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We study the scattering of a pseudoscalar meson off one ground state octet baryon up to the next-to-next-
to-leading order in covariant baryon chiral perturbation theory (BChPT) with the extended-on-mass-shell
scheme. We perform the first combined study of the pion-nucleon and kaon-nucleon scattering data in
covariant BChPT and show that it can provide a reasonable description of the experimental data.
In addition, we find that it is possible to fit the experimental baryon masses and the pion-nucleon and kaon-
nucleon scattering data simultaneously at this order, thus providing a consistency check on covariant
BChPT. We compare the scattering lengths of all the pertinent channels with available experimental data
and those of the heavy baryon ChPT and infrared BChPT and discuss the convergence of SU(3) BChPT.
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I. INTRODUCTION

Elastic meson-baryon scattering1 is a fundamental proc-
ess that not only can test our understanding of the strong
interactions but also plays a relevant role in the studies of
the properties of single and multibaryons [1]. For instance,
one can derive from pion-nucleon scattering the nucleon
sigma term, which is essential to understanding the quark
flavor structure of the nucleon in the scalar channel and
plays an important role in direct dark matter searches [2–4].
In addition, meson-baryon scattering also provides key
inputs in the construction of the chiral baryon-baryon
interactions and may affect the equation of state of dense
matter at high densities and therefore help understand the
so-called hyperon puzzle [5–8] in explaining the existence
of two-solar-mass neutron stars [9,10]. Because of these
and others, one has seen increasing theoretical interests,
such as chiral perturbation theory (ChPT) [11–16]
and lattice QCD [17,18], as well as experimental interest
[19–23] in meson-baryon scattering in recent years.
ChPT, as a low-energy effective field theory of

QCD, plays an important role in our understanding of
the nonperturbative strong interaction physics [24–27].

In particular, it provides a model independent framework
to describe the dynamics of the Nambu-Goldstone bosons
interacting among themselves and with other hadrons
containing light (u, d, and s) quarks. For comprehensive
reviews, see, e.g., Refs. [28–33].
The constraints imposed by chiral symmetry and its

breaking are the most stringent on the self-interactions of
the Nambu-Goldstone bosons, and therefore, ChPT has the
largest predictive power in thepuremesonic sector. In theone-
baryon sector, its predictive power decreases because a larger
number of unknown low energy constants (LECs) has to be
introduced. As only a finite number of them appears in a
particular process, this does not severely hamper its appli-
cability.2 A further complicating factor is the power counting
breaking (PCB) issue. Namely, because of the large nonzero
baryon masses m0 in the chiral limit, lower order analytical
terms appear in nominal higher order loop calculations, and
therefore, a consistent power counting is lost [27]. In the past
three decades, several solutions have been proposed.
The most studied ones are the heavy baryon ChPT
[29,35], the infrared regularization (IR) baryon ChPT [36],
and the extended-on-mass-shell (EOMS) regularization
baryon ChPT [37,38]. For a short summary and comparison
of these different schemes, see, e.g., Ref. [39].

*lisheng.geng@buaa.edu.cn
1Throughout this work, mesons and baryons refer to the octet

of Nambu-Goldstone bosons and the ground-state octet baryons,
unless otherwise specified.

2A beautiful example is the study of Compton scattering [34],
where no unknown LECs appear up to NNLO.
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Although the EOMS BChPT has been successfully
applied to study pion-nucleon scattering [40–46], it has
not been applied to study kaon-nucleon, or more generally,
meson-baryon scattering. Our present study aims to fill this
gap. It is particularly timely given the extensive studies of
baryon masses [47–51] and the recent attempt to con-
struct baryon-baryon interactions using covariant BChPT
[52–56] with the EOMS scheme. As mentioned above,
meson-baryon scattering connects these studies and pro-
vides a nontrivial test of the consistency of BChPT.
This article is organized as follows. In Sec. II, we present

the theoretical formalism and calculate meson-baryon scat-
tering amplitudes up to the next-to-next-to-leading (NNLO)
order. Here, we briefly explain the renormalization of the
meson-baryon scattering amplitudes and the power-counting
breaking issue and refer to previous studies for more details.
Fitting results and discussions are presented in Sec. III,
followed by a short summary and outlook in Sec. IV.

II. THEORETICAL FORMALISM

In this section, we explain in detail how to calculate the
meson-baryon scattering amplitudes in covariant BChPT
with the EOMS scheme. As pion-nucleon scattering has
been studied in this framework previously [40–43], we will
only highlight the new ingredients in extending the study
from SU(2) to SU(3). For details similar to the SU(2) case,
we refer the reader to Refs. [40–43].

A. Scattering amplitudes and partial wave phaseshifts

In the isospin limit, the standard decomposition of the
meson-baryon scattering amplitude reads [27,57]

TMB ¼ ūðp0; s0Þ
�
Aþ 1

2
ð=qþ =q0ÞB

�
uðp; sÞ; ð1Þ

where pðp0Þ and qðq0Þ are the momentum of the initial
(final) baryons and mesons, respectively (see Fig. 1).
Introducing the Mandelstam variables s, t, u, one can
rewrite Eq. (1) in an alternative form,3

TMB ¼ ūðp0; s0Þ
�
Dþ i

mi þmf
σμνq0μqνB

�
uðp; sÞ; ð2Þ

where σμν ¼ i
2
½γμ; γν� andD ¼ Aþ s−u

2ðmiþmfÞB. However, as
noted in Ref. [57], since the leading part of A and B may
cancel each other, one better use B and D to perform the
low energy expansion of the scattering amplitudes when
extracting the PCB terms.
The above scattering amplitudes can be projected onto

specific partial waves in the following form [1]:

fl� ¼ 1

2
ðfl1 þ fl�2 Þ; ð3Þ

where fl1 and fl2 take the forms of

fl1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþmi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 þmf

p
8π

ffiffiffi
s

p
�
Al þ

ωþ ω0

2
Bl

þ
� jq⃗j2
2ðEþmiÞ

þ jq⃗0j2
2ðE0 þmfÞ

�
Bl

�
; ð4Þ

fl2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþmi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 þmf

p jq⃗jjq⃗0j
8π

ffiffiffi
s

p
�

Bl

2ðEþmiÞ
þ Bl

2ðE0 þmfÞ

−
Al − ωþω0

2
Bl

ðEþmiÞðE0 þmfÞ
�
; ð5Þ

AlðsÞ ¼
Z

1

−1
Aðs; tÞPlðcos θÞd cos θ;

BlðsÞ ¼
Z

1

−1
Bðs; tÞPlðcos θÞd cos θ; ð6Þ

where E; E0;ω;ω0 are the energy of the incoming and
outgoing particles in the center of mass (c.m.) frame, q⃗ and
q⃗0 are the c.m. momentum of the incoming(outgoing)
mesons, mi and mf are the masses of the incoming and
outgoing baryons. The Pl above refers to the Legendre
polynomials with an angular momentum l.
From the partial wave amplitudes, one can obtain the

corresponding phase shifts [58],

δl� ¼ arctanfjp⃗jRefl�ðsÞg: ð7Þ
In the present work, we will rely on the modern partial
wave analysis of the George Washington University group
[59,60] to fix the relevant LECs.4

FIG. 1. Kinematics of meson-baryon scattering, where p, p0,
q, q0 are the momenta of incoming and outgoing baryons and
mesons, s and t are the Mandelstam variables. The solid lines
denote baryons, and dashed lines represent mesons.

