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A powerful historical insight about the theory of in-medium showering in QCD backgrounds was that
splitting rates can be related to a parameter q̂ that characterizes the rate of transverse-momentum kicks to a
high-energy particle from the medium. Another powerful insight was that q̂ can be defined (with caveats)
even when the medium is strongly coupled, using long, narrow Wilson loops whose two long edges are
lightlike Wilson lines. The medium effects for the original calculations of in-medium splitting rates can be
formulated in terms of three-body imaginary-valued “potentials” that are defined with three long, lightlike
Wilson lines. Corrections due to the overlap of two consecutive splittings can be calculated using similarly
defined four-body potentials. I give a simple argument for how such N-body potentials can be determined
in the appropriate limit just from the knowledge of the values of q̂ for different color representations.
For N > 3, the N-body potentials have a nontrivial color structure, which will complicate calculations of
overlap corrections outside of the large-Nc or soft bremsstrahlung limits.
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I. OVERVIEW AND RESULT

In theoretical studies of p⊥ broadening and jet quench-
ing of very high-energy partons that travel through a quark-
gluon plasma, a very important parameter describing
scattering of the parton from the medium is known as q̂.
Physically, it is the proportionality constant in the relation
hQ2⊥i ¼ q̂Δz, where hQ2⊥i is the typical squared transverse
momentum (transverse to the parton’s initial direction of
motion) that the parton picks up after traveling a distance
Δz through the medium, in the limit that Δz is large
compared to characteristic scales of the medium such as
mean-free paths for collisions. As I briefly review later, it
has been known for some time [1,2] that q̂ can also be
formally defined (with important caveats) in terms of a kind
of “potential energy” VðΔbÞ defined using a medium-
averaged Wilson loop having two long parallel lightlike
sides separated by transverse distance Δb, as shown in
Fig. 1(a). This definition is similar to how potentials are
often defined for static charges using Wilson loops such as
Fig. 1(b). The potential VðΔbÞ is extracted from the
exponential dependence of the Wilson loop on its length,

htr½Peig
H
C
dxμAμ �i ≈ e−iVðΔbÞL; ð1:1Þ

where P represents path ordering in color space.1 Formally
(again with important caveats), one can show that q̂ is the
coefficient of a harmonic oscillator approximation to this
potential,

VðΔbÞ → −
i
4
q̂ðΔbÞ2 for small Δb; ð1:2Þ

which is equivalent to

htr½Peig
H
C
dxμAμ �i ≈ e−q̂ðΔbÞ2L=4 for small Δb: ð1:3Þ

The advantage of the Wilson loop language is that it can be
used as a tool for discussing q̂ in strongly (as well as weakly)
coupled quark-gluon plasmas. In general, q̂ depends on the
color representationR of the high-energy particle. Forweakly
coupled plasmas, q̂ is simply proportional to the quadratic
Casimir CR of that color representation, but for strongly
coupled plasmas the q̂ for different color representations may
not be so simply related.2
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1My L corresponds to the L−=
ffiffiffi
2

p
of Refs. [1,2], and my

transverse separation Δb is what they call L. My characterization
of the Wilson loop as defining a “potential” VðΔbÞ is not
language specifically used by Refs. [1,2].

2The Casimir scaling q̂R ∝ CR holds through next-to-leading
order in the strength of the coupling of the plasma [3], but this
scaling need not hold exactly at all orders. For some examples of
violation of Casimir scaling for Wilson loops in other contexts,
see Refs. [4–6].
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Similar types of potentials arise in calculations of
splitting rates (bremsstrahlung or pair production) in
high-energy in-medium showers. Splitting rate calculations
are complicated by the Landau-Pomeranchuk-Migdal
(LPM) effect, which accounts for the fact that high-energy
particles can scatter from the medium many times during
the quantum mechanical duration, known as the formation
time, of a single splitting. The QCD version of the LPM
effect was originally worked out by Baier et al. (BDMPS)
[7,8] and Zakharov [9]. Though they originally framed their
calculations in terms of a weakly coupled picture of the
medium, the approach can be generalized to a strongly
coupled medium. Consider the left-hand side of Fig. 2,
which depicts an interference term that contributes to an in-
medium splitting rate. Following Zakharov [9], one may
sew together the diagrams representing the amplitude and
conjugate amplitude to form the interference diagram on
the right-hand side, which may now be formally reinter-
preted as the propagation of three particles through the
medium, where particles from the conjugate diagram (red
lines) are reinterpreted as their antiparticles. Zakharov

