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The recent experimental developments require a more precise theoretical study of weak decays of heavy
baryon Λ0

b. In this work, we provide an updated and systematic analysis of both the semi-leptonic and
nonleptonic decays of Λ0

b into baryons Λþ
c , Λ, p, and n. The diquark approximation is adopted so that the

methods developed in the B meson system can be extended into the baryon system. The baryon-to-baryon
transition form factors are calculated in the framework of a covariant light-front quark model. The form
factors f3, g3 can be extracted and are found to be non-negligible. The semileptonic processes of Λ0

b →
Λþ
c ðpÞl−ν̄l are calculated and the results are consistent with the experiment. We study the nonleptonic

processes within the QCD factorization approach. The decay amplitudes are calculated at the next-to-
leading order in strong coupling constant αs. We calculate the nonleptonic decays of Λ0

b into a baryon and a
s-wave meson (pseudoscalar or vector) including 44 processes in total. The branching ratios and direct CP
asymmetries are predicted. The numerical results are compared to the experimental data and those in the
other theoretical approaches. Our results show validity of the diquark approximation and application of
QCD factorization approach into the heavy baryon system.
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I. INTRODUCTION

The weak decays of heavy baryon Λ0
b provide an

important place to extract the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, explore CP violation
and study different theoretical models of hard interaction.
Recently, a lot of experimental developments were made,
and many processes were observed or seen [1]. For the
exclusive semileptonic processes, the branching fraction of
Λþ
c l−ν̄l mode is the biggest, at the order of 10%. The decay

rate of pμ−ν̄μ is about 10−4. For the nonleptonic two-body
processes, the charmful decays of Λþ

c π
−ðK−; D−; D−

s Þ are
observed and their branching ratios are at the order of 10−3

or 10−4. The charmonium mode ΛJ=ψ has fraction of order
of 10−4. The charmless processes with final states pπ−ðK−Þ
are observed to be of order of 10−6. The pentaquark is
observed in Λ0

b → J=ψpK− process. The Λ0
b → Λϕ is

observed with a final vector meson ϕ and the fraction is
of 10−6 [2]. The mode Λμþμ− is observed at the order of
10−6. The LHC run II [3] and the possible future upgrade of

LHC will accumulate more data than ever, we expect that
the study of Λ0

b will enter into a precise era.
Theoretical interests on Λ0

b decays were increased
recently, such as light-front quark model [4,5], QCD
factorization (QCDF) approach [6], generalized factoriza-
tion approach (GFA) [7–9], light-cone sum rules [10],
lattice QCD method [11], soft-collinear-effective-theory
(SCET) approach [12], perturbative QCD (pQCD)
approach [13], SU(3) symmetry relations [14], etc. In
the previous works [4–6], we have calculated the weak
decay of Λ0

b with the light-front quark model, diquark
approximation and factorization assumption. For the
charmful processes, the theory predictions within the heavy
quark limit for the four processes of Λþ

c π
−ðK−; D−; D−

s Þ
are well consistent with the data. The consistency
shows effectiveness of the diquark approximation and
factorization assumption. For the charmless processes,
some inconsistencies are found when the data become
precise. The theory predictions of the semi-leptonic decays
of pl−ν̄l modes are smaller than the data. For the charmless
nonleptonic processes, it is known from the B meson
study that the naive factorization is insufficient to
explain the experiment. The strong penguin effects are
important and even dominant in many decay modes. In [5],
only the tree operators are considered. Although the
penguin effects are included in [6], the discussion is
only restricted to one process of pK−. Thus, the exper-
imental improvements require the theory developments to
compete.
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From the theoretical point of view, one difficult thing is
to evaluate the transition form factors between two baryons.
The method we will use is a relativistic quark model in the
light-front form. The basic ingredient is the hadron light-
front wave function which is explicitly Lorentz invariant.
The conventional form, in which the constitute quarks are
on mass shell, has been applied to obtain many meson
decay constants and weak form factors [15–19]. In [4,5],
the conventional light-front quark model is employed into
the Λ0

b decays. The baryon-to-baryon transition form
factors are derived from a particular plus component of
the corresponding current operator in a specific Lorentz
frame, e.g., the transverse frame with qþ ¼ 0. Among the
six form factors, only four quantities can be calculated in
this way, while the form factors f3 and g3 are not obtained.
For the transitions of Λ0

b to light baryons such as p, Λ, n,
there is no reasonable argument to guarantee that they are
small. It is necessary to estimate their effects. In [20], a
covariant light-front quark model is constructed to render
the hadron transition matrix elements covariant. This
approach has been applied to many meson processes
[21]. In this study, we will use the covariant approach to
derive all the form factors including f3 and g3. Then, we
give the numerical predictions for the semileptonic decays.
For the nonleptonic processes, the QCD dynamics is

more complicated than the semileptonic one. Theory
treatment relies on different factorization approaches which
developed for the B meson system. In this study, we will
work within a framework of QCD factorization (QCDF)
approach [22–25]. In the heavy quark limit, the decay
amplitudes are expressed by a factorizable form which
separates the perturbative contribution from the nonpertur-
bative part. The naive factorization is its lowest order
approximation. The nonfactorzaible contributions can be
systematically calculated in strong coupling constant αs
order by order in leading power of 1=mb. Under the diquark
approximation, a baryon is similar to a meson. We might
expect that the QCDF approach can be applied into the
heavy baryon decays. In this study, we extend the QCDF
method to the nonleptonic two-body decays of Λ0

b and give
a systematic study for decays of Λ0

b into final states
containing a baryon and a s-wave meson (pseudoscalar
or vector).
The paper is organized as follows: In Sec. II, we give

formulations of the covariant light-front approach, and
derive the six transition form factors (fi and gi with i=1, 2,
3) of Λ0

b → Λþ
c ðp;Λ; nÞ transitions. In Sec. III, the expres-

sions for the semileptonic processes are given. In Sec. IV,
we discuss the nonleptonic decays in QCD factorization
approach. In Sec. V, we discuss the input phenomenologi-
cal parameters, and then give the numerical results for the
weak transition form factors. In Sec. VI, the numerical
results for the semileptonic processes are given. In Sec. VII,
the numerical results for the nonleptonic are presented. The
theory predictions are compared with the experimental data

and other theory approaches. In the last Sec. VIII, the
discussions and conclusions are given.

II. Λ0
b → HðΛ +

c ;p;Λ;nÞ TRANSITION FORM
FACTORS IN THE COVARIANT

LIGHT-FRONT APPROACH

At first, we discuss the diquark hypothesis. A diquark is a
two-quark correlation [26]. The interaction of two quark can
be attractive if they are antisymmetric in color space. This is
a special characteristic of QCD, unlike the QED case where
the interaction between two like-charged particle is repul-
sive. The diquark is not a fundamental particle, because it
contains color and can only exist in a hadron containing
more than two quarks. The size of the diquark should be
larger than that of a quark and smaller than a hadron. In
phenomenology, the size is usually neglected. Thus the
diquark is considered as a pointlike object.
Since the diquark is composed of two quarks with spin

one-half, the spin of the diquark can be 0 and 1. According to
spin, the diquark system is classified into scalar and vector
diquark. The spin of a scalar diquark is 0, and the two quarks
are antisymmetric in spin space in order to satisfy the Pauli
principle. As a result, the two quarks in the diquark are
antitriplet states in both the color and spin spaces. The scalar
diquark contains smaller mass than a vector one. One can
expect that a hadron with the scalar diquark is lower in mass
than a hadron with the vector diquark.
A baryon is composed of three quarks in the conven-

tional quark model. Within the constituent quark model, it
is a complicated three-body problem. The treatment is
usually difficult. Under the diquark approximation, the
three-quark picture is changed to a quark-diquark picture,
and the three-body problem is turned to a two-body one.
This change will cause a great simplification in technic. For
the low energy hadron reactions, the diquark hypothesis is
tested to be workable [26]. The success of the diquark
hypothesis in phenomenology indicates that the contribu-
tions from two correlated quarks are dominant. For a
hadron with more than three quarks, the diquark approxi-
mation is even inevitable. The concept of diquark has been
applied to many hadron phenomenology, e.g., the new
exotic [27,28].
For a light baryon, any two quarks may be correlated.

But for a heavy baryon, such as Λ0
b, the case is different. b

quark is heavy and will decay. The system of a diquark with
a heavy quark and a light quark must break first and then
decay, while for the two light quarks, they act as spectator.
They are more likely to be correlated and unchanged during
the weak interaction. Thus, a heavy baryon is considered to
be composed of one heavy quark and a light diquark. For
the ground state Λb or Λc which is an isosinglet state, the
light diquark is a scalar. As a spectator, the diquark in the
light baryon, such as p, n, Λ, is also the scalar [29]. Thus,
the baryons considered in this study (Λ0

b, Λþ
c , Λ, p, n) are

composed of one quark (b, c, s, u, d) and a light diquark
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½ud�. The diquark is in a 0þ scalar state (s ¼ 0, l ¼ 0) and
the orbital angular momentum between the quark and the
diquark is also zero, i.e., L ¼ l ¼ 0.
Under the diquark approximation, a baryon is similar to a

meson. We call this phenomenon as meson-baryon sim-
ilarity. The meson-baryon similarity has been noticed for a
long time. In this study, we will see more examples and
applications.

A. Notations and conventions

At first, we give our notations and conventions in the
covariant light-front quark model. Most of our conventions
are taken from the original work [20]. About the conven-
tional light-front approach used in the previous works [4,5],
we collect their formulations in the Appendix A for
reference. For a covariant four-component momentum
denoted by p, it can be written with the light-front
components as

p ¼ ðp−; pþ; p⊥Þ; p� ¼ p0 � p3: ð1Þ
The momentum square is p2 ¼ pþp− − p2⊥.
The Feynman diagram for the baryon to baryon tran-

sition are given by a one-loop graph shown in Fig. 1. At
each vertex where quarks and diquarks are off-shell, the
four-component momentum is conserved. The momentum
of the baryon is equal to the sum of the momenta of its
constitutes. Thus, the incoming (outgoing) baryon has the
momentum

P0ð00Þ ¼ p0ð00Þ
1 þ p2: ð2Þ

where P0ð00Þ is the initial (final) baryon momentum, and p0ð00Þ
1

and p2 are momenta of the off-shell quark and diquark,
respectively. The associated constituent masses are denoted
bym0ð00Þ

1 andm2. The momentum transfer is q ¼ P0 − P00. In
order to describe the kinematics of the constituents in a
baryon, it is convenient to introduce two intrinsic variable
(xi, p0⊥) where xi is the light-front momentum faction of the
ith constituent i ¼ 1, 2 and p0⊥ the relative transverse
momentum between the quark and diquark. They are
defined through

p0þ
1;2 ¼ x1;2P0þ; p0

1;2⊥ ¼ x1;2P0⊥ � p0⊥: ð3Þ

with x1 þ x2 ¼ 1. The reason that xi, p0⊥ are called by the
intrinsic variable is that they are independent of the total
momentum of the baryon and are invariant under the
external Lorentz boost. Thus, the hadron wave function
Ψðxi; p0⊥Þ is explicitly Lorentz invariant. This is one
advantage of the light-front framework.
In the purely longitudinal frame where q⊥ ¼ 0, the so-

called Z-diagram contribution occurs and should be taken
into account. But it is difficult to treat such contribution. So,
we do not consider this frame in this study. As in [4,5], we
choose the transverse frame where qþ ¼ 0 and q2 ¼ −q2⊥.
The relation x02 ¼ x002 ¼ x2 is satisfied in this particular
frame. Some useful quantities are given below:

M02
0 ¼ ðe01 þ e2Þ2 ¼

p02⊥ þm02
1

x1
þ p02⊥ þm2

2

x2
;

M002
0 ¼ ðe001 þ e2Þ2 ¼

p002⊥ þm002
1

x1
þ p002⊥ þm2

2

x2
;

e0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m02

i þ p02⊥ þ p02
z

q
;

p0
z ¼

x2M0
0

2
−
m2

2 þ p02
z

2x2M0
0

;

p00⊥ ¼ p0⊥ − x2q⊥: ð4Þ

B. Baryon-to-baryon transition matrix elements

For the baryon transition HQ → HQ0 (Q, Q0 denote the
incoming and outgoing quarks, respectively) depicted in
Fig. 1, the amplitude can be expressed as

Aμ ¼ −i3
Nc

ð2πÞ4
Z

d4p0
1

H0H00

N0
1N

00
1N2

sμ; ð5Þ

where H0, H00 are the vertex functions of the baryon-quark-
diquark. Their explicit forms will be given below. The sμ is

sμ ¼ ūHQ0 ðP00; S00z Þ½ð=p00
1 þm00

1Þγμð1 − γ5Þ
× ð=p0

1 þm0
1Þ�uHQ

ðP0; S0zÞ: ð6Þ

where uHQ
ðP0; S0zÞ is the baryon HQ spinor, N0

1 ¼ p02
1 −

m02
1 þ iε, N00

1 ¼ p002
1 −m002

1 þ iε and N2 ¼ p2
2 −m2

2 þ iε.
Obviously, the above equations are covariant.
Now, we turn to the light-front treatment. In order to do

the integration over the p0−
1 component in Aμ of Eq. (5), we

close the contour in the upper complex p0−
1 plane and

assuming the vertices H0 and H00 are analytic. This
corresponds to putting the diquark on its mass shell, i.e.,
p̂2
2 ¼ m2

2. The other momenta can be obtained by momen-
tum conservation, p̂0

1 ¼ P0 − p̂2 and p̂00
1 ¼ P00 − p̂2. Note

that this is one difference between the covariant approach
and the conventional one where the momentum conserva-
tion is not satisfied in each vertex. Then, one can do the
following replacement:

FIG. 1. Feynman diagram for the baryon to baryon transition
amplitudes. The “×” denotes the corresponding V − A current
vertex.
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N0
1 → N̂0

1 ¼ p̂02
1 −m02

1 ¼ x01ðM02 −M02
0 Þ;

N00
1 → N̂00

1 ¼ p̂002
1 −m002

1 ¼ x001ðM002 −M002
0 Þ;

H0 → h0;

H00 → h00;Z
d4p0

1

N0
1N

00
1N2

H0H00sμ → −iπ
Z

dx2d2p0⊥
x2N̂

0
1N̂

00
1

h0h00ŝ: ð7Þ

As in [20,21], we also find that the factor ðM0ð00Þ2 −

M0ð00Þ2
0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ð00Þ1 x0ð00Þ2

q
cancels out the same expression in the

denominator of Eq. (5).
The explicit forms of h0 and h00 are given by

h0 ¼ ðM02 −M02
0 Þ

ffiffiffiffiffiffiffiffiffi
x01x

0
2

Nc

s
1ffiffiffi
2

p
M̃0

0

φ0;

h00 ¼ ðM002 −M002
0 Þ

ffiffiffiffiffiffiffiffiffi
x001x

00
2

Nc

s
1ffiffiffi
2

p
M̃00

0

φ00: ð8Þ

where M̃0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02

0 − ðm0
1 −m2Þ2

p
and M̃00

0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M002

0 − ðm00
1 −m2Þ2

p
. The φ0 and φ00 are light-front wave

functions for the incoming and outgoing baryons, respec-
tively. We use the Gaussian-type wave function as

φ0 ¼ φ0ðx2; p0⊥Þ ¼ 4

�
π

β2

�
3=4

ffiffiffiffiffiffiffiffi
∂p0

z

∂x2

s
exp

�
−
p02
z þ p02⊥
2β02

�
;

φ00 ¼ φ00ðx2; p00⊥Þ ¼ 4

�
π

β2

�
3=4

ffiffiffiffiffiffiffiffi
∂p00

z

∂x2

s
exp

�
−
p002
z þ p002⊥
2β002

�
;

ð9Þ

with

∂p0
z

∂x2 ¼ e01e2
x1x2M0

0

;
∂p00

z

∂x2 ¼ e001e2
x1x2M00

0

: ð10Þ

The baryon parameter β is the essential phenomenological
input of the light-front quark model. In principle, it is at the
order of the confinement scale.

C. Formulations for the baryon-to-baryon transition
form factors

The form factors for the weak transition HQ → HQ0 are
defined in the standard way as

Aμ ¼ hHQ0 ðP00; S00; S00z ÞjQ̄0γμð1 − γ5ÞQjHQðP0; S0; S0zÞi

¼ ūHQ0 ðP00; S00z Þ
�
γμf1ðq2Þ þ iσμν

qν

MHQ

f2ðq2Þ þ
qμ
MHQ

f3ðq2Þ
�
uHQ

ðP0; S0zÞ

− ūHQ0 ðP00; S00z Þ
�
γμg1ðq2Þ þ iσμν

qν

MHQ

g2ðq2Þ þ
qμ
MHQ

g3ðq2Þ
�
γ5uHQ

ðP0; S0zÞ; ð11Þ

where uHQ
and uHQ0 are Dirac spinors of the initial and final

baryonsHQ,HQ0 , respectively. There are six form factors in
total. For the heavy-to-heavy Λ0

b → Λþ
c transitions, there is

a well-known symmetry: the heavy quark symmetry in the
infinite quark mass limit. The flavor and spin symmetries
provide model-independent relations for form factors:

f1 ¼ g1; f2 ¼ g2 ¼ f3 ¼ g3 ¼ 0: ð12Þ
Thus, f1 and g1 are dominant and other form factors are
higher powers in 1=mb. For the heavy-to-light transitions
Λ0
b → pðΛÞ, the above relations are still valid in the large

energy limit for the large recoil region [30].
After the replacements in the covariant approach, the

amplitude Aμ in the transition HQ → HQ0 given in the
above subsection is expressed by

Aμ ¼ NIF
Nc

16π

Z
dx2d2p0⊥
x2N̂

0
1N̂

00
1

h0h00ūHQ0 ðP00; S00z Þ½ð=̂p 00
1 þm00

1Þγμ

×ð1 − γ5Þð=̂p0
1 þm0

1Þ�uHQ
ðP0; S0zÞ: ð13Þ

where NIF is a flavor-spin factor which will be given for
different processes later.
In principle, the six form factors can be extracted

out by comparing Eqs. (11) and (13). But, the initial and
final baryon spinors produce some difficulties. Our treat-
ment is to use the familiar spin sum relation of the Dirac
spinors

P
S0z ūHQ

ðP0; S0zÞuHQ
ðP0; S0zÞ ¼ =P0 þM0. To pro-

ceed, we multiply
P

S0z;S00z ūHQ
ðP0; S0zÞuHQ0 ðP00; S00z ÞPμ,P

S0z;S00z ūHQ
ðP0; S0zÞuHQ0 ðP00; S00zÞqμ, and

P
S0z;S00z ūHQ

ðP0; S0zÞ
γμuHQ0 ðP00; S00zÞ onto the right side of Eqs. (11) and (13).
According to the equality of the two equations, we
obtain three independent equations. From these
equations, the three physical quantities f1, f2, and f3
can be solved. Because there are more terms that
occurred than the meson case, our method is different
from the treatment in [21]. After a lengthy calculation and
with help of the computer program, we obtain the analytic
formulas for the form factors f1, f2, and f3 as
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f1ðq2Þ ¼ NIF

Z
dx2d2p0⊥
16π3

φHQ
ðx02; p0⊥ÞφHQ0 ðx002; p00⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðm0
1 þ x01M

0
0Þ2 þ p02⊥�½ðm00

1 þ x001M
00
0Þ2 þ p002⊥ �

p
1

ðM0 þM00Þ2 − q2
fAð1Þ

1 ½ðM00 þM0Þ2 − q2�ð2m0
1M

00 þ 2m00
1M

0 − q2Þ

þ Að1Þ
2 q2½ðM0 þM00Þ2 − q2� þ 2Að2Þ

1 ½ðM0 þM00Þ2 − q2�
þ Að2Þ

2 ½2ðM0 þM00Þ4 − 4M0M00q2 − q4�
þ 2Að2Þ

3 ðM0 −M00ÞðM0 þM00Þ3 þ Að2Þ
4 q4

þm0
1m

00
1½ðM0 þM00Þ2 − q2� − ½x1ðM02 −M02

0 Þ þm02
1 �ðM0 þM00Þ2g; ð14Þ

f2ðq2Þ ¼ NIF

Z
dx2d2p0⊥M

16π3
φHQ

ðx02; p0⊥ÞφHQ0 ðx002; p00⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðm0

1 þ x01M
0
0Þ2 þ p02⊥�½ðm00

1 þ x001M
00
0Þ2 þ p002⊥ �

p
1

ðM0 þM00Þ2 − q2
fAð1Þ

1 ½ðM00 þM0Þ2 − q2�ðm0
1 þm00

1 − 2M0Þ

þ Að1Þ
2 ðm0

1 −m00
1Þ½ðM0 þM00Þ2 − q2� þ 4Að2Þ

1 ½ðM0 þM00Þ�
þ Að2Þ

2 ðM0 þM00Þ½4M02 þ 4M0M00 þ 4M002 − 3q2�
þ 2Að2Þ

3 ðM0 −M00Þ½2ðM0 þM00Þ2 − q2� þ Að2Þ
4 q2ðM0 þM00Þ

−m0
1½ðM0 þM00Þ2 − q2� − ½x1ðM02 −M02

0 Þ þm02
1 �ðM0 þM00Þg; ð15Þ

f3ðq2Þ ¼ NIF

Z
dx2d2p0⊥M

16π3
φHQ

ðx02; p0⊥ÞφHQ0 ðx002; p00⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðm0

1 þ x01M
0
0Þ2 þ p02⊥�½ðm00

1 þ x001M
00
0Þ2 þ p002⊥ �

p
1

ðM0 þM00Þ2 − q2
fAð1Þ

1 ½ðM00 þM0Þ2 − q2�ðm0
1 −m00

1 − 2M00Þ

þ Að1Þ
2 ðm0

1 þm00
1 − 2M0 þM00Þ½ðM0 þM00Þ2 − q2� − 4Að2Þ

1 ½ðM0 −M00Þ�
− Að2Þ

2 ðM0 −M00Þð2M02 þ 2M002 − q2Þ
þ 2Að2Þ

3 ðM0 þM00Þð4M0M00 − q2Þ þ Að2Þ
4 ðM0 −M00Þ½2ðM0 þM00Þ2 − 3q2�

−m0
1½ðM0 þM00Þ2 − q2� þ ½x1ðM02 −M02

0 Þ þm02
1 �ðM0 −M00Þg ð16Þ

where AðiÞ
j are functions of x2, p02⊥, p0⊥ · q⊥, and q2. Their explicit expressions are [20]

Að1Þ
1 ¼ x1

2
; Að1Þ

2 ¼ Að1Þ
1 −

p0⊥ · q⊥
q2

;

Að2Þ
1 ¼ −p02⊥ −

ðp0⊥ · q⊥Þ2
q2

; Að2Þ
2 ¼ ðAð1Þ

1 Þ2;