3This can be easily checked by noting that ū½γμ; γν�qμq0νu ¼
ðmi þmfÞūð=qþ =q0Þu − ðs − uÞūu.

4For pion-nucleon scattering, one may also use the latest
analysis based on the Roy-Steiner equation [61]. However, as our
primary interest is to compare different formulations of BChPT,
we choose to use the same data to fix the relevant LECs as those
used by the previous studies [16,42].
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B. Power counting

In ChPT, the relative importance of a certain Feynman
diagram contributing to a particular process is determined
by its chiral order, ν, whose size is of the order of ðp=Λ χÞν,
where p denotes a generic small quantity and Λ χ the chiral
symmetry breaking scale. In the one-baryon sector, where
only one baryon is involved in both the initial and the final
states, the chiral order for any given Feynman diagram with
L loops, Vn nth order vertices, NM internal meson lines,
and NB internal baryon lines, is

ν ¼ 4Lþ
X
n

nVn − 2NM − NB: ð8Þ

In the present context, the small quantities or expansion
parameters are

s − m̃2 ∼OðpÞ; t ∼Oðp2Þ;
mπ; mK;mη ∼OðpÞ; mN;Λ;Σ;Ξ − m̃ ∼Oðp2Þ: ð9Þ

Note that although in principle m̃ here refers to m0, the
chiral limit baryon mass, in the study of πN and KN
scattering, we set m̃ ¼ mN .

C. Chiral Lagrangians

In order to calculate the meson-baryon scattering
amplitudes up to the leading one-loop order, i.e., Oðp3Þ,
we need the following meson-meson and meson-baryon
Lagrangians:

Leff ¼ Lð2Þ
MM þ Lð4Þ

MM þ Lð1Þ
MB þ Lð2Þ

MB þ Lð3Þ
MB; ð10Þ

where the superscripts denote the chiral order. The lowest-
order meson-meson Lagrangian is

Lð2Þ
MM ¼ F2

0

4
hDμUðDμUÞ†i þ F2

0

4
hχU† þUχ†i; ð11Þ

where χ ¼ diagðm2
π; m2

π; 2m2
K −m2

πÞ, UðϕÞ ¼ u2ðϕÞ ¼
expði ϕ

F0
Þ, and F0 is the chiral limit value of the pseudo-

scalar decay constant. The traceless 3 × 3 matrix contains
the pseudoscalar fields,

ϕ ¼
ffiffiffi
2

p
0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA: ð12Þ

The next-to-leading order meson-meson Lagrangian rel-
evant to our study has the following form:

Lð4Þ
MM ¼ L4hDμUðDμUÞ†ihχU† þ Uχ†i

þ L5hDμUðDμUÞ†ðχU† þUχ†Þi: ð13Þ
The lowest order meson-baryon Lagrangian [62,63] is

Lð1Þ
ϕB ¼ hB̄ðiγμDμ −m0ÞBi þ

D=F
2

hB̄γμγ5½uμ; B��i; ð14Þ

where m0 is the chiral limit baryon mass, the covariant
derivative DμB ¼ ∂μBþ ½Γμ; B�, Γμ ¼ 1

2
fu†∂μuþ u∂μu†g,

and uμ ¼ ifu†∂μu − u∂μu†g. The 3 × 3 traceless matrix
contains the ground-state octet baryons fields,

B ¼

0
BBB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ pþ

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n0

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCCA: ð15Þ

The meson-baryon Lagrangian at order Oðp2Þ relevant
to meson-baryon scattering has 14 terms of the following
form [62–64]:

Lð2Þ
ϕB ¼ bDhB̄fχþ; Bgi þ bFhB̄½χþ; B�i þ b0hB̄Bihχþi þ b1hB̄½uμ; ½uμ; B��i þ b2hB̄fuμ; fuμ; Bggi

þ b3hB̄fuμ; ½uμ; B�gi þ b4hB̄Bihuμuμi þ ib5ðhB̄½uμ; ½uν; γμD⃗νB��i − hB̄D⃖ν½uν; ½uμ; γμB��iÞ
þ ib6ðhB̄½uμ; fuν; γμD⃗νBg�i − hB̄D⃖νfuν; ½uμ; γμB�giÞ þ ib7ðhB̄fuμ; fuν; γμD⃗νBggi − hB̄D⃖νfuν; fuμ; γμBggiÞ
þ ib8ðhB̄γμD⃗νBi − hB̄D⃖νγμBiÞhuμuνi þ ic1hB̄f½uμ; uν�; σμνBgi þ ic2hB̄½½uμ; uν�; σμνB�i þ ic3hB̄uμihuνσμνBi ð16Þ

with χ� ¼ u† χu† � uχ†u.
The meson-baryon Lagrangian contributing to MB → MB at order Oðp3Þ has 13 terms of the following form [62–64]:

Lð3Þ
MB¼id1ðhB̄γμD⃗νρB½uμ;hνρ�iþhB̄D⃖νργμB½uμ;hνρ�iÞþid2ðhB̄½uμ;hνρ�γμD⃗νρBiþhB̄D⃖νρ½uμ;hνρ�γμBiÞþid3ðhB̄uμi

×hhνργμD⃗νρBi−hB̄D⃖νρhνρihuμγμBiÞþid4hB̄½uμ;hμν�γνBiþid5hB̄γνB½uμ;hμν�iþid6ðhB̄uμihhμνγνBi−hB̄hμνihuμγνBiÞ
þid7ðhB̄σμνD⃗ρBfuμ;hνρgi−hB̄D⃖ρσμνBfuμ;hνρgiÞþid8ðhB̄fuμ;hνρgσμνD⃗ρBi−hB̄D⃖ρfuμ;hνρgσμνBiÞ
þid9ðhB̄uμσμνD⃗ρBhνρi−hB̄D⃖ρuμσμνBhνρiÞþid10ðhB̄σμνD⃗ρBi−hB̄D⃖ρσμνBiÞhuμhνρiþd48hB̄γμB½χ−;uμ�i
þd49hB̄½χ−;uμ�γμBiþd50ðhB̄uμihχ−γμBi−hB̄χ−ihuμγμBiÞ; ð17Þ

where Dνρ ¼ DνDρ þDρDν and hμν ¼ Dμuν þDνuμ.
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For Born terms at Oðp3Þ and vertex corrections, we also need the following Lagrangian, which contributes to B1 →
M1B2 and has ten terms [62–64]:

Lð3Þ
BMB ¼ d38hB̄uμγ5γμBχþi þ d39hB̄χþγ5γμBuμi þ d40hB̄uμγ5γμBihχþi þ d41hB̄γ5γμBuμihχþi þ d42hB̄γ5γμBihuμ χþi

þ d43hB̄γ5γμBfuμ; χþgi þ d44hB̄fuμ; χþgγ5γμBi þ d45hB̄fχ−; γ5Bgi þ d46hB̄½χ−; γ5B�i þ d47hB̄γ5Bihχ−i: ð18Þ

It should be noted that not all of the Oðp2Þ and Oðp3Þ
terms contribute to a specific process. Particularly, for pion-
nucleon and kaon-nucleon scattering, only 24 combina-
tions out of the total 37 LECs contribute. They are tabulated
in Table I.
For an explicit study of the matching between SU(3) and