expresses the calculation of this interference in terms of
the time evolution of the wave function of the transverse
positions of the three particles, which can be described by
a Schrödinger-like equation. The potential term in that
Schrödinger equation represents medium-averaged effects
of interactions with the medium over timescales short
compared to the long formation time. Over those time-
scales, the transverse positions of the particles can be
treated as constant. We could therefore identify this
potential term as the three-particle potential Vðb1; b2; b3Þ
between lightlike Wilson lines, such as depicted in Fig. 3.
In the high-energy limit, the relevant separations bi − bj are
small during the formation time because splitting processes
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FIG. 1. (a) A Wilson loop with lightlike edges used to formally define q̂ (subject to caveats mentioned in Sec. IV). t is real
(Minkowski) time. In contrast, (b) shows a Wilson loop for static color charges, where t can be real or imaginary (Euclidean) time.
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FIG. 2. A contribution to the rate for single splitting of a high-
energy particle in the medium. Only high-energy particles are
shown explicitly; all lines are implicitly interacting with the
medium, which is then averaged over. In these diagrams, time
runs from left to right, and the amplitude and conjugate amplitude
are each implicitly integrated over the time of emission (t and t̄,
respectively) to get the splitting probability. On the right-hand
side is a combined diagram showing the amplitude (blue lines)
sewn together with the conjugate amplitude (red lines).
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FIG. 3. As Fig. 1(a) but for a three-body potential. Note that the
axes are depicted differently than in Fig. 1: in order to be able to
show both transverse spatial directions, the t and z axes have been
collapsed to xþ ¼ zþ t, with x− ¼ 0 everywhere. The three-
point vertices on the ends are chosen to form the color-neutral
combination of the three particles. For example, for the three-
gluon potential, the Wilson lines would be adjoint representation
and the three-point vertices would each be proportional to the Lie
algebra structure constants fabc. Note: The constant transverse
positions ðb1; b2; b3Þ of the three lightlike Wilson lines can be
anything; they need not be symmetrically arranged as in this
picture.
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are nearly collinear, and so one may make a harmonic
oscillator approximation to Vðb1; b2; b3Þ. As I will review,
there is a fairly simple argument [10]3 that, whenever
a harmonic oscillator approximation is relevant, the approxi-
mation must necessarily have the form

Vðb1; b2; b3Þ ¼ −
i
8
½ðq̂1 þ q̂2 − q̂3Þðb2 − b1Þ2

þ ðq̂2 þ q̂3 − q̂1Þðb3 − b2Þ2
þ ðq̂3 þ q̂1 − q̂2Þðb1 − b3Þ2�; ð1:4Þ

where q̂1, q̂2, and q̂3 are the q̂’s for the color representations
of the three high-energy particles involved in the splitting
process (the parent and the two daughters). The argument for
(1.4) is simple in the sense that it does not require any of the
machinery of computing the LPM effect in QCD: it just
involves thinking through the constraints to any harmonic
three-body potential from the special cases where some of
the separations bi − bj vanish.
There has been a variety of work on the LPM effect in