Að2Þ
3 ¼ Að1Þ

1 Að1Þ
2 ; Að2Þ

4 ¼ ðAð1Þ
2 Þ2 − Að2Þ

1

q2
: ð17Þ

The other three form factors g1, g2, and g3 can be obtained in a similar way. A γ5 matrix is needed to insert
into the spinors. We multiply

P
S0z;S00z ūHQ

ðP0; S0zÞγ5uHQ0 ðP00; S00z ÞPμ,
P

S0z;S00z ūHQ
ðP0; S0zÞγ5uHQ0 ðP00; S00z Þqμ, andP

S0z;S00z ūHQ
ðP0; S0zÞγμγ5uHQ0 ðP00; S00z Þ onto the right side of Eqs. (11) and (13). Then by solving another three equations,

the form factors g1, g2, and g3 are obtained as
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g1ðq2Þ ¼ NIF

Z
dx2d2p0⊥
16π3

φHQ
ðx02; p0⊥ÞφHQ0 ðx002; p00⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðm0
1 þ x01M

0
0Þ2 þ p02⊥�½ðm00

1 þ x001M
00
0Þ2 þ p002⊥ �

p
1

ðM0 −M00Þ2 − q2
fAð1Þ

1 ½ðM0 −M0Þ2 − q2�ð2m0
1M

00 þ 2m00
1M

0 þ q2Þ

− Að1Þ
2 q2½ðM0 −M00Þ2 − q2� − 2Að2Þ

1 ½ðM0 −M00Þ2 þ q2�
− Að2Þ

2 ½2ðM0 −M00Þ4 þ 4M0M00q2 − q4�
− 2Að2Þ

3 ðM0 þM00ÞðM0 −M00Þ3 − Að2Þ
4 q4

þm0
1m

00
1½ðM0 −M00Þ2 − q2� þ ½x1ðM02 −M02

0 Þ þm02
1 �ðM0 −M00Þ2g; ð18Þ

g2ðq2Þ ¼ NIF

Z
dx2d2p0⊥M

16π3
φHQ

ðx02; p0⊥ÞφHQ0 ðx002; p00⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðm0
1 þ x01M

0
0Þ2 þ p02⊥�½ðm00

1 þ x001M
00
0Þ2 þ p002⊥ �p

1

ðM0 −M00Þ2 − q2
fAð1Þ

1 ½ðM0 −M00Þ2 − q2�ðm0
1 −m00

1 − 2M0Þ

þ Að1Þ
2 ðm0

1 þm00
1Þ½ðM0 −M00Þ2 − q2� þ 4Að2Þ

1 ½ðM0 −M00Þ�
þ Að2Þ

2 ðM0 −M00Þ½4M02 − 4M0M00 þ 4M002 − 3q2�
þ 2Að2Þ

3 ðM0 þM00Þ½2ðM0 −M00Þ2 − q2� þ Að2Þ
4 q2ðM0 −M00Þ

−m0
1½ðM0 −M00Þ2 − q2� − ½x1ðM02 −M02

0 Þ þm02
1 �ðM0 −M00Þg; ð19Þ

g3ðq2Þ ¼ NIF

Z
dx2d2p0⊥M

16π3
φHQ

ðx02; p0⊥ÞφHQ0 ðx002; p00⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðm0
1 þ x01M

0
0Þ2 þ p02⊥�½ðm00

1 þ x001M
00
0Þ2 þ p002⊥ �p

1

ðM0 −M00Þ2 − q2
fAð1Þ

1 ½ðM0 −M00Þ2 − q2�ðm0
1 þm00

1 þ 2M00Þ

þ Að1Þ
2 ðm0

1 −m00
1 − 2M0 − 2M00Þ½ðM0 −M00Þ2 − q2� − 4Að2Þ

1 ½ðM0 þM00Þ�
− Að2Þ

2 ðM0 þM00Þð2M02 þ 2M002 − q2Þ
− 2Að2Þ

3 ðM0 −M00Þð4M0M00 þ q2Þ þ Að2Þ
4 ðM0 þM00Þ½2ðM0 −M00Þ2 − 3q2�

−m0
1½ðM0 −M00Þ2 − q2� þ ½x1ðM02 −M02

0 Þ þm02
1 �ðM0 þM00Þg: ð20Þ

One can find that the formulations for fi and gi are quite
similar except for some sign difference.
From [31], the spin-flavor factors NIF for different

transitions are given by

NΛ0
bΛ

þ
c
¼ 1; NΛ0

bp
¼ 1ffiffiffi

2
p ; NΛ0

bΛ
¼ 1ffiffiffi

3
p : ð21Þ

These factors are necessary to obtain the correct theory
predictions. Without them, the Λ0

b → p process will be
increased by a factor of 2 and the Λ0

b → Λ process will be
increased by a factor of 3. In [31], these factors are derived
in the three-quark picture. In the quark-diquark picture, the
spin-flavor factors remain the same and it is easier to obtain
them. The heavy baryon flavor and spin wave functions are

jΛ0
bi ¼ b½ud�χA; jΛþ

c i ¼ c½ud�χA; ð22Þ

where ½ud� is the scalar diquark with ½ud� ¼ ud−duffiffi
2

p and χA is
the spin function which is antisymmetric for the diquark.
For the light baryons p and Λ,

jpi ¼ 1ffiffiffi
2

p ðu½ud�χA þ ϕSχSÞ;

jΛi ¼ 1ffiffiffi
2

p 1ffiffiffi
6

p ð2½ud�sχA þ ½ds�uχA þ ½su�dχA þ ϕSχSÞ:

ð23Þ
The ϕS and χS are mixed symmetric flavor and spin wave
functions. Their explicit forms are irrelevant because the
diquark in the final baryon comes from the scalar diquark in
the initial heavy baryon which is flavor and spin antisym-
metric. The factor 1ffiffi

2
p comes from the equal components of

the mixed symmetric and mixed antisymmetric flavor wave
functions of the baryon SU(3) octets. By comparing the
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coefficients of the diquark ½ud� for each baryon, we obtain
the same spin-flavor factors as Eq. (21). It is noted that the
authors in [32] use a totally antisymmetric flavor wave
function for Λ which is not correct for a ground state
baryon. But their results are correct.

III. SEMILEPTONIC DECAYS OF Λ0
b → Λ+

c ðpÞl − ν̄l
In this section, we provide formulations for the rates and

some asymmetries of the semileptonic processes. In order
to study the semileptonic decays, another parametrization
of the transition form factors adopted in [33] is useful. It is
given by

hHQ0 ðP00; S00; S00z ÞjVμjHQðP0; S0; S0zÞi

¼ ūHQ0 ðP00; S00z Þ
�
γμF1ðq2Þ þ

P0
μ

MHQ

F2ðq2Þ þ
P00
μ

MHQ0
F3ðq2Þ

�

× uHQ
ðP0; S0zÞ

hHQ0 ðP00; S00; S00z ÞjAμjHQðP0; S0; S0zÞi

¼ ūHQ0 ðP00; S00z Þ
�
γμG1ðq2Þ þ

P0
μ

MHQ

G2ðq2Þ þ
P00
μ

MHQ0
G3ðq2Þ

�

× γ5uHQ
ðP0; S0zÞ: ð24Þ

The two parametrization forms of Eqs. (11) and (24) are
related by

F1ðq2Þ ¼ f1ðq2Þ − ðMHQ
þMHQ0 Þ

f2ðq2Þ
MHQ

;

F2ðq2Þ ¼ f3ðq2Þ þ f2ðq2Þ;

F3ðq2Þ ¼ −
MHQ0

MHQ

½f3ðq2Þ − f2ðq2Þ�;

G1ðq2Þ ¼ g1ðq2Þ þ ðMHQ
−MHQ0 Þ

g2ðq2Þ
MHQ

;

G2ðq2Þ ¼ g3ðq2Þ þ g2ðq2Þ;

G3ðq2Þ ¼ −
MHQ0

MHQ

½g3ðq2Þ − g2ðq2Þ�: ð25Þ

Following [33,34], it is necessary to define the helicity
amplitudes which are expressed in terms of the weak form
factors. The different helicity amplitudes are defined by

HV
þ1=2;0 ¼

1ffiffiffiffiffi
q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MHQ

MHQ0 ðω − 1Þ
q

½ðMHQ
þMHQ0 ÞF1ðq2Þ þMH0

Q
ðωþ 1ÞF2ðq2Þ

þMHQ
ðωþ 1ÞF3ðq2Þ�;

HA
þ1=2;0 ¼

1

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MHQ

MHQ0 ðωþ 1Þ
q

½ðMHQ
−MHQ0 ÞF1ðq2Þ −MH0

Q
ðω − 1ÞF2ðq2Þ

−MHQ
ðω − 1ÞF3ðq2Þ�;

HV
þ1=2;1 ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MHQ

MHQ0 ðω − 1Þ
q

F1ðq2Þ;

HA
þ1=2;1 ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MHQ

MHQ0 ðωþ 1Þ
q

G1ðq2Þ;

HV
þ1=2;t ¼

1ffiffiffiffiffi
q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MHQ

MHQ0 ðωþ 1Þ
q

½ðMHQ
−MHQ0 ÞF1ðq2Þ þ ðMHQ

−MHQ0ωÞF2ðq2Þ

þ ðMHQ
ω −MHQ0 ÞF3ðq2Þ�;

HA
þ1=2;t ¼

1ffiffiffiffiffi
q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MHQ

MHQ0 ðω − 1Þ
q

½ðMHQ
þMHQ0 ÞG1ðq2Þ − ðMHQ

−MHQ0ωÞG2ðq2Þ

− ðMHQ
ω −MHQ0 ÞG3ðq2Þ�; ð26Þ

where

ω ¼
M2

HQ
þM2

HQ0 − q2

2MHQ
MHQ0

: ð27Þ

The helicity amplitudes HV;A
λ0;λW

where λ0 and λW are the

helicities of the final baryon and the virtual W-boson, are

the amplitudes for vector (V) and axial (A) vector currents,

respectively. Because of the V − A structure of the charged
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current weak interaction, the total helicity amplitudes are
obtained as

Hλ0;λW ¼ HV
λ0;λW

−HA
λ0;λW

: ð28Þ

The helicity amplitudes for the negative values of the
helicities satisfy the relations

HV
−λ0;−λW

¼ þHV
λ0;λW

; HA
−λ0;−λW

¼ −HA
λ0;λW

: ð29Þ

For the semileptonic process of HQ → HQ0W−ð→ l−ν̄lÞ,
the twofold angular distribution can be derived to be

dΓðHQ → HQ0 l−ν̄lÞ
dq2d cos θ

¼ G2
F

ð2πÞ3 jVQ0Qj2
λðq2 −m2

l Þ
48M3

HQ
q2

Wðθ; q2Þ;

ð30Þ

where

Wðθ;q2Þ¼3

8

�
ð1þcos2θÞHUq2−2cosθHPðq2Þ

þ2sin2θHLðq2Þþ
m2

l

q2
½2HSðq2Þþsin2θHUðq2Þ

þ2cos2θHLðq2Þ−4cosθHSLðq2Þ�
�
; ð31Þ

and

λ≡ λðM2
HQ

;M2
HQ0 ; q

2Þ
¼ M4

HQ
þM4

HQ0 þ q4

− 2ðM2
HQ

M2
HQ0 þM2

HQ
q2 þM2

HQ0q
2Þ: ð32Þ

The VQ0Q is the CKM matrix elements, GF the Fermi
constant. ml is the lepton mass (l ¼ e, μ, τ), and θ is the
angle between the lepton l and W momenta.
In Eq. (31), there are several amplitudes Hi which are

given in terms of the helicity amplitudes. The relevant
parity conserving helicity amplitudes are given by

HUðq2Þ ¼ jHþ1=2;þ1j2 þ jH−1=2;−1j2;
HLðq2Þ ¼ jHþ1=2;0j2 þ jH−1=2;0j2;
HSðq2Þ ¼ jHþ1=2;tj2 þ jH−1=2;tj2;
HSLðq2Þ ¼ ReðHþ1=2;0H

†
þ1=2;t þH−1=2;0H

†
−1=2;tÞ; ð33Þ

and the parity violating helicity amplitudes are

HPðq2Þ ¼ jHþ1=2;þ1j2 − jH−1=2;−1j2;
HLPðq2Þ ¼ jHþ1=2;0j2 − jH−1=2;0j2;
HSPðq2Þ ¼ jHþ1=2;tj2 − jH−1=2;tj2: ð34Þ

By integrating over cos θ of Eq. (30), we obtain the
transverse momentum q2-dependent differential decay as

dΓðHQ → HQ0lν̄lÞ
dq2

¼ G2
F

ð2πÞ3 jVQ0Qj2
λðq2 −m2

l Þ
48M3

HQ
q2

Htotðq2Þ;

ð35Þ

where

Htotðq2Þ ¼ ½HUðq2Þ þHLðq2Þ�
�
1þ m2

l

2q2

�
þ 3m2

l

2q2
HSðq2Þ:

ð36Þ

The forward-backward asymmetry is an important
observable quantity. From Eq. (30), the q2-dependent
forward-backward asymmetry of the charged lepton is
given by

AFBðq2Þ ¼
dΓ
dq2 ðforwardÞ − dΓ

dq2 ðbackwardÞ
dΓ
dq2

¼ −
3

4

HPðq2Þ þ 2
m2

l
q2 HSLðq2Þ

Htotðq2Þ
: ð37Þ

The integrated forward-backward asymmetry is obtained as

AFB ¼
R ðMHQ

−MHQ0 Þ2
m2

l

dΓ
dq2 ðforwardÞ −

R ðMHQ
−MHQ0 Þ2

m2
l

dΓ
dq2 ðbackwardÞR ðMHQ

−MHQ0 Þ2
m2

l

dΓ
dq2

;

¼ −
3

4

R ðMHQ
−MHQ0 Þ2

m2
l

dq2½HPðq2Þ þ 2
m2

l
q2 HSLðq2Þ�R ðMHQ

−MHQ0 Þ2
m2

l
dq2½Htotðq2Þ�

: ð38Þ
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Similarly, the q2-dependent longitudinal polarization of the final baryon HQ0 is

PLðq2Þ ¼
½HPðq2Þ þHLPðq2Þ�ð1þ m2

l
2q2Þ þ 3

m2
l

2q2 HSPðq2Þ
Htotðq2Þ

: ð39Þ

The integrated longitudinal polarization of the final baryon HQ0 is

PL ¼
R ðMHQ

−MHQ0 Þ2
m2

l
dq2f½HPðq2Þ þHLPðq2Þ�ð1þ m2

l
2q2Þ þ 3

m2
l

2q2 HSPðq2ÞgR ðMHQ
−MHQ0 Þ2

m2
l

dq2Htotðq2Þ
: ð40Þ

IV. NONLEPTONIC DECAYS OF Λ0
b → H +M IN

QCD FACTORIZATION APPROACH

In this section, we study the exclusive nonleptonic
decays Λ0

b → H þM where H represents baryon (Λþ
c , p,

n, Λ) and M represents a meson. For the meson M, we
restrict our discussions for the ground state, i.e., pseudo-
scalar (P) or vector (V) meson in this study.

A. Classification

At first, we discuss the classification of the Λ0
b decays. In

the B meson case, it is usually classified by the charmful
and charmless processes according to the charm quark
component of the final mesons. This classification can be
done for the heavy baryon, but it may not be most
convenient. The heavy baryon Λ0

b decays have one prop-
erty: the spectator can only enter into the baryon. This
argument is valid under the diquark assumption. Without
the diquark approximation, one spectator quark can enter
into the final meson. While for the meson case, the
spectator quark is possible to enter into either of the two
final mesons. This difference makes us to choose a more
convenient classification method. The Λ0

b decays are
classified by the final baryon. According to this classifi-
cation rule, the Λ0

b decays are classified into four classes:
(1) Λ0

b → Λþ
c þM, (2) Λ0

b → pþM, (3) Λ0
b → ΛþM,

(4) Λ0
b → nþM. For each class, the decay modes are

collected as following. We only write the final state to
represent each decay mode.
(1) Λ0

b → Λþ
c þM (8 modes)

Λþ
c π

−; Λþ
c ρ

−; Λþ
c K−; Λþ

c K�−;

Λþ
c D−; Λþ

c D�−; Λþ
c D−

s ; Λþ
c D�−

s :

Since the initial and final baryons areΛ0
b and Λþ

c , the
final meson M must be negative charged because of
the charge conservation. The negative charged
quark-antiquark pair combined by u, d, c, s quarks
can be: ūd, ūs, c̄d, c̄s. Correspondingly, the ground

state mesons are π−, ρ−, K−, K�−, D−, D�−,
D−

s , D�−
s .

(2) Λ0
b → pþM (8 modes)

pπ−; pρ−; pK−; pK�−;

pD−; pD�−; pD−
s ; pD�−

s :

Similar discussions follow from the above argu-
ments, and the final meson M can be: π−, ρ−, K−,
K�−, D−, D�−, D−

s , D�−
s .

(3) Λ0
b → ΛþM (14 modes)

Λπ0; Λρ0; ΛK0; ΛK�0;

Λη; Λη0; Λω; Λϕ;

ΛD0; ΛD�0; ΛD̄0; ΛD̄�0;

Ληc; ΛJ=ψ :

The final meson M must be neutral charged accord-
ing to the charge conservation. Among all the neutral
charged mesons, the two states of K̄ð�Þ0 are not
allowed. It is because the states ΛK̄ð�Þ0 contain two s
quarks. They cannot be produced by the tree or
penguin operators of the weak effective interactions
to be given below. The neutral charged quark-
antiquark pair combined by u, d, c, s quarks can
be: ūu, d̄d, s̄s, s̄d, d̄s, ūc, c̄u, c̄c. Correspondingly,
except K̄ð�Þ0, the neutral ground state mesons in-
clude: π0, ρ0, K0, K�0, η, η0, ω, ϕ, D0, D�0, D̄0, D̄�0,
ηc, J=ψ .

(4) Λ0
b → nþM (14 modes)

nπ0; nρ0; nK̄0; nK̄�0;

nη; nη0; nω; nϕ;

nD0; nD�0; nD̄0; nD̄�0;

nηc; nJ=ψ :

The final meson M must be neutral charged due to
the charge conservation. Among all the neutral
charged mesons, Kð�Þ0 are not allowed. It is because
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nKð�Þ0 contains one s̄ quark which cannot be
produced by the tree or penguin operators.

There are 44 decay modes in total. We will discuss these
modes in the part of numerical results in detail.

B. The effective Hamiltonian and
QCD factorization approach

There are three separate energy scales inΛ0
b weak decays:

MW ≫ mb ≫ ΛQCD. One convenient method is the effec-
tive field theory. By integrating out the high energy degree
of freedom and performing the operator product expansion,
the interactions are expressed as a series of local effective
operators. The information of high energy is encoded in the
Wilson coefficients. In this study, the effective Hamiltonian
Heff for b → s transitions (b → d transitions are done by the
replacement of s → d) can be written by [35]:

Heff ¼
GFffiffiffi
2

p
X
q¼u;c

vq

�
C1O

q
1 þ C2O

q
2 þ

X10
i¼3

CiOi

þ C7γO7γ þ C8gO8g

�
; ð41Þ

where vq ¼ VqbV�
qs. The Ci are Wilson coefficients evalu-

ated at the renormalization scale μ. The current-current
operators Ou

1 and Ou
2 are

Ou
1 ¼ s̄αγμLuα · ūβγμLbβ; Ou

2 ¼ s̄αγμLuβ · ūβγμLbα:

ð42Þ

where α and β are the SU(3) color indices, and L and R are
the left- and right-handed projection operators with L ¼
1 − γ5 and R ¼ 1þ γ5, respectively.
The usual tree-level W-exchange contribution in the

effective theory corresponds to O1 and O2 emerges due
to the QCD corrections. The operators O3 −O6 are

O3 ¼ s̄αγμLbα ·
X
q0
q̄0βγμLq

0
β; O4¼ s̄αγμLbβ ·

X
q0
q̄0βγμLq

0
α;

O5 ¼ s̄αγμLbα ·
X
q0
q̄0βγμRq

0
β; O6¼ s̄αγμLbβ ·

X
q0
q̄0βγμRq

0
α:

ð43Þ

They arise from the QCD penguin diagrams which con-
tribute in order αs through the initial values of the Wilson
coefficients at μ ≈MW and operator mixing due to the QCD
corrections. The sum over q0 runs over the quark fields that
are active at the scale μ ¼ OðmbÞ, i.e., q0 ¼ u; d; s; c. The
operators O7;…; O10 which arise from the electroweak-
penguin diagrams are given by

O7 ¼
3

2
s̄αγμLbα ·

X
q0
eq0 q̄0βγμRq

0
β; O8 ¼

3

2
s̄αγμLbβ ·

X
q0
eq0 q̄0βγμRq

0
α;

O9 ¼
3

2
s̄αγμLbα ·

X
q0
eq0 q̄0βγμLq

0
β; O10 ¼

3

2
s̄αγμLbβ ·

X
q0
eq0 q̄0βγμLq

0
α: ð44Þ

The last two operators O7γ and O8g are

O7γ ¼
−e
8π2

mbs̄σμνð1þ γ5ÞFμνb;

O8g ¼
−gs
8π2

mbs̄σμνRGμν: ð45Þ

where Gμν denotes the gluon field strength tensor. The O7γ

and O8g are the electromagnetic and chromomagnetic
dipole operators, respectively.
In phenomenology, it is more convenient to use the

coefficients ai which are obtained from the Wilson coef-
ficients Cj. Without QCD corrections, ai are given by

ai ¼ Ci þ
1

Nc
Ciþ1 ði ¼ oddÞ;

ai ¼
1

Nc
Ci−1 þ Ci ði ¼ evenÞ: ð46Þ

where i ¼ 1;…; 10. With QCD corrections, all the dynami-
cal information is encoded in coefficients ai.