SU(2), we refer the reader to Refs. [14,65,66]. In doing so,
one should note that the Lagrangians in Eqs. (16), (17), and
(18) do not share the same Lorentz structures with those
used in SU(2). To obtain the matching relations between the
LECs in the SU(2) and SU(3) Lagrangians, the following
relation between Dμ and the Dirac matrix γμ is needed,
which reads

Ψ̄AμiDμΨþ H:c: ≐ 2mΨ̄γμAμΨ; ð19Þ
where Aμ is an external field, and the symbol ≐ means
equal up to terms of higher orders. Neglecting the possible
higher order corrections, which is beyond our concern here,
it is straightforward to reduce the SU(3) Lagrangians to
those of their SU(2) counterparts. We notice that although
the application of Eq. (19) only leads to differences of
higher orders, which could be ignored from the point of
view of effective field theories, it results in a reorganization
of the scattering amplitudes when divided into A and B
parts. As a consequence, the explicit expressions of the tree
level diagrams will be different.
We would like to point out that compared to the nine free

LECs in the πN channel in SU(2) [42], we find that only
eight of them are actually independent. All of the LECs in
Eq. (18), which correspond to the d16 and d18 terms of
Ref. [42], do not contribute to the scattering amplitudes. In
the Oðp3Þ Born diagrams, the contributions from the
d38;…;44 terms are canceled by the corrections from vertex

renormalization. The remaining part, containing d45, d46,
d47, can be absorbed into those of the d48;…;50 terms via

2mΨ̄γ5 χ−Ψ ≐ −Ψ̄γ5γμ½iDμ; χ−�Ψþ gA
2
Ψ̄½=u; χ−�Ψ; ð20Þ

where gA refers to the axial-vector current coupling con-
stant. The first term on the right-hand side will be canceled
as the d38;…;44 terms do, while the second term is in the
form of the d48;…;50 terms. Thus, in the final scattering
amplitudes, only eight combinations of the LECs will
survive, consistent with the HBChPT study [16].
In addition, we note that the b5, b6, b7 terms in the

Lagrangians [Eqs. (16) and (17)] are not symmetric under
the exchange of the Lorentz indices μ, ν, while the b8 term
is. As a consequence, these four terms do not share the
same expression. The same applies to the d1, d2, d3 terms.
Considering that the differences are two chiral orders
higher, we supplement these terms with the terms with
exchanged Lorentz indices to make these Lagrangians
symmetric with respect to the exchange of Lorentz indices.
For instance, the modified b5 and d3 terms finally utilized
in our calculation read

Lb5 ¼ iðhB̄½uμ; ½uν; γμD⃗νB��i − hB̄D⃖ν½uν; ½uμ; γμB��iÞ
þ iðhB̄½uν; ½uμ; γμD⃗νB��i − hB̄D⃖ν½uμ; ½uν; γμB��iÞ;

Ld3 ¼ iðhB̄uμihhνργμD⃗νρBi − hB̄D⃖νρhνρihuμγμBiÞ
− iðhB̄hνρihuμγμD⃗νρBi − hB̄D⃖νρuμihhνργμBiÞ: ð21Þ

D. Feynman diagrams up to O(p3)

1. Tree level terms

The tree level contributions up to Oðp3Þ are shown in
Fig. 2. In the present work, we focus on the πN and KN
sectors, which can be organized into the following four
isospin multiplets: πNI¼3=2;1=2 and KNI¼1;0. The calcula-
tion of the tree level counterterms and Born terms is rather
straightforward, and the corresponding results are given in
Appendixes A and B, respectively.

2. Mass insertion diagrams

Mass insertions are induced by the SU(3) breaking
corrections to the chiral limit baryon mass m0, which
are of order Oðp2Þ and have the following explicit form:

TABLE I. Independent (combinations of) LECs contributing to
πN and KN scattering. For the sake of later references, we
introduce α1;…;8;β1;…;8;γ1;…;8 to denote different combinations of
LECs.

πN KNI¼0 KNI¼1

α1¼b1þb2þb3þ2b4 β1¼b3−b4 γ1¼b1þb2þb4
α2¼b5þb6þb7þb8 β2¼b6−

b8
2

γ2¼b5þb7þb8
2

α3¼c1þc2 β3¼c1þ c3
4

γ3¼c2þ c3
4

α4¼b0þbD
2
þbF

2
β4¼b0−bF γ4¼b0þbD

α5¼d2 β5¼d1þd2þd3 γ5¼d1−d2−d3
α6¼d4 β6¼d4þd5þd6 γ6¼d4−d5þd6
α7¼d8þd10 β7¼d7−d8þd10 γ7¼d7þd8þd10
α8¼d49 β8¼d48þd49þd50 γ8¼d48þd49−d50
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ΔN ¼ −4mK
2ðb0 þ bD − bFÞ − 2mπ

2ðb0 þ 2bFÞ;
ΔΣ ¼ −2mπ

2ðb0 þ 2bDÞ − 4b0mK
2;

ΔΛ ¼ −
2

3
ðmK

2ð6b0 þ 8bDÞ þmπ
2ð3b0 − 2bDÞÞ;

ΔΞ ¼ −4mK
2ðb0 þ bD þ bFÞ − 2mπ

2ðb0 − 2bFÞ: ð22Þ

One easy way to include these corrections is to supple-
ment the intermediate baryon mass of the Born terms with
the Oðp2Þ corrections given in Eq. (22). The contribution

from this part can be automatically included if one performs
a substitution ofm0 → m2 ¼ m0 þ ΔB in the mass renorm-
alization of baryons, as we do in this work.

3. Leading one-loop diagrams

The leading one-loop contributions to meson-baryon
scattering include the Feynman diagrams shown in Fig. 3.
The crossed diagrams, if exist, can be obtained with the

same replacement rule as in the case of the crossed Born
diagrams,

BLoop ¼ BðsÞ − Bðs ↔ u;Mi ↔ MfÞ;
ALoop ¼ AðsÞ þ Aðs ↔ u;Mi ↔ MfÞ; ð23Þ

where Mi;f refer to the masses of incoming and outgoing
mesons. In the numerical evaluation of all these loop
diagrams, we adopt physical values for all the quantities
appearing in the amplitudes, including decay constants and
masses. Employing their chiral limit values only lead to
differences of higher chiral order.
The wave function renormalization of the external

mesons and baryons are shown in Fig. 4, from which

FIG. 3. Leading one-loop contributions to meson-baryon scattering up to Oðp3Þ. Note that the wave function renormalization and
crossed graphs are not shown explicitly.

(c)

(a) (b)

(d) (e) (f)

FIG. 2. Tree level diagrams contributing to meson-baryon
scattering up to Oðp3Þ. The solid lines correspond to baryons,
and the dashed lines represent mesons. The vertices with filled

circles and hollow blocks stem from the Lð2Þ
MB and Lð3Þ

MB Lagran-
gians, respectively.

