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The recent experimental developments require a more precise theoretical study of weak decays of heavy
baryon AY. In this work, we provide an updated and systematic analysis of both the semi-leptonic and
nonleptonic decays of AY into baryons A}, A, p, and n. The diquark approximation is adopted so that the
methods developed in the B meson system can be extended into the baryon system. The baryon-to-baryon
transition form factors are calculated in the framework of a covariant light-front quark model. The form
factors f3, g3 can be extracted and are found to be non-negligible. The semileptonic processes of A —
Af(p)l"p; are calculated and the results are consistent with the experiment. We study the nonleptonic
processes within the QCD factorization approach. The decay amplitudes are calculated at the next-to-
leading order in strong coupling constant a,. We calculate the nonleptonic decays of A) into a baryon and a
s-wave meson (pseudoscalar or vector) including 44 processes in total. The branching ratios and direct CP
asymmetries are predicted. The numerical results are compared to the experimental data and those in the
other theoretical approaches. Our results show validity of the diquark approximation and application of

QCD factorization approach into the heavy baryon system.
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I. INTRODUCTION

The weak decays of heavy baryon Ag provide an
important place to extract the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, explore CP violation
and study different theoretical models of hard interaction.
Recently, a lot of experimental developments were made,
and many processes were observed or seen [1]. For the
exclusive semileptonic processes, the branching fraction of
AJ 1D, mode is the biggest, at the order of 10%. The decay
rate of pu~p, is about 10~*. For the nonleptonic two-body
processes, the charmful decays of Afz~(K~, D™, D) are
observed and their branching ratios are at the order of 1073
or 107*. The charmonium mode AJ/y has fraction of order
of 107*. The charmless processes with final states pz~(K~)
are observed to be of order of 107, The pentaquark is
observed in AY — J/wpK~ process. The AY — A¢ is
observed with a final vector meson ¢ and the fraction is
of 107 [2]. The mode Au*tu~ is observed at the order of
1076, The LHC run II [3] and the possible future upgrade of
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LHC will accumulate more data than ever, we expect that
the study of A2 will enter into a precise era.

Theoretical interests on Ag decays were increased
recently, such as light-front quark model [4,5], QCD
factorization (QCDF) approach [6], generalized factoriza-
tion approach (GFA) [7-9], light-cone sum rules [10],
lattice QCD method [11], soft-collinear-effective-theory
(SCET) approach [12], perturbative QCD (pQCD)
approach [13], SU(3) symmetry relations [14], etc. In
the previous works [4-6], we have calculated the weak
decay of Ag with the light-front quark model, diquark
approximation and factorization assumption. For the
charmful processes, the theory predictions within the heavy
quark limit for the four processes of Afz~(K~,D~, Dy)
are well consistent with the data. The consistency
shows effectiveness of the diquark approximation and
factorization assumption. For the charmless processes,
some inconsistencies are found when the data become
precise. The theory predictions of the semi-leptonic decays
of pl~U; modes are smaller than the data. For the charmless
nonleptonic processes, it is known from the B meson
study that the naive factorization is insufficient to
explain the experiment. The strong penguin effects are
important and even dominant in many decay modes. In [5],
only the tree operators are considered. Although the
penguin effects are included in [6], the discussion is
only restricted to one process of pK~. Thus, the exper-
imental improvements require the theory developments to
compete.
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From the theoretical point of view, one difficult thing is
to evaluate the transition form factors between two baryons.
The method we will use is a relativistic quark model in the
light-front form. The basic ingredient is the hadron light-
front wave function which is explicitly Lorentz invariant.
The conventional form, in which the constitute quarks are
on mass shell, has been applied to obtain many meson
decay constants and weak form factors [15-19]. In [4,5],
the conventional light-front quark model is employed into
the A(b) decays. The baryon-to-baryon transition form
factors are derived from a particular plus component of
the corresponding current operator in a specific Lorentz
frame, e.g., the transverse frame with g™ = 0. Among the
six form factors, only four quantities can be calculated in
this way, while the form factors f5 and g5 are not obtained.
For the transitions of Ag to light baryons such as p, A, n,
there is no reasonable argument to guarantee that they are
small. It is necessary to estimate their effects. In [20], a
covariant light-front quark model is constructed to render
the hadron transition matrix elements covariant. This
approach has been applied to many meson processes
[21]. In this study, we will use the covariant approach to
derive all the form factors including f3 and g;. Then, we
give the numerical predictions for the semileptonic decays.

For the nonleptonic processes, the QCD dynamics is
more complicated than the semileptonic one. Theory
treatment relies on different factorization approaches which
developed for the B meson system. In this study, we will
work within a framework of QCD factorization (QCDF)
approach [22-25]. In the heavy quark limit, the decay
amplitudes are expressed by a factorizable form which
separates the perturbative contribution from the nonpertur-
bative part. The naive factorization is its lowest order
approximation. The nonfactorzaible contributions can be
systematically calculated in strong coupling constant «;
order by order in leading power of 1/m,,. Under the diquark
approximation, a baryon is similar to a meson. We might
expect that the QCDF approach can be applied into the
heavy baryon decays. In this study, we extend the QCDF
method to the nonleptonic two-body decays of Ag and give
a systematic study for decays of AY into final states
containing a baryon and a s-wave meson (pseudoscalar
or vector).

The paper is organized as follows: In Sec. II, we give
formulations of the covariant light-front approach, and
derive the six transition form factors (f; and g; with i=1, 2,
3) of Ag — Al (p, A, n) transitions. In Sec. III, the expres-
sions for the semileptonic processes are given. In Sec. 1V,
we discuss the nonleptonic decays in QCD factorization
approach. In Sec. V, we discuss the input phenomenologi-
cal parameters, and then give the numerical results for the
weak transition form factors. In Sec. VI, the numerical
results for the semileptonic processes are given. In Sec. VII,
the numerical results for the nonleptonic are presented. The
theory predictions are compared with the experimental data

and other theory approaches. In the last Sec. VIII, the
discussions and conclusions are given.

II. Ag — H(A/ ,p,A.,n) TRANSITION FORM
FACTORS IN THE COVARIANT
LIGHT-FRONT APPROACH

At first, we discuss the diquark hypothesis. A diquark is a
two-quark correlation [26]. The interaction of two quark can
be attractive if they are antisymmetric in color space. This is
a special characteristic of QCD, unlike the QED case where
the interaction between two like-charged particle is repul-
sive. The diquark is not a fundamental particle, because it
contains color and can only exist in a hadron containing
more than two quarks. The size of the diquark should be
larger than that of a quark and smaller than a hadron. In
phenomenology, the size is usually neglected. Thus the
diquark is considered as a pointlike object.

Since the diquark is composed of two quarks with spin
one-half, the spin of the diquark can be 0 and 1. According to
spin, the diquark system is classified into scalar and vector
diquark. The spin of a scalar diquark is 0, and the two quarks
are antisymmetric in spin space in order to satisfy the Pauli
principle. As a result, the two quarks in the diquark are
antitriplet states in both the color and spin spaces. The scalar
diquark contains smaller mass than a vector one. One can
expect that a hadron with the scalar diquark is lower in mass
than a hadron with the vector diquark.

A baryon is composed of three quarks in the conven-
tional quark model. Within the constituent quark model, it
is a complicated three-body problem. The treatment is
usually difficult. Under the diquark approximation, the
three-quark picture is changed to a quark-diquark picture,
and the three-body problem is turned to a two-body one.
This change will cause a great simplification in technic. For
the low energy hadron reactions, the diquark hypothesis is
tested to be workable [26]. The success of the diquark
hypothesis in phenomenology indicates that the contribu-
tions from two correlated quarks are dominant. For a
hadron with more than three quarks, the diquark approxi-
mation is even inevitable. The concept of diquark has been
applied to many hadron phenomenology, e.g., the new
exotic [27,28].

For a light baryon, any two quarks may be correlated.
But for a heavy baryon, such as AY, the case is different. b
quark is heavy and will decay. The system of a diquark with
a heavy quark and a light quark must break first and then
decay, while for the two light quarks, they act as spectator.
They are more likely to be correlated and unchanged during
the weak interaction. Thus, a heavy baryon is considered to
be composed of one heavy quark and a light diquark. For
the ground state A, or A, which is an isosinglet state, the
light diquark is a scalar. As a spectator, the diquark in the
light baryon, such as p, n, A, is also the scalar [29]. Thus,
the baryons considered in this study (AO, AT, A, p, n) are
composed of one quark (b, c, s, u, d) and a light diquark
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FIG. 1. Feynman diagram for the baryon to baryon transition
amplitudes. The “x” denotes the corresponding V — A current
vertex.

[ud]. The diquark is in a 0" scalar state (s = 0, / = 0) and
the orbital angular momentum between the quark and the
diquark is also zero, i.e., L =1 =0.

Under the diquark approximation, a baryon is similar to a
meson. We call this phenomenon as meson-baryon sim-
ilarity. The meson-baryon similarity has been noticed for a
long time. In this study, we will see more examples and
applications.

A. Notations and conventions

At first, we give our notations and conventions in the
covariant light-front quark model. Most of our conventions
are taken from the original work [20]. About the conven-
tional light-front approach used in the previous works [4,5],
we collect their formulations in the Appendix A for
reference. For a covariant four-component momentum
denoted by p, it can be written with the light-front
components as

p=(~.p*p1). pr=p"Ep. (1)
The momentum square is p*> = p*p~ — p3.

The Feynman diagram for the baryon to baryon tran-
sition are given by a one-loop graph shown in Fig. 1. At
each vertex where quarks and diquarks are off-shell, the
four-component momentum is conserved. The momentum
of the baryon is equal to the sum of the momenta of its
constitutes. Thus, the incoming (outgoing) baryon has the
momentum

P =p\" + pa. 2)
where P'") is the initial (final) baryon momentum, and p'l(">
and p, are momenta of the off-shell quark and diquark,
respectively. The associated constituent masses are denoted
by mllw and m,. The momentum transferis g = P’ — P”.In
order to describe the kinematics of the constituents in a
baryon, it is convenient to introduce two intrinsic variable
(x;, p' ) where x; is the light-front momentum faction of the
ith constituent i =1, 2 and p’| the relative transverse
momentum between the quark and diquark. They are
defined through

pih = xoP, PlaL =x12P) £p'). (3)

with x; 4+ x, = 1. The reason that x;, p, are called by the
intrinsic variable is that they are independent of the total
momentum of the baryon and are invariant under the
external Lorentz boost. Thus, the hadron wave function
W(x;, p,) is explicitly Lorentz invariant. This is one
advantage of the light-front framework.

In the purely longitudinal frame where ¢; = 0, the so-
called Z-diagram contribution occurs and should be taken
into account. But it is difficult to treat such contribution. So,
we do not consider this frame in this study. As in [4,5], we
choose the transverse frame where g* = 0 and ¢*> = —¢3 .
The relation x}, = x) = x, is satisfied in this particular
frame. Some useful quantities are given below:

+ m 2 + m2
M2 = (el—l—e2)2_pl- +Pr 2
X1 X2
//2 n2 //2
+ mj +m3
Mg = (¢f +e2)” = A,
X1 X2
¢ =\/m? +pt+p?,
p/ _ x2M6 _ m% + p/zz
< 2 2X2M6 ’
Pl ="p—xq,. 4)

B. Baryon-to-baryon transition matrix elements

For the baryon transition Hy — Hy (Q, Q' denote the
incoming and outgoing quarks, respectively) depicted in
Fig. 1, the amplitude can be expressed as

N H/H//
A, == [t 5
" l (27[) / pl N/ N//N ( )

where H', H" are the vertex functions of the baryon-quark-
diquark. Their explicit forms will be given below. The s, is

sy = tg, (P", SO+ m)ru(1 =7s)

x (¢ + m’l)]”HQ(P/v S2).- (6)

u

where ug,(P',S?) is the baryon Hy sp1n0r N, = pt-
2+ ie, N” = p* —=m* +ie and N, = p3 —m3 +ie.
ObV1ously, the above equations are covariant.

Now, we turn to the light-front treatment. In order to do
the integration over the p~ component in A, of Eq. (5), we
close the contour in the upper complex p|~ plane and
assuming the vertices H' and H” are analytic. This
corresponds to putting the diquark on its mass shell, i.e.,
p3 = m3. The other momenta can be obtained by momen-
tum conservation, p| = P’ — p, and p| = P” — p,. Note
that this is one difference between the covariant approach
and the conventional one where the momentum conserva-
tion is not satisfied in each vertex. Then, one can do the
following replacement:
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N' _)N/ ﬁ/lz _ml _xl(M/2 M62)’
NY = N = pi2 = ml? = X (M"* = M?),
H >N,
H/l N h//
d*p dx,d?
/ o HH's, = —i / jv’ ]‘3 SR LL s, (7)
1V14V2 X2

As in [20,21], we also find that the factor (M')? —
Mgm) x’l(">x/2(”) cancels out the same expression in the

denominator of Eq. (5).
The explicit forms of &’ and A" are given by

/’l M/2 M/2

fM”

h (M//Z M//Z) xlllxlzl 7 (8)
Ne V2 Mg(p '

My = /M3 — (m) —m,)? and My =
(mf —my)?

where

Nese

. The ¢’ and ¢" are light-front wave
|

A, = (Hy(P".S".S!

= 1y (P11 () +

= i, (P50 1 () + s

where uy,, and u H, are Dirac spinors of the initial and final
baryons H 0- H, respectively. There are six form factors in
total. For the heavy-to-heavy A0 — A7 transitions, there is
a well-known symmetry: the heavy quark symmetry in the
infinite quark mass limit. The flavor and spin symmetries
provide model-independent relations for form factors:

J1 =91, fo=0p=r3=9=0. (12)

Thus, f; and g; are dominant and other form factors are
higher powers in 1/m,. For the heavy-to-light transitions
A) — p(A), the above relations are still valid in the large
energy limit for the large recoil region [30].

After the replacements in the covariant approach, the
amplitude A, in the transition Hy, — Hy given in the
above subsection is expressed by

dx2d2pi /
n= “’16;: 2N’N”h

(1 =y5)(#) + my)]up, (P, S7). (13)

A

Wiy, (P SOI(H, + m))y,

functions for the incoming and outgoing baryons, respec-
tively. We use the Gaussian-type wave function as

z\¥* [op! P2+ pt
¢ =q¢(xp")) = 4@?) 8x; exp (‘ZZT :

z\3/4 ap// //2 + p//z
(p” :(p”('x27 p,i) _4<ﬂ_2> 8x; exp <_W ’
9)
with
ap eje ap? ejes
"= (A = /A (10)
8}(2 XleMO 8}C2 XIX2M0

The baryon parameter £ is the essential phenomenological
input of the light-front quark model. In principle, it is at the
order of the confinement scale.

C. Formulations for the baryon-to-baryon transition
form factors

The form factors for the weak transition Hy, — H are
defined in the standard way as

0'7,(1- 75)Q|HQ(P/vSI’SI)>

Fa@?) +

”%Www¢ﬂ$, (1)

where N;r is a flavor-spin factor which will be given for
different processes later.
In principle, the six form factors can be extracted

out by comparing Eqgs. (11) and (13). But, the initial and
final baryon spinors produce some difficulties. Our treat-
ment is to use the familiar spin sum relation of the Dirac
spinors > g ity (P, S%)uy, (P, S.) = P'+M'. To pro-
ceed, we multiply > g srity,(P'.So)upy, (P, S7)P",
S sty (P S)up, (P S, and Y ity (P'. 1)
rug,, (P",S”) onto the right side of Egs. (11) and (13).
According to the equality of the two equations, we
obtain three independent equations. From these
equations, the three physical quantities f;, f,, and f3
can be solved. Because there are more terms that
occurred than the meson case, our method is different
from the treatment in [21]. After a lengthy calculation and
with help of the computer program, we obtain the analytic
formulas for the form factors f, f,, and f3 as
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f ( 2) =N /dedzp/l (pHQ(XIZ’ pl)(pHQ/ (xlzl9 P/i)
1 — VIF 3
167 \/[(m) +x1Mp)* + p'][(m] + x{MG)* + p'7]
1
(M/ +M”)2 _
+ A @M+ M")? = g?) + 247 (M + M")? - ¢]
A(ZZ) R(M + M")* = aM'M" ¢ — ¢*]

q2 {A(ll) [(M// _I_ M/)2 _ qZ] (2m/1M// + 2m/1/M/ _ qZ)

+ 2Ag2) (M/ _ M//)(M/ + M//)3 —|—AE‘2)(]4
[+ MY = ) = [y (M — M)+ mZ)(M + M),

o) = Nop /dxzdzp;lM Pny (X3 P! )pn, (x5, P'L)
167> \/[(m} + xiM5)* + pE[(m] + x{MG)* + p'?]
1
(M + M//)z _
—I—A(l)( o ”)[(M/—i-M”)z _qZ] —|—4A(12)[(M/ —}-M”)]
—I—A( ( M//)[4M/2 —|-4M/M// +4M//2 _ 36]2]

p (AV[(M" + M) = @)(m), + )] —2M)

+ 2457 (M’ = MY)2(M' + M) = ¢?) + A P (M + M)
—m[(M' +M")? = ) = [x;(M"? = M§) + m)(M' + M")},

f3(@?) =N /dx2d2le (PHQ(XQ»P'L)(PHQ,(XIZ',]?'D
} T)ter /[l + X M)+ P[] + M) + P
1
(M/ + M//)Z _
+ A (4l = 2M + M) (M + M) — @) — AAT (M — M)
—Agz)(M' _M//)(2M12 + 2M"? — q2)