C. The QCD factorization approach

For the nonleptonic decays, there are at least three
hadrons in one system. How to calculate the hadronic
matrix elements of the local operators given in the effective
Hamilatonian is a notorious difficult problem. The factori-
zation hypothesis is proposed to simplify the hadronic
matrix elements. The original idea is called by the naive
factorization [36]. Take the B → M1M2 decay as an
example. The recoiled M1 denotes the meson which picks
up the light spectator quark. Another meson M2 is called
the emitted meson which is created from one current. The
assumption of factorization is that the emittedM2 decouple
from the remained BM1 system. This assumption corre-
sponds to vacuum insertion approximation. Under this
approximation, the three meson matrix element is
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simplified into product of a decay constant and form factor.
The naive factorization is tested to work well for the color-
allowed tree dominated processes. But it fails to explain the
color-suppressed and penguin dominated processes. In
these processes, the nonfactorizable QCD corrections
between M2 and BM1 are important. The generalized
factorization approach solves the renormalization scale
and scheme dependence problem in the naive factorization
[37]. But it is not a systematic method because it introduces

a phenomenological color number to account for the
nonfactorizable contributions.
The QCD factorization approach is a rigourous theo-

retical method within which the nonfactorizable QCD
corrections can be systematically calculated [22–25]. It
states that in the heavy quark limit, the transition matrix
element of an operator Oi in the weak decays B → M1M2

can be factorized into a convolution of hard scattering
kernel and meson distribution amplitude as

hM1M2jOijBi ¼
X
j

FBM1

j ðm2
2Þ
Z

1

0

dxTI
ijðxÞΦM2

ðxÞ þ ðM1 ↔ M2Þ

þ
Z

1

0

dξdxdyTIIðξ; x; yÞΦBðξÞΦM1
ðyÞΦM2

ðxÞ: ð47Þ

The term in the second line is the hard spectator scattering
contribution. When M1 is heavy and M2 is light, only the
first term in the first line has contribution. The hard
scattering kernels TI and TII can be perturbatively calcu-
lated order by order in αs. The ΦMðxÞ is the meson light-
cone distribution amplitude which is universal and process
independent. In QCDF, the factorization means the sepa-
ration of perturbative contribution from the nonperturbative
part. It is proved that the factorization is valid for final states
containing two light mesons or the case with one heavy and
one light meson.
Under the diquark approximation, a baryon is similar to

the meson. This similarity makes the application of QCDF
into the heavy baryon decays possible. But one need to be
cautious about the hard spectator scattering. When a hard
gluon interacts with a diquark, the loosely bounded diquark
may be broken and the diquark approximation is invalid.
This case occurs for a light final baryon, such as p where
the two quarks in the diquark are both energetic. In this
case, one has to return to the three-quark picture and use the
perturbative method, e.g., [13]. However, the interactions
with two hard gluon exchanges are suppressed by α2s.
Another possibility is that the diquark remains unbroken
and it interacts with the hard gluons like a point particle. As
we know, the diquark is not a fundamental particle. One
needs to introduce a form factor to compensate for its
structure. The form factor cannot be calculated from first
principles. A decay constant for a baryon is also required to
be introduced. Due to these technical difficulties and the
theory uncertainties, we will not consider the hard spectator
scattering in this study.
Without the hard spectator interaction contribution, QCD

factorization can be extended to the Λ0
b → H þM decays

when the emitted mesonM is light. In the rest frame of Λ0
b,

the light meson is energetic. It is a compact object and has
small transverse size. The soft gluons decouple from the
light mesonM. This is statement of color transparency [38].

The Λ0
b → H transitions are soft dominated and the form

factors are evaluated in the covariant light-front quark
model. The QCD interactions between M and Λ0

bH are
mediated by the hard gluon exchange and perturbatively
calculable. Thus, we have a factorized form for the decay
Λ0
b → H þM as

hHMjOijΛ0
bi ¼

X
j

FΛbH
j ðM2Þ

Z
1

0

dxTI
ijðxÞΦMðxÞ: ð48Þ

where FΛbH
j denote the Λ0

b → H form factors and ΦMðxÞ is
the light-cone distribution amplitude of the meson M.
At the αs order, the QCD corrections can be shown in

Fig. 2. The four diagrams (the three in the first line and the
first one in the second line) are vertex corrections. The
second diagram in the second line is penguin diagram and
the third diagram is the chromomagnetic dipole diagram.
Their formulations are presented in Appendix B. All the
QCD corrections are included in the coefficients ai which
are obtained from the Wilson coefficients Cj given in the
effective Hamiltonian. The coefficients ai is calculated up
to αs order, including the one-loop vertex corrections and
penguin contributions. The terms of a6 and a8 contains the
chirally enhanced twist-3 contributions since they are
numerically important. For the other coefficients ai, only
the leading twist contributions are considered and the

FIG. 2. Feynman diagrams in the QCD factorization approach.
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asymptotic form of the twist-2 meson distribution ampli-
tude is adopted. About the coefficient a2, its value is small
considering the vertex corrections and penguin contribu-
tions. It is insufficient to explain the experimental data for
the color suppressed processes. The hard spectator scatter-
ing contribution is important for the coefficient a2. After
taking the hard spectator scattering contribution into
account, the real part of a2 is 0.2 and nearly independent
of the renormalization scale μ [24]. We use this value to
partly compensate the neglected hard spectator scattering
contributions. The numerical results for the coefficients ai
are given in Table I.
When the meson in Λ0

b → H þM decays is heavy, such
as D or D�, the color transparency argument is not valid.
The QCD factorization is considered to be inapplicable for
this type processes. According to this criteria, about half of
the 44 processes cannot be analyzed. In order to study these
processes, we prefer to adopt a more phenomenological
point of view at the cost of losing some theoretical
rigorousness. Assuming mc ≪ mb so that D and D�
mesons are considered to be light. Under this assumption,
the QCDF approach can be applied to all the 44 processes
listed in the subsection of Classification. From the previous
study [4], the naive factorization works very well for the
color-allowed processes with two heavy final states. One
needs to worry about the color-suppressed processes. We
make a crude estimate that the uncertainties caused by the
approximation is estimated to be order of mc=mb, about
30% at the amplitude level. In [23], the authors calculated
a2 in B → πD process. By choosing a very asymmetric
distribution amplitude for the D meson, they obtain
a2 ≈ 0.22e−i41° which is not far from the value of a2 given
in Table I.
About the processes containing the final state of char-

monium ηc or J=ψ, QCD factorization is still applicable
due to the small transverse size of the charmonium in the
heavy quark limit [39]. A combined coefficient ā2 extracted

from the experiment data of B → J=ψK is jā2jexpt ¼ 0.26 is
close to the value of a2 given in Table I.

D. The decay rate and direct CP asymmetry

Under the factorization assumption, the transition ampli-
tude of Λ0

b → HM can be written generally by

MðΛ0
b → HPÞ ¼ ūHðAþ Bγ5ÞuΛ0

b
;

MðΛ0
b → HVÞ ¼ ūHϵ�μ½A1γμγ5 þ A2ðpHÞμγ5

þ B1γμ þ B2ðpHÞμ�uΛ0
b
; ð49Þ

with

A ¼ λ

�
ðMΛ0

b
−MHÞf1ðM2Þ þ q2

f3ðM2Þ
MΛ0

b

�
;

B ¼ λ

�
ðMΛ0

b
þMHÞg1ðM2Þ − q2

g3ðM2Þ
MΛ0

b

�
;

A1 ¼ −λM
�
g1ðM2Þ þ g2ðM2Þ

MΛ0
b
−MH

MΛ0
b

�
;

A2 ¼ −2λM
g2ðM2Þ
MΛ0

b

;

B1 ¼ λM

�
f1ðM2Þ − f2ðM2Þ

MΛ0
b
þMH

MΛ0
b

�
;

B2 ¼ 2λM
f2ðM2Þ
MΛ0

b

; ð50Þ

where M represents the meson mass and q2 ¼ M2. The
function λ is an essential quantity in the decay amplitude.
Note that the function λ given here is different from the
Wolfenstein parameter λ in the CKM elements. In order to
avoid confusion, we change the Wolfenstein parameter λ to

TABLE I. Numerical values of the coefficients ai.

ai μ ¼ mb=2 μ ¼ mb μ ¼ 2mb

a1 1.096þ 0.037i 1.067þ 0.020i 1.046þ 0.011i
a2 0.200 − 0.114i 0.200 − 0.084i 0.200 − 0.067i
a3 ð9.293þ 3.665iÞ × 10−3 ð7.007þ 2.041iÞ × 10−3 ð5.044þ 1.187iÞ × 10−3

au4 ð−2.157 − 2.059iÞ × 10−2 ð−2.290 − 1.623iÞ × 10−2 ð−2.290 − 1.350iÞ × 10−2

ac4 ð−2.949 − 0.924iÞ × 10−2 ð−2.875 − 0.785iÞ × 10−2 ð−2.755 − 0.684iÞ × 10−2

a5 ð−6.681 − 5.112iÞ × 10−3 ð−5.106 − 2.570iÞ × 10−3 ð−3.494 − 1.374iÞ × 10−3

au6 ð−4.611 − 1.891iÞ × 10−2 ð−3.561 − 1.535iÞ × 10−2 ð−2.974 − 1.301iÞ × 10−2

ac6 ð−5.069 − 0.685iÞ × 10−2 ð−3.899 − 0.644iÞ × 10−2 ð−3.243 − 0.593iÞ × 10−2

a7 ð1.58þ 3.17iÞ × 10−5 ð7.43þ 1.60iÞ × 10−5 1.91 × 10−4

au8 3.98 × 10−4 ð2.62 − 0.56iÞ × 10−4 ð1.59 − 0.96iÞ × 10−4

ac8 3.98 × 10−4 ð2.52 − 0.30iÞ × 10−4 ð1.40 − 0.50iÞ × 10−4

a9 ð−9.21 − 0.29iÞ × 10−3 ð−8.93 − 0.16iÞ × 10−3 ð−8.63þ 0.09iÞ × 10−3

au10 ð1.06þ 0.95iÞ × 10−3 ð5.99þ 6.48iÞ × 10−4 ð1.62þ 4.57iÞ × 10−4

ac10 ð1.06þ 0.95iÞ × 10−3 ð5.82þ 6.73iÞ × 10−4 ð1.32þ 4.50iÞ × 10−4
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λW . Except the baryon-to-baryon form factors, all the other
quantities, such as the meson decay constant, Fermi
constant, CKM matrix elements, Wilson coefficients, the
nonfactorizable corrections are contained in λ. The explicit
forms of λ for different processes are collected in the
Appendix C.
The decay rates of Λ0

b → HP and the up-down asym-
metries are

Γ¼pc

8π

�ðMΛ0
b
þMHÞ2−M2

M2
Λ0
b

jAj2þ
ðMΛ0

b
−MHÞ2−M2

M2
Λ0
b

jBj2
�
;

α¼−
2κReðA�BÞ
jAj2þκ2jBj2 : ð51Þ

where pc is the momentum of the final baryonH in the rest
frame of Λ0

b and κ ¼ pc
EHþMH

. For Λ0
b → HV decays, the

decay rates and up-down asymmetries are

Γ¼pcðEHþMHÞ
8πMΛ0

b

½2ðjSj2þjP2j2Þþ
E2

M2
ðjSþDj2þjP1j2Þ�;

α¼ 4M2ReðS�P2Þþ2E2ReðSþDÞ�P1

2M2ðjSj2þjP2j2ÞþE2ðjSþDj2þjP1j2Þ
; ð52Þ

where E is the energy of the vector meson, and

S ¼ −A1;

P1 ¼ −
pc

E

�MΛ0
b
þMH

EH þMH
B1 þ B2

�
;

P2 ¼
pc

EH þMH
B1;

D ¼ −
p2
c

EðEH þMHÞ
ðA1 − A2Þ: ð53Þ

The direct CP asymmetry of decay Λ0
b → HM is

defined by

ACP ≡ BðΛ0
b → HMÞ − BðΛ̄0

b → H̄M̄Þ
BðΛ0

b → HMÞ þ BðΛ̄0
b → H̄M̄Þ : ð54Þ

At the quark level, the CP violation is represented by b
quark decay rate minus the b̄ anti-quark which follows the
standard convention. In order to produce CP violation, it
requires both the weak and strong phase differences. Only
the tree diagram contribution cannot satisfy the condition.
Usually, the direct CP asymmetry arises from the inter-
ference of tree and penguin contributions. It is also possible
for the processes which contain pure penguin contributions.
This is due to the interference between the virtual u and c
quark exchanges in the penguin loop diagrams.
The weak phases are contained in the CKM matrix

elements. The strong phases come from the diagrams where
the virtual quarks or gluons become on-shell. In QCDF

approach, it has two origins: (1) In the penguin contribu-
tions, the quark-antiquark loop produces an imaginary part.
This is usually called the BSS mechanism [40]. (2) In the
vertex corrections, the hard gluon exchange between the
final two hadrons can also produces an imaginary part.
These two origins of strong phase are perturbative.

E. Chirally enhanced contributions

When the final meson is a pseudoscalar, the penguin
operators from O5 to O8 with (Vþ A) current will give
nonzero contributions. We take the process ofΛ0

b → pπ− as
an example to illustrate. Considering the operator O5, the
matrix element is

hpπ−jðd̄bÞV−AðūuÞVþAjΛ0
bi

¼ ð−2Þhpπ−jd̄αð1þ γ5Þuβūβð1 − γ5ÞbαjΛ0
bi

¼ 1

Nc
Rπhπ−jðd̄uÞV−Aj0ihpjðūbÞVþAjΛ0

bi; ð55Þ

where

Rπ ¼
2m2

π

mbðmd þmuÞ
: ð56Þ

In the above equation, we have used the Fierz trans-
formation, factorization, and the equations of motion.
From the power counting, the operator O5 contribution
belongs to power correction in 1=mb. However, the small
masses of the u, d current quarks make the factor Rπ

numerically large, and Rπ is nearly about 1 for the realistic
b quark mass. So, this term is usually called the “chirally
enhanced” contribution. It is important in the penguin
dominated processes. We include this term in the
calculations.
The occurrence of (Vþ A) current in the matrix element

of Eq. (55) causes one complication which is special for the
baryon decay. For the meson case, only the vector current
contribute to B → P transition form factor and only the
axial-vector current contribute to B → V transition (the
vector current part vanishes when couples to the pseudo-
scalar momentum). The (Vþ A) current can be changed to
(V − A) current and relative minus sign is required for
B → PP and B → VP. In particular, for B̄0 → πþπ− and
B̄0 → ρþπ−, they have the same quark component. Their
decay amplitudes are

MðB̄0 → πþπ−Þ

¼ −i
GFffiffiffi
2

p fπFBπ
0 ðm2

πÞðm2
B −m2

πÞ½VubV�
uda1

þ VubV�
udðau4 þ au10Þ þ VcbV�

cdðac4 þ ac10Þ
þ RπðVubV�

udðau6 þ au8Þ þ VcbV�
cdðac6 þ ac8ÞÞ�; ð57Þ

and
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MðB̄0 → ρþπ−Þ
¼

ffiffiffi
2

p
GFfπA

Bρ
0 ðm2

πÞmρðϵ · pπÞ½VubV�
uda1

þ VubV�
udðau4 þ au10Þ þ VcbV�

cdðac4 þ ac10Þ
− RπðVubV�

udðau6 þ au8Þ þ VcbV�
cdðac6 þ ac8ÞÞ�: ð58Þ

One can see that the a6 and a8 contributions in B̄0 → πþπ−
and B̄0 → ρþπ− decays are opposite in sign. Neglecting the
small difference in the Wilson coefficients aui and aci and
using the unitarity of the CKM matrix elements, the above
formulas are same as the expressions given in [37].
But for baryon case, the vector and axial-vector currents

both contribute to the baryon-to-baryon form factors. The
operators O5−8 contribute to ðV − AÞ ⊗ ðVþ AÞ while
other operators contribute to ðV − AÞ ⊗ ðV − AÞ. These
two contributions from different types of current have to be
treated differently. Our method is to divide the vector
current and axial vector current parts and absorb them into
A and B terms of the Eq. (50). Here, we give formulas of the
λ function in Λ0

b → pπ− process. For the other processes,
their forms are collected in the Appendix C. In Λ0

b → pπ−

process, the λ function for A term is

λ ¼ GFffiffiffi
2

p fπ½VubV�
uda1 þ VubV�

udðau4 þ au10Þ

þ VcbV�
cdðac4 þ ac10Þ þ RπðVubV�

udðau6 þ au8Þ
þ VcbV�

cdðac6 þ ac8ÞÞ�; ð59Þ

and for B term is

λ ¼ GFffiffiffi
2

p fπ½VubV�
uda1 þ VubV�

udðau4 þ au10Þ

þ VcbV�
cdðac4 þ ac10Þ − RπðVubV�

udðau6 þ au8Þ
þ VcbV�

cdðac6 þ ac8ÞÞ�: ð60Þ

There is only one difference: a relative minus sign for a6
and a8 contributions in A and B terms. We find a relation:
the term in the square bracket of Eq. (57) is the same as the
corresponding one of Eq. (59); and the term in the square
bracket of Eq. (58) is the same as the corresponding one
of Eq. (60). The complication caused by the ðV − AÞ ⊗
ðVþ AÞ current structure is one difference between the
baryon and meson. The authors in [13] observed this
phenomenon earlier. While this point is not realized in
the previous work [6]. We correct this error in this study.

F. Similarity of meson and baryon

Under the diquark approximation, the baryon is similar
to a meson. We may use this similarity to obtain some
information for theΛ0

b decays by using the corresponding B
meson decays. Consider Λ0

b → Λϕ decay as an example.
If we change the diquark ½ud� by a antiquark d̄, we have the
meson decay B̄0 → K̄0ϕ. If the meson-baryon similarity is
rigorous, we expect that the two processes have the same
QCD dynamics at the quark level. We prove this
assumption below.
The decay amplitude of the process B̄0 → K̄0ϕ is

written by

MðB̄0 → K̄0ϕÞ ¼
ffiffiffi
2

p
GFfϕFBK

1 ðm2
ϕÞmϕðϵ · pKÞ

�
VubV�

us

�
a3 þ au4 þ a5 −

1

2
a7−

1

2
a9 −

1

2
au10

�

þ VcbV�
cs

�
a3 þ ac4 þ a5 −

1

2
a7 −

1

2
a9 −

1

2
ac10

��

¼ −
ffiffiffi
2

p
GFfϕFBK

1 ðm2
ϕÞmϕðϵ · pKÞVtbV�

tsā; ð61Þ

where the factor ā is

ā¼ −1
VtbV�

ts

�
VubV�

us

�
a3þau4þa5−

1

2
a7−

1

2
a9−

1

2
au10

�

þVcbV�
cs

�
a3þac4þa5−

1

2
a7−

1

2
a9−

1

2
ac10

��
: ð62Þ

The ā is a combined coefficient where all the QCD
corrections are included. In fact, ā can be simplified into
a familiar form. Neglecting the difference of aui and a

c
i , and

using the unitarity relation VubV�
us þ VcbV�

cs ¼ −VtbV�
ts,

the factor ā can be rewritten by

ā ¼ a3 þ a4 þ a5 −
1

2
ða7 þ a9 þ a10Þ: ð63Þ

With this ā, the formula of Eq. (61) reproduces the result
in [37].
For the Λ0

b → Λϕ decay, what we need is the λ function.
It is

λ ¼ GFffiffiffi
2

p fϕ

�
VubV�

us

�
a3 þ au4 þ a5 −

1

2
a7 −

1

2
a9 −

1

2
au10

�

þ VcbV�
cs

�
a3 þ ac4 þ a5 −

1

2
a7 −

1

2
a9 −

1

2
ac10

��

¼ −
GFffiffiffi
2

p fϕVtbV�
tsā: ð64Þ

Comparing the Eqs. (61) and (64), we find that the
baryon and meson decay amplitudes have the same factor ā.
That means,
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āðΛ0
b → ΛϕÞ ¼ āðB̄0 → K̄0ϕÞ: ð65Þ

Since ā encodes the QCD dynamics, we can say that the
baryon and meson decays have the same QCD dynamics at
the quark level. This is a rigorous relation obtained from the
meson-baryon similarity.
The meson-baryon similarity has important meaning and

applications. The calculation of the QCD dynamics in Λ0
b

decays depends on the theory approach and contains large
hadron uncertainties. At present, the B meson data is very
precise. The meson-baryon similarity permits us to give a
model-independent prediction. In particular, we can extract
ā from the data of the meson decay B̄0 → K̄0ϕ, and then
use it to predict the baryon decay Λ0

b → Λϕ. Using the
meson data to predict baryon decay Λ0

b → pK− has been
done in [6]. It is shown that this model-independent
prediction accords with the experiment very well.

V. INPUT PARAMETERS AND NUMERICAL
RESULTS OF THE FORM FACTORS

In this section, we first present the input parameters.
Then we use them to calculate the baryon-to-baryon
transition form factors in the covariant light-front approach.
At last, the theoretical uncertainties in our model are
discussed.

A. Input parameters

In the calculations, the baryon masses are
MΛ0

b
¼ 5.619 GeV, MΛc

¼2.285GeV, MΛ ¼ 1.116 GeV
and Mp ¼ 0.938 GeV [1].
The quark mass appeared in the light-front quark model

is the constituent mass. Its value should be process
independent. So we can use the quark masses determined
from the meson process. The quark masses are taken from
the previous works [4,5]:

mb ¼ 4.4 GeV; mc ¼ 1.3 GeV;

ms ¼ 0.45 GeV; mu ¼ md ¼ 0.3 GeV: ð66Þ

The ½ud� diquark mass is not well determined. From [28], it
is assumed that mass of a ½ud� diquark is close to the
constituent strange quark mass. In the literature, the mass of
the constituent light scalar diquark m½ud� is rather arbitrary,
ranging from 400–800 MeV. In [4], m½ud� ¼ 500 MeV is
fitted from the process of Λ0

b → Λþ
c l−ν̄l when other

parameters are fixed. We also use this value for our
calculations and adjust it when necessary.
The quark in the QCDF approach and the equations of

motion is the current quark, and the mass is current mass.
The values for the three light current quarks are

mu ¼ 2.3 MeV; md ¼ 4.8 MeV; ms ¼ 95 MeV:

ð67Þ

For the heavy quark mass, the values are chosen the same as
those given in the constituent mass.
The baryon parameter β in the Gaussian-type wave

function is at the order of the QCD scale ΛQCD and needs
to be specified. For the meson case, the parameter β can be
determined from the decay constant which is measured by
experiment. But this method cannot be applied to the
baryon. The flavor symmetry can provide some helpful
relations. In the heavy quark limit, the heavy quark
symmetry gives βΛb

¼ βΛc
. From the light quark SU(3)

symmetry, βΛ ¼ βp. Isospin symmetry gives βp ¼ βn. The
β parameters are determined by fitting the theory prediction
to the data. For example, the parameters βΛb

and βΛc
are

fixed by data of Λ0
b → Λþ

c l−ν̄l and Λ0
b → Λþ

c π
− processes.

From these two process, the βΛb
and βΛc

are chosen to be
βΛb

¼ 0.40 GeV and βΛc
¼ 0.34 GeV. The value of βΛc

is
slightly smaller than βΛb

. The proton parameter βp is fixed
from Λ0

b → pl−ν̄l process. The fitted value is
βp ¼ 0.38 GeV. The value of βp is nearly equal to βΛb

.
The choice of a large value for βp ¼ 0.38 GeV is forced by
the experimental data. The previous chosen βp ¼ 0.3 GeV
in [5] gives predictions of BðΛ0

b → pl−ν̄lÞ ¼ 2.54 × 10−4

and BðΛ0
b → pπ−Þ ¼ 3.15 × 10−6. These predictions are

insufficient to explain the present data of BðΛ0
b→pμ−ν̄μÞ¼

ð4.1�1.0Þ×10−4 and BðΛ0
b→pπ−Þ¼ð4.2�0.8Þ×10−6.