(a) (b) (c)

FIG. 4. Wave function renormalization contributions to meson

(dashed) and baryon (solid) fields. Counterterms from Lð4Þ
MM are

donated by the filled block.
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one can easily obtain the wave function renormalization
constants for both meson and baryon external legs. For
details we refer to Ref. [32].
In numerical calculations, we utilize the package

OneLoop [67,68]. Due to the complexity of the explicit
expressions of the one-loop contributions, they are not
explicitly shown in this paper.5

The above obtained scattering amplitudes still need some
further treatment before being employed to describe
meson-baryon scattering. First, since in all the calculations
above we used the physical values instead of the corre-
sponding bare ones, the amplitudes must be properly
renormalized. The procedure of renormalization is quite
standard, see, e.g., Ref. [42]. We only need to point out that
1) the baryon mass normalization is implemented pertur-
batively and 2) the vertex renormalization is achieved via
the two-body decay process, as in Ref. [43], and 3) the
chiral corrections to decay constants are considered up to
NLO [26]. To recover a proper power counting, we adopt
the EOMS scheme.
We have checked our final results, particularly those of

the loop functions, by reproducing the SU(2) phase shifts of
Ref. [42] and the SU(3) scattering lengths of Ref. [12].

III. RESULTS AND DISCUSSION

The scattering of a pseudoscalar meson off an octet
baryon can be grouped into 11 combinations of isospin and
strangeness as tabulated in Table II. In the present work, we
focus on the πN and KN channels, because only for these
channels partial wave phase shifts are available.
With the amplitudes properly renormalized, we are now

ready to determine the LECs by fitting to the partial wave
phase shifts. For πN, we choose the phase shifts from the
analysis ofWI08 [59] in theS11,S31,P11,P31,P13,P33 partial
waves,where in the conventionL2I;2J L denotes the total orbit
angularmomentum, I the total isospin, and J the total angular
momentum. Correspondingly, the phase-shift analysis of the
SP92 solution [60] in the S01, P01, P03, S11, P11, P13 partial
waves are used for KN, where the symbols mean LI;2J.
For the πN channels, we choose the phase shifts with

ffiffiffi
s

p
between 1082 MeV, which is slightly above the threshold,
and 1130 MeV, with an interval of 4 MeV. Thus, in total we

will have 13 points for each of the six partial waves. For the
KN channels, we follow the same strategy. Starting from
1435 MeV to 1475 MeV, the interval is set to be 2 MeV,
with a total of 20 points for each partial wave.
Since WI08 does not provide the errors for the data, we

follow Refs. [69,70] and take

errðδÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2s þ e2rδ2

q
; ð24Þ

with the systematic error es ¼ 0.1° and the relative error
er ¼ 2%.
Throughout the numerical study, we use the physical

decay constants for the corresponding vertices. The renorm-
alization scale μ in the loop integrals is chosen to be the
average mass of the baryon octet, and the m̃, appearing in the
power counting breaking terms via s − m̃2, is taken to equal
to the mass of the nucleon, considering that we focus now on
the πN and KN channels. The physical values employed in
the present work are collected in Table III.

A. Fitting strategy one: Direct fit to the phase shifts

We find that to describe the pion-nucleon scattering data,
one needs to go to at least Oðp3Þ. On the other hand, a
reasonable reproduction of the kaon-nucleon data can
already be achieved at Oðp2Þ. We follow the same strategy
in the first attempt to provide a simultaneous fit of both the
πN and KN data.6

A least-of-squares fit yielded a χ2=d:o:f: ¼ 0.154 for the
78 data points in the pion-nucleon channel (see Table IV).

TABLE II. Eleven coupled channels of meson-baryon scattering of conserved strangeness (S) and isospin (I).

(1,1) (1,0) ð0; 3
2
Þ ð0; 1

2
Þ ð−1; 2Þ ð−1; 1Þ ð−1; 0Þ ð−2; 3

2
Þ ð−2; 1

2
Þ ð−3; 1Þ ð−3; 0Þ

KN KN KΣ KΣ πΣ πΣ πΣ K̄Σ K̄Σ K̄Ξ K̄Ξ
πN KΛ ηΣ ηΛ πΞ K̄Λ

ηN πΛ K̄N ηΞ
πN K̄N KΞ πΞ

KΞ

TABLE III. Masses and decay constants (in units of GeV) and
axial-coupling constants relevant in the present work. Note the
mass of the K meson is taken to be 0.493 GeV to be consistent
with the SP92 data, which were originally from Kþn scattering.

mπ mK mη mN mΛ mΣ mΞ

0.139 0.493 0.54765 0.939 1.1157 1.1934 1.3183

Fπ FK Fη D F μ m̃

0.0924 0.11003 0.11088 0.8 0.467 1.16 mN ¼ 0.939

5They can be obtained from the authors upon request.

6As a matter of fact, different LECs contribute to πN and KN
scattering independent of each other.
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The corresponding fit results associated with errors propa-
gated from the uncertainties of LECs are compared with the
empirical data in Fig. 5. For the sake of comparison, we
show as well theOðp3Þ results of the SU(3) HB [15,16] and
the SU(2) EOMS BChPT [42].
Clearly, the EOMS results can describe the phase shifts

quite well. Although the data are only fitted up toffiffiffi
s

p ¼ 1.13 GeV, the phase shifts are described very well
even up to

ffiffiffi
s

p ¼ 1.16 GeV for some partial waves,
corresponding to a momentum in the laboratory frame of
jp⃗labj ¼ 200 MeV. In addition, our calculation in SU(3)
shows a compatible description compared to that in SU(2),
which implies that the inclusion of strangeness has small
effects on the fitting results.
We note that even with the relative large uncertainties,

we cannot achieve a satisfying description of the P11,
P13, and P33 partial waves at higher energy regions.
Particularly, in the P11 channel, the solution of WI08
tends to increase with energy in the higher energy region
while the EOMS results, both in the SU(3) and SU(2)
cases, decrease. This disagreement has already been noted
in Ref. [42], where the authors point out that including the
contribution of the Δð1232Þ may improve the description.
Inspired by this, we have checked that in SU(3) the
inclusion of the lowest order contribution from the
decuplet can have the same positive effect. One can

achieve a pretty good description even up toffiffiffi
s

p ¼ 1.2 GeV, quite close to the region of the Δ reso-
nance. For a description bridging over this Δ resonance
region, one needs to include the Δ explicitly, unitarize the
amplitudes, and modify the powering counting rule. For a
discussion of these, we refer the reader to Ref. [43].
For the KN scattering, as noted in the HB study [15,16],

a quite good description of the phase shifts can already be
achieved at NLO. In the present work, we will present two
studies of the KN scattering. One is performed up to
Oðp2Þ, and the other is performed up toOðp3Þ, but only the
loop contributions are included because the phase shifts
data are not enough to fix the relevant Oðp3Þ LECs. Other
inputs in addition to the KN phase shifts are needed. The
second study will be denoted by Oðp3Þ�.
In Fig. 6, we show our fitted results together with the

experimental data, with the corresponding LECs given in
Tables Vand VI. We find that in the KN channels, the error
bands are very narrow for both the Oðp2Þ and Oðp3Þ�
results. In most partial waves, they are only a few percent of
the corresponding phase shifts. For the sake of comparison,
we show as well the HB results of Refs. [15,16]. It is clear
that the EOMS descriptions are slightly better than the HB
results when extended to higher energies.
From the above discussions, it is clear that the EOMS

provides a satisfactory description of both the pion-nucleon
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FIG. 5. Pion-nucleon phase shifts. The blue lines denote our results and the black dots with error bars represent the WI08 solution with
empirical errors given in Eq. (24). The blue bands correspond to the uncertainties propagated from the uncertainties of the LECs. In
some partial waves, the error bands are of the size of the thickness of the lines. For the sake of comparison, we show as well the EOMS
SU(2) results [42] (green dot-dashed lines) and the HB SU(3) results [16] (red dashed lines).