2 A0 MY = o = —2M")

F2A0 (M + M"Y (AM'M! = ) + AY (M = M")2(M' + M")? =3¢
—m (M 4+ M")? = @) + [xi (M™ = M§) + mP|(M' = M")}
()

where A} are functions of x,, P2, P’ - q., and ¢*. Their explicit expressions are [20]
! .
Agl) :%, A(Zl) :Agl) Py 2QJ_
q
2 (P -q.)? 2 1
AP = —pp - AP =@l
q
o (1) 4 (1) (2) (1)y2 (12)
A3 =A7Ay Ay =(4) —7-

(14)

(15)

(16)

(17)

The other three form factors g;, ¢,, and g3 can be obtained in a similar way. A ys matrix is needed to insert
into the spinors. We multiply > g gy, (P',S0)r up, (P"SUPY, Y g sritn, (P S Oy up, (P",87)q", and
> ssvity, (P, S )y”ysuH (P",S”) onto the rlght side of Egs. (1 1) and (13). Then by solvmg another three equations,

the form factors 1> G2, and g5 are obtained as
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Pu, (X5, P )on, (5. Pl

dx,d’p’
91(q2) = NIF/ 2 B

1
(M/ _ M/I)Z

167 /[l + (M) + p L]0 + XTME)? + )
(
1

— 2 (AT = M0 = (2 M+ 2 M - )

- A @M = M = ] = 247 (M= M) + )

_Aé2) [Z(M/ _ M//)4 + 4M/M//q2 _ q4}

_ ZAgz)(M/ + M) (M — M//)3 —Af)q“
+mim{[(M' = M")* = @] + [x,(M"? = M) + m{](M' = M")*}, (18)

dx,d*p'\' M

P, (X P )on, (X5 P)

9(q*) = NIF/

1673
1
(M/ _ M/l)2

IO+ M+ p [, + M) + )

— {AV[(M = M"Y = @) () = ml] —2M")

+ AL (), + ) (M) = M")? = 2] + 4AT (M = M)

+ Agz)(M/ _ M//)[4M/2 —AM'M" + 4M"? — 3q2]

+ 2Agz>(M/ —l—M//)[Z(M/ _M//)Z _ qZ] +A£2)q2(M/ - M")
—mi[(M' = M")* = ¢*] = [x,(M"? = M) + mP|(M' = M")}, (19)

Pu, (X5 0" )en, (X5, Pl

dx,d’p', M
g3(q2) = NIF/ : 3L
167

1
(Ml _ M//)Z

VI(my +X,M5)7 + p'L][(m] + xMG)? + p'7]

2 (I = M) — P o - - 207)

+ AL = mi{ = 2M = 2M")[(M = M")? = g?] = 4AT [(M' + M")]

—Agz)(M’ +M”)(2M’2 +oM"? — q2)
_ ZAgz)(M/ — M")(AM'M" + qZ) —|—A4(‘2)(M/ + MM - M//)z _ 3q2]
—my[(M' = M")* = @] + [x| (M” = M§) + mP|(M" + M")}. (20)

One can find that the formulations for f; and g; are quite
similar except for some sign difference.

From [31], the spin-flavor factors N;r for different
transitions are given by

1 1

NAgAj:L NAgp:ﬁ’ NAEAZ%'
These factors are necessary to obtain the correct theory
predictions. Without them, the A) — p process will be
increased by a factor of 2 and the Ag — A process will be
increased by a factor of 3. In [31], these factors are derived
in the three-quark picture. In the quark-diquark picture, the
spin-flavor factors remain the same and it is easier to obtain
them. The heavy baryon flavor and spin wave functions are

(21)

AD) = Dludlys.  |AL) =cludlrs,  (22)

|
where [ud] is the scalar diquark with [ud] = % and y, is
the spin function which is antisymmetric for the diquark.

For the light baryons p and A,
1
=— (uludlys + ,
) \/5( [udlya + Psxs)

A) = %% Qludlsy + ldsluza + [suldga + szs)-

(23)
The ¢p5 and yg are mixed symmetric flavor and spin wave
functions. Their explicit forms are irrelevant because the
diquark in the final baryon comes from the scalar diquark in
the initial heavy baryon which is flavor and spin antisym-
metric. The factor % comes from the equal components of

the mixed symmetric and mixed antisymmetric flavor wave
functions of the baryon SU(3) octets. By comparing the
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coefficients of the diquark [ud] for each baryon, we obtain
the same spin-flavor factors as Eq. (21). It is noted that the
authors in [32] use a totally antisymmetric flavor wave
function for A which is not correct for a ground state
baryon. But their results are correct.

II1. SEMILEPTONIC DECAYS OF Ag - A (p)l 7y

In this section, we provide formulations for the rates and
some asymmetries of the semileptonic processes. In order
to study the semileptonic decays, another parametrization
of the transition form factors adopted in [33] is useful. It is
given by

(Ho (P", 8", SI)|V,[Ho(P', 5, 57))
/!

] P! P
= 1, (P S1) [ ) 4 3 Fala?) + 51

Hy Hy

F3(q2)}
X MHQ (P,, S,Z)

(Ho(P". 8" S7)|A,|Ho(P', S, 57))

Pl/

G 2 H
2(q )+MHQ/

i P,
=, (P 52) 1,61 () + 37
Q

G3(¢12)}

X ¥t (P, 7). (24)

The two parametrization forms of Egs. (11) and (24) are
related by

FI) = 1) = (M, + My ) 220,
Fy(q®) = f3(¢°) + f2(4?),
My,
F3(¢%) = - MHQ [f3(q?) = f2(q?)],
_ 9:(4%)
Gi(q*) = 91(¢*) + (My, = Mpy,,) ;4119 ,

Go(4*) = 93(4*) + 92(4?).

My,

Gs3(q*) = - i, l93(4*) — 92(4?)].

(25)

Following [33,34], it is necessary to define the helicity
amplitudes which are expressed in terms of the weak form
factors. The different helicity amplitudes are defined by

|
HY oo = Ja \/2MHQMHQ, (@ = 1)[(Mp, + My, )Fi(q*) + My, (0 + 1)F2(q*)

+ My, (0 + 1)F;5(4%)].

1
HY ho=—3 \/2MHQMHQ,(CU + D[(Mpy, _MHQ,)FI(‘IZ) — My, (0— 1)Fy(q%)

q
- MHQ(CU —1)F3(q%)],

HY o = _2\/MHQMHQ/ (@ = DF(4%).

HY ) = —2\/MHQMHQ/ (0 +1)G(q?).

1
= s \/2Mi M (@ + 1) (M, = My, )Fi(6%) + (M, = My

+ My, 0 - MHQ/)F3(‘]2>]7
1

HA

- (MHQUU - MHQ/)G3<C]2)]’

where

2 2 _ 2
w = MHQ * M o' q
2My My,

(27)

o = \/?\/2MHQMHQ/ (@ =DMy, +My,)G\(q%) = (M, — My

®)F>(q%)

o

®)G>(q*)

o

(26)

|
The helicity amplitudes HX,:?W where A/ and Ay are the
helicities of the final baryon and the virtual W-boson, are
the amplitudes for vector (V') and axial (A) vector currents,
respectively. Because of the V — A structure of the charged
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current weak interaction, the total helicity amplitudes are
obtained as

—_ gV A
Hy,, = H/l’./IW — Hll’,/lw' (28)

The helicity amplitudes for the negative values of the
helicities satisfy the relations
HA

H‘—/z’,_g =+H) e Sy = HA . (29)
For the semileptonic process of Hy, — Hy W~ (= ["1)),

the twofold angular distribution can be derived to be

dT(HQ — HQ/l IJZ)
dg?dcos @

| |2 (q2 mlz)
( )3 00 48M3

where
23 2 2 2
w(0,q ):§ (1+cos“0)H ;q* —2cosOH p(g~)
m2
+25in’0H  (¢%) +— [2Hs(q%) +sin*0H ;(¢%)
q
+2c0529HL(q2)—4cosHHSL(q2)]}, (31)

and
d= My, My, q)
— 4 4
=My, +M g T4
- 2(M}, MY+ My,q* + My q%). (32)

The Vg is the CKM matrix elements, Gy the Fermi
constant. m; is the lepton mass (I = e, u, 7), and @ is the
angle between the lepton / and W momenta.

In Eq. (31), there are several amplitudes H; which are
given in terms of the helicity amplitudes. The relevant
parity conserving helicity amplitudes are given by

Hy(q*) = |Hyi o>+ [Hoy oo

H(q%) = |H 120> + [Hoy 20l

Hg(q*) = [Hoypo,* + [H_y 0,
Hg(q*) =Re(H 1poH' p, +Ho100H. ). (33)

and the parity violating helicity amplitudes are

Hp(q*) = [H 1o |* = [Hoy oo %,
Hip(q?) = |H1/20/* = [H-1 0]
Hsp(q?) = |H 1o, = |H_1 0% (34)

By integrating over cosé of Eq. (30), we obtain the
transverse momentum ¢>-dependent differential decay as

dr(HQ e HQ!II/Z) ( 2 mz)
e (2 )3 Vo Q|248A/1731Ht0t(q2)7
(35)
where
m? 3m?
Hi(q%) = [Hy(q?) + HL(4%)] (1 + 2—12> + 5 Hy(q?).
q 2q
(36)

The forward-backward asymmetry is an important
observable quantity. From Eq. (30), the g¢>-dependent
forward-backward asymmetry of the charged lepton is
given by

—Fz (forward) — e (backward)

AFB(q2> = dF
dqz
 3HR(@) + 23 He(4) -
4 Htot(qz) .

The integrated forward-backward asymmetry is obtained as

My, =My )

(38)
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Similarly, the g*>-dependent longitudinal polarization of the final baryon H o 18

The integrated longitudinal polarization of the final baryon Hy is

[Hp(q2) + Hyp(@))(1 + 22) + 3 32k Hop(?)
Fuld) = Hol ) ' )
ST G () + (@)1 + 25 + 32 Hgp ()
, . (40)

PL:

[
mj

IV. NONLEPTONIC DECAYS OF A} - H+M IN
QCD FACTORIZATION APPROACH

In this section, we study the exclusive nonleptonic
decays A) — H + M where H represents baryon (A, p,
n, A) and M represents a meson. For the meson M, we
restrict our discussions for the ground state, i.e., pseudo-
scalar (P) or vector (V) meson in this study.

A. Classification

At first, we discuss the classification of the A) decays. In
the B meson case, it is usually classified by the charmful
and charmless processes according to the charm quark
component of the final mesons. This classification can be
done for the heavy baryon, but it may not be most
convenient. The heavy baryon Ag decays have one prop-
erty: the spectator can only enter into the baryon. This
argument is valid under the diquark assumption. Without
the diquark approximation, one spectator quark can enter
into the final meson. While for the meson case, the
spectator quark is possible to enter into either of the two
final mesons. This difference makes us to choose a more
convenient classification method. The AY decays are
classified by the final baryon. According to this classifi-
cation rule, the Ag decays are classified into four classes:
(1) A) = AE+M, 2) Ay »p+M, 3 A)—> A+ M,
@) Ag — n+ M. For each class, the decay modes are
collected as following. We only write the final state to
represent each decay mode.

(1) A) - Af + M (8 modes)

Afr™,

AFD,

Alp~,
AYD*,

AFK-,
AIDy,

AFK,
ADE.

Since the initial and final baryons are A and A/, the
final meson M must be negative charged because of
the charge conservation. The negative charged
quark-antiquark pair combined by u, d, c, s quarks
can be: id, us, cd, c¢s. Correspondingly, the ground

054020-9
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state mesons are n~, p-, K-, K*~, D™, D*,
Dy, Di~.

A) = p + M (8 modes)

pPK~, PK*,

pD;§™.

pp.
pD™",

Pz,
pD~, pDy,
Similar discussions follow from the above argu-
ments, and the final meson M can be: 77, p~, K,
K, D™, D", Dy, D;".
A) > A+ M (14 modes)

AT®,  Ap°,  AK®,  AK®,
An, Ay, Aw, Ag,
AD°,  AD*,  AD°, AD™,
Ane, Ny

The final meson M must be neutral charged accord-
ing to the charge conservation. Among all the neutral
charged mesons, the two states of K*)0 are not
allowed. It is because the states AK*)? contain two s
quarks. They cannot be produced by the tree or
penguin operators of the weak effective interactions
to be given below. The neutral charged quark-
antiquark pair combined by u, d, ¢, s quarks can
be: iuu, dd, 5s, 5d, ds, iic, ¢u, ¢c. Correspondingly,
except K()0, the neutral ground state mesons in-
clude: 7%, p°, K°, K*°, n, /', w, ¢, D°, D*°, D°, D*0,
Nes /.

A) = n+ M (14 modes)

nav, np°, nko, nk*°,
nn, niy, nw, ne,
nDO, nD*,  nDO, nD*0,
e, nl/y.

The final meson M must be neutral charged due to
the charge conservation. Among all the neutral
charged mesons, K (*)0 are not allowed. It is because
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nK®° contains one 5 quark which cannot be
produced by the tree or penguin operators.
There are 44 decay modes in total. We will discuss these
modes in the part of numerical results in detail.

B. The effective Hamiltonian and
QCD factorization approach

There are three separate energy scales in Ag weak decays:
My, > my, > Agcp. One convenient method is the effec-
tive field theory. By integrating out the high energy degree
of freedom and performing the operator product expansion,
the interactions are expressed as a series of local effective
operators. The information of high energy is encoded in the
Wilson coefficients. In this study, the effective Hamiltonian
H . for b — s transitions (b — d transitions are done by the
replacement of s — d) can be written by [35]:

G 10
Heff = 7% Z l)q <C|0[11 + CQOZ + Z CiOi

q=u.c i=3

+ C7y07y + C8y089> ) (41)
where v, =V, V. The C; are Wilson coefficients evalu-
ated at the renormalization scale u. The current-current
operators Of and O are

3_ _
0, = EsayﬂLba : E eq"]}f}/ﬂRq;’
q/

3 _
Oy = EsayﬂLba ’ E eq"I;}}/qu;j’
q/

The last two operators O, and Og, are

—e

07, = me:w,w(l +7s5)F*D,

—9s S~V v
0892me50” RGH. (45)

where G* denotes the gluon field strength tensor. The O,
and Oy, are the electromagnetic and chromomagnetic
dipole operators, respectively.

In phenomenology, it is more convenient to use the
coefficients a; which are obtained from the Wilson coef-
ficients C;. Without QCD corrections, a; are given by

1

a; = Ci + N_CCH_I (l = Odd),
1
a; = ﬁ Ci—l + Ci (l = eVen). (46)

c

Of =5, Lu, - ugy,Lbyg, 05 = 5.y"Lug - ugy,Lb,.

(42)

where a and f are the SU(3) color indices, and L and R are
the left- and right-handed projection operators with L =
1 —ys and R = 1 + y5, respectively.

The usual tree-level W-exchange contribution in the
effective theory corresponds to O and O, emerges due
to the QCD corrections. The operators O; — Og are

03 =5.7"Lbo- Y _@hruldy, Os=5ar"Lbs-> @y, Ld

q q
05 = gay”Lba : Zq/ﬂYqu/ﬁ’ 06 = anﬂLb/} : zq‘/ﬂnyq/a
q q

(43)

They arise from the QCD penguin diagrams which con-
tribute in order « through the initial values of the Wilson
coefficients at u ~ My, and operator mixing due to the QCD
corrections. The sum over ¢’ runs over the quark fields that
are active at the scale p = O(my), ie., ¢ = u,d, s, c. The
operators O7, ..., Oy which arise from the electroweak-
penguin diagrams are given by

3_ _
Oy = 53ar"Lby - > ey qpruRd,
ql

3_ _
Oy = zsayﬂLbﬂ : E eq"l;s}’qu;- (44)
q/

where i = 1, ..., 10. With QCD corrections, all the dynami-
cal information is encoded in coefficients a;.

C. The QCD factorization approach

For the nonleptonic decays, there are at least three
hadrons in one system. How to calculate the hadronic
matrix elements of the local operators given in the effective
Hamilatonian is a notorious difficult problem. The factori-
zation hypothesis is proposed to simplify the hadronic
matrix elements. The original idea is called by the naive
factorization [36]. Take the B — MM, decay as an
example. The recoiled M, denotes the meson which picks
up the light spectator quark. Another meson M, is called
the emitted meson which is created from one current. The
assumption of factorization is that the emitted M, decouple
from the remained BM, system. This assumption corre-
sponds to vacuum insertion approximation. Under this
approximation, the three meson matrix element is
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simplified into product of a decay constant and form factor.
The naive factorization is tested to work well for the color-
allowed tree dominated processes. But it fails to explain the
color-suppressed and penguin dominated processes. In
these processes, the nonfactorizable QCD corrections
between M, and BM; are important. The generalized
factorization approach solves the renormalization scale
and scheme dependence problem in the naive factorization
[37]. But it is not a systematic method because it introduces

|

(M M,|0,|B) =

Z FBMI

a phenomenological color number to account for the
nonfactorizable contributions.

The QCD factorization approach is a rigourous theo-
retical method within which the nonfactorizable QCD
corrections can be systematically calculated [22-25]. It
states that in the heavy quark limit, the transition matrix
element of an operator O; in the weak decays B — MM,
can be factorized into a convolution of hard scattering
kernel and meson distribution amplitude as

/ dxT!(x) @y, () + (M, <> My)

+ A dEdxdyT" (&, x. y)®(E) By, (), (x). (47)

The term in the second line is the hard spectator scattering
contribution. When M, is heavy and M, is light, only the
first term in the first line has contribution. The hard
scattering kernels 77 and T!! can be perturbatively calcu-
lated order by order in a,. The ®),(x) is the meson light-
cone distribution amplitude which is universal and process
independent. In QCDF, the factorization means the sepa-
ration of perturbative contribution from the nonperturbative
part. It is proved that the factorization is valid for final states
containing two light mesons or the case with one heavy and
one light meson.