QCD studying the potentially significant effects of what
happens when two consecutive splittings in an in-medium
shower have overlapping formation times. As I will briefly
review, such calculations generally require corresponding
four-particle potentials Vðb1; b2; b3; b4Þ. Including yet
more particles would be needed to study the simultaneous
overlap of three or more splittings. To date, calculations
of overlap effects have made simplifying assumptions such
as soft emission limits [11–13] or the large-Nc limit
[10,14–16]. In this paper, I take a first step toward
removing those assumptions by finding the generalization
of (1.4) to four or more particles. The result will be

Vðb1; b2;…; bNÞ ¼ −
i
8

X
i>j

ðq̂i þ q̂j − q̂
ij
Þðbi − bjÞ2;

ð1:5Þ
where underlines indicate an operator on the space of color
states of the N particles. The color structure is necessary
because of the q̂ij above, which refers to the combined
color representation of particles i and j. If both are gluons,
for example, the combined color representation could be
any irreducible representation R in the SU(3) tensor
product 8 ⊗ 8 ¼ 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27, and those
representations generally have different values of q̂. The
color operator q̂

ij
represents the use of the correct value of

q̂ in each color subspace. Formally,

q̂
ij
¼

X
R∈Ri⊗Rj

q̂RPij;R; ð1:6Þ

wherePij;R is a projection operator, acting on the N-particle
color space, that selects the subspace where particles i and j
have combined (irreducible) color representation R.
Since the particles described by the potential (1.5) are

separated from each other (unless some bi ¼ bj), readers
may be concerned about whether, in the general case, the
“combined color representation” of any pair of particles i
and j is a gauge-invariant concept. I will later discuss the
separation of scales in this problem that addresses this point.
If one chooses a basis of theN-particle color space where

each basis element can be identified as belonging to a
particular irreducible combined color representation of
particles 1 and 2, then q̂

12
can be represented as a diagonal

matrix on the space of colors. However, in that basis, q̂
13

will generally not be diagonal. As a result, the potential V
of (1.5) generically contains terms which mix different
possible color combinations of the N particles.
The reason that this complication concerning color

representations was avoided in the three-particle potential
(1.4) has to do with the overall color state of the particles in
the applications of interest. Consider Zakharov’s interpre-
tation of the single splitting process, depicted by the right-
hand side of Fig. 2. The total color of the N ¼ 3 particles
there is neutral. The same is automatically true of any
gauge-invariant definition of a three-body potential from
Wilson lines, such as in Fig. 3. For N ¼ 3, overall color
neutrality means that the combined color representation of
particles 1 and 2 must be the conjugate of the color
representation of particle 3, so that q̂

12
¼ q̂3 and similarly

for permutations. This is how the N-body result (1.5)
reduces to the simpler three-body result (1.4) for N ¼ 3.
Figure 4 similarly shows an example of an interference

term for the process of double splitting, in a case relevant to
computing effects of overlapping formation times [10]. For
part of the time evolution in this example, there are N ¼ 4
particles, also forming an overall color singlet. For N > 3,
this overall color neutrality does not constrain the com-
bined color representations of each pair of particles to a
unique irreducible representation, and so the matrix struc-
ture of the potential V in color space is unavoidable.

time

FIG. 4. Similar to the right-hand side of Fig. 2 but for double
splitting.

3See in particular the discussion in Appendix A of Ref. [10]
concerning Eq. (2.21) of that paper. In actual splitting rate
calculations, one can use symmetries (like BDMPS and Zakharov
did) to reduce the work of solving the three-body problem to
solving an effective one-body problem with a potential derived
from (1.4). For a description in the language used here, see
Secs. II.E and III of Ref. [10].
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In general, N-body potentials for overall color singlets
are a tool for consolidating all interactions with the medium
that occur over timescales small compared to the timescale
of the splitting processes shown in Figs. 2 and 4, i.e., on
timescales small compared to formation times.