TABLE IV. LECs in the πN channel.

α1 [GeV−1] α2 [GeV−2] α3 [GeV−1] α4 [GeV−1] α5 [GeV−4] α6 [GeV−2] α7 [GeV−3] α8 [GeV−2] χ2=d:o:f:

−7.63ð6Þ 1.42(2) 1.34(1) −1.36ð6Þ 0.61(2) 3.25(5) 1.45(3) −0.32ð13Þ 0.154
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and kaon-nucleon scattering data up to Oðp3Þ, while the
SU(3) HB ChPT fails.

B. Fitting strategy two: Combined study of the baryon
masses and meson-baryon scattering

One merit of ChPT is that it connects different observ-
ables with the same set of LECs. Thus, it is interesting to
explore how one observable imposes restrictions on others.
In this covariant baryon ChPT framework, baryon masses
and scattering process are such a pair of observables which
are described by the same Lagrangians. Most of the LECs
appear in both the meson-baryon scattering and the baryon
masses, such as, b0, bD, bF, and b1;…;8. A naive idea for a
combined study of these two observables can be performed
in two ways. First, calculating baryon masses atOðp3Þ and
using the experimental data as well as the pion-nucleon
sigma term to constrain b0, bD, bF, and then with these
LECs fixed, study pion-nucleon and kaon-nucleon

scattering. Or conversely, one can study the baryon masses
with some LECs determined via meson-baryon scattering
and, furthermore, make predictions on sigma terms.7

However, we note that the LECs actually contribute at
different chiral orders to these two observables. In meson
baryon scattering, all of these LECs appear at Oðp2Þ, the
order of the chiral Lagrangians. On the other hand, b0, bD,
bF contribute to the baryon masses both at Oðp2Þ and
Oðp4Þ via tree level as well as mass insertions, while b1;…;8

only contribute to the baryon masses via tadpole diagrams
at Oðp4Þ. This complicates things a lot. In principle, from
the point of view of effective field theories, to achieve a
fully self-consistent and combined study of baryon masses
and meson-baryon scattering, one needs to renormalize the
LECs in the same framework. In other words, the calcu-
lation for baryon masses and meson-baryon scattering
ought to be performed up to the same order. Otherwise,
the LECs in these two sectors are mismatched. Thus, if one
tries to determine b1;…;8 through baryon masses, a calcu-
lation up to Oðp4Þ will be needed, which should be
matched with scattering amplitudes also at Oðp4Þ. As a
consequence, the number of LECs will be too large
compared with the number of data available both for
baryon masses and meson-baryon scattering from experi-
ments and lattice QCD simulations. On the other hand, if
one is not so ambitious and only calculates the scattering
amplitudes and baryon masses up to Oðp3Þ, new problems
show up. In this case, only three parameters(b0, bD, bF) in
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FIG. 6. I ¼ 0 (upper panel) and I ¼ 1 (lower panel) KN phase shifts. The orange long-short dashed lines and blue solid lines represent
our Oðp2Þ and Oðp3Þ� results while the red dashed lines denote those of the HB ChPT [16]. The blue bands correspond to the
uncertainties of the Oðp3Þ� results propagated from the uncertainties of the LECs. The error bands of the Oðp2Þ results are not shown
here to make the figures easier to read. In some partial waves, the error bands are of the size of the thickness of the lines.

TABLE V. LECs contributing to the I¼0 KN scattering.

β1 [GeV−1] β2 [GeV−2] β3 [GeV−1] β4 [GeV−1] χ2=d:o:f:

Oðp2Þ −0.495ð1Þ 0.113(0) 0.447(2) 0.136(1) 0.829
Oðp3Þ� −0.767ð1Þ 0.126(0) 0.604(3) 0.093(1) 0.971

TABLE VI. LECs contributing to I¼1 KN scattering.

γ1 [GeV−1] γ2 [GeV−2] γ3 [GeV−1] γ4 [GeV−1] χ2=d:o:f:

Oðp2Þ −0.122ð0Þ 0.0084(0) 0.264(1) −0.270ð1Þ 0.765
Oðp3Þ� −0.419ð2Þ 0.429(0) 0.616(1) −0.090ð3Þ 0.471

7One can of course calculate the sigma terms directly from
scattering amplitudes via the corresponding subthreshold param-
eters using the Cheng-Dashen theorem [71].
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addition to m0 appear in the baryon masses. Although the
physical baryon masses can be accurately reproduced, the
study in Ref. [47] showed that it is not possible to provide a
satisfactory description of the LQCD baryon masses up to
this order. In addition, the constraints from baryon masses
to meson-baryon scattering will be very weak because there
are 24 combinations of LECs in the meson-baryon scatter-
ing up to Oðp3Þ.
Taking all these into account, we calculate the baryon

masses up toOðp3Þ in the presentwork.Using the chiral limit
baryon mass determined in Ref. [47], m0 ¼ 0.880 GeV, we
determine b0, bD, bF by fitting to the experimental octet
baryon masses, with the pseudoscalar decay constants fixed
as explained above. The resulting LECs and the fitted octet
baryon masses are given in Table VII.
Compared to the fit up to Oðp3Þ to the scattering

phase shifts, a combined fit of the baryon masses and
scattering amplitudes yields a slightly worse description of
the scattering phase shifts to some extent (see Tables VIII–
X). Particularly, the fitting results are worse in the KN
channel where the χ2=d:o:f: increases by a factor of about 4
with larger error bands. This is understandable as the
number of free LECs decreases. Despite this, as one can
see from Figs. 7 and 8, the negative effects do not spoil the
description. For the p wave, the descriptions of the phase
shifts are of very similar quality, whether one fixes b0, bD,
bF and treats them as free LECs. For the s wave, the
differences are rather moderate, particularly in the low
energy region. This study indicates that the EOMS BChPT
is able to describe the baryon masses and meson-baryon
scattering simultaneously, as it should be. Nevertheless, as
mentioned at the beginning of this section, to draw a firm
conclusion, more systematic studies are needed.
As for the sigma terms, we find that meson-baryon

scattering up to Oðp3Þ is not very useful at this moment
because the tree level contributions at Oðp3Þ in the KN

channels are neglected, leading to unusually large bD, bF
compared to an independent study of the baryon masses in,
e.g., Ref. [47]. Thus, we will refrain from performing such
a study here.