So we have to choose a large value for βp. The leptonic
decay of Λ0

b → Λμþμ− is a flavor-changing-neutral-current
process. Its discussion is beyond the scope of this study. So,
it is difficult to determine βΛ from the experiment. We use
the light quark SU(3) symmetry relation βΛ ¼ βp and
neglect the SU(3) breaking effect. In fact, the theory results
are not sensitive to the variation of βΛ. Neglecting SU(3)
breaking in this case is reasonable. The input parameters of
the constituent quark masses and the β parameters are
collected in Table II.
For the ω and ϕ mesons, the ideal mixing is assumed so

that the quark component of the two mesons are ω ¼
1ffiffi
2

p ðuūþ dd̄Þ and ϕ ¼ ss̄. For the η and η0 mesons, both of

them require two decay constants. We adopt the Feldmann-
Kroll-Stech scheme [41] for the η − η0 mixing. The mesons
η and η0 are superposition of the nonstrange and strange
flavor bases as

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηn

ηs

�
; ð68Þ

where

TABLE II. Input parameters in the covariant light-front ap-
proach (in units of GeV).

mb mc ms mu m½ud� βΛb
βΛc

βΛ βp βn

4.4 1.3 0.45 0.3 0.5 0.40 0.34 0.38 0.38 0.38
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ηn ¼
uūþ dd̄ffiffiffi

2
p ¼ nn̄; ηs ¼ ss̄: ð69Þ

The mixing angle ϕ ¼ 39.3°� 1.0°. In this mixing scheme,
only two decay constants fnðn ¼ u; dÞ and fs are needed
[42]:

h0jn̄γμγ5njηnðPÞi ¼
iffiffiffi
2

p fnPμ;

h0js̄γμγ5sjηsðPÞi ¼ ifsPμ: ð70Þ

This is based on the assumption that the intrinsic n̄nðs̄sÞ
component is absent in the ηsðηnÞ meson. These decay
constants have been determined from the related exclusive
processes [43]. Their values are

fn ¼ ð1.07� 0.02Þfπ; fs ¼ ð1.34� 0.06Þfπ: ð71Þ

The decay constants of η and η0 are defined by

h0jūγμγ5ujηðPÞi ¼ ifuηPμ; h0js̄γμγ5sjηðPÞi ¼ ifsηPμ;

h0jūγμγ5ujη0ðPÞi ¼ ifuη0Pμ; h0js̄γμγ5sjη0ðPÞi ¼ ifsη0Pμ:

ð72Þ

Then, we have

fuη ¼ fdη ¼ 54 MeV; fsη ¼ −111 MeV;

fuη0 ¼ fdη0 ¼ 44 MeV; fsη0 ¼ 136 MeV: ð73Þ

The meson decay constants used in this study are
collected in the Table III. The ηc decay constant is taken
from [44,45].
The CKM matrix elements are taken from [1]

Vud ¼ 1 − λ2W=2; Vus ¼ λW; Vub ¼ Aλ3Wðρ − iηÞ;
Vcd ¼ −λW; Vcs ¼ 1 − λ2W=2; Vcb ¼ Aλ2W;

Vtd ¼ Aλ3Wð1 − ρ − iηÞ; Vts ¼ −Aλ2W; Vtb ¼ 1:

ð74Þ

where the Wolfenstein parameters are λW ¼ 0.225,
A ¼ 0.823, ρ ¼ 0.141, and η ¼ 0.349. Here we use the
symbol λW to replace the familiar form λ in order to avoid
confusion with the λ function given in the decay amplitude.

B. Numerical results for the form factors

The form factors are evaluated in the frame qþ ¼ 0
where q2 ≤ 0. The calculated form factors are in the
spacelike momentum region. In order to obtain the physical
form factors, we need an analytic extrapolation from the
spacelike to the timelike region. Following [5], the form
factors are parametrized in a three-parameter form as

Fðq2Þ ¼ r1
ð1 − q2

M2
fit
Þ
þ r2
ð1 − q2

M2
fit
Þ2

ð75Þ

where F represents the form factors f1;2;3 and g1;2;3. The
parameters r1, r2, andMfit are fixed by performing a three-
parameter fit to the form factors in the spacelike region and
then extrapolate to the physical regions. Because there is no
singularity for the obtained form factors at q2 < M2

Λb
, the

analytic extrapolation is reasonable. The fitted values of r1,
r2, and Mfit for different form factors f1;2;3 and g1;2;3 are
given in Tables IV–VII.
For the heavy-to-heavy transitions Λb → Λc, the numeri-

cal results of the form factors are presented in Table IV. The
form factors f1, g1 are positive and of the order of 1. They
are nearly equal, i.e., f1 ≈ g1 which satisfies the heavy
quark symmetry. The other four form factors f2, g2, f3, g3
are all negative. At q2 ¼ 0, f2 ≈ g3, and they are about 20%
of f1ðg1Þ. The quantities f3, g2 are the smallest,
f3 ∼ g2 ≈ 0, and they can be neglected. The numerical
results show the validity of heavy quark symmetry and the
power corrections are at the order of 20%.
For the heavy-to-light transitions Λb → pðΛ; nÞ, the

numerical results of the form factors are presented in

TABLE III. Meson decay constants fM (in units of MeV).

Meson π ρ K K� D D� Ds D�
s

f 131 216 160 210 200 220 230 230
Meson ω ϕ ηu ηs η0u η0s ηc J=ψ
f 195 233 54 −111 44 136 335 395

TABLE IV. The Λb → Λc form factors in the covariant light-
front approach.

F r1 r2 Mfit (GeV) F(0)

f1 −3.22 3.72 13.9 0.500
f2 0.736 −0.834 13.9 −0.098
f3 0.063 −0.071 13.9 −0.009
g1 −3.30 3.82 13.9 0.509
g2 0.131 −0.146 13.9 −0.015
g3 0.573 −0.657 13.9 −0.085

TABLE V. The Λb → p form factors in the covariant light-front
approach.

F r1 r2 Mfit (GeV) F(0)

f1 −0.078 0.206 6.0 0.128
f2 0.055 −0.110 6.0 −0.056
f3 0.036 −0.073 6.0 −0.037
g1 −0.078 0.207 6.0 0.129
g2 0.032 −0.065 6.0 −0.033
g3 0.086 −0.121 6.0 −0.062

JIE ZHU, ZHENG-TAO WEI, and HONG-WEI KE PHYS. REV. D 99, 054020 (2019)

054020-16



Tables V–VII. The form factors f1, g1 are the largest, but
their values are only about 0.1. This form factor suppres-
sion comes from the large momentum transfer to the final
baryon. Similar to heavy-to-heavy transitions, the other
form factors are negative. At the large recoil point q2 ¼ 0,
f2 ≈ g3, and they are about 50% of f1ðg1Þ. That means the
large energy limit relations are broken significantly. The
quantities f3, g2 are small but not negligible, about 10%-
20% of f1ðg1Þ. Comparing Tables V and VI, one can find
that the corresponding form factors in the Λb → p and
Λb → Λ two processes are nearly equal. This is due to the
light quark flavor symmetry. Λb → n form factors are same
as Λb → p due to isospin symmetry.
The q2-dependence of the Λb → Λcðp;Λ; nÞ form fac-

tors are plotted Figs. 3–6. In all the four cases, the absolute

values of the six form factors are increasing function of q2.
The dependence of form factors on q2 is smooth. The q2-
dependence is crucial for the behavior of the differential
decay width of the semileptonic processes and also has
effects on the nonleptonic processes.
The baryon-to-baryon form factors are dominated by the

nonpertubative QCD dynamics. The calculation of the
transition form factors are model dependent and the theory
uncertainties are difficult to estimate. In the next subsec-
tion, we provide an estimate of theoretical uncertainties
caused by the input parameters. In [33], the authors
compare the predictions of the Λb → Λc; p form factors
in different theory models. They obtain a conclusion: there
is a reasonable agreement between predictions of signifi-
cant different approaches for calculating the baryon form
factors.

C. Theoretical uncertainties

In this study, the covariant light-front quark model
and diquark approximation are adopted to calculate the
form factors. For the theoretical uncertainties, we estimate
the errors coming from the input values: the hadron β
parameters and the scalar diquark mass. Similar to the
central values given above, the theory uncertainties for the
input parameters are also determined by fitting to the
data: βΛb

¼ 0.40� 0.02 GeV, βΛc
¼ 0.34� 0.01 GeV,

βp ¼ 0.38� 0.03 GeV, m½ud� ¼ 0.500� 0.025 GeV. The
values of the uncertainties are shown to be small, less than
10%, and they are due to the present experimental data.
Table VIII gives the different form factors F at q2 ¼ 0

with the theoretical errors. One can see that the theory
errors are small in general, but not negligible. The errors
caused by the diquark mass are smaller than the ones
by the β parameters. For the q2 dependence of the form
factors, we show them in an example for the Λb → p
form factors in Fig. 7. Other baryon-to-baryon form factors
can be plotted similarly. Due to limit of space, they are not
presented here.

TABLE VI. The Λb → Λ form factors in the covariant light-
front approach.

F r1 r2 Mfit (GeV) F(0)

f1 −0.091 0.222 6.2 0.131
f2 0.051 −0.098 6.2 −0.048
f3 0.028 −0.055 6.2 −0.027
g1 −0.092 0.224 6.2 0.132
g2 0.026 −0.050 6.2 −0.023
g3 0.053 −0.105 6.2 −0.052

TABLE VII. The Λb → n form factors in the covariant light-
front approach.

F r1 r2 Mfit (GeV) F(0)

f1 −0.078 0.207 6.0 0.128
f2 0.055 −0.110 6.0 −0.056
f3 0.036 −0.073 6.0 −0.037
g1 −0.078 0.207 6.0 0.129
g2 0.032 −0.065 6.0 −0.033
g3 0.059 −0.121 6.0 −0.062

FIG. 3. The q2-dependence of the Λb → Λc transition form factors. The horizontal q2 variable is given in units of GeV2.
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VI. NUMERICAL RESULTS FOR SEMI-LEPTONIC
DECAYS OF Λ0

b → Λ+
c ðpÞl − ν̄l

Now, we are able to calculate the branching ratios and
various asymmetries of the semileptonic decays
Λ0
b → Λþ

c ðpÞl−ν̄l. The numerical results of our model
predictions in the covariant light-front approach are

presented in Table IX. The errors for AFB and PL are
small and can be neglected.
The semileptonic decays Λ0

b → Λþ
c l−ν̄l decays where the

final lepton is electron or muon are observed with a large
branching ratio ð6.2þ1.4

−1.3Þ × 10−2. At present, the experi-
mental error is still large. At the quark level, it is b → cl−ν̄l

FIG. 4. The q2-dependence of the Λb → p transition form factors. The horizontal q2 variable is given in units of GeV2.

FIG. 5. The q2-dependence of the Λb → Λ transition form factors. The horizontal q2 variable is given in units of GeV2.

FIG. 6. The q2-dependence of the Λb → n transition form factors. The horizontal q2 variable is given in units of GeV2.
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transition and the involved CKM matrix element is Vcb.
The central value of the theory prediction for the electron
process is 5.59 × 10−2. The ratio for the muon process is
nearly equal to electron mode. That means that the mass of

the light lepton can be neglected for the branching ratios.
But it cannot be neglected for the forward-backward
asymmetry and the longitudinal polarization. Our theory
prediction for the ratio of the process Λ0

b → Λþ
c l−ν̄l is

TABLE VIII. The transition form factors Fð0Þ with theoretical errors. The errors correspond to the uncertainties in the input
parameters β and the diquark mass, respectively.

Fð0Þ Λb → Λc Λb → p Λb → Λ Λb → n

f1 0.500þ0.018þ0.022
−0.020−0.024 0.128þ0.017þ0.008

−0.019−0.008 0.131þ0.016þ0.008
−0.018−0.008 0.128þ0.017þ0.008

−0.019−0.008

f2 −0.098þ0.005þ0.002
−0.004−0.002 −0.056þ0.010þ0.002

−0.010−0.002 −0.048þ0.008þ0.002
−0.008−0.002 −0.056þ0.010þ0.002

−0.010−0.002

f3 −0.009þ0.001þ0.000
−0.001−0.000 −0.037þ0.008þ0.001

−0.008−0.003 −0.027þ0.006þ0.000
−0.006−0.000 −0.037þ0.008þ0.001

−0.008−0.003

g1 0.509þ0.018þ0.023
−0.020−0.024 0.129þ0.017þ0.009

−0.019−0.008 0.132þ0.016þ0.008
−0.017−0.009 0.129þ0.017þ0.009

−0.019−0.008

g2 −0.014þ0.001þ0.000
−0.001−0.000 −0.033þ0.007þ0.001

−0.007−0.000 −0.024þ0.005þ0.001
−0.005−0.001 −0.033þ0.007þ0.001

−0.007−0.000

g3 −0.085þ0.005þ0.000
−0.005−0.000 −0.062þ0.011þ0.002

−0.011−0.001 −0.052þ0.008þ0.001
−0.008−0.001 −0.062þ0.011þ0.002

−0.011−0.001

FIG. 7. The q2-dependence of the Λb → p transition form factors. The horizontal q2 variable is given in units of GeV2. In each
diagram, the solid line represents the central values; the dashed lines represent the values with errors in the β parameters only; the dot
dashed lines represent the values with errors in both the β parameters and the diquark mass.
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slightly smaller than the central value of the data, and
consistent with the data within the experimental error. This
result is obtained based upon taking account of both the
semileptonic and nonleptonic processes. The data of the
nonleptonic processes Λ0

b → Λþ
c þM given in the next

section is more precise than the ones of the semileptonic
processes. If we choose the parameters βΛb

and βΛc
to fit the

central value of the data of Λ0
b → Λþ

c l−ν̄l, the predictions
for the nonleptonic processes of Λ0

b → Λþ
c þM will be

found to be inconsistent with the data. Besides the ratios of
the absolute ratios of the semileptonic and nonleptonic
processes, one also needs to consider the relative ratio of

semileptonic to nonleptonic decays, such as
BðΛ0

b→Λþ
c l−ν̄lÞ

BðΛ0
b→Λþ

c π
−Þ .

We will discuss this ratio later.
For the tau lepton process Λ0

b → Λþ
c τ

−ν̄τ, it is not
observed by experiment. The theory prediction for the
branching ratio is 1.54 × 10−2, which is smaller than the
ratio of the light lepton process but at the same order. We
expect the tau lepton process to be observed in the near
future. A discrepancy is observed in B → Dð�Þ semi-
leptonic processes. The Standard Model (SM) prediction
for the ratio of the heavy tau lepton to the light lepton
processes is not consistent with the data. It is necessary to
test whether the discrepancy exists in the baryon case.
Following [33], we define a ratio as

Rτl
Λc

¼ BðΛ0
b → Λþ

c τ
−ν̄τÞ

BðΛ0
b → Λþ

c l−ν̄lÞ
: ð76Þ

Our theory prediction is Rτl
Λc

¼ 0.28� 0.04 which agrees
with the result 0.31 in [33].
About the forward-backward asymmetry AFB, our pre-

dictions for the processes Λ0
b → Λþ

c e−ν̄e and Λ0
b →

Λþ
c μ

−ν̄μ are quite small, only several percent. For the
tau lepton process, the asymmetry is about 10%, but the
detection efficiency of tau is low. So, it is difficult to
measure the forward-backward asymmetry for the

semileptonic processes of the Λ0
b → Λþ

c l−ν̄l in experiment.
The longitudinal polarization PL is close to 1 which
represents the longitudinal polarization dominance.
For the semileptonic decays of Λ0

b → p transitions, only
the process involving the muon lepton Λ0

b → pμ−ν̄μ is
reported. At the quark level, it is b → ul−ν̄l transition and
the CKM matrix element is Vub. Because

jVubj
jVcbj ∼ 0.1, the

measured ratio of the decay Λ0
b → pμ−ν̄l is two orders

smaller than the ratio of Λ0
b → Λþ

c l−ν̄l. Theory prediction
agrees with the data as it should be, since we use the
semileptonic decay Λ0

b → pμ−ν̄μ to determine the proton
parameter βp. For the decay Λ0

b → pl−ν̄l, it is also longi-
tudinal polarization dominant. The forward-backward
asymmetry is at the order of 10%-20%, which is difficult
to measure due to its suppressed rate. Similar to Rτl

Λc
, we

can define Rτl
p by

Rτl
p ¼ BðΛ0

b → pτ−ν̄τÞ
BðΛ0

b → pl−ν̄lÞ
: ð77Þ

Our model prediction is Rτl
p ¼ 0.68þ0.16

−0.18 which agrees with
the result 0.65 in [33].
For comparison, we discuss two models in literature.

One is the conventional light-front approach used in the
previous study [4,5]. The results have been included in
Table IX. The previous prediction for the ratio of Λ0

b →
pμ−ν̄μ decay is 2.54 × 10−4 which is smaller than the data.
This is the reason that we choose a large value for βp.
Another approach is a relativistic quark model given in
[33]. Their numerical results are listed in Table X. One can
see that the main difference in theory predictions is the
forward-backward asymmetry. The asymmetry is small and
sensitive to the details of the models. The measurement of
the forward-backward asymmetry can test the different
theory approaches.
The LHCb collaboration reported a measurement on the

ratio of the heavy-to-heavy and heavy-to-light semileptonic
decays in the restricted momentum region of q2 [46]. The
ratio is defined by

TABLE IX. The branching ratios and asymmetries of the semileptonic decays.

Mode B AFB PL

Λ0
b → Λþ

c e−ν̄e 5.59þ0.34þ0.45
−0.38−0.45 × 10−2 −0.03� 0.00 −0.96� 0.00 Covariant approach (this work)

Λ0
b → Λþ

c μ
−ν̄μ 5.57þ0.46þ0.33

−0.38−0.44 × 10−2 −0.07� 0.00 −0.93� 0.00

Λ0
b → Λþ

c τ
−ν̄τ 1.54þ0.09þ0.12

−0.09−0.12 × 10−2 −0.13� 0.00 −0.79� 0.00

Λ0
b → pe−ν̄e 4.02þ0.57þ0.39

−0.71−0.38 × 10−4 0.12þ0.01þ0.01
−0.01−0.00 −0.97þ0.01þ0.00

−0.01−0.00

Λ0
b → pμ−ν̄μ 4.02þ0.57þ0.38

−0.72−0.38 × 10−4 0.18þ0.01þ0.01
−0.01−0.01 −0.96þ0.01þ0.00

−0.01−0.00

Λ0
b → pτ−ν̄τ 2.74þ0.35þ0.24

−0.46−0.25 × 10−4 0.10þ0.01þ0.00
−0.01−0.00 −0.94þ0.01þ0.00

−0.01−0.00

Λ0
b → Λþ

c l−ν̄l 6.30 × 10−2 −0.80 Conventional approach [4,5]
Λ0
b → pl−ν̄l 2.54 × 10−4 −0.97

Λ0
b → Λþ

c l−ν̄l ð6.2þ1.4
−1.3Þ × 10−2 Experiment [1]

Λ0
b → pμ−ν̄μ ð4.1� 1.0Þ × 10−4
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RΛcp ¼
R q2max

15 GeV2 dq2
dΓðΛ0

b→pμ−ν̄μÞ
dq2R q2max

7 GeV2 dq2
dΓðΛ0

b→Λþ
c μ

− ν̄μÞ
dq2

: ð78Þ

The measurement of the above ratio permits us to extract
the CKM matrix elements jVubj=jVcbj in the heavy baryon
decays. It provides an independent measurement outside of
the B meson system and a crosscheck for the CKM matrix
elements. In our model, the calculation gives the numerical
result as

RΛcp ¼ 1.10
jVubj2
jVcbj2

: ð79Þ

The result in [33] is RΛcp ¼ ð0.78� 0.08Þ jVubj2
jVcbj2. The lattice

calculation gives RΛcp ¼ ð1.471� 0.095� 0.109Þ jVubj2
jVcbj2

[11]. Our prediction lies in the middle of them.
By use of the CKM parameters chosen in this study, we

obtain RΛcp ¼ 1.09 × 10−2. The experimental measure-
ment from the LHCb collaboration is [46]

RΛcp ¼ ð1.00� 0.04� 0.08Þ × 10−2: ð80Þ

Our model prediction is slightly larger that the central value
of the data. They are consistent within the experimental
error. Taking into account of the theoretical errors would
increase the consistency.
We can also extract the CKM elements jVubj=jVcbj from

the data by using our model calculations. We obtain

jVubj
jVcbj

¼ 0.091� 0.08: ð81Þ

The error comes from the experiment data. At present, the
determination of jVcbj is more precise due to the heavy
quark symmetry. From PDG [1], an average of the experi-
ments gives jVcbj ¼ ð40.5� 1.5Þ × 10−3. From the precise
value of jVcbj, we can extract jVubj by use of our model as

jVubj ¼ ð3.69� 0.3Þ × 10−3: ð82Þ

For comparison, we give the values of jVubj obtained from
the inclusive and exclusive determinations as [1]

jVubj ¼ ð4.49� 0.16þ0.16
−0.18Þ × 10−3 ðinclusiveÞ;

jVubj ¼ ð3.72� 0.19Þ × 10−3 ðexclusiveÞ; ð83Þ

and the average is

jVubj ¼ ð4.09� 0.39Þ × 10−3 ðaverageÞ: ð84Þ

One can see the value of jVubj extracted from our model
agrees with the measurement from the exclusive processes
very well. Since our method is adopted for the exclusive
processes, the agreement provides a support of our model.

VII. NUMERICAL RESULTS FOR NONLEPTONIC
DECAYS OF Λ0

b → H +M

In this section, we present our numerical predictions for
the four types of the nonleptonic decays Λ0

b → H þM
where H represents Λþ

c ; p;Λ; n. We discuss them case
by case.

A. Λ0
b → Λ +

c +M decays

The Λ0
b → Λþ

c þM decays have the largest decay ratios
in the nonleptonic processes of Λ0

b. They belong to
charmful processes which are enhanced by the CKM
matrix element Vcb. For the processes with light mesons
π; ρ; K; K�, they have only the color-allowed tree operator
contribution and the Wilson coefficient is a1. For the
processes with heavy mesons D−; D�−; D−

s ; D�−
s , they

contain the b → dðsÞ QCD penguin operator contributions
which are suppressed by αs. According to the CKM
elements, Λ0

b → Λþ
c þM decays can be classified into

Cabibbo-favored and Cabibbo-suppressed processes. The
processes with mesons π; ρ; Ds; D�

s being the final states are
the Cabibbo-favored processes. The corresponding
subprocesses are b → cūd or b → cc̄s, their decay ratios
are largest, in the region 4 × 10−3 to 1 × 10−2. The
processes with mesons K−; K�−; D−; D�− being the final
states are the Cabibbo-suppressed processes. The subpro-
cesses are b → cūs or b → cc̄d which is suppressed by
λ ¼ sin θC ∼ 0.22. Their decay ratios are of order
ð3–5Þ × 10−4. The theory predictions and the experimental
data for decay rates of the processes Λ0

b → Λþ
c þM are

given in Table XI. The renormalization scale μ dependence
of the decay rates is small, less than 5%. For all the
observed processes, the theory predictions accord well with
the experiment data. At present, only four processes where
the final meson is a pseudoscalar are observed. Because the
ratios of the other four processes with the final vector
mesons are at the same order, we expect that these vector
processes will be measured in the near future.
The predictions for the up-down and CP asymmetries

are given in Table XII. Up to now, no up-down and CP
asymmetries in Λ0

b → Λþ
c þM decays were observed. All

the up-down asymmetries α from theory are negative and
the absolute values are about 1 for most processes.