A. Outline

Before proceeding to a general argument for the N-body
potential (1.5), it may help motivate the color structure of
the result to first discuss the special case of weakly coupled
plasmas in Sec. II. There I start with a brief review of the
relation of q̂ to the two-body potential, and then generalize
to a discussion of the N-body potential. That section is not
necessary, though, for readers wishing to quickly cut to the
chase and see the general argument for the result (1.5),
which is given in Sec. III.
In Sec. IV, I list many of the caveats that I have been

sweeping under the rug concerning the definition and
meaning of q̂ and harmonic oscillator approximations to
the potential. I also explain the hierarchy of timescales that
makes it sensible to discuss a potential with nontrivial color
structure. Section V offers a brief recap and conclusion.

II. THE SPECIAL CASE OF WEAKLY
COUPLED PLASMAS

A. Two-body potential and q̂

First, I start with a brief review of the physics behind the
two-body potential. It is useful to forget about Wilson
loops for a moment and first review the probabilistic
evolution of the p⊥ of a high-energy particle receiving
random transverse momentum kicks as it crosses the
plasma.4

1. Evolution of transverse momentum

For a high-energy particle, we can follow the evolution
of the classical probability distribution ρðp⊥Þ of its trans-
verse momentum using the equation

∂ρðp⊥; tÞ
∂t ¼ −

Z
d2q⊥

dΓel

d2q⊥
½ρðp⊥; tÞ − ρðp⊥ − q⊥; tÞ�;

ð2:1Þ
where dΓel=d2q⊥ is the differential rate for the high-energy
particle to pick up transverse momentum q⊥ from the
medium. The first term on the right-hand side of (2.1) is a
loss term, corresponding to the chance for momentum p⊥
to be scattered to some other momentum; the second term
is a gain term, corresponding to some other momentum

scattering to become p⊥. The equation can be solved by
Fourier transforming from p⊥ to transverse position space,

∂ρðb; tÞ
∂t ¼ −ΔΓelðbÞρðbÞ; ð2:2Þ

where

ΔΓelðbÞ≡ Γelð0Þ − ΓelðbÞ ¼
Z

d2q⊥
dΓel

d2q⊥
ð1 − eib·q⊥Þ

ð2:3Þ

and

ΓelðbÞ≡
Z

d2q⊥
dΓel

d2q⊥
eib·q⊥ : ð2:4Þ

Multiplying both sides of (2.2) by i, the evolution equation
may be formally recast as a Schrödinger-like equation

i∂tρðb; tÞ ¼ VðbÞρðb; tÞ ð2:5Þ

with no kinetic term and with imaginary-valued potential
energy

VðbÞ ¼ −iΔΓelðbÞ: ð2:6Þ

The corresponding solution is

ρðb; tÞ ¼ e−iVðbÞtρðb; 0Þ ¼ e−ΔΓelðbÞtρðb; 0Þ: ð2:7Þ

2. The same potential from a Wilson loop

At leading order in the weak-coupling limit (with resum-
mation of in-medium self-energies), this same physics arises
from lightlike Wilson loops via two-point correlators of
interactions of the Wilson lines with background gauge
fields, as depicted in Fig. 5. Those correlators between
Wilson lines can be shown to correspond to Γelðbi − bjÞ.
(For the sake of completeness, I review this in Appendix A,
but the details will not be important.) Each self-energy loop
on a Wilson line is additionally associated with a factor5 of
− 1

2
, and so the exponent in Fig. 5 is −iVðΔbÞL with

4The review in Sec. II A 1 is a generalization of BDMPS’s
Eqs. (2.8)–(2.12) and (3.1) of Ref. [8]. By casting the derivation
in terms of dΓel=d2q⊥ [17] instead of BDMPS’s VðQ2Þ, the
review here avoids BDMPS’s model assumption that the medium
can be treated as a collection of static scattering centers.

