soliton
becomes more compact in the presence of the strong
magnetic field than in free space. As was done in the case
of the baryon charge distribution, we can consider the
integrate value of the mass distribution up to 1 fm [see
Eq. (18)]. Then we obtain the results at three different
values of BM as follows: Mð1 fmÞ ¼ 0.818M for BM ¼ 0,
Mð1 fmÞ ¼0.820M for BM ¼ 1017 G and Mð1 fmÞ ¼ 0.911M
for BM ¼ 1019 G. This indicates that the masses of the
baryons tend to be more compact in the presence of the
magnetic fields than in free space.
It is also very interesting to examine the moments of

inertia for the spheroidal solitons. We first define the
following quantities

Δmð0;−ÞðBMÞ ¼ ½mΔ0ðBMÞ −mΔ−ðBMÞ�
− ½mΔ0ð0Þ −mΔ−ð0Þ�; ð24Þ

Δmð0;nÞðBMÞ ¼ ½mΔ0ðBMÞ −mnðBMÞ�
− ½mΔ0ð0Þ −mnð0Þ�; ð25Þ

Δmð−;nÞðBMÞ ¼ ½mΔ−ðBMÞ −mnðBMÞ�
− ½mΔ−ð0Þ −mnð0Þ�: ð26Þ

They describe how much the mass splittings of the baryons
undergo the changes in the presence of the magnetic field.
The results are illustrated in Fig. 5. Here we explicitly
demonstrate that the moments of inertia decrease, which
bring about the rise of the Δ − N mass splittings, which are
illustrated in the dashed and dotted curves in Fig. 5. One
can also observe that the mass degeneracy in the different
isospin states of theΔ isobars is lifted, as shown in the solid
curve of Fig. 5. While the degeneracy is more or less kept to
be intact till BM ¼ 1017 G, it starts to be removed. If BM

continues to increase, the splitting between the Δ0 and Δ−

masses becomes prominent.
Finally, we want to mention that there is still a caveat that

is related to the strong magnetic fields. A novel feature
emerges when the magnetic field is very strong, called the
Paschen-Back (PB) effect [53]. Originally, the PB effect
arises when the strength of the magnetic field dominates
over the spin-orbit coupling of an atomic system. In the
presence of the weak magnetic field, all the eigenstates of
an atom are split, which is known as the anomalous Zeeman
effect. However, if the magnetic field is so strong that it
overcomes the spin-orbit interaction, then the spherical
symmetry is completely broken, so that the total angular
momentum squared, J2, is no more a good quantum
number but Lz and Sz are the good quantum numbers
[54]. However, we still have cylindrical symmetry or axial
symmetry in the presence of the constant external magnetic
field along a specific direction as discussed in this work.

FIG. 4. The changes of the baryon masses as a function of the
magnetic field. The solid curve depicts mΔ0 , whereas the dashed
one draws mΔ− . The dotted one represents mn, respectively.

FIG. 5. The change of the baryon mass splittings in the
presence of the magnetic field. The solid curve draws the result
of Δmð0;−ÞðBMÞ, whereas the dashed one depicts Δmð0;nÞðBMÞ. The
dotted one shows Δmð−;nÞðBMÞ. For the definitions of Δmða;bÞ,
see Eqs. (25)–(26).8The formula for the moments of inertia, see Eq. (A5).
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Thus, 2ð2lþ 1Þ degeneracy in ml þms will appear. This is
called the PB effect. In fact, Iwasaki et al. discussed the PB
effect [55], when the strong magnetic field (∼1019 G) is
exerted on a charmonium system. They found a very
interesting feature: The strong magnetic field induces
mixing between S ¼ 0 and S ¼ 1 states. This may lead
to the mixing between the ηc and J=ψ in S ¼ 1 and Sz ¼ 0
states. It implies that when the magnetic field is very strong,
one can expect the same phenomena in a baryonic system
such as the mixing between the proton with S ¼ 1=2 and
Sz ¼ 1=2 and the Δþ isobar with S ¼ 3=2 and Sz ¼ 1=2.
We will investigate this important physics elsewhere.

V. SUMMARY AND OUTLOOK

In the present work, we investigated how the nucleons and
Δ isobars undergo the deformation in the presence of the
strong magnetic field within the framework of the Skyrme
model.We first examined the changes of the classical soliton
under the influence of the strong magnetic field. The mass of
the classical soliton remains unchanged till the magnitude of
the magnetic field reached 1017 G. However, if the magnetic
field gets stronger than this value, the mass starts to increase.
The soliton is deformed in a rather nontrivial way as the
strength of the magnetic field varied. We exhibited explicitly
and thoroughly how the soliton properties were changed as
the magnetic field was altered. When the magnitude of the
magnetic field is 1017 G, the soliton was deformed more
strongly along the z direction than in the perpendicular plane
to it. The core part of the soliton wasmainly modified, which
indicates that the shape of the soliton will turn to a cigar-type
form. If the valuemagnetic fieldwas taken to be 1019 G, then
the baryon charge distribution was drastically altered. The
core part of the soliton was deformedmore strongly in the xy
plane than along the z direction. On the contrary, the
peripheral shape of the soliton was less distorted than in
the core part, whereas the solitonwas slightlymore deformed
along the z direction than in the perpendicular plane to it.
We performed the zero-mode quantization of the sphe-