Under the diquark approximation, a baryon is similar to
the meson. This similarity makes the application of QCDF
into the heavy baryon decays possible. But one need to be
cautious about the hard spectator scattering. When a hard
gluon interacts with a diquark, the loosely bounded diquark
may be broken and the diquark approximation is invalid.
This case occurs for a light final baryon, such as p where
the two quarks in the diquark are both energetic. In this
case, one has to return to the three-quark picture and use the
perturbative method, e.g., [13]. However, the interactions
with two hard gluon exchanges are suppressed by a2.
Another possibility is that the diquark remains unbroken
and it interacts with the hard gluons like a point particle. As
we know, the diquark is not a fundamental particle. One
needs to introduce a form factor to compensate for its
structure. The form factor cannot be calculated from first
principles. A decay constant for a baryon is also required to
be introduced. Due to these technical difficulties and the
theory uncertainties, we will not consider the hard spectator
scattering in this study.

Without the hard spectator interaction contribution, QCD
factorization can be extended to the Ag — H + M decays
when the emitted meson M is light. In the rest frame of AY,
the light meson is energetic. It is a compact object and has
small transverse size. The soft gluons decouple from the
light meson M. This is statement of color transparency [38].

|
The A — H transitions are soft dominated and the form
factors are evaluated in the covariant light-front quark
model. The QCD interactions between M and A2H are
mediated by the hard gluon exchange and perturbatively
calculable. Thus, we have a factorized form for the decay
A) > H+ M as

(H10,9) = S F ) [ axtlon(o.  (48)

where F ;\bH denote the A — H form factors and @, (x) is
the light-cone distribution amplitude of the meson M.

At the a, order, the QCD corrections can be shown in
Fig. 2. The four diagrams (the three in the first line and the
first one in the second line) are vertex corrections. The
second diagram in the second line is penguin diagram and
the third diagram is the chromomagnetic dipole diagram.
Their formulations are presented in Appendix B. All the
QCD corrections are included in the coefficients a; which
are obtained from the Wilson coefficients C; given in the
effective Hamiltonian. The coefficients a; is calculated up
to a, order, including the one-loop vertex corrections and
penguin contributions. The terms of a4 and ag contains the
chirally enhanced twist-3 contributions since they are
numerically important. For the other coefficients a;, only
the leading twist contributions are considered and the

[N
3K by bl

FIG. 2. Feynman diagrams in the QCD factorization approach.
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TABLE I. Numerical values of the coefficients a;.

a; H=my/2 H=myp u="2m,

a; 1.096 + 0.037i 1.067 4- 0.020i 1.046 4-0.011:

a, 0.200 — 0.114i 0.200 — 0.084 0.200 — 0.067i

as (9.293 + 3.665i) x 1073 (7.007 + 2.041i) x 1073 (5.044 + 1.187i) x 1073
al (=2.157 = 2.059i) x 1072 (=2.290 — 1.623i) x 1072 (=2.290 — 1.350i) x 1072
ag (—2.949 — 0.924i) x 1072 (—2.875 —0.785i) x 1072 (=2.755 — 0.684i) x 1072
as (—-6.681 —5.112i) x 1073 (=5.106 — 2.570i) x 1073 (—3.494 — 1.374i) x 1073
ag (—4.611 — 1.891i) x 1072 (=3.561 — 1.535i) x 1072 (=2.974 — 1.301i) x 1072
ag (—5.069 — 0.685i) x 1072 (=3.899 — 0.644i) x 1072 (—3.243 — 0.593i) x 1072
a; (1.58 +3.17i) x 1073 (7.43 + 1.60i) x 1073 1.91 x 107*

ag 3.98 x 107# (2.62 — 0.56i) x 10~ (1.59 — 0.96i) x 10~*
ag 3.98 x 107* (2.52 — 0.30i) x 10~ (1.40 — 0.50i) x 10~
agy (=9.21 — 0.29i) x 1073 (—8.93 - 0.16i) x 1073 (—8.63 +0.09i) x 1073
af, (1.06 + 0.95i) x 1073 (5.99 + 6.48i) x 107* (1.62 +4.57i) x 107
af, (1.06 + 0.95i) x 1073 (5.82 + 6.73i) x 107 (1.32 +4.50i) x 107*

asymptotic form of the twist-2 meson distribution ampli-
tude is adopted. About the coefficient a,, its value is small
considering the vertex corrections and penguin contribu-
tions. It is insufficient to explain the experimental data for
the color suppressed processes. The hard spectator scatter-
ing contribution is important for the coefficient a,. After
taking the hard spectator scattering contribution into
account, the real part of a, is 0.2 and nearly independent
of the renormalization scale u [24]. We use this value to
partly compensate the neglected hard spectator scattering
contributions. The numerical results for the coefficients a;
are given in Table L.

When the meson in A) — H + M decays is heavy, such
as D or D*, the color transparency argument is not valid.
The QCD factorization is considered to be inapplicable for
this type processes. According to this criteria, about half of
the 44 processes cannot be analyzed. In order to study these
processes, we prefer to adopt a more phenomenological
point of view at the cost of losing some theoretical
rigorousness. Assuming m. << m; so that D and D*
mesons are considered to be light. Under this assumption,
the QCDF approach can be applied to all the 44 processes
listed in the subsection of Classification. From the previous
study [4], the naive factorization works very well for the
color-allowed processes with two heavy final states. One
needs to worry about the color-suppressed processes. We
make a crude estimate that the uncertainties caused by the
approximation is estimated to be order of m,/m,;, about
30% at the amplitude level. In [23], the authors calculated
a, in B — 7D process. By choosing a very asymmetric
distribution amplitude for the D meson, they obtain
a, ~ 0.22¢~!" which is not far from the value of a, given
in Table I.

About the processes containing the final state of char-
monium 7, or J/y, QCD factorization is still applicable
due to the small transverse size of the charmonium in the
heavy quark limit [39]. A combined coefficient a, extracted

from the experiment data of B — J/yK is |G, ey, = 0.26 18
close to the value of a, given in Table I.

D. The decay rate and direct CP asymmetry

Under the factorization assumption, the transition ampli-
tude of Ag — HM can be written generally by

M(A) - HP) = i1y (A JFB}’S)“Ag»
M(A) = HV) = age*[Ay,ys + Ay (PH) s

+ By, + Ba(pu)Jup., (49)
with
M2
A= ’1|:(MA° — My)f1(M?) + Q2M},
b ]MA2
M2
B = ’1|:(MA° + Mpy)g (M?) — ¢ g )]
b MA2
MAO _MH
Ay =-M [Ql(Mz) + g (M?) — }
MA(;
2
A, = —Z/IMM,
MAO
b
MAO +MH
BlziM{fl(W)—fz(Mz) m ]
A
MZ
MA()

b

where M represents the meson mass and ¢*> = M>. The
function 4 is an essential quantity in the decay amplitude.
Note that the function A given here is different from the
Wolfenstein parameter A in the CKM elements. In order to
avoid confusion, we change the Wolfenstein parameter 4 to
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Aw- Except the baryon-to-baryon form factors, all the other
quantities, such as the meson decay constant, Fermi
constant, CKM matrix elements, Wilson coefficients, the
nonfactorizable corrections are contained in A. The explicit
forms of A for different processes are collected in the
Appendix C.

The decay rates of A) - HP and the up-down asym-
metries are

(M o+ M )2—M2 (M o—M ) —M?
:& Ab 2H |A|2+ Ab 2H |B|2 ,
871' M/\g MAZ
2KRe(A*B)
=, 51
AR+l oy

where p.. is the momentum of the final baryon H in the rest

frame of A} and x = ;25 For Aj) — HV decays, the

decay rates and up-down asymmetries are

F:pc(EH +MH>
87TMA?

4M*Re(S*P,) +2E*Re(S+D)* P,

E?
[20ISP+1P2*) +5 5 (IS +DP + [Py )],

a= , 52
2E(SP+ PP+ B (S DE ) )
where E is the energy of the vector meson, and
S=-A,
My +M
PIZ—& Ah HB]+BZ N
E\Ey+My
_ D
2T Ey+My "
2
Pe
=—— (A —A)). 53
E(EH+MH)( 1 2) ( )

The direct CP asymmetry of decay Ag — HM is
defined by

A B(AY - HM) — B(AY — HM)
LT BN - HM) + B(AY — HM)

(54)

At the quark level, the CP violation is represented by b
quark decay rate minus the b anti-quark which follows the
standard convention. In order to produce CP violation, it
requires both the weak and strong phase differences. Only
the tree diagram contribution cannot satisfy the condition.
Usually, the direct CP asymmetry arises from the inter-
ference of tree and penguin contributions. It is also possible
for the processes which contain pure penguin contributions.
This is due to the interference between the virtual # and ¢
quark exchanges in the penguin loop diagrams.

The weak phases are contained in the CKM matrix
elements. The strong phases come from the diagrams where
the virtual quarks or gluons become on-shell. In QCDF

approach, it has two origins: (1) In the penguin contribu-
tions, the quark-antiquark loop produces an imaginary part.
This is usually called the BSS mechanism [40]. (2) In the
vertex corrections, the hard gluon exchange between the
final two hadrons can also produces an imaginary part.
These two origins of strong phase are perturbative.

E. Chirally enhanced contributions

When the final meson is a pseudoscalar, the penguin
operators from Os to Og with (V + A) current will give
nonzero contributions. We take the process of Ag — pr~ as
an example to illustrate. Considering the operator Os, the
matrix element is

(pr=|(db)y_a(@tu)y  AAD)
= (=2)(pr~|do(1 + 75)ugits(1 = r5)ba| A})

= L R @)y _a0)(pl(EB) g, AIAD).

V- (55)

where

2m2
R,=— 7
my,(my +m,)

(56)
In the above equation, we have used the Fierz trans-
formation, factorization, and the equations of motion.
From the power counting, the operator Os contribution
belongs to power correction in 1/m;. However, the small
masses of the u, d current quarks make the factor R,
numerically large, and R, is nearly about 1 for the realistic
b quark mass. So, this term is usually called the “chirally
enhanced” contribution. It is important in the penguin
dominated processes. We include this term in the
calculations.

The occurrence of (V + A) current in the matrix element
of Eq. (§5) causes one complication which is special for the
baryon decay. For the meson case, only the vector current
contribute to B — P transition form factor and only the
axial-vector current contribute to B — V transition (the
vector current part vanishes when couples to the pseudo-
scalar momentum). The (V + A) current can be changed to
(V—A) current and relative minus sign is required for
B — PP and B — VP. In particular, for B - 772~ and
B = pTz~, they have the same quark component. Their
decay amplitudes are

M(B® - ntn)

.G . .
= —l%fﬂFg (m;zz)(m% - mizr)[vubvudal

7
+ Vi Viglay + afy) + Ve Viy(ag + afy)

+ Re(VipVialag + ag) + Ve Viylag + ag))l,  (57)

and
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M(B® - pTrn7)

= V2G oAy (mR)my (e - po) Vi Vgt
+ Vi Vialag + aly) + Ve Viy(ag + afp)
—Ri(VipVialag + ag) + Ve Vig(ag + ag))l.  (58)

One can see that the a4 and ag contributions in B — z+7z~
and B® — p* 7~ decays are opposite in sign. Neglecting the
small difference in the Wilson coefficients a} and af and
using the unitarity of the CKM matrix elements, the above
formulas are same as the expressions given in [37].

But for baryon case, the vector and axial-vector currents
both contribute to the baryon-to-baryon form factors. The
operators Os_g contribute to (V—A) ® (V + A) while
other operators contribute to (V—A) ® (V —A). These
two contributions from different types of current have to be
treated differently. Our method is to divide the vector
current and axial vector current parts and absorb them into
A and B terms of the Eq. (50). Here, we give formulas of the
A function in Ag — pr~ process. For the other processes,
their forms are collected in the Appendix C. In A — pz~
process, the A function for A term is

G
A= —;f,f[vuhv;dal + Vi Viglal + aly)

7
+ Ve Viglag +afy) + Re(ViyViyg(ag + ag)
+ Ve Viglag + ag))l, (59)

and for B term is
|

G
A= —; T2V VEgay + Vi V2 (@l + ay)

\/_
+ Ve Viglag + ajy) — RV Viy(ag + ag)
+ Ve Viglag + ag))l. (60)

There is only one difference: a relative minus sign for ag
and ag contributions in A and B terms. We find a relation:
the term in the square bracket of Eq. (57) is the same as the
corresponding one of Eq. (§9); and the term in the square
bracket of Eq. (58) is the same as the corresponding one
of Eq. (60). The complication caused by the (V—A) ®
(V+ A) current structure is one difference between the
baryon and meson. The authors in [13] observed this
phenomenon earlier. While this point is not realized in
the previous work [6]. We correct this error in this study.

F. Similarity of meson and baryon

Under the diquark approximation, the baryon is similar
to a meson. We may use this similarity to obtain some
information for the Ag decays by using the corresponding B
meson decays. Consider Ag — A¢ decay as an example.
If we change the diquark [ud] by a antiquark d, we have the
meson decay B — K°¢. If the meson-baryon similarity is
rigorous, we expect that the two processes have the same
QCD dynamics at the quark level. We prove this
assumption below.

The decay amplitude of the process B® — K¢ is
written by

_ _ 1 1 1
M(B° —» K') = \/EGFf,prK(mé)mg;(e - Pk) {vubv;s <a3 +af+as—-a;—=ag — —a’fo>

2 2 2

1 1 1
+ Vcbvf‘s <a3 + (12 + ds —5(17 —Edg —EGTO>:|
= —V2GrfyF{¥(mg)my (e )V Visa. (61)
[
where the factor a is With this a, the formula of Eq. (61) reproduces the result
in [37].
Q- V_II/* |:Vubvl>is <a3 +al+as —%a7 _%% —;a’f0> | For the Ag — A¢ decay, what we need is the A function.
thV ts tis
+ Vo Vil as +ac+a5—la7—la9—lac . (62) Gp 1 1 1
c cs 4 2 2 2 10 A:ﬁfqﬁ VubV;,le a3+az+05—§a7—§a9—§a'f0
The @ is a combined coefficient where all the QCD X . 1 1 I
corrections are included. In fact, @ can be simplified into + Ve Ves <a3 +ag+as— 5617 - 509 - 5“10)]
a familiar form. Neglecting the difference of a! and af, and G
using the unitarity relation V Vi + V., Vi, ==V, Vi, = _Jf V. V*a. (64)
_ . [ AS AN
the factor a can be rewritten by V2

1
a=a +a4+a5—§(a7+a9+a10). (63)

Comparing the Eqs. (61) and (64), we find that the
baryon and meson decay amplitudes have the same factor a.
That means,
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a(A) — Ap) = a(B® — K°9). (65)
Since a encodes the QCD dynamics, we can say that the
baryon and meson decays have the same QCD dynamics at
the quark level. This is a rigorous relation obtained from the
meson-baryon similarity.

The meson-baryon similarity has important meaning and
applications. The calculation of the QCD dynamics in AY
decays depends on the theory approach and contains large
hadron uncertainties. At present, the B meson data is very
precise. The meson-baryon similarity permits us to give a
model-independent prediction. In particular, we can extract
a from the data of the meson decay B — K¢, and then
use it to predict the baryon decay A) — A¢. Using the
meson data to predict baryon decay A) — pK~ has been
done in [6]. It is shown that this model-independent
prediction accords with the experiment very well.

V. INPUT PARAMETERS AND NUMERICAL
RESULTS OF THE FORM FACTORS

In this section, we first present the input parameters.
Then we use them to calculate the baryon-to-baryon
transition form factors in the covariant light-front approach.
At last, the theoretical uncertainties in our model are
discussed.

A. Input parameters

In the calculations, the baryon masses are
My = 5. 619 GeV, M, =2.285GeV, M, = 1.116 GeV
and’ M, =0.938 GeV [1]

The quark mass appeared in the light-front quark model
is the constituent mass. Its value should be process
independent. So we can use the quark masses determined
from the meson process. The quark masses are taken from
the previous works [4,5]:

my = 4.4 GeV,
mg = 0.45 GeV,

m, = 1.3 GeV,
m, = myz; = 0.3 GeV. (66)

The [ud] diquark mass is not well determined. From [28], it
is assumed that mass of a [ud]| diquark is close to the
constituent strange quark mass. In the literature, the mass of
the constituent light scalar diquark mj,, is rather arbitrary,
ranging from 400-800 MeV. In [4], m,, = 500 MeV is
fitted from the process of AY — Afl"; when other
parameters are fixed. We also use this value for our
calculations and adjust it when necessary.

The quark in the QCDF approach and the equations of
motion is the current quark, and the mass is current mass.
The values for the three light current quarks are
m, =23 MeV,

my; =48 MeV,  m, =95 MeV.

(67)

For the heavy quark mass, the values are chosen the same as
those given in the constituent mass.