TABLE X. Predictions for the semileptonic decays in [33].

Mode B AFB PL

Λ0
b → Λþ

c e−ν̄e 6.48 × 10−2 0.20 −0.80
Λ0
b → Λþ

c μ
−ν̄μ 6.46 × 10−2 0.19 −0.80

Λ0
b → Λþ

c τ
−ν̄τ 2.03 × 10−2 −0.02 −0.91

Λ0
b → pe−ν̄e 4.5 × 10−4 0.35 −0.91

Λ0
b → pμ−ν̄μ 4.5 × 10−4 0.34 −0.91

Λ0
b → pτ−ν̄τ 2.9 × 10−4 −0.19 −0.89
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Up-down asymmetry reflects parity violation. The parity
violation at the order of 1 is due to the V − A nature of the
weak currents which contains the maximal parity violation.
For two processes with final states Λþ

c D�− and Λþ
c D�−

s , the
up-down asymmetry is about 0.4. This is because more
complicated Lorentz structures are entered for the vector
final state. All the up-down asymmetry α is nearly
independent of μ. For the Λ0

b → pþM processes, the μ
dependence will be non-negligible. There is no direct CP
violation in the processes of with light mesons
π−; ρ−; K−; K�− because there is only tree operator con-
tribution with no weak and strong phase difference. TheCP
asymmetries in the Cabibbo-favored processesΛþ

c D
ð�Þ−
s are

quite small, about 10−3 or 10−4, and it is difficult to detect
them in experiment. For the processes with final states
Λþ
c Dð�Þ−, the direct CP asymmetries are at the order of

10−2. But these processes are Cabibbo-suppressed, and also
difficult to measure the direct CP asymmetry in them. This
“large ratio and small CP violation” phenomenon is
familiar in the B meson system. Thus, we can obtain a
conclusion that it is nearly impossible to observe the direct
CP violation in Λ0

b → Λþ
c þM decays. Any observation

would be a signal of new physics. As will be shown, this
conclusion applies to all Λ0

b decays with the final states
containing one or two charm quarks.

A ratio of semileptonic to nonleptonic fractions is
defined by

RΛc
lπ ¼ BðΛ0

b → Λþ
c l−ν̄lÞ

BðΛ0
b → Λþ

c π
−Þ : ð85Þ

This ratio reduces the theory uncertainties in calculating the
baryon-to-baryon form factors. In our model, the semi-
leptonic to nonleptonic decay ratio is

RΛc
lπ ¼ 11.3� 0.5; ð86Þ

The error comes from the renormalization scale μ depend-
ence of the decay rate for the nonleptonic process.
One result from the early measurement by CDF collabo-
ration is [47]

RΛc
lπ ¼ 16.6� 3.0ðstatÞ � 1.0ðsystÞþ2.6

−3.4ðPDGÞ � 0.3ðEBRÞ:
ð87Þ

Our fitted value from the semi- and nonleptonic processes
gives

TABLE XI. Branching ratios of Λ0
b → Λþ

c þM decays.

Mode μ ¼ mb=2 μ ¼ mb μ ¼ 2mb Experiment [1]

Λ0
b → Λþ

c π
− 5.24 × 10−3 4.96 × 10−3 4.76 × 10−3 ð4.9� 0.4Þ × 10−3

Λ0
b → Λþ

c ρ
− 9.13 × 10−3 8.65 × 10−3 8.30 × 10−3 −

Λ0
b → Λþ

c K− 4.15 × 10−4 3.93 × 10−4 3.77 × 10−4 ð3.59� 0.3Þ × 10−4

Λ0
b → Λþ

c K�− 4.65 × 10−4 4.41 × 10−4 4.23 × 10−4 −
Λ0
b → Λþ

c D− 5.52 × 10−4 5.22 × 10−4 5.01 × 10−4 ð4.6� 0.6Þ × 10−4

Λ0
b → Λþ

c D�− 5.51 × 10−4 5.20 × 10−4 4.99 × 10−4 −
Λ0
b → Λþ

c D−
s 1.31 × 10−2 1.24 × 10−2 1.19 × 10−2 ð1.10� 0.10Þ × 10−2

Λ0
b → Λþ

c D�−
s 1.11 × 10−2 1.05 × 10−2 1.01 × 10−2 −

TABLE XII. Up-down and CP asymmetries for Λ0
b → Λþ

c þM decays.

ACP

Mode α μ ¼ mb=2 μ ¼ mb μ ¼ 2mb

Λ0
b → Λþ

c π
− −0.998 0 0 0

Λ0
b → Λþ

c ρ
− −0.888 0 0 0

Λ0
b → Λþ

c K− −1.0 0 0 0

Λ0
b → Λþ

c K�− −0.859 0 0 0

Λ0
b → Λþ

c D− −0.999 1.39 × 10−2 1.16 × 10−2 1.01 × 10−2

Λ0
b → Λþ

c D�− −0.478 1.26 × 10−2 1.04 × 10−2 8.96 × 10−3

Λ0
b → Λþ

c D−
s −1.0 −5.71 × 10−3 −4.82 × 10−3 −4.24 × 10−3

Λ0
b → Λþ

c D�−
s −0.439 −6.76 × 10−4 −5.58 × 10−4 −4.81 × 10−4
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RΛc
lπ ¼ 12.6� 3.0: ð88Þ

One can find the consistency between theory and the data.
Another ratio is proposed to relate the baryon decay to

the meson process in [48]. It is defined by

RΛc
2 ¼ BðΛ0

b → Λþ
c π

−Þ
BðB̄0 → Dþπ−Þ : ð89Þ

The study of this ratio is helpful to understand the meson-
baryon similarity. In the small velocity and heavy quark
limit, R2 ¼ 2. The early experiment gives [49]

fΛ0
b

fd

BðΛ0
b → Λþ

c π
−Þ

BðB̄0 → Dþπ−Þ
¼ 0.82� 0.08ðstatÞ � 0.11ðsystÞ � 0.22ðBRÞ: ð90Þ

We will discuss the production fraction fΛ0
b
in more

detail in the part of Λ0
b → ΛJ=ψ . The value of fΛ0

b
=fd is

chosen to be 0.458. The CDF result is RΛc
2 ≅ 1.79� 0.33.

Our fitted value from the data of Λ0
b → Λþ

c π
− and B̄0 →

Dþπ− processes gives RΛc
2 ¼ 1.95� 0.25. In our model,

the decay ratio of the process Λ0
b → Λþ

c π
− is

BðΛ0
b → Λþ

c π
−Þ ¼ 4.96 × 10−3. By use of the data for B

meson BðB̄0 → Dþπ−Þexpt ¼ ð2.52� 0.13Þ × 10−3, we
obtain RΛc

2 ¼ 1.97. Our result accords with the experiment
and the heavy quark symmetry relation very well. By
comparison, the result in [48] is RΛc

2 ¼ 1.6
τΛb
τB0

¼ 1.54,
which is smaller than ours and the data.
The Λ0

b decays can also be employed to test the
factorization hypothesis. According to the QCD factoriza-
tion, the processes Λ0

b → Λþ
c π

−ðK−Þ with one heavy and
one light final states is factorizable, while the heavy-heavy
processes Λ0

b → Λþ
c D−ðD−

s Þ are nonfactorizable. If it is so,
the theory prediction of QCDF approach will become
worse when the final meson are heavier. We choose the
four observed processes Λ0

b → Λþ
c π

−ðK−; D−; D−
s Þ for

discussion. If the process Λ0
b → Λþ

c π
− is used to adjust

the phenomenological parameters to fit the experiment.
When the final meson is heavy D− or D−

s where QCD
factorization is not applicable, the deviations of theory
prediction from the experiment should occur and will be
largest for Λ0

b → Λþ
c D−

s . However, we do not see the
deviations from Table XI. The consistency between the
theory and the experiment data is nearly at the same
accuracy for the four processes.
To make our point more clear, we use the relative ratio of

the decay rates to reduce the model uncertainties in the
baryon-to-baryon form factors. In order to test the factori-
zation assumption, we define three ratios below

RπK ¼ BðΛ0
b → Λþ

c π
−Þ

BðΛ0
b → Λþ

c K−Þ ; RπD ¼ BðΛ0
b → Λþ

c π
−Þ

BðΛ0
b → Λþ

c D−Þ ;

RπDs
¼ BðΛ0

b → Λþ
c π

−Þ
BðΛ0

b → Λþ
c D−

s Þ
: ð91Þ

By calculations, the results for the ratios are given as

Rth
πK ¼ 12.6� 1.2; Rexpt

πK ¼ 13.6� 1.6;

Rth
πD ¼ 9.6� 0.9; Rexpt

πD ¼ 10.6� 1.6;

Rth
πDs ¼ 0.40� 0.04; Rexpt

πDs ¼ 0.45� 0.05: ð92Þ

The theory results are obtained by using the predictions
given in Table XI. The central values are given at μ ¼ mb.
The experimental values are our fitted results from the data.
To go further, we define the ratio of theory to experiment

as R0 ¼ Rth=Rexpt. Thus

R0
πK ¼ 0.93� 0.14; R0

πD ¼ 0.91� 0.16;

R0
πDs

¼ 0.89� 0.13: ð93Þ

Within the errors, the ratios R0 are consistent with 1. There
is really a small trend for R0 to become smaller for heavier
mesons. But the difference in the three ratios are so small
that we can regard them to be equal. Thus, we can draw a
conclusion that the factorization assumption for Λ0

b →
Λþ
c D−ðD−

s Þ processes containing two heavy charmed
mesons is still applicable. The mechanism of factorization
cannot be explained by the color transparency argument or
the perturbative framework. A test of factorization in the
heavy-heavy B meson decays is given in [50]. The
conclusion from the B meson system is similar to ours
in the baryon case. Comparing the numerical results of [50]
with the present precise data from PDG, we can obtain
another conclusion: the Neff

c ¼ ∞ prediction is not sup-
ported by the experiment. Thus, the large Nc limit is not a
justified mechanism of factorization. There must be some
nonperturbative mechanism which prefer the factorization
of a large-size charmed meson or baryon from a soft cloud.
It is interesting to compare the experimental data with the

predictions within the heavy quark limit which are given in
[4]. In that work, the effective coefficient is simply chosen
as a1 ¼ 1 without the QCD corrections. The heavy-to-
heavy baryon form factors are reduced to one Isgur-Wise
function ζðωÞ with ω ¼ v · v0. At the zero-recoil point,
ζð1Þ ¼ 1. At other momentum regions, the Isgur-Wise
function can be approximated as a linear function described
by a universal slope parameter ρ2 ≡ − dζðωÞ

dω jω¼1. One can
find that the results within the heavy quark limit accord
with the present data very well. From the consistency, we
obtain a conclusion that the Λ0

b → Λþ
c þM decay is

governed by one universal slope parameter and a meson
decay constant. This is the leading and dominant contri-
bution. Other QCD corrections, no matter perturbative or
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nonperturbative, are perturbations near the stable point
within the heavy quark limit.
Table XIII gives the ratios of Λ0

b → Λþ
c þM decays with

errors. The first errors come from the uncertainties in the
renormalization scale μ; the second errors are from the
uncertainties in the baryon parameter β; and the third errors
are caused by the diquark mass. These errors are nearly at
the same magnitude. Table XIV gives the up-down and CP
asymmetries for Λ0

b → Λþ
c þM decays with errors. For

the up-down asymmetries, the errors are nearly zero. For
the CP asymmetry, theoretical errors come mainly from the
renormalization scale μ dependence.

B. Λ0
b → p+M decays

For the nonleptonic decays Λ0
b → pþM, there are 8

processes which are similar to Λ0
b → Λþ

c þM decays. But
the branching fractions are smaller by two or three orders.
The tree diagram contribution is proportional to Vub and
thus suppressed by small CKM parameters. The charmless
processes belong to the rare decays. But these processes are
important in exploring the CP violation. As we will show

below, the direct CP violation in some processes can be
large, at the order of 10%. We may call this phenomenon as
“small ratio and large CP violation”.
The theory predictions for the branching ratios of decays

Λ0
b → pþM are given in Table XV. The fractions of the

four processes with final meson being light are at the order
of 10−6. The processes of Λ0

b → pπ−ðρ−Þ are color-allowed
tree diagram dominant. The processes of Λb → pK−ðK�−Þ
are QCD penguin dominant. Although suppressed by αs,
the b → s penguin is enhanced by CKM matrix elements
VcsVcb. So the branching ratios ofΛ0

b → pK−ðK�−Þ decays
are of the same order as the Λ0

b → pπ−ðρ−Þ decays. A
detailed discussion about the Λ0

b → pK− process in QCDF
approach is given in [6]. The processes Λb → pDð�Þ−

s have
only the color-allowed tree operator contribution and have
the ratios of order of 10−5. The processes Λ0

b → pDð�Þ− are
color-allowed, but they are Cabibbo-suppressed. So the
ratios are of the order of 10−7. Up to now, only two
processes Λ0

b → pπ− and pK− are observed. The experi-
ment provide an upper limit for Λb → pD−

s which is close
to the theory prediction.
The theory predictions for the up-down and direct CP

asymmetries are given in Table XVI. Similar to the Λ0
b →

Λþ
c þM decays, nearly all the up-down asymmetries α are

negative. There is one exception. The up-down asymmetry
in the Λ0

b → pK− is positive, and the value is small about
0.3. The reason is due to a significant contribution from the
a6 term. The absolute values of α are about 1 for most
processes. The two processes with final statesD�−

ðsÞ have the
up-down asymmetries about 0.5. The direct CP violations
are at the order of 10−2 in Λ0

b → pπ−ðρ−Þ decays. The
predictions for the direct CP violations in Λ0

b → pK−ðK�−Þ
decays are large, about 0.1 or 0.3. We will discuss the large
CP violation in more detail below.
The process of Λ0

b → pπ− is important in phenomenol-
ogy, like the B̄0 → πþπ− in the B meson system. This
process is observed in experiment, and the branching ratio
is measured to be ð4.2� 0.8Þ × 10−6. Similar to the

TABLE XIII. Branching ratios of Λ0
b → Λþ

c þM decays in
QCDF. For the three theory errors, the first comes from the
uncertainties in the renormalization scale μ; the second from the β
parameter; and the third from the diquark mass.

Mode Br Experiment [1]

Λ0
b → Λþ

c π
− 4.96þ0.28þ0.36þ0.47

−0.20−0.39−0.43 × 10−3 ð4.9� 0.4Þ × 10−3

Λ0
b → Λþ

c ρ
− 8.65þ0.48þ0.65þ0.70

−0.25−0.69−0.72 × 10−3 −
Λ0
b → Λþ

c K− 3.93þ0.22þ0.28þ0.37
−0.16−0.30−0.35 × 10−4 ð3.59� 0.3Þ × 10−4

Λ0
b → Λþ

c K�− 4.41þ0.24þ0.33þ0.38
−0.18−0.35−0.36 × 10−4 −

Λ0
b → Λþ

c D− 5.21þ0.30þ0.33þ0.44
−0.21−0.35−0.36 × 10−4 ð4.6� 0.6Þ × 10−4

Λ0
b → Λþ

c D�− 5.20þ0.31þ0.34þ0.41
−0.21−0.37−0.41 × 10−4 −

Λ0
b → Λþ

c D−
s 1.31þ0.06þ0.07þ0.11

−0.05−0.09−0.10 × 10−2 ð1.10� 0.10Þ × 10−2

Λ0
b → Λþ

c D�−
s 1.11þ0.06þ0.06þ0.09

−0.04−0.07−0.08 × 10−2 −

TABLE XIV. Up-down and CP asymmetries for Λ0
b → Λþ

c þ
M decays. For the theory errors, the first comes from the
uncertainties in the renormalization scale μ; the second from
the β parameter; and the third from the diquark mass.

Mode α ACP

Λ0
b → Λþ

c π
− −1.00� 0.00 0

Λ0
b → Λþ

c ρ
− −0.89� 0.00 0

Λ0
b → Λþ

c K− −1.00� 0.00 0

Λ0
b → Λþ

c K�− −0.86� 0.00 0

Λ0
b → Λþ

c D− −1.00� 0.00 1.16þ0.22þ0.00þ0.00
−0.15−0.00−0.00 × 10−2

Λ0
b → Λþ

c D�− −0.48� 0.00 1.04þ0.22þ0.00þ0.00
−0.14−0.00−0.00 × 10−2

Λ0
b → Λþ

c D−
s −1.00� 0.00 −4.82þ0.89þ0.04þ0.02

−0.58−0.03−0.02 × 10−3

Λ0
b → Λþ

c D�−
s −0.44� 0.00 −5.58þ1.18þ0.00þ0.00

−0.77−0.00−0.00 × 10−4

TABLE XV. Branching ratios of Λ0
b → pþM decays in

QCDF. For the theory errors, the first comes from the uncer-
tainties in the renormalization scale μ; the second from the β
parameter; and the third from the diquark mass.

Mode Br Experiment [1]

Λ0
b → pπ− 4.30þ0.27þ1.18þ0.69

−0.19−1.16−0.45 × 10−6 ð4.2� 0.8Þ × 10−6

Λ0
b → pρ− 7.47þ0.42þ2.09þ1.04

−0.30−2.02−0.73 × 10−6 −
Λ0
b → pK− 2.17þ0.98þ0.60þ0.33

−0.47−0.58−0.23 × 10−6 ð5.1� 1.0Þ × 10−6

Λ0
b → pK�− 1.01þ0.07þ0.28þ0.14

−0.07−0.21−0.10 × 10−6 −
Λ0
b → pD− 6.29þ0.36þ1.50þ0.87

−0.25−1.53−0.64 × 10−7 −
Λ0
b → pD�− 6.54þ0.37þ1.60þ0.82

−0.26−1.61−0.62 × 10−7 −
Λ0
b → pD−

s 1.61þ0.09þ0.37þ0.22
−0.07−0.39−0.16 × 10−5 <4.8 × 10−4

Λ0
b → pD�−

s 1.41þ0.08þ0.34þ0.17
−0.06−0.34−0.14 × 10−5 −
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definition of RΛc
2 , the ratio of the baryon-to-meson decay

rates for proton is defined by

Rp
2 ¼ BðΛ0

b → pπ−Þ
BðB̄0 → πþπ−Þ : ð94Þ

From the experiment data, Rp
2 ¼ 0.82� 0.16. That means

the branching ratio of BðΛ0
b → pπ−Þ is smaller than the

corresponding meson process. However, for the
Λ0
b → Λþ

c π
−, its branching ratio is larger than the corre-

sponding meson decay rate and the ratio of baryon-to-
meson RΛc

2 ≈ 2. In fact, the fractions of Λ0
b → Λþ

c π
− is

nearly equal to the sum of two ratios of BðB̄0 → Dþπ−Þ
and BðB̄0 → D�þπ−Þ. If this rule can be applied to the
proton case, we expect BðΛ0

b → pπ−Þ ¼ BðB̄0 → πþπ−Þþ
BðB̄0 → ρþπ−Þ. But the experimental data shows that
BðΛ0

b → pπ−Þ < BðB̄0 → πþπ−Þ. Why is the branching
ratio of the Λ0

b → pπ− decay small? One reason may be the
small form factors f1ð0Þ ≅ g1ð0Þ ≅ 0.13. If it is so, the
ratio of Λ0

b → pl−ν̄l decay should be smaller than
B̄0 → πþl−ν̄l. But the data tell us that BðΛ0

b → pl−ν̄lÞ≈
3BðB̄0 → πþl−ν̄lÞ. We can look at this problem from
another ratio of semileptonic to nonleptonic decay rates.
Similar to the definition of RΛc

lπ , the ratio of semileptonic
to nonleptonic decay rates for proton case is defined by

Rp
lπ ¼

BðΛ0
b → pl−ν̄lÞ

BðΛ0
b → pπ−Þ : ð95Þ

In our model, the result is Rp
lπ ¼ 93.5� 33. From the

experimental data, the fitted result is Rp
lπ ¼ 97.6� 30.2

which accords with the theory very well. But, for the Λc
case, RΛc

lπ ¼ 12.6� 3.0. There is a factor of about 7
difference between the two ratios. Replacing the lepton
pair lνl by a quark-anti-quark pair, the semileptonic process
is changed to the nonleptonic process. The great difference
between the Λc and p processes is difficult to understand.

It is another result caused by the small branching ratio
of Λ0

b → pπ−.
The ratio of pion to kaon decay rates is defined by

Rp
πK ¼ BðΛ0

b → pπ−Þ
BðΛ0

b → pK−Þ : ð96Þ

The LHCb collaboration reported a result Rp
πK ¼ 0.86�

0.08� 0.05 [51]. It is close to our fitted value Rp
πK ¼

0.82� 0.23. In our theory, the ratio is Rp
πK ¼ 1.98þ1.27

−0.92 .
Theoretical uncertainties are large, as can be seen from the
μ dependence of the branching ratio of Λ0

b → pK−. A
discrepancy between theory and the experiment can be
found. But they can be consistent with 2σ deviations. In
pQCD approach [13], Rp

πK ¼ 2.6þ2.0
−0.5 which obviously

disagrees with the data. In the generalized factorization
approach [7], Rp

πK ¼ 0.84� 0.09 which accords with
the data.
Similarly for the ratio of ρ to K� is

Rp
ρK� ¼ BðΛ0

b → pρ−Þ
BðΛ0

b → pK�−Þ : ð97Þ

The ratio of Rp
ρK� is suggested to test different factori-

zation approach since the ratio is free of the hadronic
uncertainties from the baryon-to-baryon form factors [7]. In
our theory, the prediction gives Rp

ρK� ¼ 7.4þ3.3
−2.8 . In the

generalized factorization approach (GFA) [7], Rp
ρK� ¼ 4.6�

0.5� 0.1. There is a disagreement between different
approaches. The reason can be explained by the importance
of nonfactorizable contributions in penguin dominated
processes. The calculations of these nonfactorizable con-
tributions contain large theory uncertainties in different
factorization approaches, such as μ-dependence, some
nonperturbative effects etc. The disagreement between
different approaches will become more serious for direct
CP violation.
Up to now, there is no confirmed direct CP violation in

Λb decays. A recent measurement of CP violation in
decays Λ0

b → pπ−ðK−Þ comes from the CDF collaboration
[52]

ACPðΛ0
b→pπ−Þ¼þ0.06�0.07ðstatÞ�0.03ðsystÞ;

ACPðΛ0
b→pK−Þ¼−0.10�0.08ðstatÞ�0.04ðsystÞ: ð98Þ

The central value of direct CP asymmetry for the decay
Λ0
b → pK− is negative. Due to large errors in the data, we

may say that the results are consistent with 0. About these
two processes, our predictions from the QCDF approach
are

ACPðΛ0
b → pπ−Þ ¼ ð−3.4� 0.4Þ × 10−2;

ACPðΛ0
b → pK−Þ ¼ ð10.1� 2.0Þ × 10−2: ð99Þ

TABLE XVI. Up-down and CP asymmetries for Λ0
b → pþM

decays. For the theory errors, the first comes from the uncer-
tainties in the renormalization scale μ; the second from the β
parameter; and the third from the diquark mass.