5When integrating over the relative time Δxþ between the two
end points of a two-point correlator in Fig. 5, the integral isR∞
−∞ dðΔxþÞ for correlators that span two different Wilson lines
(i ≠ j) but, to avoid double counting of a given loop, is insteadR∞
0 dðΔxþÞ ¼ 1

2

R∞
−∞ dðΔxþÞ for self-energy corrections to a

single Wilson line (i ¼ j). The relative minus sign for self-
energies compared to correlations between different Wilson lines
is because the color path ordering of the two Wilson lines is in
opposite directions. (Equivalently, if one wants to view both lines
as running forward in time, then it is because the color charges T 1

and T 2 of the two lines must be opposite by overall color
neutrality T 1 þ T 2 ¼ 0 of the Wilson loop. See Sec. II B.)
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VðΔbÞ ¼ −i½Γelð0Þ − ΓelðΔbÞ�; ð2:8Þ

reproducing the potential (2.6).
In this weak-coupling limit, the only dependence on the

color representation of the high-energy particle is that dΓel

is proportional to g2CR, where CR is the quadratic Casimir
of that representation. It will be useful in the remaining
discussion of the weakly coupled limit to explicitly pull out
this Casimir and write

Γel ¼ CRΓ̄el; VðΔbÞ ¼ CRV̄ðΔbÞ; q̂ ¼ CR ˆ̄q; etc:;

ð2:9Þ

where the barred quantities do not (inweak coupling) depend
on the color representation of the high-energy particle.

3. Relation to q̂

Formally expanding (2.3) in powers of b, the small-b
limit is

VðbÞ ≃ −
i
4
b2

Z
d2q⊥

dΓel

d2q⊥
q2⊥: ð2:10Þ

This is related to q̂: The rate at which the p2⊥ ¼ jq⊥1 þ
q⊥2 þ � � � j2 of a hard particle would increase with time
from an initial p2⊥ ≡ 0, by a sequence of random kicks q⊥
from the medium, is given by

q̂ ¼
Z

d2q⊥
dΓel

d2q⊥
q2⊥: ð2:11Þ

So (2.10) is

VðbÞ ≃ −
i
4
q̂b2: ð2:12Þ

B. The N-body potential

Figure 6 shows a similar set of correlators for an
N-body potential. The charge with which Wilson line i
interacts with a background gauge field of adjoint color a
is gTa

i , where the Ta
i are color generators in the color

representation of particle i, acting on the color space of
that particular particle. In the weak-coupling limit, Fig. 6

shows that the N-body potential then decomposes into
two-body correlators as

Vðb1; b2;…; bNÞ

¼ −i
�
1

2

X
i

T2
i Γ̄elð0Þ þ

X
i>j

T i · T jΓ̄elðbi − bjÞ
�
;

ð2:13Þ

which is the generalization of (2.8). Above, T i · T j

represents the sum Ta
i T

a
j over a. Since for the applications

of interest the collection of N particles is overall color
neutral, we can subtract 0¼− i

2
ðT 1þT2þ���þTNÞ2Γ̄elð0Þ

from (2.13) to rewrite it in the form

Vðb1; b2;…; bNÞ ¼ i
X
i>j

T i · T jΔΓ̄elðbi − bjÞ

¼ −
X
i>j

T i · T jV̄ð2Þðbi − bjÞ; ð2:14Þ

where V̄ð2Þ is the universal (in weak coupling) two-body
potential when the color generators are factored out. For
small transverse separations, Eq. (2.12) then gives

Vðb1; b2;…; bNÞ ≃
i
4

X
i>j

T i · T j ˆ̄qðbi − bjÞ2: ð2:15Þ

Rewriting

T i · T j ¼
1

2
½ðT i þ T jÞ2 − T 2

i − T 2
j �

¼ 1

2
½ðT i þ T jÞ2 − C2

i − C2
j �; ð2:16Þ

and remembering that q̂R ¼ CR ˆ̄q ¼ T 2
R
ˆ̄q (in weak cou-

pling), the potential (2.15) can be recast as

Vðb1; b2;…; bNÞ ¼ −
i
8

X
i>j

ðq̂i þ q̂j − q̂
ij
Þðbi − bjÞ2:

ð2:17Þ
This demonstrates the result (1.5) in the special case of
weak coupling.