The baryon parameter f in the Gaussian-type wave
function is at the order of the QCD scale Agcp and needs
to be specified. For the meson case, the parameter  can be
determined from the decay constant which is measured by
experiment. But this method cannot be applied to the
baryon. The flavor symmetry can provide some helpful
relations. In the heavy quark limit, the heavy quark
symmetry gives S, = 5 . From the light quark SU(3)
symmetry, S5 = f3,. [sospin symmetry gives 3, = f3,. The
J parameters are determined by fitting the theory prediction
to the data. For example, the parameters 5, and 5 are
fixed by data of A) - AfI"7; and AY — A+ﬂ' processes.
From these two process, the 5, and ﬂ A, are chosen to be
Pa, = 0.40 GeV and 8, = 0.34 GeV. The value of §,_is
shght]y smaller than f3,, . The proton parameter f3, is fixed
from AO — pl~v; process. The fitted value is
B,=0. 38 GeV. The value of f, is nearly equal to f, .
The choice of a large value for p = = 0.38 GeV is forced by
the experimental data. The previous chosen 3, = 0.3 GeV
in [5] gives predictions of B(A) — pl=;) = 2.54 x 10~
and B(AY — pn~) = 3.15 x 1075, These predictions are
insufficient to explain the present data of 3 (A - puo,) =
(41£1.0)x107* and B(A)— pz~)=(4.2+0. 8)x10-
So we have to choose a large value for f,. The leptonic
decay of A0 — Aptu~ is a flavor-changing-neutral-current
process. Its discussion is beyond the scope of this study. So,
it is difficult to determine f, from the experiment. We use
the light quark SU(3) symmetry relation f, =, and
neglect the SU(3) breaking effect. In fact, the theory results
are not sensitive to the variation of f,. Neglecting SU(3)
breaking in this case is reasonable. The input parameters of
the constituent quark masses and the f parameters are
collected in Table II.

For the @ and ¢ mesons, the ideal mixing is assumed so
that the quark component of the two mesons are w =

% (uit + dd) and ¢ = s5. For the 7 and 5/ mesons, both of

them require two decay constants. We adopt the Feldmann-
Kroll-Stech scheme [41] for the # — 7’ mixing. The mesons
n and i’ are superposition of the nonstrange and strange

flavor bases as
—sin n
() o
cos ¢ 7R

ny\ cos ¢
(n’) - (sim/)
where

TABLE II. Input parameters in the covariant light-front ap-
proach (in units of GeV).

my, me mg m,  mpq ﬁAb ﬂA( Pa ﬁp P
44 13 045 03 05 040 034 038 038 0.38
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_uii+ dd B
M V2
The mixing angle ¢ = 39.3° £ 1.0°. In this mixing scheme,

only two decay constants f,(n = u,d) and f, are needed
[42]:

ni, s = S5. (69)

(Ol rsnlna(P)) = \%fnP,,,

<0|§}/ﬂYSS"7S(P)> = ifSPﬂ‘ (70)

This is based on the assumption that the intrinsic in(ss)
component is absent in the 7,(r,) meson. These decay
constants have been determined from the related exclusive
processes [43]. Their values are

fn=(1.07£0.02)f,, fs=(1.34£0.06)f,. (71)

The decay constants of # and 5’ are defined by

(Ol ysuln(P)) = ify Py,
<0|ﬁ}/ﬂy5u|r],(P)> = ifZ/P;u

<0|§7//475S|77(P)> = if};P/A’
(O[sy,yssn’'(P)) = ify Py

(72)
Then, we have
fu=fl=54MeV.  f5=-111MeV,
[l =fl=44MeV,  f5 =136 MeV. (73)

The meson decay constants used in this study are
collected in the Table III. The 7. decay constant is taken
from [44,45].

The CKM matrix elements are taken from [1]

Via=1 _1%4//2’ Vis = 4w, Vib = Aﬂ?/V(p - ”7)’
Vcd = —/lw, VCS = 1 —A%V/Z Vcb = A/{%}V’
V=A% —p—in), Ve =—A2,, V= 1.
(74)
where the Wolfenstein parameters are Ay = 0.225,

A =0.823, p =0.141, and 5 = 0.349. Here we use the
symbol Ay, to replace the familiar form 4 in order to avoid
confusion with the 4 function given in the decay amplitude.

TABLE III. Meson decay constants f, (in units of MeV).

Meson T p K K* D D* D, D;

f 131 216 160 210 200 220 230 230
Meson o ¢ " n oot e Jly
f 195 233 54 —111 44 136 335 395

TABLE IV. The A, — A, form factors in the covariant light-
front approach.

F T r My (GeV) F(0)

|1 -3.22 3.72 13.9 0.500
fa 0.736 -0.834 13.9 —0.098
f3 0.063 -0.071 13.9 -0.009
g1 -3.30 3.82 13.9 0.509
9 0.131 —0.146 13.9 —-0.015
93 0.573 —0.657 13.9 —0.085

B. Numerical results for the form factors

The form factors are evaluated in the frame g™ =0
where > <0. The calculated form factors are in the
spacelike momentum region. In order to obtain the physical
form factors, we need an analytic extrapolation from the
spacelike to the timelike region. Following [5], the form
factors are parametrized in a three-parameter form as

F(g) =—21 &

2 + 2 (75)

(1-32)  (1—37)°
where F represents the form factors f,3 and g, ,3. The
parameters ry, r, and My, are fixed by performing a three-
parameter fit to the form factors in the spacelike region and
then extrapolate to the physical regions. Because there is no
singularity for the obtained form factors at > < M3 , the
analytic extrapolation is reasonable. The fitted values of ry,
ry, and My for different form factors f;,5 and g;,; are
given in Tables IV-VIL

For the heavy-to-heavy transitions A, — A, the numeri-
cal results of the form factors are presented in Table IV. The
form factors f, g are positive and of the order of 1. They
are nearly equal, i.e., f| ~ ¢, which satisfies the heavy
quark symmetry. The other four form factors f,, ¢-, f3, 93
are all negative. At ¢g> = 0, f, & g3, and they are about 20%
of fi(g;). The quantities f3, ¢, are the smallest,
f3~¢g,~0, and they can be neglected. The numerical
results show the validity of heavy quark symmetry and the
power corrections are at the order of 20%.

For the heavy-to-light transitions A, — p(A,n), the
numerical results of the form factors are presented in

TABLE V. The A, — p form factors in the covariant light-front
approach.

F r ry Mﬁt (GCV) F(O)
f1 —0.078 0.206 6.0 0.128
fa 0.055 —0.110 6.0 —0.056
s 0.036 ~0.073 6.0 ~0.037
o ~0.078 0.207 6.0 0.129
9 0.032 —0.065 6.0 —-0.033
9 0.086 —0.121 6.0 —0.062
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TABLE VI. The A, — A form factors in the covariant light-
front approach.

F | r My, (GeV) F(0)
fi —0.091 0.222 6.2 0.131
I 0.051 —0.098 6.2 —0.048
/3 0.028 —0.055 6.2 —0.027
g1 —-0.092 0.224 6.2 0.132
9 0.026 —0.050 6.2 —-0.023
93 0.053 —0.105 6.2 —0.052
TABLE VII. The A, — n form factors in the covariant light-
front approach.

F ry Iy Mﬁ[ (GCV) F(O)
fi —-0.078 0.207 6.0 0.128
I 0.055 —0.110 6.0 —0.056
/3 0.036 —0.073 6.0 —0.037
g —-0.078 0.207 6.0 0.129
9 0.032 —0.065 6.0 —-0.033
93 0.059 —0.121 6.0 —-0.062

Tables V-VII. The form factors f,, g, are the largest, but
their values are only about 0.1. This form factor suppres-
sion comes from the large momentum transfer to the final
baryon. Similar to heavy-to-heavy transitions, the other
form factors are negative. At the large recoil point g*> = 0,
f2 = g3, and they are about 50% of f(g;). That means the
large energy limit relations are broken significantly. The
quantities f3, g, are small but not negligible, about 10%-
20% of f1(g,). Comparing Tables V and VI, one can find
that the corresponding form factors in the A, — p and
A, — A two processes are nearly equal. This is due to the
light quark flavor symmetry. A, — n form factors are same
as A, — p due to isospin symmetry.

The g>-dependence of the A, — A.(p, A, n) form fac-
tors are plotted Figs. 3—6. In all the four cases, the absolute

values of the six form factors are increasing function of g2.
The dependence of form factors on ¢ is smooth. The ¢’-
dependence is crucial for the behavior of the differential
decay width of the semileptonic processes and also has
effects on the nonleptonic processes.

The baryon-to-baryon form factors are dominated by the
nonpertubative QCD dynamics. The calculation of the
transition form factors are model dependent and the theory
uncertainties are difficult to estimate. In the next subsec-
tion, we provide an estimate of theoretical uncertainties
caused by the input parameters. In [33], the authors
compare the predictions of the A, — A, p form factors
in different theory models. They obtain a conclusion: there
is a reasonable agreement between predictions of signifi-
cant different approaches for calculating the baryon form
factors.

C. Theoretical uncertainties

In this study, the covariant light-front quark model
and diquark approximation are adopted to calculate the
form factors. For the theoretical uncertainties, we estimate
the errors coming from the input values: the hadron f
parameters and the scalar diquark mass. Similar to the
central values given above, the theory uncertainties for the
input parameters are also determined by fitting to the
data: f,, =0.40 +£0.02 GeV, p, =0.34+0.01 GeV,
B, =038 +0.03 GeV, m,q = 0.500 £ 0.025 GeV. The
values of the uncertainties are shown to be small, less than
10%, and they are due to the present experimental data.

Table VIII gives the different form factors F at ¢g°> = 0
with the theoretical errors. One can see that the theory
errors are small in general, but not negligible. The errors
caused by the diquark mass are smaller than the ones
by the p parameters. For the ¢ dependence of the form
factors, we show them in an example for the A, — p
form factors in Fig. 7. Other baryon-to-baryon form factors
can be plotted similarly. Due to limit of space, they are not
presented here.

1.0f
— fi(x)
0.9 91(x)
0.8F
07F
06
s 1 15 20 5 10 15 20
FIG. 3. The ¢>-dependence of the A, — A, transition form factors. The horizontal ¢> variable is given in units of GeV?.
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FIG. 5. The g*-dependence of the A, — A transition form factors. The horizontal ¢ variable is given in units of GeVZ.
0.8

I fi1(x)

L T g1(x)
0.6
04+
02t

5 10 15 20 5 10 15 20

FIG. 6. The g*>-dependence of the A, — n transition form factors. The horizontal g> variable is given in units of GeV2.

VL. NUMERICAL RESULTS FOR SEMI-LEPTONIC
DECAYS OF A? — A} (p)l=7

Now, we are able to calculate the branching ratios and
various asymmetries of the semileptonic decays
A) — Af(p)lI"7;. The numerical results of our model
predictions in the covariant light-front approach are

presented in Table IX. The errors for App and P; are
small and can be neglected.
The semileptonic decays A?J — A I"D; decays where the

final lepton is electron or muon are observed with a large
branching ratio (6.2f11"§ ) x 1072, At present, the experi-
mental error is still large. At the quark level, itis b — cl7y;
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TABLE VIII. The transition form factors F(0) with theoretical errors. The errors correspond to the uncertainties in the input
parameters f and the diquark mass, respectively.

F(0) Ay = A, A, = p Ay, > A A, —>n

fi 050070050 0054 0.128¥0015 0008 0131200187 0008 0.128% 0019 0008
f2 —0.098 00030005 ~0.05670010-0005 —0.0481 000510005 ~0.05610010"000
£ —0.00978001 *0000 —0.03728008 0003 —0.0278006 0000 —0.0378008 0003
9 0.509" 000 s 0.12970019 0 00s 0.1325 001970000 012970019 0008
9 —0.014250%0! 0000 —0.03320067 0000 ~0.02410005 0001 ~0.03310507 0000
93 ~0.085200052 0000 ~0.06229011 X001 —0.052* 0008 001 —0.0627 00! 000r

transition and the involved CKM matrix element is V.
The central value of the theory prediction for the electron
process is 5.59 x 1072, The ratio for the muon process is
nearly equal to electron mode. That means that the mass of

FIG. 7.

f1(q

91(@?)

the light lepton can be neglected for the branching ratios.
But it cannot be neglected for the forward-backward
asymmetry and the longitudinal polarization. Our theory
prediction for the ratio of the process Ag - AFl"y; is

.
:
0.30
0.25
0.20
0.15
0.10
0.05
.

The g>-dependence of the A, — p transition form factors. The horizontal ¢> variable is given in units of GeV2. In each
diagram, the solid line represents the central values; the dashed lines represent the values with errors in the f parameters only; the dot
dashed lines represent the values with errors in both the f parameters and the diquark mass.
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slightly smaller than the central value of the data, and
consistent with the data within the experimental error. This
result is obtained based upon taking account of both the
semileptonic and nonleptonic processes. The data of the
nonleptonic processes A) — Af + M given in the next
section is more precise than the ones of the semileptonic
processes. If we choose the parameters 5, and 3 to fit the
central value of the data of Ag — A, the predictions
for the nonleptonic processes of Ag - A+ M will be
found to be inconsistent with the data. Besides the ratios of
the absolute ratios of the semileptonic and nonleptonic
processes, one also needs to consider the relative ratio of
semileptonic to nonleptonic decays, such as —BB(S\’(;O_)/}\‘Y ),
LA 77)
We will discuss this ratio later.

For the tau lepton process AY — Afz70,, it is not
observed by experiment. The theory prediction for the
branching ratio is 1.54 x 1072, which is smaller than the
ratio of the light lepton process but at the same order. We
expect the tau lepton process to be observed in the near
future. A discrepancy is observed in B — D) semi-
leptonic processes. The Standard Model (SM) prediction
for the ratio of the heavy tau lepton to the light lepton
processes is not consistent with the data. It is necessary to
test whether the discrepancy exists in the baryon case.
Following [33], we define a ratio as

B(A) = Afz71,)
Ry =——% <t 76
A B(AY) - AL (76)

Our theory prediction is RY = 0.28 & 0.04 which agrees
with the result 0.31 in [33].

About the forward-backward asymmetry Arp, our pre-
dictions for the processes AY — Afe 7, and A) —
Afpu~D, are quite small, only several percent. For the
tau lepton process, the asymmetry is about 10%, but the
detection efficiency of tau is low. So, it is difficult to
measure the forward-backward asymmetry for the

semileptonic processes of the A — A I~ in experiment.
The longitudinal polarization P; is close to 1 which
represents the longitudinal polarization dominance.

For the semileptonic decays of Ag — p transitions, only
the process involving the muon lepton Ag — pUTD, s
reported. At the quark level, it is b — ul~ 7, transition and
the CKM matrix element is V,;,. Because %~ 0.1, the
measured ratio of the decay Ag — pu~y; is"two orders
smaller than the ratio of Ag — AFI7D;. Theory prediction
agrees with the data as it should be, since we use the
semileptonic decay Ag — pu~ U, to determine the proton
parameter f3,. For the decay Ag — pl7v, it is also longi-
tudinal polarization dominant. The forward-backward
asymmetry is at the order of 10%-20%, which is difficult
to measure due to its suppressed rate. Similar to RY , we
can define R by )

B(AY - pro,)

B(Ag - pl )’ (77)

Ry =
Our model prediction is RY = 0.68701° which agrees with
the result 0.65 in [33].

For comparison, we discuss two models in literature.
One is the conventional light-front approach used in the
previous study [4,5]. The results have been included in
Table IX. The previous prediction for the ratio of Ag —
P, decay is 2.54 x 10~* which is smaller than the data.
This is the reason that we choose a large value for f3,.
Another approach is a relativistic quark model given in
[33]. Their numerical results are listed in Table X. One can
see that the main difference in theory predictions is the
forward-backward asymmetry. The asymmetry is small and
sensitive to the details of the models. The measurement of
the forward-backward asymmetry can test the different
theory approaches.

The LHCD collaboration reported a measurement on the
ratio of the heavy-to-heavy and heavy-to-light semileptonic
decays in the restricted momentum region of ¢> [46]. The
ratio is defined by

TABLE IX. The branching ratios and asymmetries of the semileptonic decays.

Mode B App P

A) - Afer, 5.591 0355 048 x 1072 —0.03 +0.00 —0.96 + 0.00 Covariant approach (this work)
A) = Afup, 557104105 % 1072 -0.07 £ 0.00 —0.93 £0.00

A) > AfT D, 15470001912 % 1072 —0.13 £ 0.00 —0.79 £ 0.00

Ay = pe, 4.025551 %555 x 107 0.122501 50 ~0.972051 %550

A) = puE, 4.02557775 x 107 0187501 o1 —~0.96501 00

Ay = pTE; 2741536 035 x 107 0102501 900 —~0.942051 %550

Ag - A, 6.30 x 1072 —0.80 Conventional approach [4,5]
AY - pl, 2.54 x 1074 -0.97

A) > AT, (6.25]4) x 1072 Experiment [1]

A = pup, (414+1.0) x 107
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TABLE X. Predictions for the semileptonic decays in [33].

Mode B App P,
A) = AfeTp, 6.48 x 1072 0.20 -0.80
A) > AfuD, 6.46 x 1072 0.19 —-0.80
A = AfTD, 2.03 x 1072 —0.02 —-0.91
AY = pe D, 45x1074 0.35 -0.91
A) = pup, 4.5x 10 0.34 -0.91
A = prr, 2.9 %107 —-0.19 -0.89
Ciﬁmx 2 d ZM
R = e 9
762 44— g7

The measurement of the above ratio permits us to extract
the CKM matrix elements |V ,,|/|V | in the heavy baryon
decays. It provides an independent measurement outside of
the B meson system and a crosscheck for the CKM matrix
elements. In our model, the calculation gives the numerical
result as

|Vub|2
Ry, = 110420 (79)

M VP
The result in [33]is R, _, = (0.78 £ 0.08) I“‘j“:“f The lattice
calculation gives R, , = (1.471 £0.095 + 0.109)—}5"&"2

[11]. Our prediction lies in the middle of them.