C. Scattering lengths

Scattering lengths, also known as s-wave threshold
parameters, can be predicted with the LECs determined
above. The general form of the effective range expansion
reads

jpj2lþ1 cot δIl� ¼ 1

aIl�
þ 1

2
rIl�jpj2 þ

X∞
n¼2

vIn;l�jpj2n; ð25Þ

where jpj refers to the three-momentum of the baryon in
the c.m. frame, l is the angular momentum, a is the
threshold parameter, r is the effective range, and vn are
the shape parameters. We can easily obtain the expression
of threshold parameters from Eq. (25) by taking the limit
of jpj → 0 as

aIl� ¼ lim
jpj→0

tan δIl�
jpj2lþ1

¼ lim
jpj→0

RefIl�
jpj2l : ð26Þ

With the scattering amplitudes obtained in ChPT, one
can easily compute the l ¼ 0 scattering lengths. The
corresponding results for the πN and K̄N channels are
collected in Table XI.
It is clear that our results based on the EOMS scheme are

in very good agreement with the experimental data and the
HB results, while the IR results [14] seem to be compatible
with data only in the KN channels. We note that for the two
πN channels, the LO scattering lengths, to which no

TABLE VII. LECs determined by fitting to the experimental
baryon masses up to NLO in the EOMS BChPT and the
corresponding fitted results, in comparison with the experimental
data. All of the masses are in units of GeV.

m0 b0 bD bF

Fit 0.88(FIX) −0.6232ð1Þ 0.0570(1) −0.4022ð7Þ

mN mΛ mΣ mΞ

Fit 0.9392 1.1157 1.1862 1.3272
Exp. 0.938925(645) 1.115683(6) 1.19315(430) 1.31828(343)

TABLE VIII. LECs in the πN channel with α4 ¼ b0 þ bD
2
þ bF

2
fixed by fitting to the baryon masses.

α1 [GeV−1] α2 [GeV−2] α3 [GeV−1] α4 [GeV−1] α5 [GeV−4] α6 [GeV−2] α7 [GeV−3] α8 [GeV−2] χ2=d:o:f:

−7.41ð7Þ 1.56(2) 1.33(1) −0.80 0.63(2) 3.18(6) 1.45(3) −0.096ð122Þ 1.26

TABLE IX. LECs in the I ¼ 0 KN channel with β4 ¼ b0 − bF
fixed by fitting to the baryon masses.

β1 [GeV−1] β2 [GeV−2] β3 [GeV−1] β4 [GeV−1] χ2=d:o:f:

Oðp2Þ −0.284ð1Þ 0.144(0) 0.443(3) −0.221 4.66
Oðp3Þ� −0.582ð11Þ 0.153(3) 0.601(5) −0.221 3.93

TABLE X. LECs in the I ¼ 1 KN channel with γ4 ¼ b0 þ bD
fixed by fitting to the baryon masses.

γ1 [GeV−1] γ2 [GeV−2] γ3 [GeV−1] γ4 [GeV−1] χ2=d:o:f:

Oðp2Þ −0.236ð11Þ −0.033ð3Þ 0.246(5) −0.566 1.45
Oðp3Þ� −0.604ð15Þ 0.364(4) 0.588(6) −0.566 2.24
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unknown LECs contribute, are already compatible with the
experimental data. Meanwhile the contributions of
the two consecutive orders decrease order by order.
Compared to the HB case [16]: a3=2πN ðOðp2ÞÞ ¼ 0.05 fm,
a3=2πN ðOðp3ÞÞ ¼ −0.05 fm and a1=2πN ðOðp2ÞÞ ¼ 0.05 fm,
a1=2πN ðOðp3ÞÞ ¼ −0.03 fm, the EOMS results decrease
much faster, indicating that the scattering amplitudes in
this covariant framework converge faster than in the non-
relativistic calculation close to threshold, and the improve-
ment is significant. In the KN channels, one can see that the

NLO results can already describe the experimental data.
The improvements from Oðp3Þ are so tiny that they can be
neglected. However, different from the πN channels, the
LO scattering lengths in the KN channels are far from the
corresponding experimental data. As a consequence, rel-
atively large contributions from NLO and NNLO are
naturally expected. Indeed our calculations yield extremely
large values at Oðp2Þ and Oðp3Þ� with significant cancel-
lations. All of these point to an unsatisfying convergence
even very close to threshold in the KN channels.
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FIG. 7. Same as Fig. 5, but the black dot-dashed lines associated with the grey bands denote the EOMS results and their errors with
b0, bD, and bF fixed by fitting to the physical (isospin averaged) octet baryon masses at NNLO. In some partial waves, the error bands
are of the size of the thickness of the lines.
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FIG. 8. Same as Fig. 6, but the purple dotted lines and black dot-dashed lines denote the Oðp2Þ and Oðp3Þ� results in the EOMS
scheme with b0, bD, and bF fixed by fitting to the physical (isospin averaged) octet baryon masses at NNLO. The grey bands correspond
to the uncertainties of theOðp3Þ� results propagated from the uncertainties of the LECs. The error bands ofOðp2Þ results are not shown
here to make the figures easier to read. In some partial waves, the error bands are of the size of the thickness of the lines.
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Nonetheless, one should keep in mind that we have
neglected the Oðp3Þ tree level contribution. To draw a
firm conclusion, more experimental data or lattice simu-
lations are strongly needed. More discussions can be found
in the following subsection.

D. Convergence of BChPT

The convergence of SU(3) BChPT has remained an issue
of heated debate for many years. See, e.g., Ref. [73] for
early discussions, and Refs. [48,74] for more recent studies
of baryon magnetic moments and masses. From the latter
studies, it seems that the EOMS scheme can speed up the
convergence of BChPT, particularly, in the SU(3) sector.
Nonetheless, even in the EOMS scheme, the convergence
turns out to be relatively slow. The origin of this slow
convergence in the SU(3) sector is the large expansion
parameter MK

Λ χPT
, which is approximately 1=2 in the physical

world. For a LQCD simulation, the situation can become
even worse.
The discussion on the convergence of BChPT for meson-

baryon scattering can be dated back to the first attempt in
the HB scheme by M. Mojžiš [75] where the convergence
of threshold parameters was studied. Afterwards N. Fettes
et al. [58] worked out the pion-nucleon scattering ampli-
tudes up to Oðp3Þ. Their calculation implies that the third-
order contributions are in general small in the lower energy
region, while there exist large cancellations for higher
energies. However, the discussion of convergence is rather
limited, and no firm conclusion could be drawn there. The
situation was significantly improved once the full one-loop
results became available [76]. They concluded that the
contributions from the fourth order are, in most partial
waves, indeed not large, indicating the convergence of
BChPT. Recently, the discussion on this issue based on
SU(3) HBChPT was performed in Refs. [15,16] up to
Oðp3Þ, where a conclusion very similar to those in SU(2)
was drawn.
As is well known, the HB ChPT recovers a neat power

counting rule at a cost of manifestly Lorentz covariance. It
suffers from the deficiency that the corresponding pertur-
bation series fail to converge in parts of the low-energy
region [36]. Thus, an analysis based on covariant BChPT

was strongly needed. In Ref. [41], the πN scattering
amplitudes were calculated up to Oðp3Þ in SU(2) with
the EOMS scheme. The authors pointed out that the
convergence of the Δ-less amplitudes is questionable
because there exists a large cancellation between Oðp2Þ
and Oðp3Þ in almost all partial waves. However, including
Δ as an explicit degree of freedom, the amplitudes turn out
to present a natural convergence from subthreshold up to
energies well above threshold. Very soon after this work,
Chen et al. showed [42] that after promoting the calculation
to Oðp4Þ, the convergence pattern is reasonable even
without Δ. Later in Ref. [43], a full third order calculation
with an explicit Δ is performed. More recent studies, such
as those of Refs. [41,44,46], further confirmed that the
convergence pattern is visibly improved in a covariant
scheme via a detailed study on threshold and subthreshold
parameters, associated with the extracted LECs. They also
highlighted the improvements by taking the contributions
of resonances such as Δ and Roper into consideration.
It is interesting to check the convergence pattern in