roidal soliton in the presence of themagnetic field.We found
that the solitonic moments of inertia decreases as the
magnetic field increases. It means that the masses of the
nucleon and Δ isobar should get larger. Moreover, we
observed that Δ-N mass splitting also increases. The spheri-
cal nucleon in free spacewas deformed into a cigar-type form
when the magnetic field was present. The case of the Δ
isobars was similar to the nucleon case but their masses
increased slightly more than the nucleon did as the magnetic
field is strengthened. We found that the mass of Δþþ is
degeneratewith that ofΔ−, whereasΔþ has the samemass as
Δ0. However, the mass degeneracy was partially lifted.
From the present work, we conclude that there is no need

to consider the effects of the strong magnetic field in
analyzing the equation of the states (EoS) at high densities
that may exist in interiors of compact stellar objects, since

the nucleon masses are almost intact till the magnitude of
the magnetic field reaches 1017 G. It is interesting to see
that one can make the similar conclusion from the recent
studies on the EoS of strongly magnetized quark matter
within the Nambu-Jona-Lasinio model [56]. However,
when it comes to ultrarelativistic heavy ion collisions at
the LHC, it is of great significance to take into accounts the
effects coming from the strong magnetic field. This will
lead to nontrivial consequences. Furthermore, generaliza-
tions of the model may be performed by including the
explicit isospin breaking effects in the mesonic sector in
order to study the changes in the neutron-proton mass
difference under the influence of the external magnetic
field. The Paschen-Beck effects on baryonic systems are
yet another interesting issue, which can be investigated as
future works. The relevant works are under way.
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APPENDIX: MASS AND MOMENTS OF INERTIA
OF THE SPHEROIDAL SOLITON

For convenience, we introduce the following short-
handed notations:

Pr ≡ ∂rP; Pθ ≡ ∂θP; Θr ≡ ∂rΘ; Θθ ≡ ∂θΘ;

SP ≡ sinP; CP ≡ cosP; SΘ ≡ sinΘ;

CΘ ≡ cosΘ; sθ ≡ sin θ; cθ ≡ cos θ: ðA1Þ
The classical soliton mass M in the Lagrangian in Eq. (20)
and the explicit change of the soliton mass ΔM in the
external magnetic field are expressed as follows:

M ¼ π

Z∞

0

drr2
Zπ

0

sθdθ

�
F2
π

4r2

�
P2
θ þ r2P2

r

þ S2P

�
S2Θ
s2θ

þ Θ2
θ þ r2Θ2

r

��
þ S2P
e2r4

�
S2Θ
s2θ

ðP2
θ þ r2P2

rÞ

þ S2P
S2Θ
s2θ

ðΘ2
θ þ r2Θ2

rÞ þ r2ðPrΘθ − PθΘrÞ2
�

þm2
πF2

π

2
ð1 − CPÞ

�
þ ΔM; ðA2Þ
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ΔM ¼ π

Z∞

0

drr2
Zπ

0

sθdθ

�
F2
π

16

þ 1

4e2r2
ðP2

θ þ r2P2
r þ S2PðΘ2

θ þ r2Θ2
rÞ
�

× qeBMð4þ qeBMr2s2θÞS2PS2Θ: ðA3Þ

The generic form for the moment of inertia is defined as

Λ ¼ 2π

Z∞

0

drr2
Zπ

0

sθdθλ; ðA4Þ

where the contributions from the different parts of the
Lagrangian (20) are given as

λωω;12 ¼ Δλωω;12 þ
F2
π

8
ð1þ C2

ΘÞS2P

þ S2P
2e2r2

�
ð1þ C2

ΘÞðP2
θ þ r2P2

rÞ

þ S2P

�
S2Θ
s2θ

þ C2
ΘðΘ2

θ þ r2Θ2
rÞ
��

; ðA5Þ

λωΩ;12 ¼ ΔλωΩ;12 þ
F2
π

8

�
cθCΘ

SΘ
sθ

þ Θθ

�
S2P

þ S2P
2e2r2

�
cθCΘ

SΘ
cθ

ðP2
θ þ r2P2

r þ S2PðΘ2
θ þ r2P2

rÞÞ

þ S2PS
2
Θs

−2
θ Θθ þ r2PrðPrΘθ − ΘrPθÞ

�
; ðA6Þ

λΩΩ;12¼ΔλΩΩ;12þ
F2
π

8

�
P2
θþS2P

�
c2θ
S2Θ
s2θ

þΘ2
θ

��

þ S2P
2e2r2

�
S2Θ
s2θ

ðð1þc2θÞðP2
θþS2PΘ2

θÞ

þ r2ðP2
r þS2PΘ2

rÞc2θÞþ r2ðPrΘθ−PθΘrÞ2
�
; ðA7Þ

and one can also note, that the moment of inertia corre-
sponding to the quantization axis does not depend explic-
itly on the magnetic field

λωΩ;33 ¼
F2
π

4
S2ΘS

2
P þ

S2P
e2r2

S2ΘðP2
θ þ r2P2

r þ S2PðΘ2
θ þ r2Θ2

rÞÞ:
ðA8Þ

Finally, the additional parts of the moments of inertia
arising from the external magnetic field are expressed as

Δλωω;12 ¼
qeBM

4e2
ð4þ qeBMr2s2θÞS4PS2Θ; ðA9Þ

ΔλωΩ;12 ¼
qeBM

4e2
ð4þ qeBMr2s2θÞS4PS2ΘΘθ; ðA10Þ

ΔλΩΩ;12¼
qeBM

4e2
ð4þqeBMr2s2θÞS2PS2ΘðP2

θþS2PΘ2
θÞ: ðA11Þ
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