By use of the CKM parameters chosen in this study, we
obtain R, , = 1.09 x 1072. The experimental measure-
ment from the LHCb collaboration is [46]

Ry, = (1.00 £ 0.04 + 0.08) x 1072, (80)

Our model prediction is slightly larger that the central value
of the data. They are consistent within the experimental
error. Taking into account of the theoretical errors would
increase the consistency.

We can also extract the CKM elements |V ,;,|/|V ;| from
the data by using our model calculations. We obtain

|Vub|
|vcb|

= 0.091 4 0.08. (81)

The error comes from the experiment data. At present, the
determination of |V,| is more precise due to the heavy
quark symmetry. From PDG [1], an average of the experi-
ments gives |V,,| = (40.5 £ 1.5) x 107>, From the precise
value of |V |, we can extract |V ;| by use of our model as

V| = (3.69 £0.3) x 1073. (82)

For comparison, we give the values of |V ;| obtained from
the inclusive and exclusive determinations as [1]

Vs = (449 £0.16108) x 1073
V| = (3.72£0.19) x 1073 (exclusive), (83)

(inclusive),

and the average is

[V = (4.09 £0.39) x 1073 (average).  (84)
One can see the value of |V,,;,| extracted from our model
agrees with the measurement from the exclusive processes
very well. Since our method is adopted for the exclusive
processes, the agreement provides a support of our model.

VIL. NUMERICAL RESULTS FOR NONLEPTONIC
DECAYS OF A - H+M

In this section, we present our numerical predictions for
the four types of the nonleptonic decays A) — H + M
where H represents A, p, A,n. We discuss them case
by case.

A. A) > A} +M decays

The Ag — A} + M decays have the largest decay ratios
in the nonleptonic processes of AY. They belong to
charmful processes which are enhanced by the CKM
matrix element V. For the processes with light mesons
7, p, K, K*, they have only the color-allowed tree operator
contribution and the Wilson coefficient is a;. For the
processes with heavy mesons D~,D*", Dy, D;~, they
contain the b — d(s) QCD penguin operator contributions
which are suppressed by a,. According to the CKM
elements, A) > Al + M decays can be classified into
Cabibbo-favored and Cabibbo-suppressed processes. The
processes with mesons 7, p, D, D} being the final states are
the Cabibbo-favored processes. The corresponding
subprocesses are b — ciid or b — ccs, their decay ratios
are largest, in the region 4 x 1073 to 1x 1072, The
processes with mesons K—, K*~, D™, D*~ being the final
states are the Cabibbo-suppressed processes. The subpro-
cesses are b — cits or b — ctd which is suppressed by
A=sinf-~0.22. Their decay ratios are of order
(3-5) x 107%. The theory predictions and the experimental
data for decay rates of the processes A) — Af + M are
given in Table XI. The renormalization scale ;¢ dependence
of the decay rates is small, less than 5%. For all the
observed processes, the theory predictions accord well with
the experiment data. At present, only four processes where
the final meson is a pseudoscalar are observed. Because the
ratios of the other four processes with the final vector
mesons are at the same order, we expect that these vector
processes will be measured in the near future.

The predictions for the up-down and CP asymmetries
are given in Table XII. Up to now, no up-down and CP
asymmetries in Ag — A} + M decays were observed. All
the up-down asymmetries a from theory are negative and
the absolute values are about 1 for most processes.
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TABLE XI. Branching ratios of Alo, — Al + M decays.

Mode u=my/2 u=nm, u="2my Experiment [1]
A) = Afnm 5.24 x 1073 4.96 x 1073 4.76 x 1073 (4940.4) x 1073
A) = Afp~ 9.13 x 1073 8.65 x 1073 8.30 x 1073 -

A) — ATK™ 4.15 x 107 3.93 x 107 3.77 x 1074 (3.59 £0.3) x 107
A) > AFK* 4.65x 1074 441 %1074 423 x 1074 -

A) - AED 5.52x 107 522 x107* 5.01 x 107* (4.6 £0.6) x 107
A) - AfD* 551 x 107 520 x 1074 4.99 x 107 -

AY) — AFDy 1.31 x 1072 1.24 x 1072 1.19 x 1072 (1.10 £ 0.10) x 1072
A) — AfD:™ 1.11 x 1072 1.05 x 1072 1.01 x 1072 -

Up-down asymmetry reflects parity violation. The parity
violation at the order of 1 is due to the V — A nature of the
weak currents which contains the maximal parity violation.
For two processes with final states A7 D*~ and A D?~, the
up-down asymmetry is about 0.4. This is because more
complicated Lorentz structures are entered for the vector
final state. All the up-down asymmetry « is nearly
independent of u. For the Ag — p + M processes, the u
dependence will be non-negligible. There is no direct CP
violation in the processes of with light mesons
n~,p~, K™, K"~ because there is only tree operator con-
tribution with no weak and strong phase difference. The CP
asymmetries in the Cabibbo-favored processes Ang* " are
quite small, about 1073 or 107, and it is difficult to detect
them in experiment. For the processes with final states
AfD®~ the direct CP asymmetries are at the order of
1072, But these processes are Cabibbo-suppressed, and also
difficult to measure the direct CP asymmetry in them. This
“large ratio and small CP violation” phenomenon is
familiar in the B meson system. Thus, we can obtain a
conclusion that it is nearly impossible to observe the direct
CP violation in A) - A} + M decays. Any observation
would be a signal of new physics. As will be shown, this
conclusion applies to all A) decays with the final states
containing one or two charm quarks.

A ratio of semileptonic to nonleptonic fractions is
defined by

R — B(AY) — Afl7))
" T BN = Aa)

(85)

This ratio reduces the theory uncertainties in calculating the
baryon-to-baryon form factors. In our model, the semi-
leptonic to nonleptonic decay ratio is

Ry =113+0.5, (86)

The error comes from the renormalization scale ¢ depend-
ence of the decay rate for the nonleptonic process.
One result from the early measurement by CDF collabo-
ration is [47]

R} =16.6 & 3.0(stat) + 1.0(syst)*2¢(PDG) + 0.3(EBR).
(87)

Our fitted value from the semi- and nonleptonic processes
gives

TABLE XII. Up-down and CP asymmetries for A — Af + M decays.

Acp

Mode a u=my/2 uw=my, uw="2m,
A) > Afnm —0.998 0 0 0

A = Afp~ —0.888 0 0 0

A) — ATK- -1.0 0 0 0

A = AFK* —0.859 0 0 0

A) > AfD -0.999 1.39 x 1072 1.16 x 1072 1.01 x 1072
A) — AfD* —0.478 1.26 x 1072 1.04 x 1072 8.96 x 1073
AY) — AP Dy -1.0 —5.71x 1073 —4.82x 1073 —4.24 %1073
A) — AfD;™ —0.439 —6.76 x 107 —5.58 x 10~ —4.81 x 107
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R} =12.6 +3.0. (88)

One can find the consistency between theory and the data.
Another ratio is proposed to relate the baryon decay to
the meson process in [48]. It is defined by

B(A) - Afn)

Ry =—>b <=/
> "B(B' > D'x)’

(89)

The study of this ratio is helpful to understand the meson-
baryon similarity. In the small velocity and heavy quark
limit, R, = 2. The early experiment gives [49]

faB (AO - Afn7)
fa BB > D7)
= 0.82 4 0.08(stat) + 0.11(syst) = 0.22(BR).  (90)

We will discuss the production fraction f,o0 in more
detail in the part of A) - AJ/y. The Value of on/fd is
chosen to be 0.458. The CDF result is R ¢~ 1.79 4+ 0.33.
Our fitted value from the data of A) — A+ﬂ' and B® —
Dtz processes gives R c=1.95 j: 0.25. In our model,
the decay ratio of the process AO > Afn s
B(A) — Afz~) =4.96 x 107. By use of the data for B
meson B(B® - DTz7)¥P = (2,524 0.13) x 1073, we
obtain R;\' = 1.97. Our result accords with the experiment
and the heavy quark symmetry relat1on very well. By
comparison, the result in [48] is R2 =1. 6“” = 1.54,
which is smaller than ours and the data. w

The Ag decays can also be employed to test the
factorization hypothesis. According to the QCD factoriza-
tion, the processes A) — Afz~(K~) with one heavy and
one light final states is factorizable, while the heavy-heavy
processes AY — AfD~(Dy) are nonfactorizable. If it is so,
the theory prediction of QCDF approach will become
worse when the final meson are heavier. We choose the
four observed processes Ag — Afn (K~,D~,Dy) for
discussion. If the process A) — Afz~ is used to adjust
the phenomenological parameters to fit the experiment.
When the final meson is heavy D~ or Dy where QCD
factorization is not applicable, the deviations of theory
prediction from the experiment should occur and will be
largest for Ag — AFD;. However, we do not see the
deviations from Table XI. The consistency between the
theory and the experiment data is nearly at the same
accuracy for the four processes.

To make our point more clear, we use the relative ratio of
the decay rates to reduce the model uncertainties in the
baryon-to-baryon form factors. In order to test the factori-
zation assumption, we define three ratios below

R B(AY - Afz™) . B(AY - Afz™)
KT BN - ATKT) ™7 BA) - AfDY)’
B(A) - Afn™)
R.p = . 91
© Z B}~ ALDS) oy

By calculations, the results for the ratios are given as

Rh =126+ 1.2, RIP' = 13.6 + 1.6,
R =9.6+0.9, ;g’t_106i16
R" =0404£0.04, RO =045+£005. (92)

The theory results are obtained by using the predictions
given in Table XI. The central values are given at y = m;,.
The experimental values are our fitted results from the data.

To go further, we define the ratio of theory to experiment
as R' = R"/R*?, Thus

R, =093+014, R, =091+0.16,
R.p, = 0.89 £0.13. (93)

Within the errors, the ratios R’ are consistent with 1. There
is really a small trend for R’ to become smaller for heavier
mesons. But the difference in the three ratios are so small
that we can regard them to be equal. Thus, we can draw a
conclusion that the factorization assumption for A9 —
AfD™(Dy) processes containing two heavy charmed
mesons is still applicable. The mechanism of factorization
cannot be explained by the color transparency argument or
the perturbative framework. A test of factorization in the
heavy-heavy B meson decays is given in [50]. The
conclusion from the B meson system is similar to ours
in the baryon case. Comparing the numerical results of [50]
with the present precise data from PDG, we can obtain
another conclusion: the N = co prediction is not sup-
ported by the experiment. Thus, the large N limit is not a
justified mechanism of factorization. There must be some
nonperturbative mechanism which prefer the factorization
of a large-size charmed meson or baryon from a soft cloud.

It is interesting to compare the experimental data with the
predictions within the heavy quark limit which are given in
[4]. In that work, the effective coefficient is simply chosen
as a; = 1 without the QCD corrections. The heavy-to-
heavy baryon form factors are reduced to one Isgur-Wise
function {(w) with @ = v-v'. At the zero-recoil point,
¢(1) =1. At other momentum regions, the Isgur-Wise
function can be approximated as a linear functlon described
by a universal slope parameter p*> = dg @)| . One can
find that the results within the heavy quark limit accord
with the present data very well. From the consistency, we
obtain a conclusion that the Ag — Al + M decay is
governed by one universal slope parameter and a meson
decay constant. This is the leading and dominant contri-
bution. Other QCD corrections, no matter perturbative or
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TABLE XIII. Branching ratios of Ag — Al + M decays in
QCDF. For the three theory errors, the first comes from the
uncertainties in the renormalization scale y; the second from the
parameter; and the third from the diquark mass.

TABLE XV. Branching ratios of Ag — p+ M decays in
QCDF. For the theory errors, the first comes from the uncer-
tainties in the renormalization scale u; the second from the f
parameter; and the third from the diquark mass.

Mode Br Experiment [1] Mode Br Experiment [1]
A) > Afa= 496105310108 % 1073 (4.9 £0.4) x 1073 A) — pr= 430107000« 1070 (42+£0.8) x 1076
A) = ASpm B6SIOIINS 00 x 107 - )~ ppm TATIRR < 107 -

A) - AFK™  3.931024031037 5, 104 (359 £0.3) x 107 A - pK— 217 0B0E01055 % 100 (5.1 £ 1.0) x 107°
A) = ATK AT 1078 - A~ pK*= LOLOTEOOM < 107 -

A) = AFD™  52170301035494 % 1074 (4.6 £0.6) x 107 A) = pD~ 6297038119008 1077 -

A AZD™ 520103904 x 1074 - A) = pD* 64T x 1077 -

A) » AFDy 13100000 % 1072 (1,10 £0.10) x 1072 A) - pDy 161109103002 x 107 <4.8x 1074
A = AID L5087 gy x 1072 - Ay = pDy™ LALLGoe05 0 < 1079 -

nonperturbative, are perturbations near the stable point
within the heavy quark limit.

Table XIII gives the ratios of AY — Al + M decays with
errors. The first errors come from the uncertainties in the
renormalization scale u; the second errors are from the
uncertainties in the baryon parameter f; and the third errors
are caused by the diquark mass. These errors are nearly at
the same magnitude. Table XIV gives the up-down and CP
asymmetries for A) — Af + M decays with errors. For
the up-down asymmetries, the errors are nearly zero. For
the CP asymmetry, theoretical errors come mainly from the
renormalization scale y dependence.

B. A) - p+M decays

For the nonleptonic decays Ag — p+ M, there are 8
processes which are similar to A) — A/ + M decays. But
the branching fractions are smaller by two or three orders.
The tree diagram contribution is proportional to V,;, and
thus suppressed by small CKM parameters. The charmless
processes belong to the rare decays. But these processes are
important in exploring the CP violation. As we will show

TABLE XIV. Up-down and CP asymmetries for A) — Af +
M decays. For the theory errors, the first comes from the
uncertainties in the renormalization scale u; the second from
the f parameter; and the third from the diquark mass.

Mode a Acp

A) > Afn~ —1.00 + 0.00 0

A) = Afp~ —0.89 £ 0.00 0

AY - AFK- —1.00 £ 0.00 0

A) > AFK*~  —0.86 £0.00 0

A) —» AFD™ —1.00 +0.00 116707210 507099 % 1072

A) > AfD™  —0.48£0.00 1,04 102219001900 » 10-2

AY = A/ Dj —1.00£0.00  —4.82F 5100002 » 1073
A) > AfD- —044£0.00 =558 31000 x 1074

below, the direct CP violation in some processes can be
large, at the order of 10%. We may call this phenomenon as
“small ratio and large CP violation”.

The theory predictions for the branching ratios of decays
A) - p + M are given in Table XV. The fractions of the
four processes with final meson being light are at the order
of 107°. The processes of A) — pz~(p~) are color-allowed
tree diagram dominant. The processes of A, > pK~(K*™)
are QCD penguin dominant. Although suppressed by a,
the b — s penguin is enhanced by CKM matrix elements
VsV .p- So the branching ratios of Ag — pK~(K*7) decays
are of the same order as the A — pa~(p~) decays. A
detailed discussion about the Ag — pK~ process in QCDF
approach is given in [6]. The processes A, — pD§*)_ have
only the color-allowed tree operator contribution and have
the ratios of order of 107>, The processes A) — pD*)~ are
color-allowed, but they are Cabibbo-suppressed. So the
ratios are of the order of 10~7. Up to now, only two
processes Ag — pn~ and pK~ are observed. The experi-
ment provide an upper limit for A, — pDj; which is close
to the theory prediction.

The theory predictions for the up-down and direct CP
asymmetries are given in Table XVI. Similar to the A) —
A} + M decays, nearly all the up-down asymmetries a are
negative. There is one exception. The up-down asymmetry
in the Ag — pK~ is positive, and the value is small about
0.3. The reason is due to a significant contribution from the
ag term. The absolute values of a are about 1 for most
processes. The two processes with final states D7 have the
up-down asymmetries about 0.5. The direct CP violations
are at the order of 1072 in AY — pz~(p~) decays. The
predictions for the direct CP violations in A) - pK~(K*7)
decays are large, about 0.1 or 0.3. We will discuss the large
CP violation in more detail below.

The process of Ag — pr~ is important in phenomenol-
ogy, like the B — 77z~ in the B meson system. This
process is observed in experiment, and the branching ratio
is measured to be (4.240.8) x 107°. Similar to the
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TABLE XVI. Up-down and CP asymmetries for Ag - p+M
decays. For the theory errors, the first comes from the uncer-
tainties in the renormalization scale yu; the second from the f
parameter; and the third from the diquark mass.

Mode a Acp
N~ pr —OSKTRR 3T x 10
N OSURNON SIS 107
AD=pK 0TI LOUGIRNE « 10
A pK —OTOBBBAI SRR 10
Ay = pD™ =0.997557 550 500 0
Ay = pD™ =0.522550 501 500 0
Ay = pDy =0.9975507050 000 0
A = pD;™ =0.497550705 600 0

definition of Rg\ ¢, the ratio of the baryon-to-meson decay
rates for proton is defined by

B(A) — pn~)

Rp = ——F .
27 BB > ata)

(94)

From the experiment data, R} = 0.82 + 0.16. That means
the branching ratio of B(A) — pz~) is smaller than the
corresponding meson process. However, for the
Ag — Af 7™, its branching ratio is larger than the corre-
sponding meson decay rate and the ratio of baryon-to-
meson Ré\” ~2. In fact, the fractions of A) - Afz~ is
nearly equal to the sum of two ratios of B(B® — D ")
and B(B° — D**z~). If this rule can be applied to the
proton case, we expect B(A) » pz~) =B(B* > ntx7)+
B(B® — p*z~). But the experimental data shows that
B(AY) - pn~) < B(B" - n"z~). Why is the branching
ratio of the Ag — pz~ decay small? One reason may be the
small form factors f(0) = ¢;(0) 2 0.13. If it is so, the
ratio of Ag — pl™v; decay should be smaller than
B® — ztI1;. But the data tell us that B(A) — pl~7;)~
3B(B° — n*l ;). We can look at this problem from
another ratio of semileptonic to nonleptonic decay rates.
Similar to the definition of R.*, the ratio of semileptonic

122

to nonleptonic decay rates for proton case is defined by

RP = .
" B(A) = pr)

(95)

In our model, the result is RZ; =93.5+33. From the
experimental data, the fitted result is R} = 97.6 £ 30.2
which accords with the theory very well. But, for the A,
case, Rf;” = 12.6 £3.0. There is a factor of about 7
difference between the two ratios. Replacing the lepton
pair lv; by a quark-anti-quark pair, the semileptonic process
is changed to the nonleptonic process. The great difference
between the A, and p processes is difficult to understand.