FIG. 5. The Wilson loop in the weak-coupling limit. Here, the gluon lines represent two-point correlators of the gauge field in the
background of the medium. The particular graph on the left-hand side is just an example. The important point is that, in the weak-
coupling limit, localized nonoverlapping two-point correlations dominate and exponentiate as shown on the right-hand side. Each two-
point correlation (depicted by a gluon line) is implicitly resummed with in-medium self-energy insertions.
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III. GENERAL ARGUMENT FOR ANY
STRENGTH COUPLING

Generically, if a function Vðb1;…; bN) is translationally
and rotationally invariant (here in the transverse plane) and
approaches a smooth limit as all the bi become coincident,
we may suspect that it can be Taylor expanded in powers
of bi − bj to obtain a harmonic oscillator approximation in
the limit of small separations. Here, we now give a simple
argument why, if there is such a harmonic oscillator
approximation, then its form is fixed as (1.5), provided
the N particles in total form a color singlet.
Start by assuming a generic harmonic oscillator form that

is (transversely) translation invariant:

Vðb1; b2;…; bNÞ ¼
X
ijkl

cijklðbi − bjÞ · ðbk − blÞ ð3:1Þ

for some constants cijkl. Those constants must be allowed
to be color operators, since we have already seen that is
necessary in the special case (2.15) of weak coupling.
Using the algebraic identity

ðbi − bjÞ · ðbk − blÞ

¼ 1

2
½ðbi − blÞ2 þ ðbj − bkÞ2 − ðbi − bkÞ2 − ðbj − blÞ2�;

ð3:2Þ
any potential of the form (3.1) can be recast into the form

Vðb1; b2;…; bNÞ ¼
X
i>j

aijðbi − bjÞ2 ð3:3Þ

for some constants aij.

A. The three-particle case

Before continuing with the N-particle case, it will be
helpful to review the logic of the three-particle case:

Vðb1; b2; b3Þ ¼ a21ðb2 − b1Þ2 þ a32ðb3 − b2Þ2
þ a13ðb1 − b3Þ2: ð3:4Þ

In the special case b1 ¼ b2, this gives

Vðb1; b1; b3Þ ¼ ða32 þ a13Þðb3 − b1Þ2: ð3:5Þ

However, in this case we have color charge T3 at b3 and,
since T 1 þ T2 þ T3 ¼ 0, total color charge T 1 þ T2 ¼ −T 3

at b1 ¼ b2. This is then effectively a two-body problem,
in the color representation of particle 3, with separation
Δb ¼ b3 − b1. That means that

Vðb1; b1; b3Þ ¼ −
i
4
q̂3ðb3 − b1Þ2 ð3:6Þ

in quadratic approximation, as in (2.12). Combined with
(3.5), this gives a constraint a32 þ a13 ¼ − i

4
q̂3 on the

values of the coefficients aij. Permuting the particle labels
in this argument then provides three constraints on the three
unknown coefficients aij, which then uniquely determine
the three-body potential to be (1.4) in harmonic approxi-
mation. For what follows, I will find it more useful to write
that three-body potential in the form (1.5) that I will use for
the N-body potential:

Vðb1; b2; b3Þ ¼ −
i
8
½ðq̂2 þ q̂1 − q̂

21
Þðb2 − b1Þ2

þ ðq̂3 þ q̂2 − q̂
32
Þðb3 − b2Þ2

þ ðq̂1 þ q̂3 − q̂
13
Þðb1 − b3Þ2�: ð3:7Þ

As previously noted, in the three-body case, q̂
21
is the same

as q̂3, and so forth.