SU(3) as well. Nevertheless, one has to be cautious about
any conclusion drawn from a leading one-loop study such
as the present one. We show the phase shifts of each order
in Fig. 9 for the πN channels and Fig. 10 for the KN
channels. For the two π-N S waves, the LO contribution
itself describes the behavior of phase shifts very well in
subthreshold regions, while the NLO and NNLO terms
only provide visible effect at higher energies. Especially in
the S11 partial wave, the contributions decrease order by an
order well above the threshold, indicating a reasonable
convergence. On the other hand, for all the P waves, the
contributions from the NNLO terms are smaller than those
from the NLO terms. The LO terms are now approximately
the same size as NLO or even smaller because the partial
wave decomposition filters out the LO contact terms. In
particular, the ratio of the NNLO over NLO terms can be
lower than 1=2 for the two J ¼ 3

2
partial waves in quite a

wide region above the threshold. Despite the cancellation of
the NLO and NNLO terms in these partial waves, these
smaller ratios actually indicate a reasonable convergence.
For the rest of the partial waves, we find a ratio of 0.7–0.8
even very close to the threshold, implying a sizable
cancellation and, thus, a much slower convergence.

TABLE XI. πN and KN scattering lengths in units of fm. Note that we did not associate any uncertainties to theOðp3Þ� contributions
of the KN channel because we have not included the tree level contributions at this order for the KN channels.

Channel Oðp1Þ Oðp2Þ Oðp3Þ Total Huang (HB) [16] Mai (IR) [14] Expt.

a3=2πN
−0.126 0.026(11) −0.011ð8Þ −0.111ð16Þ −0.110ð2Þ −0.04ð7Þ −0.125ð3Þ [72]

a1=2πN
0.212 0.025(10) 0.003(16) 0.240(22) 0.240(2) 0.07(7) 0.250þ0.006

−0.004 [72]
a1KNðOðp2ÞÞ −0.476 0.149(1) � � � = � � � −0.327ð1Þ −0.330ð5Þ −0.33ð32Þ −0.33 [59]
a0KNðOðp2ÞÞ 0.043 −0.057ð2Þ � � � = � � � −0.014ð2Þ 0.000(4) 0.02(64) 0.02 [59]
a1KNðOðp3Þ�Þ −0.476 1.067(5) −0.919 −0.328ð5Þ � � � = � � � � � � = � � � � � � = � � �
a0KNðOðp3Þ�Þ 0.043 0.164(2) −0.219 −0.012ð2Þ � � � = � � � � � � = � � � � � � = � � �
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For the KN channels, the LO results are in general quite
small. This is not only because of the partial wave
decomposition, but also because the LO Born term can
only contribute via the u channel. In the two S waves, the
third order contribution is compatible with the second order
and the large cancellation points to a questionable con-
vergence. However, for most P waves except P13, the
second order contribution dominates the behavior and
the third order contribution is significantly smaller than
the second order, implying a reasonable convergence, if we
ignore the small LO contributions.

In general, we do not find a fast decrease of higher order
contributions and the conclusion on the convergence to be
drawn here is quite similar to that in SU(2). However, we
would like to point out that in some P waves for both the
πN and KN channels, the chiral expansions seem to
convergence at least near the threshold if we only focus
on the NLO and NNLO contributions. We ascribe the
slower convergence of the two S waves in the KN channels
partially to the fact that we have not taken into account the
Oðp3Þ tree level contributions. Inspired by the SU(2)
studies, we expect that the contributions of the decuplet

FIG. 9. Order by order decomposition of the πN phase shifts. The blue lines donate the total results, while those of the OðpÞ, Oðp2Þ,
and Oðp3Þ are represented by the green-dashed, red-dot-dashed, and black-dotted lines, respectively.

FIG. 10. Order by order decomposition of the KN phase shifts. The blue lines donate the total results, while those of theOðpÞ,Oðp2Þ,
and Oðp3Þ� are represented by the green-dashed, red-dot-dashed, and black-dotted lines, respectively.
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could significantly improve the convergence pattern at least
at Oðp3Þ. Meanwhile, a calculation up to the full one loop
order is needed to test the convergence of SU(3) BChPT.

IV. SUMMARY AND OUTLOOK

In this work, we performed a SU(3) study of the meson-
baryon elastic scattering up to Oðp3Þ in covariant baryon
chiral perturbation theory. Due to lack of experimental data,
we focus only on the πNI¼3=2;1=2 andKNI¼0;1 channels. We
applied the extended-on-mass-shell (EOMS) scheme to
restore the power counting and determined the correspond-
ing low energy constants by fitting to the experimental
phase shifts. We achieved a pretty good description in these
channels simultaneously up to 1.16 GeV for πN and
1.49 GeV for KN. For the πN channels, our study in
SU(3) shows a compatible description as that in SU(2) and
much better compared to the HB SU(3) results. Our results
showed that different from the HB case, the inclusion of the
strangeness in the covariant framework does not affect
much the description of the pion-nucleon scattering. For the
KN channels, we found that with only phase shifts one can
not uniquely determine all the LECs. Nevertheless, neglect-
ing the Oðp3Þ tree level contributions, we obtained a
description in good agreement with the experimental data.
We attempted a combined study of the baryon masses

and meson-baryon scattering up to Oðp3Þ. We first deter-
mined b0, bF, bD using the baryon masses and then kept
them fixed in the fitting of the partial wave phase shifts. Our
study showed indeed that the EOMS BChPT can describe
simultaneously the baryon masses and meson-baryon
scattering, but a firm conclusion needs more systematic
studies up to higher orders.
The predicted scattering lengths for the πN and KN

channels are in good agreement with the HB results and the
experimental data. In addition, we explored the conver-
gence of BChPT in meson-baryon scattering. The large
cancellation between the NLO and NNLO contributions

implies an unsatisfying convergence rate, similar to that of
the SU(2) sector up to Oðp3Þ without the Δð1232Þ being
taken into account. On the other hand, since in the one
baryon sector, chiral orders increase by a unit of 1, it might
well be the case that one will see cancellations among the
contributions of even and odd adjacent orders, as one
already noted in the study of decuplet masses.
The predicted phase shifts and scattering lengths for

other channels listed in Table II for the case of Oðp3Þ�
should be taken with caution since the Oðp3Þ LECs are not
fully determined. Thus additional data, such as the cross
sections in the K̄N channel, ought to be taken into account.
As the interaction in this channel is by nature nonpertur-
bative, tiled to the existence of a shallow bound state of
K̄N, the Λð1405Þ, we leave such a study to a future work.
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APPENDIX A: TREE LEVEL CONTACT TERMS

In this subsection,we list the contributions of the tree-level
contact terms. To simplify the expressions, we first define