Mode α ACP

Λ0
b → pπ− −0.98þ0.00þ0.00þ0.00

−0.01−0.00−0.00 −3.37þ0.29þ0.00þ0.00
−0.37−0.00−0.00 × 10−2

Λ0
b → pρ− −0.81þ0.00þ0.01þ0.01

−0.00−0.01−0.01 −3.19þ0.25þ0.00þ0.00
−0.25−0.00−0.00 × 10−2

Λ0
b → pK− 0.27þ0.19þ0.00þ0.00

−0.14−0.00−0.00 1.01þ0.13þ0.00þ0.00
−0.20−0.00−0.00 × 10−1

Λ0
b → pK�− −0.79þ0.00þ0.01þ0.01

−0.00−0.01−0.01 3.11þ0.28þ0.00þ0.00
−0.19−0.00−0.00 × 10−1

Λ0
b → pD− −0.99þ0.00þ0.00þ0.00

−0.01−0.00−0.00 0

Λ0
b → pD�− −0.52þ0.00þ0.01þ0.01

−0.00−0.01−0.00 0

Λ0
b → pD−

s −0.99þ0.00þ0.00þ0.00
−0.00−0.00−0.00 0

Λ0
b → pD�−

s −0.49þ0.00þ0.01þ0.00
−0.00−0.01−0.00 0
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Because the direct CP violation comes from interference, it
is more sensitive to detail of theory model than the
branching ratio. In Table XVII, the direct CP violation
for the four charmless processes pπ−; pρ−; pK−; pK�−
within different approaches are given. From the Table,
one can see that our results are close to those in the
generalized factorization approach, and differs from those
in the pQCD approach.
The decay of Λ0

b → pK�− is interesting. We find a very
large direct CP violation in our approach as

ACPðΛ0
b → pK�−Þ ¼ ð31.1þ2.8

−1.9Þ × 10−2: ð100Þ
The predictions of directCP violation in QCDF approach is
usually small because the origin of strong phase is
perturbative. So this large direct CP violation is out of
expectation. This unusual phenomenon was first observed
in [7]. The authors use the generalized factorization
approach and obtain the result ACPðΛ0

b → pK�−Þ ¼
ð19.6� 1.0� 1.0Þ × 10−2 which is smaller than ours but
is still large. The direct CP violation in this case comes
from interference of tree contribution with vua1 term and
penguin contribution with vcac4 term. Penguin contribution
is larger than the tree but their magnitudes are at the same
order. The interference of a similar magnitude of tree and
penguin contributions with different weak and strong
phases is possible to produce a large CP violation.
The processes Λ0

b → pπ−ðρ−Þ are tree dominated, and
the CP violation is small. For the process Λ0

b → pK−,
the penguin contribution is enhanced by a6 term. This leads
to a larger branching ratio but a smaller CP asymmetry.
In our approach, BðΛ0

b → pK−Þ ≈ 2BðΛ0
b → pK�−Þ and

ACPðΛb → pKÞ ≈ 1
3
ACPðΛ0

b → pK�−Þ. The process Λ0
b →

pK�− is the only process with ratio of order 10−6 and large
directCP asymmetry. But we must stress that the prediction
of CP violation in Λ0

b → pK�− is not stable. A small
enhancement in the penguin contribution would modify the
prediction of CP asymmetry.
The sign of direct CP violation is important since it

represents whether b quark is more possible to decay or
the opposite. It is known that QCDF approach fails to
explain the direct CP violation in B0 → πþKð�Þ−. The
present data provide a precise and confirmed result:
ACPðB̄0→πþK−Þ¼−0.082�0.006, ACPðB̄0→πþK�−Þ¼
−0.22�0.06. The direct CP violation is large and negative.

However, the prediction of QCDF approach is small, only
several percent and the sign is positive [25]. How to explain
a large and negative CP asymmetry is a difficult and
unsolved puzzle in QCDF approach. In [25], the authors
suggested a scenario [called by Scenario S3 (universal
annihilation)] enhanced by weak annihilation. By choosing
a phenomenological parameter of annihilation contribution
and a proper strong phase, the direct CP violation can be
changed to be negative. Since weak annihilation is non-
perturbative, the importance of weak annihilation also
implies the importance of nonperturbative effects on the
strong phase. We do not know what is the case in the heavy
baryon system. The cental value of ACPðΛ0

b → pK−Þ from
CDF collaboration measurement is negative may be an
indication. Our prediction within QCDF approach is
positive. Certainly, nothing is certain at present. We hope
that the future experiment can provide some helps for us to
think deeply about this question. So, the measurement of
direct CP violation in Λ0

b → pK− and Λ0
b → pK�− decays

is not only important to test different factorization
approaches but also to explore the relation between the
baryon and meson systems.
It seems that the results in the generalized factorization

approach are more favorable [7] in phenomenology. But the
generalized factorization approach is in principle a phe-
nomenological method. To account for the nonfactorizable
corrections, a phenomenological color number Neff

c is
introduced and the effective coefficients for b → d and
b → s transitions are different. The theory uncertainties
caused by these treatments are difficult to estimate. The
gluon momentum in the penguin loop is not determined.
These conceptual problems are solved by QCD factoriza-
tion. QCD factorization approach is rigorous in leading
power of 1=mb. Beyond the leading power, the theory
uncertainties is also not under control. Compared to the
generalized factorization approach, the vertex corrections
provide another source of strong phase in the QCDF
approach. This may be the main reason that our predictions
of CP violation for Λ0

b → pK− and Λ0
b → pK�− decays are

larger than the ones in the generalized factorization
approach. In phenomenology, the predictions of QCDF
approach considering only the vertex and penguin correc-
tions in this study should be consistent with those in the
generalized factorization approach when Neff

c ¼ 3.

C. Λ0
b → Λ+M decays

There are fourteen processes for the class of
Λ0
b → ΛþM. The theory predictions and the experimental

data for the branching ratios of Λ0
b → ΛþM decays are

given in Table XVIII. The first eight processes which
contain light meson are charmless modes. Their ratios are
small, at the order of 10−8 to 10−6. Comparing these ratios
with the Λ0

b → pþM processes and the B meson data, the
ratios are smaller by about one order or even two orders.
Our theory predictions rely on the assumption of SU(3)

TABLE XVII. Direct CP asymmetries ACP (in units of 10−2) in
different factorization approaches.

Mode
QCDF

(this work) GFA [7]
pQCD
[13]

Experiment
[52]

Λ0
b → pπ− −3.4þ0.3

−0.4 −3.9� 0.2 −31þ43
−1 6� 7� 3

Λ0
b → pρ− −3.2� 0.3 −3.7� 0.3 � � � � � �

Λ0
b → pK− 10.1þ1.3

−2.0 5.8� 0.2 −5þ26
−5 −10� 8� 4

Λ0
b → pK�− 31.1þ2.8

−1.9 19.6� 1.4 � � � � � �
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symmetry relation for β parameters βp ¼ βΛ. Relaxing this
restriction cannot produce a big enhancement because the
numerical results are less sensitive to the variation of βΛ.
The processes with charmonium states ηc and J=ψ have the
largest fractions of order of 10−4. The remained four
processes with a final D meson have ratios of 10−7 to
10−6. They have only the color-suppressed and Cabibbo-
suppressed tree diagram contributions, so these processes
have small fractions and no CP violation. The theory
predictions for the up-down and direct CP asymmetries are
given in Table XIX.

The Λ0
b → Λπ0ðρ0Þ processes has no QCD penguin

contributions. The b → sūu transition is cancelled by b →
sd̄d contribution because the opposite sign for ūu and d̄d
components in π0ðρ0Þ. For the B̄0 → K̄0π0 process, there is
one extra term by the Fierz transformation, so that b → sd̄d
QCD penguin contribution is not canceled. The experi-
mental data gives BðB̄0 → K̄0π0Þ ¼ ð9.9� 0.5Þ × 10−6

which is very large. But for the baryon case, there is
no QCD penguin contribution. This difference between the
meson and baryon is due to a fact that the spectator in
the baryon is a diquark and it is an antiquark in themeson.The
tree diagram is color-suppressed and is further suppressed by
small CKM elements VubV�

us. The electroweak penguin
contribution is small but cannot be neglected in this case.
The branching ratios are predicted to be very small, at the
order of 10−7 or 10−8. They have large directCP asymmetry,
about 30%, but difficult to measure in experiment.
The Λ0

b → ΛK0ðK�0Þ processes have no tree diagram
contribution. They are the pure penguin processes which is
QCD penguin dominated. But they are b → d transition
where the CKM elements VtbV�

td is suppressed. For the
Λ0
b → ΛK�0 process, only a4 term contributes, the ratio is

predicted to be very small, only at the order of 10−8. For the
Λ0
b → ΛK0, there is chirally-enhanced a6 term, so the ratio

is increased to be about 10−7. The direct CP violation is
large for these two processes.
The Λ0

b → Ληðη0Þ processes are important in phenom-
enology. They contain information of η − η0 mixing and
QCD anomaly related to η0 [59]. In this study, we do not
consider the anomaly contribution to η0. The two processes
Λ0
b → Ληðη0Þ are b → s QCD penguin dominated. The a6

term is chirally enhanced by Rη or Rη0 defined in the
Appendix C. For the Λ0

b → Λη process, our approach gives
the branching ratio BðΛ0

b → ΛηÞ ¼ ð3 − 6Þ × 10−7 with
large theoretical uncertainties. A recent measurement from
the LHCb collaboration gives ð9.3þ7.3

−5.3Þ × 10−6. The
experimental error is quite large. But it is certain that
our theory prediction is smaller than the data. For the
Λ0
b → Λη0 process, our approach gives prediction as

BðΛ0
b → Λη0Þ ¼ ð3 − 7Þ × 10−6, which is about one order

larger than the η process. The LHCb data gives an upper
limit BðΛ0

b → Λη0Þ < 3.1 × 10−6, which is close to the
lower limit of our prediction. The further experiment may
show some discrepancies between theory and experiment.
The direct CP violation in these two processes are
both small.
One can define a ratio of η to η0 to reduce some model

dependence. For this purpose, a ratio RΛ
ηη0 is defined by

RΛ
ηη0 ¼

BðΛ0
b → ΛηÞ

BðΛ0
b → Λη0Þ : ð101Þ

In our approach, RΛ
ηη0 ¼ 0.11þ0.11

−0.07 . One early study used the
generalized factorization approach and the results are [54]:
BðΛ0

b→ΛηÞ¼11.47×10−6, BðΛ0
b→Λη0Þ¼11.33×10−6,

TABLE XVIII. Branching ratios of Λ0
b→ΛþM decays in

QCDF.

Mode Br Experiment

Λ0
b→Λπ0 5.74þ0.78þ1.44þ0.95

−0.48−1.43−0.60 × 10−8 � � �
Λ0
b→Λρ0 9.75þ1.55þ2.45þ1.30

−1.25−2.43−0.95 × 10−8 � � �
Λ0
b→ΛK0 7.58þ3.52þ1.90þ1.12

−1.74−1.89−0.77 × 10−8 � � �
Λ0
b→ΛK�0 2.77þ0.00þ0.69þ0.37

−0.18−0.69−0.27 × 10−8 � � �
Λ0
b→Λη 4.39þ1.98þ1.10þ0.63

−1.01−1.09−0.45 × 10−7 ð9.3þ7.3
−5.3 Þ × 10−6 [53]

Λ0
b→Λη0 4.03þ2.72þ1.60þ0.82

−1.19−1.61−0.62 × 10−6 <3.1 × 10−6 [53]

Λ0
b→Λω 1.13þ0.95þ0.28þ0.15

−0.29−0.28−0.11 × 10−8 � � �
Λ0
b→Λϕ 6.33þ0.60þ1.57þ0.83

−0.68−1.56−0.61 × 10−7 ð2.0� 0.5Þ × 10−6 [1]

Λ0
b→Ληc 2.47þ0.33þ0.42þ0.67

−0.19−0.47−0.23 × 10−4 � � �
Λ0
b→ΛJ=ψ 3.33þ0.48þ0.56þ0.32

−0.20−0.63−0.30 × 10−4 ð5.8�0.8Þ×10−5=fΛb
[1]

Λ0
b→ΛD0 3.37þ0.42þ0.72þ0.43

−0.19−0.76−0.34 × 10−6 � � �
Λ0
b→ΛD�0 3.39þ0.43þ0.74þ0.39

−0.19−0.77−0.31 × 10−6 � � �
Λ0
b→ΛD̄0 4.78þ0.60þ1.03þ0.61

−0.27−1.08−0.47 × 10−7 � � �
Λ0
b→ΛD̄�0 4.81þ0.61þ1.05þ0.56

−0.27−1.08−0.45 × 10−7 � � �

TABLE XIX. Up-down and CP asymmetries for Λ0
b → ΛþM

decays.

Mode α ACP × 102

Λ0
b → Λπ0 −1� 0.00 25.0þ8.1

−4.8

Λ0
b → Λρ0 −0.85� 0.00 25.3þ7.5

−4.3

Λ0
b → ΛK0 0.41þ0.19

−0.13 −20.6þ1.7
−1.8

Λ0
b → ΛK�0 −0.83� 0.00 −25.1þ4.1

−7.4

Λ0
b → Λη 0.24þ0.19

−0.12 −3.4þ0.6
−0.4

Λ0
b → Λη0 0.99þ0.00

−0.03 1.0þ0.1
−0.2

Λ0
b → Λω −0.85� 0.00 58.6þ1.4

−17.8

Λ0
b → Λϕ −0.80� 0.00 1.6þ0.4

−0.3

Λ0
b → Ληc −0.99� 0.00 0

Λ0
b → ΛJ=ψ −0.21� 0.00 0

Λ0
b → ΛD0 −1.00� 0.00 0

Λ0
b → ΛD�0 −0.54� 0.00 0

Λ0
b → ΛD̄0 −1.00� 0.00 0

Λ0
b → ΛD̄�0 −0.54� 0.00 0
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and RΛ
ηη0 ¼ 1.01, for form factors calculated in QCD sum

rules; BðΛ0
b → ΛηÞ ¼ 2.95 × 10−6, BðΛ0

b → Λη0Þ ¼
3.24 × 10−6, and RΛ

ηη0 ¼ 0.91, for form factors calculated
in a pole model. Another study also uses the generalized
factorization approach [8], and the results are:
BðΛ0

b → ΛηÞ ¼ ð1.47� 0.35Þ × 10−6, BðΛ0
b → Λη0Þ ¼

ð1.83� 0.58Þ × 10−6, and RΛ
ηη0 ¼ 0.80� 0.32. One can

see a large difference in predictions between different
approaches. The reason leads to the difference may be:
(1) Anomaly contribution. In [8], one effect of anomaly
term is introduced in the ηðη0Þ decay constants. (2) a6 and
a8 contributions. In our study, we used the equation of
motion, the a6 and a8 terms are enhanced by factor
Rη0 ¼ m2

η0=ðmbmsÞ ¼ 2.2. Our prediction for the ratio
BðΛ0

b → Λη0Þ is large. There is no enhancement for
Λ0
b → Λη, so the predicted ratio is small.
The Λ0

b → Λω process contains both the tree and
penguin contributions. The tree is color-suppressed and
CKM parameter suppressed. It seems that this process
should be dominated by b → s transition QCD penguin.
But the prediction of the ratio is very small, only at the
order of 10−8. The reason is due to a destructive interfer-
ence in the a3, a5, a9 terms. This case is very similar to the
cancellation of QCD penguin in Λ0

b → Λπ0ðρÞ decays. The
direct CP violation in Λ0

b → Λω is predicted to be quite
large, about 60%, but the small decay ratio makes it
impossible to measure in experiment.
The process Λ0

b → Λϕ is interesting in both theory and
experiment. In SM, the process can only be occurred
through loop effects described by b → ss̄s penguin dia-
grams. This flavor-changing-neutral-current (FCNC) tran-
sition is very sensitive to new physics effects. From an
experimental point of view, the measurement of its decay
ratio, CP violation, and T-odd observable provide an
important test of SM and different new physics models.
The direct CP violation is predicted to be small, about
1–2%. The up-down asymmetry α is −0.8 in our approach.
In experiment, this process has been observed. The meas-
urement from the LHCb collaboration gives BðΛ0

b →
ΛϕÞ ¼ ð5.18� 1.04� 0.35þ0.67

−0.62Þ × 10−6 [2]. From the
PDG on the web, 2017 updated result gives BðΛ0

b →
ΛϕÞ ¼ ð2.0� 0.5Þ × 10−6 [1]. The central value is lowered
by a factor of 2 compared to the LHCb data. Our theory
prediction is BðΛ0

b → ΛϕÞ ¼ ð5–7Þ × 10−7 which is
smaller than the data. By comparison, the result in [8]
using the generalized factorization approach gives BðΛ0

b →
ΛϕÞ ¼ ð3.53� 0.24Þ × 10−6 when the number of color is
chosen as Neff

c ¼ 2.
Why our theory prediction is smaller than the data? One

reason may be the small Λb → Λ form factors. By
increasing the Λb → Λ form factors, the ratio of Λ0

b →
Λϕ is increased. But the ratios of processesΛ0

b → pπ−ðK−Þ
will be larger than the data. Thus, this explanation is
excluded. Another reason is the nonfactorizable effects. In
this study, we only consider the vertex and penguin

corrections. There are other effects, such as hard spectator
interactions, power corrections, etc. According to the
meson-baryon similarity, one can use the data of the meson
process to extract the strong interaction information. All the
nonfactorizable effects are included in the effective coef-
ficients. From Eq. (65), the combined coefficient of Λ0

b →
Λϕ is equal to the coefficient of the corresponding meson
process B̄0 → K̄0ϕ. By use of the B̄0 → K̄0ϕ, the combined
coefficient ā can be obtained. Then, one can give prediction
for the Λ0

b → Λϕ decay. The advantage of this method is
that the theoretical uncertainties of the QCDF approach are
reduced by the experiment data. This method has been
adopted for Λ0

b → pK− process in [6]. We want to note that
this method is not rigorous for Λ0

b → pK− because the
difference of chirally enhanced term in the baryon and
meson systems. The application of Λ0

b → pK− is based
upon assumption that the chirally enhanced contribution
does not change the meson-baryon relation significantly.
Table XX gives the predictions of branching ratios of
Λ0
b → Λϕ and Λ0

b → pK− by use of the meson-baryon
similarity.
From Table XX, we can find that the prediction of

Λ0
b → Λϕ decay coincides with the experimental data very

well. It verifies our speculation that the nonfactorizable
effects lead to the difference between the theory prediction
of QCDF approach and the experimental data. However, it
is not easy to improve the QCDF predictions because of
technical difficulties. For example, the power corrections
are nonperturbative in principle. The calculations is
difficult and model dependent. The estimation of hard
spectator interactions also requires some phenomenological
parameters.
The Λ0

b → ΛηcðJ=ψÞ processes proceed via b → sc̄c
transitions at the quark level. The tree diagram is color
suppressed but the CKM elements VcbV�

cs are large. The
QCD penguin contributions are important. Their ratios are
predicted to be large, at the order of 10−4. Because the
Λ0
b → ΛJ=ψ process is more interesting in experiment. We

discuss this process in more detail.
From PDG, one can find that the ratio of Λ0

b → ΛJ=ψ
process is not given directly. The data gives a value of the
ratio of Λ0

b → ΛJ=ψ multiplied by a ratio of Λ0
b production.

This is because there is no an accepted measurement of the
production rate of Λ0

b which is defined by fΛ0
b
≡

Bðb → Λ0
bÞ. In literature, the choice of fΛ0

b
is different

and arbitrary. In this study, we take the averaged value
from Heavy Flavor Averaging Group [55]. Some other

TABLE XX. Estimations for the branching ratios of Λ0
b → pK−

and Λ0
b → Λϕ processes by using the meson data.

Mode Theory Experiment

Λ0
b → pK− 6.67 × 10−6 ð5.1� 1.0Þ × 10−6

Λ0
b → Λϕ 1.76 × 10−6 ð2.0� 0.5Þ × 10−6
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production rates are also provided for reference. We
introduce fu, fd, fs, fbaryon, fΛ0

b
as fractions of Bþ, B0,

B0
s , b baryon, Λ0

b. For CDF measurement,
fΛ0

b
=ðfu þ fdÞ ¼ 0.229� 0.062, fu¼fd¼0.340�0.021,

fs ¼ 0.101� 0.015, fbaryon ¼ 0.218� 0.047 when using
the Tevatron data only. Then, we obtain

fΛ0
b
¼ 0.156� 0.045: ð102Þ

In the previous study [5], fΛ0
b
¼ 0.1. By use of the above

value of fΛ0
b
¼ 0.156� 0.045, the experimental data for

the branching ratio of Λ0
b → ΛJ=ψ process can be given

to be

BðΛ0
b → ΛJ=ψÞ ¼ ð3.72� 1.07Þ × 10−4: ð103Þ

Our theory prediction is BðΛ0
b → ΛJ=ψÞ ¼

ð3.33þ0.80
−0.72Þ × 10−4. It is consistent with the experimental

data very well. The consistency is based upon that we choose
a large a2 for calculations. Considering only vertex and
penguin corrections in leading power of 1=mb, the obtained
a2 is small and insufficient to explain the data for the color-
suppressed processes. In fact, for the process Λ0

b → ΛJ=ψ
where the nonfactorizable effects are substantial, the theo-
retical uncertainties in QCDF approach is very large
although the factorization is applicable. By comparison,
the result in [56] gives the ratio BðΛ0

b → ΛJ=ψÞ ¼ 1.6 ×
10−4 which is smaller than ours by a factor of 3 but still
consistent with the data.
The up-down asymmetry α is also an experimentally

interested quantity. From PDG, the parameter α for
Λ0
b → J=ψΛ is α ¼ 0.18� 0.13 [1]. A recent measurement

from the CMS collaboration gives α ¼ 0.14� 0.14ðstatÞ �
0.10ðsystÞ [57]. Both the results are consistent with 0. Our
theory prediction is α ¼ −0.206.