It is another result caused by the small branching ratio
of Ag — pr”.
The ratio of pion to kaon decay rates is defined by

B(AY — pr~)
P _ b
RV, = —B(Ag K (96)

The LHCb collaboration reported a result R?, = 0.86 +
0.08 &= 0.05 [51]. It is close to our fitted value R,fK =
0.82 & 0.23. In our theory, the ratio is R?, = 1.9873].
Theoretical uncertainties are large, as can be seen from the
u dependence of the branching ratio of AY — pK=. A
discrepancy between theory and the experiment can be
found. But they can be consistent with 2¢ deviations. In
pQCD approach [13], R”, =2.6727 which obviously
disagrees with the data. In the generalized factorization
approach [7], R?; =0.84 £0.09 which accords with
the data.
Similarly for the ratio of p to K* is

B(A) = pp7)

RV — .
PR B(AY) — pK*)

97)

The ratio of Rf)’,(* is suggested to test different factori-
zation approach since the ratio is free of the hadronic
uncertainties from the baryon-to-baryon form factors [7]. In
our theory, the prediction gives R”. = 7.4733. In the
generalized factorization approach (GFA) [7], R/]: . =4.6+
0.5£0.1. There is a disagreement between different
approaches. The reason can be explained by the importance
of nonfactorizable contributions in penguin dominated
processes. The calculations of these nonfactorizable con-
tributions contain large theory uncertainties in different
factorization approaches, such as pu-dependence, some
nonperturbative effects etc. The disagreement between
different approaches will become more serious for direct
CP violation.

Up to now, there is no confirmed direct CP violation in
A, decays. A recent measurement of CP violation in
decays A) — pz~(K~) comes from the CDF collaboration
[52]

Acp(A) = pr~) =+0.06 £0.07(stat) £0.03(syst),
Acp(A) = pK~) =—-0.10£0.08(stat) +0.04(syst).  (98)

The central value of direct CP asymmetry for the decay
A) — pK~ is negative. Due to large errors in the data, we
may say that the results are consistent with 0. About these
two processes, our predictions from the QCDF approach
are

Acp(A) = pr~) = (-3.4£0.4) x 1072,
Acp(A) - pK~) = (10.1 £2.0) x 1072, (99)
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TABLE XVII. Direct CP asymmetries Acp (in units of 1072) in
different factorization approaches.

QCDF pQCD  Experiment
Mode (this work) ~ GFA [7] [13] [52]
A) - pr~  =34%07  -39+02 317 6+£7+3
A) - pp~ -32403 -37+03 e
A) - pK= 10153 58+02 -5'20 -10+£8+4
AY) - pK*= 311778 19.6 + 1.4

Because the direct CP violation comes from interference, it
is more sensitive to detail of theory model than the
branching ratio. In Table XVII, the direct CP violation
for the four charmless processes pz~, pp~, pK—, pK*~
within different approaches are given. From the Table,
one can see that our results are close to those in the
generalized factorization approach, and differs from those
in the pQCD approach.

The decay of Ag — pK*~ is interesting. We find a very
large direct CP violation in our approach as

Acp(A) = pK*=) = (31.17}8) x 1072, (100)
The predictions of direct CP violation in QCDF approach is
usually small because the origin of strong phase is
perturbative. So this large direct CP violation is out of
expectation. This unusual phenomenon was first observed
in [7]. The authors use the generalized factorization
approach and obtain the result ACP(Ag — pK*7) =
(19.6 + 1.0 - 1.0) x 1072 which is smaller than ours but
is still large. The direct CP violation in this case comes
from interference of tree contribution with v,a; term and
penguin contribution with v.a§ term. Penguin contribution
is larger than the tree but their magnitudes are at the same
order. The interference of a similar magnitude of tree and
penguin contributions with different weak and strong
phases is possible to produce a large CP violation.
The processes A — pz~(p~) are tree dominated, and
the CP violation is small. For the process A) — pK~,
the penguin contribution is enhanced by agq term. This leads
to a larger branching ratio but a smaller CP asymmetry.
In our approach, B(AY — pK~) ~2B(A) - pK*~) and
Acp(Ny = pK) ~1Acp(A) — pK*~). The process A) —
pK*~ is the only process with ratio of order 107® and large
direct CP asymmetry. But we must stress that the prediction
of CP violation in A) - pK*~ is not stable. A small
enhancement in the penguin contribution would modify the
prediction of CP asymmetry.

The sign of direct CP violation is important since it
represents whether b quark is more possible to decay or
the opposite. It is known that QCDF approach fails to
explain the direct CP violation in B® — ztK*)~. The
present data provide a precise and confirmed result:
Acp(B? = 27 K™)=-0.08240.006, Acp(B°—>ntK*")=
—0.224-0.06. The direct CP violation is large and negative.

However, the prediction of QCDF approach is small, only
several percent and the sign is positive [25]. How to explain
a large and negative CP asymmetry is a difficult and
unsolved puzzle in QCDF approach. In [25], the authors
suggested a scenario [called by Scenario S3 (universal
annihilation)] enhanced by weak annihilation. By choosing
a phenomenological parameter of annihilation contribution
and a proper strong phase, the direct CP violation can be
changed to be negative. Since weak annihilation is non-
perturbative, the importance of weak annihilation also
implies the importance of nonperturbative effects on the
strong phase. We do not know what is the case in the heavy
baryon system. The cental value of ACP(A?7 — pK~) from
CDF collaboration measurement is negative may be an
indication. Our prediction within QCDF approach is
positive. Certainly, nothing is certain at present. We hope
that the future experiment can provide some helps for us to
think deeply about this question. So, the measurement of
direct CP violation in A) - pK~ and A) — pK*~ decays
is not only important to test different factorization
approaches but also to explore the relation between the
baryon and meson systems.

It seems that the results in the generalized factorization
approach are more favorable [7] in phenomenology. But the
generalized factorization approach is in principle a phe-
nomenological method. To account for the nonfactorizable
corrections, a phenomenological color number N is
introduced and the effective coefficients for b — d and
b — s transitions are different. The theory uncertainties
caused by these treatments are difficult to estimate. The
gluon momentum in the penguin loop is not determined.
These conceptual problems are solved by QCD factoriza-
tion. QCD factorization approach is rigorous in leading
power of 1/m,. Beyond the leading power, the theory
uncertainties is also not under control. Compared to the
generalized factorization approach, the vertex corrections
provide another source of strong phase in the QCDF
approach. This may be the main reason that our predictions
of CP violation for AY - pK~and AY — pK*~ decays are
larger than the ones in the generalized factorization
approach. In phenomenology, the predictions of QCDF
approach considering only the vertex and penguin correc-
tions in this study should be consistent with those in the
generalized factorization approach when N¢f = 3.

C. A} > A+M decays

There are fourteen processes for the class of
Ag — A + M. The theory predictions and the experimental
data for the branching ratios of Ag — A+ M decays are
given in Table XVIII. The first eight processes which
contain light meson are charmless modes. Their ratios are
small, at the order of 1078 to 107%. Comparing these ratios
with the Ag — p + M processes and the B meson data, the
ratios are smaller by about one order or even two orders.
Our theory predictions rely on the assumption of SU(3)
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TABLE XVIII. Branching ratios of A2—>A+M decays in
QCDF.

Mode Br Experiment
p
0 0 10.78+1.44+0.95 8
Ay = Ar” 57740487 13 060 X 10
0 0 41.5542.454+1.30 -8
A= Ap” 9750155753 095 X 10
0 0 +3.5241.90+1.12 _8
Ay = AKT 7587751 50077 % 10

A= AR 2770000 10
4397 19851104063 L 10=7 (9.3+73) % 1076 [53]

Aj— Ay ~1.01-1.09-0.45 -53

A)— Ay 4037308 1070 <3.1 x 107° [53]
Mo LIZEEDRD0 x 107
A)—>Ap 6337080012085 5 1077 (2.0 £0.5) x 107° [1]
Ap—Npe 24750355055 555 x 107

A) = AJ [y 333035105008 x 107 (5.8£0.8) x 1075/ £, [1]

0 0 10.4240.72+0.43 -6
Ay —= AD 3377475 76 034 < 10

0 ) +0.43+0.74+0.39 -6
Ny = AD™ 3397515 0772051 % 10

0 A0 40.60+1.03+0.61 -7
Ay = AD” 477870577 504y X 10

0 %0 10.6141.054+0.56 7
Ay = AD™ 4817057 o5 045 < 10

symmetry relation for # parameters 3, = f5. Relaxing this
restriction cannot produce a big enhancement because the
numerical results are less sensitive to the variation of .
The processes with charmonium states 7, and J/y have the
largest fractions of order of 107*. The remained four
processes with a final D meson have ratios of 1077 to
1076, They have only the color-suppressed and Cabibbo-
suppressed tree diagram contributions, so these processes
have small fractions and no CP violation. The theory
predictions for the up-down and direct CP asymmetries are
given in Table XIX.

TABLE XIX. Up-down and CP asymmetries for A) — A + M
decays.

Mode a Acp x 10%
AY = Ax® —140.00 250153
AD = Ap° —0.85 £ 0.00 253703
AY — AKO 0417013 —20.61§
A — AK* —0.83 +0.00 -25.11%4
AY = Ap 0247013 ~3.470¢
AY = Ay 0.99-0% L0555
A = Aw —-0.8540.00 58.61 5%
AV = A ~0.80 %+ 0.00 1.6703
A = An, —-0.99 +0.00 0

A = AJ )y —-0.21 +£0.00 0

AY = ADP —1.00 £ 0.00 0

AY = AD™® —0.54 +0.00 0

A9 — AD° —1.00 £ 0.00 0

AY = AD™ —0.54 +0.00 0

The AY — Az°(p°) processes has no QCD penguin
contributions. The b — siu transition is cancelled by b —
sdd contribution because the opposite sign for #u and dd
components in z°(p°). For the B® — K°z° process, there is
one extra term by the Fierz transformation, so that b — sdd
QCD penguin contribution is not canceled. The experi-
mental data gives B(B? — K%z°) = (9.9 £0.5) x 107°
which is very large. But for the baryon case, there is
no QCD penguin contribution. This difference between the
meson and baryon is due to a fact that the spectator in
the baryon is a diquark and it is an antiquark in the meson. The
tree diagram is color-suppressed and is further suppressed by
small CKM elements V,;,V;,. The electroweak penguin
contribution is small but cannot be neglected in this case.
The branching ratios are predicted to be very small, at the
order of 1077 or 1078, They have large direct CP asymmetry,
about 30%, but difficult to measure in experiment.

The A — AK°(K*?) processes have no tree diagram
contribution. They are the pure penguin processes which is
QCD penguin dominated. But they are b — d transition
where the CKM elements V,, V7, is suppressed. For the
Ag — AK*0 process, only a4 term contributes, the ratio is
predicted to be very small, only at the order of 108, For the
Ag — AKDY, there is chirally-enhanced a term, so the ratio
is increased to be about 1077, The direct CP violation is
large for these two processes.

The A) — An(yf') processes are important in phenom-
enology. They contain information of # —#' mixing and
QCD anomaly related to #’ [59]. In this study, we do not
consider the anomaly contribution to #7/. The two processes
AY) = An(n') are b — s QCD penguin dominated. The ag
term is chirally enhanced by R, or R, defined in the
Appendix C. For the Ag — An process, our approach gives
the branching ratio B(AY — An) = (3 -6) x 1077 with
large theoretical uncertainties. A recent measurement from
the LHCb collaboration gives (9.3773) x 107°. The
experimental error is quite large. But it is certain that
our theory prediction is smaller than the data. For the
Ag — An’ process, our approach gives prediction as
B(AY — Ar') = (3 —7) x 1075, which is about one order
larger than the # process. The LHCb data gives an upper
limit B(AY - An') < 3.1 x 1075, which is close to the
lower limit of our prediction. The further experiment may
show some discrepancies between theory and experiment.
The direct CP violation in these two processes are
both small.

One can define a ratio of 7 to #' to reduce some model
dependence. For this purpose, a ratio RnAn’ is defined by

B(A) = An)

RA, = A0 A
" B(A, = AY)

(101)

In our approach, RnAn , = 0.117531. One early study used the

generalized factorization approach and the results are [54]:
B(AY— An)=11.47x107°, B(AY— Ay')=11.33x 1070,
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and R®, = 1.01, for form factors calculated in QCD sum
rules;  B(A) — Ap) =2.95x 1075, B(A) - Ay) =
3.24 x 107°, and R®, = 0.91, for form factors calculated
in a pole model. Another study also uses the generalized
factorization approach [8], and the results are:
B(AY) - An) = (147 £0.35) x 1075, B(A) - Ay) =
(1.83+£0.58) x 107°, and R}, = 0.80+0.32. One can
see a large difference in predictions between different
approaches. The reason leads to the difference may be:
(1) Anomaly contribution. In [8], one effect of anomaly
term is introduced in the 7(7') decay constants. (2) a and
ag contributions. In our study, we used the equation of
motion, the ag and ag terms are enhanced by factor
R, =m?/(mymg) =22. Our prediction for the ratio
B(A) — Ay) is large. There is no enhancement for
A(,; — An, so the predicted ratio is small.

The AY - Aw process contains both the tree and
penguin contributions. The tree is color-suppressed and
CKM parameter suppressed. It seems that this process
should be dominated by b — s transition QCD penguin.
But the prediction of the ratio is very small, only at the
order of 1078, The reason is due to a destructive interfer-
ence in the a3, as, aqg terms. This case is very similar to the
cancellation of QCD penguin in A) — Az°(p) decays. The
direct CP violation in A) - Aw is predicted to be quite
large, about 60%, but the small decay ratio makes it
impossible to measure in experiment.

The process Ag — A¢ is interesting in both theory and
experiment. In SM, the process can only be occurred
through loop effects described by b — s5s penguin dia-
grams. This flavor-changing-neutral-current (FCNC) tran-
sition is very sensitive to new physics effects. From an
experimental point of view, the measurement of its decay
ratio, CP violation, and T-odd observable provide an
important test of SM and different new physics models.
The direct CP violation is predicted to be small, about
1-2%. The up-down asymmetry « is —0.8 in our approach.
In experiment, this process has been observed. The meas-
urement from the LHCb collaboration gives B(AY —
Ap) = (5.18 £1.04 £ 0.35708]) x 107° [2]. From the
PDG on the web, 2017 updated result gives B(A‘l)7 -
A¢) = (2.0 £ 0.5) x 1076 [1]. The central value is lowered
by a factor of 2 compared to the LHCb data. Our theory
prediction is B(A) - A¢) = (5-7) x 107" which is
smaller than the data. By comparison, the result in [§]
using the generalized factorization approach gives B (Ag -
A¢) = (3.53 4+ 0.24) x 10~ when the number of color is
chosen as N¢f = 2.

Why our theory prediction is smaller than the data? One
reason may be the small A, - A form factors. By
increasing the A, — A form factors, the ratio of A —
A¢ is increased. But the ratios of processes A) — pz~(K™)
will be larger than the data. Thus, this explanation is
excluded. Another reason is the nonfactorizable effects. In
this study, we only consider the vertex and penguin

corrections. There are other effects, such as hard spectator
interactions, power corrections, etc. According to the
meson-baryon similarity, one can use the data of the meson
process to extract the strong interaction information. All the
nonfactorizable effects are included in the effective coef-
ficients. From Eq. (65), the combined coefficient of Ag -
A¢ is equal to the coefficient of the corresponding meson
process B — K%¢. By use of the B — K%, the combined
coefficient a can be obtained. Then, one can give prediction
for the Ag — A¢ decay. The advantage of this method is
that the theoretical uncertainties of the QCDF approach are
reduced by the experiment data. This method has been
adopted for Ag — pK~ process in [6]. We want to note that
this method is not rigorous for A) — pK~ because the
difference of chirally enhanced term in the baryon and
meson systems. The application of AY — pK~ is based
upon assumption that the chirally enhanced contribution
does not change the meson-baryon relation significantly.
Table XX gives the predictions of branching ratios of
A) — A¢g and A) — pK~ by use of the meson-baryon
similarity.

From Table XX, we can find that the prediction of
A) — A¢ decay coincides with the experimental data very
well. It verifies our speculation that the nonfactorizable
effects lead to the difference between the theory prediction
of QCDF approach and the experimental data. However, it
is not easy to improve the QCDF predictions because of
technical difficulties. For example, the power corrections
are nonperturbative in principle. The calculations is
difficult and model dependent. The estimation of hard
spectator interactions also requires some phenomenological
parameters.

The A) — An.(J/w) processes proceed via b — scc
transitions at the quark level. The tree diagram is color
suppressed but the CKM elements V., V7, are large. The
QCD penguin contributions are important. Their ratios are
predicted to be large, at the order of 10~*. Because the
Ag — AJ/y process is more interesting in experiment. We
discuss this process in more detail.