B. The N-particle case

Now return to the generic form (3.3) for a harmonic
oscillator approximation in the N-body case. Consider now
the special case where we put all the particles but the first
two at the same position b3 ¼ b4 ¼ � � � ¼ bN , so that (3.3)
gives

Vðb1; b2; b3; b3;…; b3Þ

¼ a21ðb2 − b1Þ2 þ
�X

j≥3
aj1

�
ðb3 − b1Þ2

þ
�X

j≥3
aj2

�
ðb3 − b2Þ2: ð3:8Þ

On the other hand, b3 ¼ b4 ¼ � � � ¼ bN is effectively a
three-body problem where one particle has color generator
T3 þ � � � þ TN . So (3.8) must be the same as the three-body
potential (3.7) with the replacement T3 → T 3 þ � � � þ TN

FIG. 6. As Fig. 5 but for an N-body potential. The blue rectangles indicate some contraction of the lightlike Wilson lines to form a
gauge-invariant quantity (and so an overall color-neutral state of the N high-energy particles represented by the Wilson lines).
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in the latter. Focusing on the ðb2 − b1Þ2 term for simplicity,
that identification requires

a21 ¼ −
i
8
ðq̂2 þ q̂1 − q̂

21
Þ: ð3:9Þ

There was nothing special about which of the N particles
we labeled as 1 and 2 in this argument, so generally

aij ¼ −
i
8
ðq̂i þ q̂j − q̂

ij
Þ: ð3:10Þ

Substitution into (3.3) then gives the final result (1.5) of this
paper for the N-body potential in harmonic approximation.

IV. CAVEATS AND CLARIFICATIONS

A. Caveats for q̂ approximation

1. Logarithmic dependence

The two-body potential, which I have called VðΔbÞ, is
not precisely quadratic (1.2) in the small-Δb limit. Instead,
the coefficient q̂ effectively depends logarithmically onΔb.
One type of possible logarithmic dependence can be seen in
leading-order calculations of q̂, where dΓel=d2q⊥ ∝ α2=q4⊥
for large q⊥: if one does not account for any running of the
coupling constant αs, the leading-order result for q̂ðΔbÞ
blows up logarithmically as Δb → 0, so that q̂ð0Þ as
defined by (2.11) is ultraviolet (UV) divergent. If one
instead uses the running coupling αsðq⊥Þ when calculating
(2.11), the log dependence of q̂ðΔbÞ cuts off when
αsð1=ΔbÞ ≪ αsðmDÞ (where mD is a plasma scale, repre-
senting the Debye mass), and the leading-order result for
q̂ð0Þ is finite.6 But there remains other log dependence that
cannot be seen at leading order [20], which I will later
review in Sec. IV B 2.
The arguments in this paper (as most any application of

the q̂ approximation) rely on logarithmic dependence of q̂
being mild enough that one can simply approximate the
coefficient q̂ by some fixed effective value relevant to the
scale of a particular application.

2. Applies to typical events

Another issue with the q̂ approximation is that q̂ only
determines the transverse momentum transfer for typical
multiple scattering events. Because of large-q⊥ tails to the
probability distribution for momentum transfer in Coulomb
scattering, there are also rarer events with scattering by
larger-than-typical angles. Depending on the situation and
what average quantity one is interested in calculating,
atypical events can sometime dominate averages.7

3. The limit of lightlike Wilson lines

Consider Wilson lines corresponding to particles with
velocity v. The lightlike Wilson lines used in Wilson loops
such as Fig. 1(a) to define q̂ [or more generally q̂ðΔbÞ]
correspond to the limiting case v ¼ 1. There have been
some confusing subtleties in the literature on how to
approach this limit—discussion which has been in the
context of calculations of q̂ in QCD-like theories with
gravity duals and which is also related to issues of
regularizing UV divergences associated with Wilson lines.
Here, I want to make a few simple observations about the
v ¼ 1 limit in the general context of gauge theories, and
then I will draw some parallel to the issues in gauge-gravity
duality calculations at the end.
Physically, the test particles represented by the long sides