νπ ¼ ð−sþmN
2 þmπ

2Þ2 þ ðmN
2 þmπ

2 − uÞ2;
νK ¼ ð−sþmN

2 þmK
2Þ2 þ ðmN

2 þmK
2 − uÞ2: ðA1Þ

The contributions in the respective channels are

(i) πNI¼3=2

BI¼3=2
πN ¼ −

1

2f2
þ 2ðs − uÞðb5 þ b6 þ b7 þ b8Þ

f2
−
8mNðc1 þ c2Þ

f2

þ 4ðd2νπ þ d4ðt − 2mπ
2Þ − 2d49mπ

2Þ
f2

−
8mNðs − uÞðd10 þ d8Þ

f2
; ðA2Þ

AI¼3=2
πN ¼2mπ

2ð−2b0þb1þb2þb3þ2b4−bD−bFÞ−tðb1þb2þb3þ2b4Þ
f2

þ2ðs−uÞðc1þc2Þ
f2

þ2ðs−uÞ2ðd10þd8Þ
f2

:

ðA3Þ
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(ii) πNI¼1=2

BI¼1=2
πN ¼ 1

f2
þ 2ðs − uÞðb5 þ b6 þ b7 þ b8Þ

f2
þ 16mNðc1 þ c2Þ

f2

þ 8ð−d2νπ þ d4ð2mπ
2 − tÞ þ 2d49mπ

2Þ
f2

−
8mNðs − uÞðd10 þ d8Þ

f2
; ðA4Þ

AI¼1=2
πN ¼ 2mπ

2ð−2b0 þ b1 þ b2 þ b3 þ 2b4 − bD − bFÞ − tðb1 þ b2 þ b3 þ 2b4Þ
f2

−
4ðs − uÞðc1 þ c2Þ

f2
þ 2ðs − uÞ2ðd10 þ d8Þ

f2
: ðA5Þ

(iii) KNI¼1

BI¼1
KN ¼ −

1

f2
þ 2ð2b5 þ 2b7 þ b8Þðs − uÞ

f2
−
4mNð4c2 þ c3Þ

f2
−
8mNðs − uÞðd10 þ d7 þ d8Þ

f2

þ 4ðνKð−d1 þ d2 þ d3Þ þ 2mK
2ð−d4 þ d48 − d49 þ d5 þ d50 − d6Þ þ tðd4 − d5 þ d6ÞÞ

f2
; ðA6Þ

AI¼1
KN ¼ 4mK

2ð−b0 þ b1 þ b2 þ b4 − bDÞ − 2tðb1 þ b2 þ b4Þ
f2

þ ðs − uÞð4c2 þ c3Þ
f2

þ 2ðs − uÞ2ðd10 þ d7 þ d8Þ
f2

:

ðA7Þ

(iv) KNI¼0

BI¼0
KN ¼ 2ðb8 − 2b6Þðs − uÞ

f2
þ 4mNð4c1 þ c3Þ

f2
−
8mNðs − uÞðd10 þ d7 − d8Þ

f2

þ 4ð−νKðd1 þ d2 þ d3Þ þ 2mK
2ðd4 þ d48 þ d49 þ d5 − d50 þ d6Þ − tðd4 þ d5 þ d6ÞÞ

f2
; ðA8Þ

AI¼0
KN ¼ 4mK

2ð−b0 − b3 þ b4 þ bFÞ þ 2tðb3 − b4Þ
f2

−
ðs − uÞð4c1 þ c3Þ

f2
þ 2ðs − uÞ2ðd10 þ d7 − d8Þ

f2
: ðA9Þ

APPENDIX B: TREE LEVEL BORN DIAGRAMS

Once simplified with the on-shell condition, the amplitude for the Born diagrams could be rewritten as

BBornðs; Bi; Bf; PÞ ¼ −
sþmPðmf þmiÞ þmfmi

s −mP
2

;

ABornðs; Bi; Bf; PÞ ¼ −
mPð−2sþmf

2 þmi
2Þ þ ðmf þmiÞðmfmi − sÞ

2ðs −mP
2Þ ; ðB1Þ

where s is the invariant mass squared,mi and mf are the masses of the initial and final baryons, Bi, Bf, P are the incoming,
outgoing, propagating baryons respectively. For a crossed Born diagram, one can obtain the amplitude from the
corresponding direct one with the following replacement s → u.
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For the d45, d46, d47 terms, the expressions are slightly different

B2
Bornðs; Bi; Bf; PÞ ¼

mi þmP

s −mP
2
; A2

Bornðs; Bi; Bf; PÞ ¼
−2sþmPðmf −miÞ þmfmi þmi

2

2ðs −mP
2Þ : ðB2Þ

For the A parts of the Born terms, one would need to perform two replacements

BðsÞ ↔ AðsÞ; BðuÞ ↔ −AðuÞ: ðB3Þ

The contributions of the Born diagrams are
(i) πNI¼3=2

Born

BI¼3=2
πN ¼−

Bðu;N;N;NÞðDþFÞ2
2f2

þ4Bðu;N;N;NÞðDþFÞð2d38mK
2−d38mπ

2þ2d40mK
2þd40mπ

2þ2d44mπ
2Þ

f2

−
4mπ

2B2ðu;N;N;NÞðDþFÞðd45þd46Þ
f2

: ðB4Þ

(ii) πNI¼1=2
Born

BI¼1=2
πN ¼ðDþFÞ2ð3Bðs;N;N;NÞþBðu;N;N;NÞÞ

4f2
−
2ðDþFÞð3Bðs;N;N;NÞþBðu;N;N;NÞÞ

f2
ð2d38mK

2−d38mπ
2

þ2d40mK
2þd40mπ

2þ2d44mπ
2Þþ2mπ

2ðDþFÞðd45þd46Þð3B2ðs;N;N;NÞþB2ðu;N;N;NÞÞ
f2

: ðB5Þ

(iii) KNI¼1
Born

BI¼1
KN ¼ −

Bðu;N;N;ΛÞðDþ 3FÞ2 þ 3Bðu;N;N;ΣÞðD − FÞ2
12f2

−
2

3f2
ðmπ

2ðBðu;N;N;ΛÞðDþ 3FÞð2d38 þ d39 − 2d40 þ d41Þþ3Bðu;N;N;ΣÞðF −DÞðd39 þ d41ÞÞ

−2mK
2ðBðu;N;N;ΛÞðDþ 3FÞð2d38 þ 2d40 − d41 − d43 þ 2d44Þ−3Bðu;N;N;ΣÞðF −DÞðd41 þ d43ÞÞÞ

−
2mK

2ðB2ðu;N;N;ΛÞðDþ 3FÞðd45 þ 3d46Þ − 3B2ðu;N;N;ΣÞðF −DÞðd45 − d46ÞÞ
3f2

: ðB6Þ

(iv) KNI¼0
Born

BI¼0
KN ¼ Bðu;N;N;ΛÞðDþ 3FÞ2 − 9Bðu;N;N;ΣÞðD − FÞ2

12f2

−
2

3f2
ð2mK

2ðBðu;N;N;ΛÞðDþ 3FÞð2d38 þ 2d40 − d41 − d43 þ 2d44Þ

þ 9Bðu;N;N;ΣÞðF −DÞðd41 þ d43ÞÞ
−mπ

2ðBðu;N;N;ΛÞðDþ 3FÞð2d38 þ d39 − 2d40 þ d41Þ − 9Bðu;N;N;ΣÞðF −DÞðd39 þ d41ÞÞÞ

þ 2mK
2ðB2ðu;N;N;ΛÞðDþ 3FÞðd45 þ 3d46Þ þ 9B2ðu;N;N;ΣÞðF −DÞðd45 − d46ÞÞ

3f2
: ðB7Þ
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