From PDG, one can find that the ratio of A) - AJ/y
process is not given directly. The data gives a value of the
ratio of Ag — AJ/y multiplied by a ratio of Ag production.
This is because there is no an accepted measurement of the
production rate of AY which is defined by fj =
B(b — AY). In literature, the choice of f A0 is different
and arbitrary. In this study, we take the averaged value
from Heavy Flavor Averaging Group [55]. Some other

TABLE XX. Estimations for the branching ratios of A) — pK~
and Ag — A¢ processes by using the meson data.

Mode Theory Experiment
A) - pK- 6.67 x 107° (5.1 +1.0) x 1076
A) = A 1.76 x 1076 (20+£0.5) x 107°
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production rates are also provided for reference. We
introduce f,, fa» fs» foaryon» fao as fractions of B*, B,
BY, b baryon, AY. For CDF measurement,
Fao/ (Fu+fa) =0229+0.062, f,=f,=0340+0.021,
fs=0.101 £0.015, fpayon = 0.218 £ 0.047 when using
the Tevatron data only. Then, we obtain

a0 = 0.156 £0.045. (102)

In the previous study [5], f A= 0.1. By use of the above
value of f A= 0.156 £ 0.045, the experimental data for

the branching ratio of Ag — AJ/y process can be given
to be

B(AY —» AJ/w) = (3.72 £1.07) x 107*.  (103)
Our  theory  prediction is  B(A) - AJ/w) =
(3.337989) x 107*. 1t is consistent with the experimental
data very well. The consistency is based upon that we choose
a large a, for calculations. Considering only vertex and
penguin corrections in leading power of 1/m,, the obtained
a, is small and insufficient to explain the data for the color-
suppressed processes. In fact, for the process Ag - AN /y
where the nonfactorizable effects are substantial, the theo-
retical uncertainties in QCDF approach is very large
although the factorization is applicable. By comparison,
the result in [56] gives the ratio B(A) — AJ/y) = 1.6 x
10~* which is smaller than ours by a factor of 3 but still
consistent with the data.

The up-down asymmetry « is also an experimentally
interested quantity. From PDG, the parameter a for
Ag — J/wAisa=0.18 £ 0.13 [1]. A recent measurement
from the CMS collaboration gives @ = 0.14 + 0.14(stat) £
0.10(syst) [57]. Both the results are consistent with 0. Our
theory prediction is a = —0.206.

D. A) > n+M decays

Up to now, there is not any experimental data on the
process of Ag — n+ M. One reason is the difficulty in
detection of the neutron. Maybe the future experiment can
overcome this difficulty to improve the study in this class of
processes. The theory predictions for the branching ratios
of decays Ag — n+ M are given in Table XXI. The up-
down and CP asymmetries are given in Table XXII. We
will discuss A — n 4+ M decays similar to the A — A +
M decays.

Unlike the AY — Az°(p°) processes where QCD pen-
guin contributions cancel, A) — nz°(p°) processes contain
both the tree and penguin contributions. The tree diagram is
color-suppressed and the CKM elements is V,,V} .
The QCD penguin is b — d transition which is suppressed
by V., Vi, or V,, V.. The tree and the penguin contribu-
tion are at the same order. The predicted branching ratios
are at the order of 1077, The direct CP violation is very

TABLE XXI. Branching ratios of Alo, — n + M decays.

Mode Br

Aj — na’ (L1457 053 ) x 1077
Ay = np’ (1.891573 05109 ) X 1077
Aj = nk? (20125457053 050 ) X 107
Aj = nk* (8041045 56070 ) x 1077
Ay = (24600 05 036 ) x 107
Aj — it (5025761151055 ) x 1078
Aj = ne (8.851024 550 057 ) X 107
Ay = no (2:29%535 01053 ) X 107
Ap = e (14326762050 /14’ ) > 1073
Ap = nlfy (2.06%75 02" ) x 1073
Aj = nD° (6452056135 03 ) 107
Ap = nD*0 (6.702035 1 go-0.63 ) X 107
Aj — nD® (2.60%73 063036 ) X 107
Ay = nD" (2712036 07056 ) x 1078

large for these two processes, about 20-30%. Considering
the meson decay B? — 7°2° the predicted ratio in the
QCDF approach is also of order 1077 but the data is about
107%. The nonfactorizable effects must be important
in A - na%(p°) processes. The measurement of
A) — nn®(p®) can test the effects of nonfactorizable
contributions.

The A) — nK°(K*?) processes have no tree diagram
contribution. Similar to AY — A¢, they are the pure
penguin processes dominated by QCD penguin. At the
quark level, penguin diagram proceeds via b — sdd tran-
sition where the CKM elements V V7, is not suppressed.

TABLE XXII.  Up-down and CP asymmetries for A) — n + M
decays.

Mode a Acp x 10%
AY - nz® -0.8270:08 222795
AY — np° -0.81 £0.00 29.414
A9 = nk® 0382017 1.0£0.0
AY - nk*0 -0.79 £ 0.00 12703
AY = nn -0.551017 —-43.1137
A9 = nyf -0.707 99} 36.471%5
A9 = nw -0.81 +0.00 —42.2%82
A = ng —0.78 + 0.00 0

A) > nn, -0.96 + 0.00 —-1.759
A = nd/y -0.21 +£0.00 13704
A9 = nD° —1.00 + 0.00 0

AY — nD*0 -0.52 £ 0.00 0

A9 - nD° ~1.00 £+ 0.00 0

A9 = nD*0 —0.52 +0.00 0

054020-29



JIE ZHU, ZHENG-TAO WEI, and HONG-WEI KE

PHYS. REV. D 99, 054020 (2019)

TABLE XXIII.

Branching ratios B and direct CP asymmetries Acp in GFA and our approach for the charmless processes.

B x 10° Acp x 10
Mode GFA [9] This work GFA [9] This work
AY - pr~ 4.25709% 430752 -3.9+04 34702
AY) — pp~ 11.03772 747337 -3.8+04 -3240.2
A) = pK- 4.4970%4 2174129 6.7+0.3 10.15)3
AY - pK*~ 2.861055 1.015957 197+ 1.4 311478
AY — Az (3.410%) x 1072 (5.741]%3) x 1072 0.0 25.0°%4
A) = Ap° (9.559) x 1072 (9.7573548) x 1072 23107 25373
AY - AK? (9.4733) x 1073 (7.58743) x 1072 0.2595 —20.61]4
AY — AK* (9.2737) x 1072 (2.775978) x 1072 1.340.1 -25.11734
AY = Ay 159108 0.44 103 04402 -3.459¢
A9 - Ay 1.90755% 4035378 1.6 £0.1 1.0,
A) = Aw 0.71%539 (L.1539) x 1072 3.604% 58.6115%
AY = A¢ 177416 0.637012 14507 1.6°04
AY - nz® 0.10 +£0.03 0.11590¢ 8.0\ 222795
AY = np? 0.18 & 0.09 0.1973:06 140+ 1.8 29474
A9 — nk® 46173 2.017320 1.1£0.0 1.0+0.0
AY — nK*° 3.09% 047 0.80105¢ 1.34+0.1 1.21597
A9 = np (6.9727) x 1072 (2.467033) x 1072 -16.8 £2.1 —43.173
AY = nyf (424 1.8) x 1072 (5.021363) x 1072 —15.7120 36.41163
AY = nw 0.2270¢ (8.8573717) x 1072 —18.213%4 —-42.27%3
A9 = ng 0.02757 (2.291392) x 1073 -8.8771 0

The ratios are predicted to be large, at the order of about
1075. Explicitly, they are

B(AY - nK?) = (2.01179) x 1075,

B(AY — nk**) = (0.80 + 0.26) x 1075, (104)

The AY — nK? process is expected to be observed in future
experiment. One the contrary, due to the large decay ratio,
the direct CP violations in A) — nK°(K*?) processes are
both small, only about 1%.

The A) — nn(n') processes also provide information of
the 7 — 7’ mixing. But the penguin contributions proceed
via b — d transitions which are suppressed by small CKM
elements. So the ratios of these two processes are very
small, only at the order of 1078, The direct CP violation is
predicted to be about 40%, but difficult to measure.
Similarly, Ag — nw(¢p) processes are b — d transitions,
and the branching ratios are small.

The AY — nn.(J/w) processes proceed via b — déc
transitions at the quark level. The tree diagram is color
suppressed and the CKM elements V., V", are suppressed.
The predicted branching ratios are at the order of 107,
which is smaller than ratios of A) — Az, (J/y) decays by
one order. The CP violation is small, too. The processes

A) - nD°(D*) have the color-suppressed tree diagram
contribution. The branching ratios are orders of 107>, The
processes of AY) — nD(D*) are further suppressed by
small CKM element. The branching ratios are orders of
10~ and direct CP violation is 0.

In [9], the authors provide predictions of branching ratios
and direct CP asymmetries for 20 charmless processes in
the generalized factorization approach (GFA). We compare
their results with ours in Table XXIII. For the errors of their
results, we only list the error from nonfactorizable effects or
the largest error due to limit of space. From Table XXIII,
most predictions in the two approaches are consistent
within the theoretical uncertainties. There are some excep-
tions. The difference in Ag — An(n') processes has been
explained in the above subsection. Our prediction for the
ratio of Ag — Aw decay is small. But the errors of GFA
result is large and the two approaches are consistent. For the
direct CP violation, nearly all of our predictions are larger
than the results of GFA. In some processes with small
ratios, the difference becomes very obvious.

VIII. CONCLUSIONS AND DISCUSSIONS

In this study, we provide a comprehensive study of the
semileptonic and nonleptonic decays of Ag. Compared to
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our previous analysis, there are several improvements. The
baryon-baryon form factors are calculated in the covariant
light-front approach where the quantities of f3 and g3 can
be evaluated. Different ratios and asymmetries in the six
semi-leptonic processes are studied. The two-body non-
leptonic decays are analyzed beyond the tree operator
contribution. The penguin diagram contributions including
the QCD and electroweak operators are taken into account.
We calculate the nonleptonic decays of A) into a baryon
plus a s-wave meson (pseudoscalar or vector) including 44
processes in total within the framework of QCD factori-
zation approach. For some processes, our calculations are
given for the first time up to our knowledge. Among the 44
processes, there are about 9 processes observed in experi-
ment. Compared to the precise and large amount of data for
the B meson from PDG, the experimental results for A(,; are
very few. The weak decays of Ag provide an important
place to explore CP violation and QCD dynamics in the
baryon environment. We hope that this work can promote
the study of A, and provide a reference for future
experiments.

For the semileptonic processes, the theory predictions
are in accord with the experiment. This accordance verifies
the diquark approximation. The semileptonic decays with
tau lepton are predicted to be at the same order as the light
lepton process. The ratios of tau to electron or muon decays
provide a test of theory models in SM. We extract the CKM
parameter |V ;| from the data of A) — pu~U, by use of
our model.

For the nonleptonic decays A9 — AC*D(;)_ where the
final states are both heavy, factorization hypothesis works
very well. But in QCDF, these processes are not factoriz-
able. We test the factorization assumption by use of several
relative ratios and do not find deviations. The mechanism of
factorization should be beyond the “color transparency”
argument and the perturbative framework. The large N,
limit is also not a justified mechanism of factorization.
There must be some nonperturbative mechanisms which
prefer the factorization of a large-size charmed meson from
a soft background.

The charmless nonleptonic decays are interesting in both
theory and experiment. The branching ratios of the
observed AY decays are at the order of 107%. By compari-
son, the corresponding B meson decays have the ratios of
order of 107>, This fact implies that the ratios of the AY
decays are smaller than those of the B meson by about one
order. Because the data for the Ag and B meson decays in
the semileptonic and charmful nonleptonic processes are
quite similar, the difference that occurred in the charmless
nonleptonic processes seems to be a problem. From the
theoretical point of view, the baryon-to-baryon transition
form factors have to be adjusted to be small, about 0.1. The
heavy-to-light form factors for the B meson are about 0.3.
A natural question arises: why are the heavy-to-light
baryon form factors smaller than the heavy-to-light meson

form factors by a factor of 2 or 3? With the diquark picture,
it is difficult to understand this question.

According to the numerical results, we list the processes
with large branching ratios which may be observed in the
future experiment: Afp~, AFK*~, AtD*~, ATD*", pp~,
pK*~, pD;, pD:~, A, Ay, AD°, AD*°, nK°, nK*°, np,,
nJ /y, nD°, nD*°.

The direct CP violations in the processes of pK and pK*
are predicted to be large. The values are about 10% and
30%, respectively. The pK* process are most promising.
This phenomenon was first observed in [7] by use of the
generalized factorization approach. Their prediction of
direct CP asymmetry is 20%. Our prediction is larger than
theirs. In QCDF approach, the vertex corrections provide
another source of strong phase. The large CP violation is
caused by the interference of tree and penguin contribu-
tions. The pK* process is a rare case that the tree and the
dominant QCD penguin contributions have the
same magnitude and contain different weak and strong
phases.

We compare our results with the predictions given in the
generalized factorization approach. We find that most
results of the two approaches are consistent within the
theoretical errors. This is not accidental. Our results should
be close to the predictions in generalized factorization
approach when N, = 3. QCD factorization solves some
conceptual problems in the generalized factorization and
develops a more rigorous method. We stress that we neglect
some nonfactorizable effects in our calculations, such as the
hard spectator scattering, weak annihilation etc. These
effects are important in phenomenology. When the data
becomes more precise, these effects should be taken into
account.

Under the diquark approximation, the baryon is similar
to the meson. The A¢ process can be used to test the
meson-baryon similarity. Replace a diquark with an anti-
quark, A) — A¢ process is changed to B® — K%). At the
quark level, the QCD dynamics for the two processes are
same. By use of the data of B® — K%, we can extract the
combined coefficient and then predict the ratio of
Ag — A¢. The prediction by this method coincides with
the experiment very well.

Conventional wisdom is that the baryon system is more
complicated than the meson. This opinion is based upon the
three-quark picture for a baryon. The complication can be
seen clearly in an analysis of A, — pz(K) process in the
perturbative QCD approach [13]. There are more than 100
Feynmann diagrams even at the tree level. However, our
study may provide another picture: the baryon is as simple
as a meson. The bridge to relate the baryon and meson is
the diquark. This study, in particular in decays of
Ag — A¢, and many previous studies verify the effective-
ness of the diquark assumption. With the diquark approxi-
mation, the study of heavy baryon may be developed to a
similar stage as the B meson physics.
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APPENDIX A: THE CONVENTIONAL
LIGHT-FRONT APPROACH

In the conventional light-front approach, a baryon A,
with total momentum P and spin S = 1/2 is composed of a
quark ¢; and a scalar diquark can be written as

|Ag(P, S, S.))
N /{d3p1}{d3pz}2(2”)253(i’ = D1~ P2)

XZ‘I’SS:(p”l,pz, 1)C5,F"|Qa(p1, 2 D dh) (p2)),
A

(A1)
where Q represent b, ¢, s u, d, [q,¢,] represents [ud], 1

denotes helicity. p;, p, are the on-mass-shell light-front
momenta defined by

p=(".pL), pL=0"pP"), p = P (A2)
and
T2
(@ry =T () =0 )R (),
10(p1.41)[9192)(p2)) = b}, (p1)a’ (p2)[0),
la(p'), a’(p)] = 2(27)*8* (P - p),
{ds(p)). d}(p)} = 2(27)°6* (P = p)8s- (A3)

The coefficient C2 is a normalized color factor and F?¢
is a normalized flavor coefficient. They satisfy

o FPC FY (P}, 20) [y @) (P5) | QalP1 A1)

X [QIb‘thpZ»

=22(2m)%8* (P — p1)5° (Ph — 152)51’1/11- (A4)
The intrinsic variables (x;, k;, ) with i =1, 2 are
pi=x\P", py=xP", x;+x,=1,
pri=xXiPi+ki, pri=xP +kyi, ki=—ki =ky,
(AS)

where x; with 0 < x, x, < 1 are the light-front momentum
fractions. The variables (x;,k;;) are independent of
the total momentum of the hadron and thus are

Lorentz-invariant variables.
M3 is defined as

The invariant mass square

L Y
We define the internal momenta as
ki = (ki ki ki) = (e — kizy e + kiz ki)
= <mi%Mljl,xiMo,kil>. (A7)
Then, it is easy to obtain
My =e; + ey,

where e; denotes the energy of the ith constituent. k;; and
k;, constitute a momentum vector k; = (ki1 k;;) and
correspond to the components in the transverse and z
directions respectively.

The momentum-space function W55 in Eq. (Al) is
expressed as

WSS (b1, Pasdy)

1
= (MR} (xr, Ky my)|s1)(00; 5

1

5l38Ide ko). (A9)

where ¢(x, k) is the light-front wave function which
describes the momentum distribution of the constituents in
the bound state with x = x,, k| = ky,; <OO s,| S.) is the
corresponding Clebsch-Gordan coefficient w1th spin s =
s, = 0 for the scalar diquark; </11|RL(xl,ku,m1)\s,> is
the well-known Melosh transformation matrix element
which transforms the conventional spin states in the instant
form into the light-front helicity eigenstates,

<AI|RL('X17 klj_’ ml)‘sl>

_ iu(ky, Ay )up(ky,sy)
2m1

_ (my 4 x;My)By,5, + 16,5, - ki X7
V(my +x My)? + k3,

, (A10)

where u(p) denotes a Dirac spinor in the light-front (instant)
form and 72 = (0,0, 1) is a unit vector in the z direction. In
practice, it is more convenient to use the covariant form
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. 1 1
(LR (xhku,ml)|51><00§551|55z>
1 B _
= ————i(py, }))Tu(P,S,),

\/2M0(€1 + ml)

where I' = 1 for scalar diquark.
The heavy baryon state is normalized as

(Al1)

(A(P'.S'. SLIA(P.S. S.)) = 2027 P8 (P' - P)5gsbys..
(Al12)

Thus, the light-front wave function satisfies the constraint

dxd?k B
[ S e kR = 1.