D. Λ0
b → n+M decays

Up to now, there is not any experimental data on the
process of Λ0

b → nþM. One reason is the difficulty in
detection of the neutron. Maybe the future experiment can
overcome this difficulty to improve the study in this class of
processes. The theory predictions for the branching ratios
of decays Λ0

b → nþM are given in Table XXI. The up-
down and CP asymmetries are given in Table XXII. We
will discuss Λ0

b → nþM decays similar to the Λ0
b → Λþ

M decays.
Unlike the Λ0

b → Λπ0ðρ0Þ processes where QCD pen-
guin contributions cancel, Λ0

b → nπ0ðρ0Þ processes contain
both the tree and penguin contributions. The tree diagram is
color-suppressed and the CKM elements is VubV�

ud.
The QCD penguin is b → d transition which is suppressed
by VcbV�

cd or VubV�
ud. The tree and the penguin contribu-

tion are at the same order. The predicted branching ratios
are at the order of 10−7. The direct CP violation is very

large for these two processes, about 20–30%. Considering
the meson decay B̄0 → π0π0, the predicted ratio in the
QCDF approach is also of order 10−7 but the data is about
10−6. The nonfactorizable effects must be important
in Λ0

b → nπ0ðρ0Þ processes. The measurement of
Λ0
b → nπ0ðρ0Þ can test the effects of nonfactorizable

contributions.
The Λ0

b → nK̄0ðK̄�0Þ processes have no tree diagram
contribution. Similar to Λ0

b → Λϕ, they are the pure
penguin processes dominated by QCD penguin. At the
quark level, penguin diagram proceeds via b → sd̄d tran-
sition where the CKM elements VtbV�

ts is not suppressed.

TABLE XXI. Branching ratios of Λ0
b → nþM decays.

Mode Br

Λ0
b → nπ0 ð1.14þ0.20þ0.31þ0.18

−0.11−0.33−0.12 Þ × 10−7

Λ0
b → nρ0 ð1.89þ0.24þ0.52þ0.28

−0.14−0.51−0.19 Þ × 10−7

Λ0
b → nK̄0 ð2.01þ1.01þ0.56þ0.31

−0.49−0.54−0.20 Þ × 10−6

Λ0
b → nK̄�0 ð8.04þ0.79þ2.26þ1.10

−0.88−2.16−0.79 Þ × 10−7

Λ0
b → nη ð2.46þ0.30þ0.67þ0.39

−0.07−0.65−0.26 Þ × 10−8

Λ0
b → nη0 ð5.02þ3.29þ1.33þ0.77

−1.61−1.31−0.53 Þ × 10−8

Λ0
b → nω ð8.85þ0.04þ2.45þ1.30

−0.24−2.39−0.87 Þ × 10−8

Λ0
b → nϕ ð2.29þ0.74þ0.63þ0.32

−0.39−0.61−0.23 Þ × 10−9

Λ0
b → nηc ð1.43þ0.16þ0.26þ0.16

−0.10−0.30−0.14 Þ × 10−5

Λ0
b → nJ=ψ ð2.06þ0.30þ0.39þ0.21

−0.13−0.42−0.18 Þ × 10−5

Λ0
b → nD0 ð6.45þ0.81þ1.53þ0.89

−0.36−1.58−0.65 Þ × 10−5

Λ0
b → nD�0 ð6.70þ0.84þ1.63þ0.84

−0.38−1.66−0.63 Þ × 10−5

Λ0
b → nD̄0 ð2.60þ0.33þ0.62þ0.36

−0.14−0.63−0.26 Þ × 10−8

Λ0
b → nD̄�0 ð2.71þ0.34þ0.66þ0.34

−0.16−0.67−0.26 Þ × 10−8

TABLE XXII. Up-down and CP asymmetries for Λ0
b → nþM

decays.

Mode α ACP × 102

Λ0
b → nπ0 −0.82þ0.08

−0.04 22.2þ0.5
−2.0

Λ0
b → nρ0 −0.81� 0.00 29.4þ4.4

−4.1

Λ0
b → nK̄0 0.38þ0.17

−0.11 1.0� 0.0

Λ0
b → nK̄�0 −0.79� 0.00 1.2þ0.4

−0.2

Λ0
b → nη −0.55þ0.17

−0.11 −43.1þ5.3
−5.1

Λ0
b → nη0 −0.70þ0.01

−0.00 36.4þ16.5
−17.0

Λ0
b → nω −0.81� 0.00 −42.2þ6.5

−7.5

Λ0
b → nϕ −0.78� 0.00 0

Λ0
b → nηc −0.96� 0.00 −1.7þ1.0

−1.6

Λ0
b → nJ=ψ −0.21� 0.00 1.3þ0.4

−0.3

Λ0
b → nD0 −1.00� 0.00 0

Λ0
b → nD�0 −0.52� 0.00 0

Λ0
b → nD̄0 −1.00� 0.00 0

Λ0
b → nD̄�0 −0.52� 0.00 0
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The ratios are predicted to be large, at the order of about
10−6. Explicitly, they are

BðΛ0
b → nK̄0Þ ¼ ð2.01þ1.20

−0.76Þ × 10−6;

BðΛ0
b → nK̄�0Þ ¼ ð0.80� 0.26Þ × 10−6: ð104Þ

The Λ0
b → nK̄0 process is expected to be observed in future

experiment. One the contrary, due to the large decay ratio,
the direct CP violations in Λ0

b → nK̄0ðK̄�0Þ processes are
both small, only about 1%.
The Λ0

b → nηðη0Þ processes also provide information of
the η − η0 mixing. But the penguin contributions proceed
via b → d transitions which are suppressed by small CKM
elements. So the ratios of these two processes are very
small, only at the order of 10−8. The direct CP violation is
predicted to be about 40%, but difficult to measure.
Similarly, Λ0

b → nωðϕÞ processes are b → d transitions,
and the branching ratios are small.
The Λ0

b → nηcðJ=ψÞ processes proceed via b → dc̄c
transitions at the quark level. The tree diagram is color
suppressed and the CKM elements VcbV�

cd are suppressed.
The predicted branching ratios are at the order of 10−5,
which is smaller than ratios of Λ0

b → ΛηcðJ=ψÞ decays by
one order. The CP violation is small, too. The processes

Λ0
b → nD0ðD�0Þ have the color-suppressed tree diagram

contribution. The branching ratios are orders of 10−5. The
processes of Λ0

b → nD̄0ðD̄�0Þ are further suppressed by
small CKM element. The branching ratios are orders of
10−9 and direct CP violation is 0.
In [9], the authors provide predictions of branching ratios

and direct CP asymmetries for 20 charmless processes in
the generalized factorization approach (GFA). We compare
their results with ours in Table XXIII. For the errors of their
results, we only list the error from nonfactorizable effects or
the largest error due to limit of space. From Table XXIII,
most predictions in the two approaches are consistent
within the theoretical uncertainties. There are some excep-
tions. The difference in Λ0

b → Ληðη0Þ processes has been
explained in the above subsection. Our prediction for the
ratio of Λ0

b → Λω decay is small. But the errors of GFA
result is large and the two approaches are consistent. For the
direct CP violation, nearly all of our predictions are larger
than the results of GFA. In some processes with small
ratios, the difference becomes very obvious.

VIII. CONCLUSIONS AND DISCUSSIONS

In this study, we provide a comprehensive study of the
semileptonic and nonleptonic decays of Λ0

b. Compared to

TABLE XXIII. Branching ratios B and direct CP asymmetries ACP in GFA and our approach for the charmless processes.

B × 106 ACP × 102

Mode GFA [9] This work GFA [9] This work

Λ0
b → pπ− 4.25þ1.04

−0.48 4.30þ1.39
−1.25 −3.9� 0.4 −3.4þ0.3

−0.4

Λ0
b → pρ− 11.03þ2.72

−1.25 7.47þ2.37
−2.17 −3.8� 0.4 −3.2� 0.2

Λ0
b → pK− 4.49þ0.84

−0.39 2.17þ1.20
−0.78 6.7� 0.3 10.1þ1.3

−2.0

Λ0
b → pK�− 2.86þ0.62

−0.29 1.01þ0.32
−0.24 19.7� 1.4 31.1þ2.8

−1.9

Λ0
b → Λπ0 ð3.4þ0.8

−0.4 Þ × 10−2 ð5.74þ1.89
−1.62 Þ × 10−2 0.0 25.0þ8.1

−4.8

Λ0
b → Λρ0 ð9.5þ3.0

−1.3 Þ × 10−2 ð9.75þ3.18
−2.89 Þ × 10−2 2.3þ0.7

−0.8 25.3þ7.5
−4.3

Λ0
b → ΛK0 ð9.4þ2.3

−3.8 Þ × 10−3 ð7.58þ4.15
−2.68 Þ × 10−2 0.2þ0.1

−0.0 −20.6þ1.7
−1.8

Λ0
b → ΛK�0 ð9.2þ4.7

−2.0 Þ × 10−2 ð2.77þ0.78
−0.76 Þ × 10−2 1.3� 0.1 −25.1þ4.1

−7.4

Λ0
b → Λη 1.59þ0.38

−0.17 0.44þ0.24
−0.16 0.4� 0.2 −3.4þ0.6

−0.4

Λ0
b → Λη0 1.90þ0.68

−0.23 4.03þ3.26
−2.10 1.6� 0.1 1.0þ0.1

−0.2

Λ0
b → Λω 0.71þ1.59

−0.70 ð1.1þ1.0
−0.4 Þ × 10−2 3.6þ4.8

−4.0 58.6þ1.4
−17.8

Λ0
b → Λϕ 1.77þ1.65

−1.68 0.63þ0.19
−0.18 1.4þ0.7

−0.1 1.6þ0.4
−0.3

Λ0
b → nπ0 0.10� 0.03 0.11þ0.04

−0.04 8.0þ1.2
−1.4 22.2þ0.5

−2.0

Λ0
b → nρ0 0.18� 0.09 0.19þ0.06

−0.06 14.0� 1.8 29.4þ4.4
−4.1

Λ0
b → nK̄0 4.61þ1.31

−0.58 2.01þ1.20
−0.76 1.1� 0.0 1.0� 0.0

Λ0
b → nK̄�0 3.09þ1.57

−0.67 0.80þ0.26
−0.25 1.3� 0.1 1.2þ0.4

−0.2

Λ0
b → nη ð6.9þ2.7

−2.4 Þ × 10−2 ð2.46þ0.83
−0.70 Þ × 10−2 −16.8� 2.1 −43.1þ5.3

−5.1

Λ0
b → nη0 ð4.2� 1.8Þ × 10−2 ð5.02þ3.63

−2.14 Þ × 10−2 −15.7þ4.0
−5.6 36.4þ16.5

−17.0

Λ0
b → nω 0.22þ0.16

−0.10 ð8.85þ2.77
−2.55 Þ × 10−2 −18.2þ24.4

−4.2 −42.2þ6.5
−7.5

Λ0
b → nϕ 0.02þ0.17

−0.02 ð2.29þ1.02
−0.76 Þ × 10−3 −8.8þ7.4

−5.1 0
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our previous analysis, there are several improvements. The
baryon-baryon form factors are calculated in the covariant
light-front approach where the quantities of f3 and g3 can
be evaluated. Different ratios and asymmetries in the six
semi-leptonic processes are studied. The two-body non-
leptonic decays are analyzed beyond the tree operator
contribution. The penguin diagram contributions including
the QCD and electroweak operators are taken into account.
We calculate the nonleptonic decays of Λ0

b into a baryon
plus a s-wave meson (pseudoscalar or vector) including 44
processes in total within the framework of QCD factori-
zation approach. For some processes, our calculations are
given for the first time up to our knowledge. Among the 44
processes, there are about 9 processes observed in experi-
ment. Compared to the precise and large amount of data for
the B meson from PDG, the experimental results for Λ0

b are
very few. The weak decays of Λ0

b provide an important
place to explore CP violation and QCD dynamics in the
baryon environment. We hope that this work can promote
the study of Λb and provide a reference for future
experiments.
For the semileptonic processes, the theory predictions

are in accord with the experiment. This accordance verifies
the diquark approximation. The semileptonic decays with
tau lepton are predicted to be at the same order as the light
lepton process. The ratios of tau to electron or muon decays
provide a test of theory models in SM. We extract the CKM
parameter jVubj from the data of Λ0

b → pμ−ν̄μ by use of
our model.
For the nonleptonic decays Λ0

b → Λþ
c D

ð�Þ−
ðsÞ where the

final states are both heavy, factorization hypothesis works
very well. But in QCDF, these processes are not factoriz-
able. We test the factorization assumption by use of several
relative ratios and do not find deviations. The mechanism of
factorization should be beyond the “color transparency”
argument and the perturbative framework. The large Nc
limit is also not a justified mechanism of factorization.
There must be some nonperturbative mechanisms which
prefer the factorization of a large-size charmed meson from
a soft background.
The charmless nonleptonic decays are interesting in both

theory and experiment. The branching ratios of the
observed Λ0

b decays are at the order of 10−6. By compari-
son, the corresponding B meson decays have the ratios of
order of 10−5. This fact implies that the ratios of the Λ0

b
decays are smaller than those of the B meson by about one
order. Because the data for the Λ0

b and B meson decays in
the semileptonic and charmful nonleptonic processes are
quite similar, the difference that occurred in the charmless
nonleptonic processes seems to be a problem. From the
theoretical point of view, the baryon-to-baryon transition
form factors have to be adjusted to be small, about 0.1. The
heavy-to-light form factors for the B meson are about 0.3.
A natural question arises: why are the heavy-to-light
baryon form factors smaller than the heavy-to-light meson

form factors by a factor of 2 or 3? With the diquark picture,
it is difficult to understand this question.
According to the numerical results, we list the processes

with large branching ratios which may be observed in the
future experiment: Λþ

c ρ
−, Λþ

c K�−, Λþ
c D�−, Λþ

c D�−
s , pρ−,

pK�−, pD−
s , pD�−

s , Λη0, Ληc, ΛD0, ΛD�0, nK̄0, nK̄�0, nηc,
nJ=ψ , nD0, nD�0.
The direct CP violations in the processes of pK and pK�

are predicted to be large. The values are about 10% and
30%, respectively. The pK� process are most promising.
This phenomenon was first observed in [7] by use of the
generalized factorization approach. Their prediction of
direct CP asymmetry is 20%. Our prediction is larger than
theirs. In QCDF approach, the vertex corrections provide
another source of strong phase. The large CP violation is
caused by the interference of tree and penguin contribu-
tions. The pK� process is a rare case that the tree and the
dominant QCD penguin contributions have the
same magnitude and contain different weak and strong
phases.
We compare our results with the predictions given in the

generalized factorization approach. We find that most
results of the two approaches are consistent within the
theoretical errors. This is not accidental. Our results should
be close to the predictions in generalized factorization
approach when Nc ¼ 3. QCD factorization solves some
conceptual problems in the generalized factorization and
develops a more rigorous method. We stress that we neglect
some nonfactorizable effects in our calculations, such as the
hard spectator scattering, weak annihilation etc. These
effects are important in phenomenology. When the data
becomes more precise, these effects should be taken into
account.
Under the diquark approximation, the baryon is similar

to the meson. The Λϕ process can be used to test the
meson-baryon similarity. Replace a diquark with an anti-
quark, Λ0

b → Λϕ process is changed to B̄0 → K̄0ϕ. At the
quark level, the QCD dynamics for the two processes are
same. By use of the data of B̄0 → K̄0ϕ, we can extract the
combined coefficient and then predict the ratio of
Λ0
b → Λϕ. The prediction by this method coincides with

the experiment very well.
Conventional wisdom is that the baryon system is more

complicated than the meson. This opinion is based upon the
three-quark picture for a baryon. The complication can be
seen clearly in an analysis of Λb → pπðKÞ process in the
perturbative QCD approach [13]. There are more than 100
Feynmann diagrams even at the tree level. However, our
study may provide another picture: the baryon is as simple
as a meson. The bridge to relate the baryon and meson is
the diquark. This study, in particular in decays of
Λ0
b → Λϕ, and many previous studies verify the effective-

ness of the diquark assumption. With the diquark approxi-
mation, the study of heavy baryon may be developed to a
similar stage as the B meson physics.
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APPENDIX A: THE CONVENTIONAL
LIGHT-FRONT APPROACH

In the conventional light-front approach, a baryon ΛQ
with total momentum P and spin S ¼ 1=2 is composed of a
quark q1 and a scalar diquark can be written as

jΛQðP; S; SzÞi

¼
Z

fd3p1gfd3p2g2ð2πÞ2δ3ðP̃ − p̃1 − p̃2Þ

×
X
λ1

ΨSSzðp̃1; p̃2; λ1ÞCα
βγF

bcjQαðp1; λ1Þ½qβ1bqγ2c�ðp2Þi;

ðA1Þ

where Q represent b, c, s u, d, [q1q2] represents [ud], λ
denotes helicity. p1, p2 are the on-mass-shell light-front
momenta defined by

p̃¼ðpþ;p⊥Þ; p⊥¼ðp1;p2Þ; p−¼m2þp2⊥
pþ ; ðA2Þ

and

fd3pg≡ dpþd2p⊥
2ðπÞ3 ; δ3ðp̃Þ ¼ δðpþÞδ2ðp⊥Þ;

jQðp1; λ1Þ½q1q2�ðp2Þi ¼ b†λ1ðp1Þa†ðp2Þj0i;
½aðp0Þ; a†ðpÞ� ¼ 2ð2πÞ3δ3ðp̃0 − p̃Þ;
fdλ0 ðp0Þ; d†λðpÞg ¼ 2ð2πÞ3δ3ðp̃0 − p̃Þδλ0λ: ðA3Þ

The coefficient Cα
βγ is a normalized color factor and Fbc

is a normalized flavor coefficient. They satisfy

Cα
βγF

bcCα0
β0γ0F

b0c0 hQα0 ðp0
1; λ

0
1Þ½qβ

0
1b0q

γ0
2c0 �ðp0

2ÞjQαðp1; λ1Þ
× ½qβ1bqγ2c�ðp2Þi

¼ 22ð2πÞ6δ3ðp̃0
1 − p̃1Þδ3ðp̃0

2 − p̃2Þδλ0
1
λ1 : ðA4Þ

The intrinsic variables ðxi; ki⊥Þ with i ¼ 1, 2 are

pþ
1 ¼x1Pþ; pþ

2 ¼x2Pþ; x1þx2¼1;

p1⊥¼x1P⊥þk1⊥; p2⊥¼x2P⊥þk2⊥; k⊥¼−k1⊥¼k2⊥;
ðA5Þ

where xi with 0 < x1; x2 < 1 are the light-front momentum
fractions. The variables ðxi; ki⊥Þ are independent of
the total momentum of the hadron and thus are

Lorentz-invariant variables. The invariant mass square
M2

0 is defined as

M2
0 ¼

k21⊥ þm2
1

x1
þ k22⊥ þm2

2

x2
: ðA6Þ

We define the internal momenta as

ki ¼ ðk−i ; kþi ; ki⊥Þ ¼ ðei − kiz; ei þ kiz; ki⊥Þ

¼
�
m2

i þ k2i⊥
xiM0

; xiM0; ki⊥
�
: ðA7Þ

Then, it is easy to obtain

M0 ¼ e1 þ e2;

ei ¼
xiM0

2
þm2

i þ k2i⊥
2xiM0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2i⊥ þ k2iz

q
;

kiz ¼
xiM0

2
−
m2

i þ k2i⊥
2xiM0

: ðA8Þ

where ei denotes the energy of the ith constituent. ki⊥ and
kiz constitute a momentum vector k⃗i ¼ ðki⊥; kizÞ and
correspond to the components in the transverse and z
directions respectively.
The momentum-space function ΨSSz in Eq. (A1) is

expressed as

ΨSSzðp̃1; p̃2; λ1Þ

¼ hλ1jR†
Mðx1; k1⊥; m1Þjs1ih00;

1

2
s1j

1

2
Sziϕðx; k⊥Þ; ðA9Þ

where ϕðx; k⊥Þ is the light-front wave function which
describes the momentum distribution of the constituents in
the bound state with x ¼ x2, k⊥ ¼ k2⊥; h00; 12 s1j 12 Szi is the
corresponding Clebsch-Gordan coefficient with spin s ¼
sz ¼ 0 for the scalar diquark; hλ1jR†

Mðx1; k1⊥; m1Þjs1i is
the well-known Melosh transformation matrix element
which transforms the conventional spin states in the instant
form into the light-front helicity eigenstates,

hλ1jR†
Mðx1; k1⊥; m1Þjs1i

¼ ūðk1; λ1ÞuDðk1; s1Þ
2m1

¼ ðm1 þ x1M0Þδλ1s1 þ iσ⃗λ1s1 · k⃗1⊥ × n⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þ x1M0Þ2 þ k21⊥

p ; ðA10Þ

where uðDÞ denotes a Dirac spinor in the light-front (instant)
form and ñ ¼ ð0; 0; 1Þ is a unit vector in the z direction. In
practice, it is more convenient to use the covariant form
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hλ1jR†ðx1; k1⊥; m1Þjs1ih00;
1

2
s1j

1

2
Szi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0ðe1 þm1Þ

p ūðp1; λ1ÞΓuðP̄; SzÞ; ðA11Þ

where Γ ¼ 1 for scalar diquark.
The heavy baryon state is normalized as

hΛðP0; S0; S0zÞjΛðP; S; SzÞi ¼ 2ð2πÞ3Pþδ3ðP̃0 − P̃ÞδS0SδS0zSz :
ðA12Þ

Thus, the light-front wave function satisfies the constraint

Z
dxd2k⊥
2ð2π3Þ jϕðx; k⊥Þj

2 ¼ 1: ðA13Þ

APPENDIX B: THE COEFFICIENT ai IN QCDF
APPROACH

Here, we give the results for the coefficients ai at next-to-
leading order in αs. From [24], their formulas are given by

a1 ¼ C1 þ
C2

Nc

�
1þ CFαs

4π
VM

�
;

a2 ¼ C2 þ
C1

Nc

�
1þ CFαs

4π
VM

�
;

a3 ¼ C3 þ
C4

Nc

�
1þ CFαs

4π
VM

�
;

aq4 ¼ C4 þ
C3

Nc

�
1þ CFαs

4π
VM

�
þ CFαs

4π

Pq
M;2

Nc
;

a5 ¼ C5 þ
C6

Nc

�
1þ CFαs

4π
ð−V 0

MÞ
�
;

aq6 ¼ C6 þ
C5

Nc

�
1 − 6

CFαs
4π

�
þ CFαs

4π

Pq
M;3

Nc
;

a7 ¼ C7 þ
C8

Nc

�
1þ CFαs

4π
ð−V 0

MÞ
�
;

aq8 ¼ C8 þ
C7

Nc

�
1 − 6

CFαs
4π

�
þ α

9π

Pq;EW
M;3

Nc
;

a9 ¼ C9 þ
C10

Nc

�
1þ CFαs

4π
ð−V 0

MÞ
�
;

aq10 ¼ C10 þ
C9

Nc

�
1þ CFαs

4π
VM

�
þ α

9π

Pq;EW
M;2

Nc
; ðB1Þ

where Ci ≡ CiðμÞ, αs ≡ αsðμÞ, CF ¼ ðN2
c − 1Þ=ð2NcÞ,

and Nc ¼ 3.