(A13)

APPENDIX B: THE COEFFICIENT a; IN QCDF
APPROACH

Here, we give the results for the coefficients a; at next-to-
leading order in a . From [24], their formulas are given by

C, [ Cpa, ]
GIICI‘I‘N—Z 1"‘ :ﬂ' VM ,

Ci[. Cra,. ]
a2:C2+N—1 1+ :ﬂ‘VM,

Cy[ Cra,
a3:C3+N—4 1+ 41;_ Vil

C Cra Cra, P}
q:C =3 1 F sV F%s M2
4 4_I_NC + iy4 M_ + 4z N, '’

C Cra,
a5—C5+N—6 1+ jﬂ ( Vﬁw)},

C5 CFag CFaSPIqVI3

=Ce+-—(1-6 =,

“6 6+NC< 471) 4r N,

C Cra,
a; = C; +NS{1+ :ﬂ (—Vfw)}

C Cra a PLEY
{=Cy+ 1 (1-6—"12) + =2
4 =Cs oy 4z ) "9z N,

CO Cas
a9:C9+N] [14— :ﬂ (- ?u)]’

C Cra a PEEY
1 =Crp+—|1+—2= — Mz Bl
g 10+Nc + Ay M +9ﬂ N, (B1)

where C; = Ci(u), a,=a,(u). Cp=(N2-1)/(2N,),
and N. = 3.

The vertex corrections are given by

my, 1
Vy =12In—-18 +/ dxg(x)®y,(x),
H 0

7 mp !

Viy=12In——=6+ [ dxg(l —x)Dy(x),
H 0

1—-2x

1—x

2Inx
1—x

g(x) =3 ( Inx — m) + [ZLi2 (x) —In%x +

—(3+2i7r)lnx—(x<—>1—x)},

where ¢;(x) = 6x(1 —x) is the leading-twist light-cone
distribution amplitudes. The asymptotic form of the twist-2
distribution amplitude is adopted. A discussion on the
nonasymptotic form of the pion distribution amplitude
can be found in [58]. For the asymptotic form, we
have [ dxg(x)py(x) = —1-3ix.

The penguin contributions are given by

4 m 2
PI({/[,2 = C1 |:§1I17b+§— GM(Sq):|

8 4
+Cs [ 42 Gy (0) = Gy (1)
3 u 3

4ny  m

d

= Gyts) = Gu)| =265 [ gt

4 2
PiE = (C) + N.Cy) [gln% +3- GM(sq)}

1o
_3C6ff/ ,
Ty 0 1 —x ¢M(x)

where ny =5 is the number of light quark flavors, and
s, =0, s, = (m./m,)? are mass ratios involved in the
penguin diagrams. The function Gy,(s) is given by

Gul(s) = Al dxG(s —ie, 1 = x)py(x),

G(s,x) = —4/0l duu(l —u)Infs — u(1 — u)x]
~ 2(12s + 5x = 3xIns)
9x
_4vas —x(2s +x)

3x3/2

. X
arctan
4s — x°

and
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5 2 32
Gy(s.) = g—glnsc —|—?sc + 1652

2
-3 V1 =ds.(1+2s, + 24s2)
4
x (2arctanh\/1 —4s, — i) + 1252 {1 - gsc]

x (2arctanh/1 — 4s,. — ix)?,
5 2in
Gyu(0) = 3 + 3

85 4r?

where [ ¢, (x) = 3.
The twist-3 terms are

4. m, 2 4
PZL3 = C] |:§1n7b+§— GM(sq):|

8 my, 4 . A

dn, m A
+(C4 + Cg) {T"lnj’ — (n; —2)Gy(0)

s, - GM<1>] ~ac,

4 my, 2 4 )
PZ,}gW =(C;+N.G,) [§ln7b+§—GM(Sq)] _3C%§/f’

where
. 1
Gul(s) = / dxG(s — ie, 1 — x)pM (x).
0

The asymptotic twist-3 distribution amplitude
¢¥ (x) = 1. We have

A term:

Gr

‘=

TABLE XXIV. The Wilson coefficients C; at different scale u.

JZ C &) C3 Cy Cs Cs
u=my,/2 1.185 -0.387 0.018 -0.038 0.010 -0.053
H=m, 1.117 -0.268 0.012 -0.027 0.008 -0.034
u=72my, 1.074 -0.181 0.008 -0.019 0.006 —-0.022
H Ci/a Cs/a  Cola Cyla C5 Cay

u=m,/2 —0.012 0.045 -1.358 0418 -0.364 —0.169
u=my, -0.001 0.029 -1.276 0.288 -0.318 -0.151
u=2m, 0018 0.019 -1.212 0.193 -0.281 -0.316

A 16
Gu(se) :g(l —3s.)

2
—g[lnsc + (1 —4s,)*/?(2arctanhy/1 —4s, —ix)],
R 16 2=z

Gy(0) =5+ 1.
A 2r 32

The numerical values of the Wilson coefficients are taken
from [24] and are collected in Table XXIV.

APPENDIX C: A FUNCTIONS
FOR DIFFERENT DECAY MODES

(1) AY - Af + M processes
In A) > Afn~,

G
A= —gfﬂVCbVZdal'

V2

In A9 > Atp,

G
1= 7gfpVCszdal
In Ag - ATK™,
G
1= 7ngVcbVZsal
In A - AFK*,
G
A= 73fo VepVisar

In A) > AFD-,

IolVaVigar + Vi Viglal + aly) + Ve Viglag + ajo) +Rp- (Vi Viglag + ag) + Ve Vig(ag + ag))l,
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B term:

G ~ ~ * u u * C C
A= —ng[Vcthdal + Vi Viglay +aly) + Ve Vig(ag + a5o)=Rp- (Vi Vig(ag + ag) + Ve Viglag + ag))],

7

. 2m? -
with RD— = m.

In AY - A D",

G
1= —; For Ve Vigar + Vi Vi (a4 aly) + Ve, VE(a§ + ay)).

NG

In AY - A Dy,
A term:

*

G
A= _;fDx[Vcszsal + Vi Vis(ay + aly) + Ve, Vi(ag + a5o)+Rp- (Vo Vig(ag + ag) + Ve, Vis(ag + ag))].

\/» us
B term
Gr * * (U u % (C c * (U u % (C c
A= 7§fDX [Vcbvcsal + Vubvus(a4 + alO) + Vcbvcs(a4 + alO)_RDy(Vubvus(C% + a8) + Vcbvcs<a6 + aS))]’
. Zm%;

In AY > A+D:-,

G
A= 7%ij Ve Visar + Vi Vis(ag + afy) + Ve Vig(ag + afy)]-
(2) A - p + M processes

In A) - pn~,

A term:

G .
A= _;fﬂ[vubV:;dal + Vi Viglay +aly) + Ve, Vig(ag + afy) + Re- (Vi Viglag + ag) + Vi, Viy(ag + ag))],

75

B term:
GF * * u u * ¢ ¢ * u u * ¢ ¢
A= Efﬂ[vubvudal + Vi Viglay +afy) + Ve Vig(ag + afy) = Re- (Vi Vig(ag + ag) + Ve Vig(ag + ag))l,
. 2m72[,
with R,- = Ty
In A) - pp~,
GF * * u u * c c
A= ﬁfﬂ[vubvudal + Vi Vialai + aly) + Ve Viglag + afy)l.
In AY) > pK-,
A term:
G
A= _FfK[VubVZsal + VubVZs(az + alfO) + Vcbvzs(ai + a?O) + RK’(VubVZs(ag + ag) + Vcbvzs(ag + ag))]’

V2
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B term:
G
A= 7ng[V,wVZ‘,Sal + Vo Vis(af + aly) + Ve Vis(ag + a$y) — Rx- (Vi Vis(al + af) + Vo, Vig(ag + ag))).
. 2m2_
with RK— = 7(ml‘+,7l§&),nb.
In Ag — pK*~,
GF * * u u * c c
A= \/_sz* [Vubvusal + Vubvus<a4 =+ alo) + Vcchs(a4 + alo)}-
In A) - pD~,
G
A= 7ngVubVCda1
In AY —» pD*~,
Gr
A= ﬁfD* ViubVeat
In Ag — pDy,
G
A= 7%160; Vi Visar
In Ag — pDi~,
G
A= 7%f1); Vi Vesar

(3) AY - A + M processes
In A) - Az°,

G 3 3
A= 7%]% |:VubVZs(_02) =V Vis <§ az; — E%)} .
In AY — Ap°,
G 3 3
A= 7%on [Vuhviis(—az) =V Vi <—5a7 - 5%)] ,

: d _ J»
with fp =7

In AY - AKY,

A term:

Gr * u 1 u u 1 u * ¢ 1 ¢ c 1 c
A= 7§fk [Vubvud(aét ~5 %0 T Ry (“6 _2a8>>+vcbvcd (“4 ~5 %0t Ry (“6 _2"8>>}

B term:
G 1 1 1 1
A= 7ng [VubVZd (af{ ) afp = Ry (ag‘ - 5“?) ) Ve Vea (ai - Eafo — Rgo (ag - §a§> )} ’
. 2m?
with Rgo = 7(’nx+":l(:)’nb'
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In AY - AK™,

GF * u 1 u * c 1 ¢
A= ﬁf}(* |:Vubvud <a4 - Eam) + VCbVCd (Cl4 - 56110>:| .

In AY - A,
A term:

G ) ) Lo LY B S B
A= \/gfff{vuhvmaz +ViupVus [(2613 —2as — Sy ts a9> u <a3 tag—as+sa;—5ay - 2“10)]

n

. 1o £ . (S U
—l—Vcchs 2a3—2a5—§a7+§a9 +—£]t 613"‘614—615"’5617—5619—5&10

7 i (et 3a) +vavi i (-3 |
+ =R, UV Vi ——al | +V,Vi ——a ) ¢,
V2! { AL TANC A bre pd 28

B term:

G . . R R/ (S U
A= \/_g ’L’;{VLthusa2 + VirVis [(2613 —2as — 54 += a9> fn <a3 +ay—as+ 5417549 = 5“10)]
fﬁ

1 1 11 1
Vol (202 =20+ ) n(‘“"‘* as gy =54}

GF f’? 1 fn 1 )
_—R u V V* u __ _ U V V* — — € ,
\/§ qfr]{ ubV us f;y < 2a8> +VeaVes fd 2a8

. 2m?
J— Ui
with R, = (R

In Ag - A7,
A term:

S

G 1 1 Iy 11 1
A= éfz,{vuijxaz —+ VubV’,jS |:(2CZ3 - 2615 3 ~a + = 619> f” <Cl3 + 614 ds + 507—5619 - Ea’f())]

. 1 1 f* . 11 1,
+VcbVCS 2613—2(15—5(17 +§Clg fu a3+a4—a5 +§a7—§a9—§alo

Iy 1 Iy 1
- BRI Vo f( _5“§>+V”V”fd(“ -34)}

B term:

G 1 1 I 11 1
/1 = ﬁfz,{VMijsaz + Vu,,Vf,S [(2(13 - 2a5 - §a7 + = Clg) fu <613 + a — ds + 5617_5619 - Ea’l‘())]

i 1 1 fs 11 1,
+ Vcchs 2613 — 2615 2617 + = 619 (613 + 614 ds + 5617—5619 - 56110

fu
G Sy 1 Iy 1
\/f;Rﬂf”{ Mbvu‘fu (ag_z )+VLbVerd <a _§a§>},
| 20,
with R’I’ = W
In AY > Ar,.,

G
= Ffm.[VcbVaaz =V Vislas —as — a; + ay)].

V2
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In AY) - AJ/y,

Gr
A=— Ve Visa, — Vi Vidlas + as + a7 + ag)).
ﬂfj/w[ b 2 wVis(as + as + a 9)]

In A) > Aw,
G 1 1
A= 7%fg) [Vu,,V’,jsaz - thV?S <2Cl3 + 2a5 + §d7 + 2a9>] s

M d_fru
w1thfw—7§.
InA2—>A¢,

UL/ IPRARPRRSE DU SRR VR VIO SNSRI IS DU O

_\/§f¢ ubYus| 43 T Ay T ds 207 2‘19 2a10 chVes| A3 T dy T ds 207 2“9 2a10 .
InA2—>AD0,

G
A= 7ngvcbVEsa2-

In A) - AD*,

G
lz—g%WwWMx

o
In A) — ADY,

ﬂ—%mmm@
In A — AD™,

A=%MWMM.

(4) A — n+ M processes

In AY > nnd,
b

A term:
G 3 3 1
A= \/—gfio{VubV:d(—az) + VMbVZd <Cl2 + 5617 - 5619 - zaﬁ‘())
% ¢ 3 3 1 c * u 1 u * c 1 c
+VCchd a4—|—§a7—§a9—§alo +Rﬂ0 Vuqud 06—5618 —I—VCI,VCd (16—5(18 .
B term:
G 3 3 1
A= \/gfio{Vuszd(—az) + VubVZd <Clg + 507 - iag - 2a’f0>
* c 3 3 1 c * u 1 u * ¢ 1 c
+ VeVl ag + @54 ~5dig | ~ Roo | VipVia\ a6 — S% )T VerVia| ag = 5% ;
ith f4 = 1z and Rpp = o
wi fﬂ V2 an 2 = Tmgtmg)my
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In AY - np°,

G 3 3 1 3 3 1
ﬂ :7gf/)0|: uqud( 612) + V bV < §a7 —zag —Ea'l‘())—i—VCbe,d(aﬁ —§a7 —zag —§a€0>:|
In AY - nKk°,
A term:
Gr 1, p 1 L. L.
/1:7§f1< [Vubvus (614 2‘110+RK° <‘16 ~54% >>+Vcbvcs <a4 2‘110+Rk0 (%‘5%))}
B term:
GF * u 1 u u 1 u * c 1 c c 1 c
:Ef,{ Vb Vis a4—§a10—RKo aG—Ea8 +VpVis a4—5a10—RK0 a6—§a8
. 2n120
with RKO :W

In Ag - nK*0,

GF * u 1 u * c 1 c
A= ﬁfl(* |:Vuhvus <a4 - 2“10) + Ve Ves (a4 - 2“10)] .

In A) - nn,
A term:

G . . , (S R B (N
A= 7gf,';{Vuquda2 + VL,qud |:<2Cl3 + Cl4 - 2(15 —507 ‘I‘z(lg —5(110> +fé <Cl3 — ds +§Cl7 —§a9>}

. 1 I 1 1
+VCchd[<2a3+a4—2a5 a7+2a9 aw) fﬂ < —a5 +Ed7—§dg>:|}

1
2
] * C ] c
i) L) v 1)

B term:

G 1 1 1
A= \/IifZ{VuszdaZ +VirVia Kzaa taj—2as—5ar+5ay - 2“?0)

1 1 1 1 1
+% <a3 — ds —|—§a7 —§a9>] -+ VchVid[(Z@ +a2 —2(15 —§a7 +5619 _EQTO)
n

f 1 1 G flu * u 1 u * C 1 C
+f7 as —as + a7 =5 dy \/g R,fyl 1 JTZ VioVia g =5z + VeV ag =54z ) (-
n n

Here, we adopt a treatment for #(#’) matrix elements from [37].
In AY) = ny,
A term:

=«

G 1 1 1 I 1 1
A= \/gf {Vu,,Vudaz—I—Vuqud{<2a3+aZ—2a5 —§a7+§ag am) f” <a3 — ds +2(l7 2(19>:|

. . 11 1 fs 1 1
—l—VCchd 2a3+a4—2a5—§a7+§a9 alo f” — ds +Ea7—§dg

G Ty 1 1
+ \/%R,,f”( f—”) {vu,,v;;d <ag —Eag) + Vo Vi <ag —Eag) }
],]/
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B term:

G 1 1 1 Iy
\/gf {Vubv a2+ ViV [(203 +ay —2as5 - 541 T 5a0 = alO) fu < 4

1 1 1 1 1 Iy 1 1
+§a7—§ag)] +VcbV§d[<2a3+aﬁ—2a5—§a7+§a9 a10> f;; ( — ds +§a7—509>:|}

; ( fu,) { ( : > ( = ) }
R, f* ‘ b —ag Wil ag —=ag | ¢
" S u ud 8 cb’ cd 6 8
f fr’/ 2 2

In A) - nn,,
Gr

=

oV Vigar = Vi Viy(as — as — a; + ao)].
In A) - nJ/w,
Gr . .
A= EfJ/y/[VcchdaZ -V Viglas + as + a; + ag)].

In A) - no,

G 1 1 1
ﬂ = 7gfg) |:Vubvzdaz + VubV:d (2613 + LIZ + 205 + 5617 =+ Eag - Ea'l‘0>

1 1 1
+VCbV;d <2a3 + ai + 2“5 —+ §a7 +§a9 _ §a€0>:| .
In A(Ig - ng,

G 1 1
A= 7;;][[/) |:—thV;d <Cl3 + as — 507 - 5619):| .

In Ag — nDY,

In A(b) — nD*Y,

A= %fz)* VubVLdaZ
In AY) - nD°,
A= %fDVcqudaz
In Ag — nD*0
Gr
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