The vertex corrections are given by

VM ¼ 12 ln
mb

μ
− 18þ

Z
1

0

dxgðxÞΦMðxÞ;

V 0
M ¼ 12 ln

mb

μ
− 6þ

Z
1

0

dxgð1 − xÞΦMðxÞ;

gðxÞ ¼ 3

�
1 − 2x
1 − x

ln x − iπ

�
þ
�
2Li2ðxÞ − ln2xþ 2 ln x

1 − x

− ð3þ 2iπÞ ln x − ðx ↔ 1 − xÞ
�
;

where ϕMðxÞ ¼ 6xð1 − xÞ is the leading-twist light-cone
distribution amplitudes. The asymptotic form of the twist-2
distribution amplitude is adopted. A discussion on the
nonasymptotic form of the pion distribution amplitude
can be found in [58]. For the asymptotic form, we
have

R
1
0 dxgðxÞϕMðxÞ ¼ − 1

2
− 3iπ.

The penguin contributions are given by

Pq
M;2 ¼ C1

�
4

3
ln
mb

μ
þ 2

3
−GMðsqÞ

�

þ C3

�
8

3
ln
mb

μ
þ 4

3
−GMð0Þ −GMð1Þ

�

þ ðC4 þ C6Þ
�
4nf
3

ln
mb

μ
− ðnf − 2ÞGMð0Þ

− GMðscÞ −GMð1Þ
�
− 2Ceff

8g

Z
1

0

dx
1 − x

ϕMðxÞ;

Pq;EW
M;2 ¼ ðC1 þ NcC2Þ

�
4

3
ln
mb

μ
þ 2

3
−GMðsqÞ

�

− 3Ceff
7γ

Z
1

0

1

1 − x
ϕMðxÞ;

where nf ¼ 5 is the number of light quark flavors, and
su ¼ 0, sc ¼ ðmc=mbÞ2 are mass ratios involved in the
penguin diagrams. The function GMðsÞ is given by

GMðsÞ ¼
Z

1

0

dxGðs − iϵ; 1 − xÞϕMðxÞ;

Gðs; xÞ ¼ −4
Z

1

0

duuð1 − uÞ ln½s − uð1 − uÞx�

¼ 2ð12sþ 5x − 3x ln sÞ
9x

−
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4s − x

p ð2sþ xÞ
3x3=2

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x

4s − x

r
;

and
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GMðscÞ ¼
5

3
−
2

3
ln sc þ

32

3
sc þ 16s2c

−
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4sc

p
ð1þ 2sc þ 24s2cÞ

× ð2arctanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4sc

p
− iπÞ þ 12s2c

�
1 −

4

3
sc

�

× ð2arctanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4sc

p
− iπÞ2;

GMð0Þ ¼
5

3
þ 2iπ

3
;

GMð1Þ ¼
85

3
− 6

ffiffiffi
3

p
π þ 4π2

9
;

where
R

dx
1−xϕMðxÞ ¼ 3.

The twist-3 terms are

Pq
M;3 ¼ C1

�
4

3
ln
mb

μ
þ 2

3
− ĜMðsqÞ

�

þ C3

�
8

3
ln
mb

μ
þ 4

3
− ĜMð0Þ − ĜMð1Þ

�

þ ðC4 þ C6Þ
�
4nf
3

ln
mb

μ
− ðnf − 2ÞĜMð0Þ

− ĜMðscÞ − ĜMð1Þ
�
− 2Ceff

8g ;

Pq;EW
M;3 ¼ ðC1 þ NcC2Þ

�
4

3
ln
mb

μ
þ 2

3
− ĜMðsqÞ

�
− 3Ceff

7γ ;

where

ĜMðsÞ ¼
Z

1

0

dxGðs − iϵ; 1 − xÞϕM
q ðxÞ:

The asymptotic twist-3 distribution amplitude is
ϕM
q ðxÞ ¼ 1. We have

ĜMðscÞ¼
16

9
ð1−3scÞ

−
2

3
½lnscþð1−4scÞ3=2ð2arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4sc

p
− iπÞ�;

ĜMð0Þ¼
16

9
þ2π

3
i;

ĜMð1Þ¼
2πffiffiffi
3

p −
32

9
:

The numerical values of theWilson coefficients are taken
from [24] and are collected in Table XXIV.

APPENDIX C: λ FUNCTIONS
FOR DIFFERENT DECAY MODES

(1) Λ0
b → Λþ

c þM processes
In Λ0

b → Λþ
c π

−,

λ ¼ GFffiffiffi
2

p fπVcbV�
uda1:

In Λ0
b → Λþ

c ρ
−,

λ ¼ GFffiffiffi
2

p fρVcbV�
uda1:

In Λ0
b → Λþ

c K−,

λ ¼ GFffiffiffi
2

p fKVcbV�
usa1:

In Λ0
b → Λþ

c K�−,

λ ¼ GFffiffiffi
2

p fK�VcbV�
usa1:

In Λ0
b → Λþ

c D−,

A term:

λ ¼ GFffiffiffi
2

p fD½VcbV�
cda1 þ VubV�

udðau4 þ au10Þ þ VcbV�
cdðac4 þ ac10ÞþRD−ðVubV�

udðau6 þ au8Þ þ VcbV�
cdðac6 þ ac8ÞÞ�;

TABLE XXIV. The Wilson coefficients Ci at different scale μ.

μ C1 C2 C3 C4 C5 C6

μ ¼ mb=2 1.185 −0.387 0.018 −0.038 0.010 −0.053
μ ¼ mb 1.117 −0.268 0.012 −0.027 0.008 −0.034
μ ¼ 2mb 1.074 −0.181 0.008 −0.019 0.006 −0.022
μ C7=α C8=α C9=α C10=α Ceff

7γ Ceff
8g

μ ¼ mb=2 −0.012 0.045 −1.358 0.418 −0.364 −0.169
μ ¼ mb −0.001 0.029 −1.276 0.288 −0.318 −0.151
μ ¼ 2mb 0.018 0.019 −1.212 0.193 −0.281 −0.316
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B term:

λ ¼ GFffiffiffi
2

p fD½VcbV�
cda1 þ VubV�

udðau4 þ au10Þ þ VcbV�
cdðac4 þ ac10Þ−RD−ðVubV�

udðau6 þ au8Þ þ VcbV�
cdðac6 þ ac8ÞÞ�;

with RD− ¼ 2m2
D−

ðmcþmdÞmb
.

In Λ0
b → Λþ

c D�−,

λ ¼ GFffiffiffi
2

p fD� ½VcbV�
cda1 þ VubV�

udðau4 þ au10Þ þ VcbV�
cdðac4 þ ac10Þ�:

In Λ0
b → Λþ

c D−
s ,

A term:

λ ¼ GFffiffiffi
2

p fDs
½VcbV�

csa1 þ VubV�
usðau4 þ au10Þ þ VcbV�

csðac4 þ ac10ÞþRD−
s
ðVubV�

usðau6 þ au8Þ þ VcbV�
csðac6 þ ac8ÞÞ�;

B term:

λ ¼ GFffiffiffi
2

p fDs
½VcbV�

csa1 þ VubV�
usðau4 þ au10Þ þ VcbV�

csðac4 þ ac10Þ−RD−
s
ðVubV�

usðau6 þ au8Þ þ VcbV�
csðac6 þ ac8ÞÞ�;

with RD−
s
¼ 2m2

D−
s

ðmcþmsÞmb
.

In Λ0
b → Λþ

c D�−
s ,

λ ¼ GFffiffiffi
2

p fD�
s
½VcbV�

csa1 þ VubV�
usðau4 þ au10Þ þ VcbV�

csðac4 þ ac10Þ�:

(2) Λ0
b → pþM processes

In Λ0
b → pπ−,

A term:

λ ¼ GFffiffiffi
2

p fπ½VubV�
uda1 þ VubV�

udðau4 þ au10Þ þ VcbV�
cdðac4 þ ac10Þ þ Rπ−ðVubV�

udðau6 þ au8Þ þ VcbV�
cdðac6 þ ac8ÞÞ�;

B term:

λ ¼ GFffiffiffi
2

p fπ½VubV�
uda1 þ VubV�

udðau4 þ au10Þ þ VcbV�
cdðac4 þ ac10Þ − Rπ−ðVubV�

udðau6 þ au8Þ þ VcbV�
cdðac6 þ ac8ÞÞ�;

with Rπ− ¼ 2m2
π−

ðmuþmdÞmb
.

In Λ0
b → pρ−,

λ ¼ GFffiffiffi
2

p fρ½VubV�
uda1 þ VubV�

udðau4 þ au10Þ þ VcbV�
cdðac4 þ ac10Þ�:

In Λ0
b → pK−,

A term:

λ ¼ GFffiffiffi
2

p fK½VubV�
usa1 þ VubV�

usðau4 þ au10Þ þ VcbV�
csðac4 þ ac10Þ þ RK−ðVubV�

usðau6 þ au8Þ þ VcbV�
csðac6 þ ac8ÞÞ�;
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B term:

λ ¼ GFffiffiffi
2

p fK½VubV�
usa1 þ VubV�

usðau4 þ au10Þ þ VcbV�
csðac4 þ ac10Þ − RK−ðVubV�

usðau6 þ au8Þ þ VcbV�
csðac6 þ ac8ÞÞ�;

with RK− ¼ 2m2
K−

ðmuþmsÞmb
.

In Λ0
b → pK�−,

λ ¼ GFffiffiffi
2

p fK� ½VubV�
usa1 þ VubV�

usðau4 þ au10Þ þ VcbV�
csðac4 þ ac10Þ�:

In Λ0
b → pD−,

λ ¼ GFffiffiffi
2

p fDVubV�
cda1:

In Λ0
b → pD�−,

λ ¼ GFffiffiffi
2

p fD�VubV�
cda1:

In Λ0
b → pD−

s ,

λ ¼ GFffiffiffi
2

p fDs
VubV�

csa1:

In Λ0
b → pD�−

s ,

λ ¼ GFffiffiffi
2

p fD�
s
VubV�

csa1:

(3) Λ0
b → ΛþM processes

In Λ0
b → Λπ0,

λ ¼ GFffiffiffi
2

p fd
π0

�
VubV�

usð−a2Þ − VtbV�
ts

�
3

2
a7 −

3

2
a9

��
:

In Λ0
b → Λρ0,

λ ¼ GFffiffiffi
2

p fd
ρ0

�
VubV�

usð−a2Þ − VtbV�
ts

�
−
3

2
a7 −

3

2
a9

��
;

with fd
ρ0
¼ fρffiffi

2
p .

In Λ0
b → ΛK0,

A term:

λ ¼ GFffiffiffi
2

p fK

�
VubV�

ud

�
au4 −

1

2
au10 þ RK0

�
au6 −

1

2
au8

��
þVcbV�

cd

�
ac4 −

1

2
ac10 þ RK0

�
ac6 −

1

2
ac8

���
:

B term:

λ ¼ GFffiffiffi
2

p fK

�
VubV�

ud

�
au4 −

1

2
au10 − RK0

�
au6 −

1

2
au8

��
þVcbV�

cd

�
ac4 −

1

2
ac10 − RK0

�
ac6 −

1

2
ac8

���
;

with RK0 ¼ 2m2

K0

ðmsþmdÞmb
.
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In Λ0
b → ΛK�0,

λ ¼ GFffiffiffi
2

p fK�

�
VubV�

ud

�
au4 −

1

2
au10

�
þ VcbV�

cd

�
ac4 −

1

2
ac10

��
:

In Λ0
b → Λη,

A term:

λ ¼ GFffiffiffi
2

p fuη

�
VubV�

usa2 þ VubV�
us

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη
fuη

�
a3 þ au4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
au10

��

þ VcbV�
cs

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη
fuη

�
a3 þ ac4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
ac10

���

þ GFffiffiffi
2

p Rηfuη

�
VubV�

us
fsη
fuη

�
au6 −

1

2
au8

�
þ VcbV�

cs
fsη
fdη

�
ac6 −

1

2
ac8

��
;

B term:

λ ¼ GFffiffiffi
2

p fuη

�
VubV�

usa2 þ VubV�
us

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη
fuη

�
a3 þ au4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
au10

��

þ VcbV�
cs

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη
fuη

�
a3 þ ac4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
ac10

���

−
GFffiffiffi
2

p Rηfuη

�
VubV�

us
fsη
fuη

�
au6 −

1

2
au8

�
þ VcbV�

cs
fsη
fdη

�
ac6 −

1

2
ac8

��
;

with Rη ¼ 2m2
η

ðmsþmsÞmb
.

In Λ0
b → Λη0,

A term:

λ ¼ GFffiffiffi
2

p fuη0

�
VubV�

usa2 þ VubV�
us

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη0

fuη0

�
a3 þ au4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
au10

��

þ VcbV�
cs

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη0

fuη0

�
a3 þ ac4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
ac10

���

þ GFffiffiffi
2

p Rη0fuη0

�
VubV�

us

fsη0

fuη0

�
au6 −

1

2
au8

�
þ VcbV�

cs

fsη0

fdη0

�
ac6 −

1

2
ac8

��
;

B term:

λ ¼ GFffiffiffi
2

p fuη0

�
VubV�

usa2 þ VubV�
us

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη0

fuη0

�
a3 þ au4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
au10

��

þ VcbV�
cs

��
2a3 − 2a5 −

1

2
a7 þ

1

2
a9

�
þ fsη0

fuη0
ða3 þ ac4 − a5 þ

1

2
a7−

1

2
a9 −

1

2
ac10

���

−
GFffiffiffi
2

p Rη0fuη0

�
VubV�

us

fsη0

fuη0

�
au6 −

1

2
au8

�
þ VcbV�

cs

fsη0

fdη0

�
ac6 −

1

2
ac8

��
;

with Rη0 ¼
2m2

η0
ðmsþmsÞmb

.

In Λ0
b → Ληc,

λ ¼ GFffiffiffi
2

p fηc ½VcbV�
csa2 − VtbV�

tsða3 − a5 − a7 þ a9Þ�:
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In Λ0
b → ΛJ=ψ ,

λ ¼ GFffiffiffi
2

p fJ=ψ ½VcbV�
csa2 − VtbV�

tsða3 þ a5 þ a7 þ a9Þ�:

In Λ0
b → Λω,

λ ¼ GFffiffiffi
2

p fdω

�
VubV�

usa2 − VtbV�
ts

�
2a3 þ 2a5 þ

1

2
a7 þ

1

2
a9

��
;

with fdω ¼ fωffiffi
2

p .

In Λ0
b → Λϕ,

λ ¼ GFffiffiffi
2

p fϕ

�
VubV�

us

�
a3 þ au4 þ a5 −

1

2
a7 −

1

2
a9 −

1

2
au10

�
þ VcbV�

cs

�
a3 þ ac4 þ a5 −

1

2
a7 −

1

2
a9 −

1

2
ac10

��
:

In Λ0
b → ΛD0,

λ ¼ GFffiffiffi
2

p fDVcbV�
usa2:

In Λ0
b → ΛD�0,

λ ¼ GFffiffiffi
2

p fD�VcbV�
usa2:

In Λ0
b → ΛD̄0,

λ ¼ GFffiffiffi
2

p fDVubV�
csa2:

In Λ0
b → ΛD̄�0,

λ ¼ GFffiffiffi
2

p fD�VubV�
csa2:

(4) Λ0
b → nþM processes

In Λ0
b → nπ0,

A term:

λ ¼ GFffiffiffi
2

p fd
π0

�
VubV�

udð−a2Þ þ VubV�
ud

�
au4 þ

3

2
a7 −

3

2
a9 −

1

2
au10

�

þ VcbV�
cd

�
ac4 þ

3

2
a7−

3

2
a9 −

1

2
ac10

�
þ Rπ0

�
VubV�

ud

�
au6 −

1

2
au8

�
þ VcbV�

cd

�
ac6 −

1

2
ac8

���
;

B term:

λ ¼ GFffiffiffi
2

p fd
π0

�
VubV�

udð−a2Þ þ VubV�
ud

�
au4 þ

3

2
a7 −

3

2
a9 −

1

2
au10

�

þ VcbV�
cd

�
ac4 þ

3

2
a7−

3

2
a9 −

1

2
ac10

�
− Rπ0

�
VubV�

ud

�
au6 −

1

2
au8

�
þ VcbV�

cd

�
ac6 −

1

2
ac8

���
;

with fd
π0
¼ fπffiffi

2
p and Rπ0 ¼

2m2

π0

ðmdþmdÞmb
.
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In Λ0
b → nρ0,

λ ¼ GFffiffiffi
2

p fd
ρ0

�
VubV�

udð−a2Þ þ VubV�
ud

�
au4 −

3

2
a7 −

3

2
a9 −

1

2
au10

�
þVcbV�

cd

�
ac4 −

3

2
a7 −

3

2
a9 −

1

2
ac10

��
:

In Λ0
b → nK̄0,

A term:

λ ¼ GFffiffiffi
2

p fK

�
VubV�

us

�
au4 −

1

2
au10 þ RK0

�
au6 −

1

2
au8

��
þVcbV�

cs

�
ac4 −

1

2
ac10 þ RK0

�
ac6 −

1

2
ac8

���
:

B term:

λ ¼ GFffiffiffi
2

p fK

�
VubV�

us

�
au4 −

1

2
au10 − RK0

�
au6 −

1

2
au8

��
þVcbV�

cs

�
ac4 −

1

2
ac10 − RK0

�
ac6 −

1

2
ac8

���

with RK0 ¼ 2m2

K0

ðmsþmdÞmb
.

In Λ0
b → nK̄�0,

λ ¼ GFffiffiffi
2

p fK�

�
VubV�

us

�
au4 −

1

2
au10

�
þ VcbV�

cs

�
ac4 −

1

2
ac10

��
:

In Λ0
b → nη,

A term:

λ ¼ GFffiffiffi
2

p fuη

�
VubV�

uda2 þ VubV�
ud

��
2a3 þ au4 − 2a5 −

1

2
a7 þ

1

2
a9 −

1

2
au10

�
þ fsη
fuη

�
a3 − a5 þ

1

2
a7 −

1

2
a9

��

þ VcbV�
cd

��
2a3 þ ac4 − 2a5 −

1

2
a7þ

1

2
a9 −

1

2
ac10

�
þ fsη
fuη

�
a3 − a5 þ

1

2
a7 −

1

2
a9

���

þ GFffiffiffi
2

p Rηfuη

�
1 −

fuη
fsη

��
VubV�

ud

�
au6 −

1

2
au8

�
þ VcbV�

cd

�
ac6 −

1

2
ac8

��
;

B term:

λ ¼ GFffiffiffi
2

p fuη

�
VubV�

uda2 þ VubV�
ud

��
2a3 þ au4 − 2a5 −

1

2
a7 þ

1

2
a9 −

1

2
au10

�

þ fsη
fuη

�
a3 − a5 þ

1

2
a7 −

1

2
a9

��
þ VcbV�

cd

��
2a3 þ ac4 − 2a5 −

1

2
a7 þ

1

2
a9 −

1

2
ac10

�

þ fsη
fuη

�
a3 − a5 þ

1

2
a7 −

1

2
a9

���
−
GFffiffiffi
2

p Rηfuη

�
1 −

fuη
fsη

��
VubV�

ud

�
au6 −

1

2
au8

�
þ VcbV�

cd

�
ac6 −

1

2
ac8

��
:

Here, we adopt a treatment for ηðη0Þ matrix elements from [37].
In Λ0

b → nη0,
A term:

λ ¼ GFffiffiffi
2

p fuη0

�
VubV�

uda2 þ VubV�
ud

��
2a3 þ au4 − 2a5 −

1

2
a7 þ

1

2
a9 −

1

2
au10

�
þ fsη0

fuη0

�
a3 − a5 þ

1

2
a7 −

1

2
a9

��

þ VcbV�
cd

��
2a3 þ ac4 − 2a5 −

1

2
a7þ

1

2
a9 −

1

2
ac10

�
þ fsη0

fuη0

�
a3 − a5 þ

1

2
a7 −

1

2
a9

���

þ GFffiffiffi
2

p Rη0fuη0

�
1 −

fuη0

fsη0

��
VubV�

ud

�
au6 −

1

2
au8

�
þ VcbV�

cd

�
ac6 −

1

2
ac8

��
;
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B term:

λ ¼ GFffiffiffi
2

p fuη0

�
VubV�

uda2 þ VubV�
ud

��
2a3 þ au4 − 2a5 −

1

2
a7 þ

1

2
a9 −

1

2
au10

�
þ fsη0

fuη0

�
a3 − a5

þ 1

2
a7 −

1

2
a9

��
þ VcbV�

cd

��
2a3 þ ac4 − 2a5 −

1

2
a7þ

1

2
a9 −

1

2
ac10

�
þ fsη0

fuη0

�
a3 − a5 þ

1

2
a7 −

1

2
a9

���

−
GFffiffiffi
2

p Rη0fuη0

�
1 −

fuη0

fsη0

��
VubV�

ud

�
au6 −

1

2
au8

�
þ VcbV�

cd

�
ac6 −

1

2
ac8

��
:

In Λ0
b → nηc,

λ ¼ GFffiffiffi
2

p fηc ½VcbV�
cda2 − VtbV�

tdða3 − a5 − a7 þ a9Þ�:

In Λ0
b → nJ=ψ ,

λ ¼ GFffiffiffi
2

p fJ=ψ ½VcbV�
cda2 − VtbV�

tdða3 þ a5 þ a7 þ a9Þ�:

In Λ0
b → nω,

λ ¼ GFffiffiffi
2

p fuω

�
VubV�

uda2 þ VubV�
ud

�
2a3 þ au4 þ 2a5 þ

1

2
a7 þ

1

2
a9 −

1

2
au10

�

þVcbV�
cd

�
2a3 þ ac4 þ 2a5 þ

1

2
a7 þ

1

2
a9 −

1

2
ac10

��
:

In Λ0
b → nϕ,

λ ¼ GFffiffiffi
2

p fϕ

�
−VtbV�

td

�
a3 þ a5 −

1

2
a7 −

1

2
a9

��
:

In Λ0
b → nD̄0,

λ ¼ GFffiffiffi
2

p fDVubV�
cda2:

In Λ0
b → nD̄�0,

λ ¼ GFffiffiffi
2

p fD�VubV�
cda2:

In Λ0
b → nD0,

λ ¼ GFffiffiffi
2

p fDVcbV�
uda2:

In Λ0
b → nD�0

λ ¼ GFffiffiffi
2

p fD�VcbV�
uda2:
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