of the Wilson loop should have v < 1, and so the lightlike
limit represents approaching v ¼ 1 from below. A natural
impulse is to hope that if the limit makes sense, then one
should also be able to approach v ¼ 1 from above—that is,
using Wilson loops whose long sides are (slightly)8 space-
like rather than (slightly) timelike. If so, then there are
simple, direct arguments that the Wilson loops, and the
potentials VðbÞ defined by them, have the following very
nice and relevant properties.
First, time-ordering prescriptions do not matter for gauge

fields sourced by spacelike Wilson loops. In (all-orders)
perturbative language, for example, consider a correlator

hAa1
μ1ðx1Þ � � �Aan

μnðxnÞi ð4:1Þ

of gauge fields located at n different points xi on the spatial
Wilson loop. Because the xi are then all spacelike separated
from each other, any operators at different xi must commute
because of causality. So the ordering of the fields in the
correlator (4.1) is irrelevant. That meanswewill get the same
answer if we use time-ordered correlators, anti–time-ordered
correlators, Wightman (unordered) correlators, Schwinger-
Keldysh correlators, or whatever.9

This is a significant property which has been implicitly
assumed in applications of leading-order BDMPS-Z split-
ting rates to strongly coupled quark-gluon plasmas. If time
ordering matters, then there is no general reason to think
that correlations between medium interactions of the two
blue lines (representing a pair of particles in the amplitude)
in Fig. 2 is the same as the correlations between medium
interactions of a blue and a red line (representing one particle
in the amplitude and one in the conjugate amplitude).

6See, for example, Sec. VI. B of Ref. [18], which combines
earlier observations of Refs. [8,19].

7See BDMPS, Sec. 3.1 of Ref. [8], and Zakharov [21]. Some
further discussion is given in Ref. [22].

8Here “slightly spacelike” means as considered in the plasma
rest frame.

9Non-Abelian Wilson loops still have very important color
ordering, represented by path ordering in color space of the
exponential P expðig HC AμdxμÞ defining the Wilson loop. This
only affects how the color indices ai in (4.1) will be contracted.
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The derivation given in Sec. III A for the q̂ approximation to
the three-body potential (1.4) would then be invalid. That
would in turn cast doubt on the applicability of the standard
BDMPS-Z formula for g → gg splitting in q̂ approximation
in the case of strongly coupled plasmas (outside of the soft
bremsstrahlung approximation, at least).
I should note that previous authors10 have made a point

that q̂ should be defined with Schwinger-Keldysh ordering,
which is a natural choice when thinking of the meaning of q̂
in terms of the rate for p⊥ broadening. But if this ordering
distinction is actually important in the lightlike limit, we
must then face the just-discussed difficulty when using q̂
for BDMPS-Z splitting rates.
A related nice property, also easy to derive if one may

approach lightlike Wilson loops v ¼ 1 from the limit of
spacelike loops v > 1, is that expectations of Wilson loops
are real-valued, and so the potential VðbÞ is pure imaginary
as I assumed earlier. Correspondingly q̂ defined by (1.2) is
then real valued. One way to see this is that, if time-
ordering prescriptions do not matter for spacelike loops,
then taking the complex conjugation of the Wilson loop
tr½P expði HC AμdxμÞ� is equivalent to flipping the direction
of integration around the loop, which is equivalent to
rotating the loop by 180 degrees in the transverse plane. By
rotational invariance, the result for the Wilson loop must
therefore equal its complex conjugate and so is real.
In discussing details of their gauge-gravity duality calcu-

lation, Liu, Rajagopal, and Wiedemann [2] do not consider
v > 1. They characterize their calculation as approaching
lightlikeWilson loops from the (physicallymotivated) v < 1

side but note that they have to take the v ¼ 1 limit before
they remove their UV regulator, which corresponds to a
tiny displacement of their string end points into the fifth
dimension.11 However, with their UV regulator in place, in
the gravity description the end points of their strings are
forced tomove faster than the local speed of light (as noted in
Ref. [25]), which is a reflection of the fact that the string
world sheets they find are purely spacelike in the order of
limits that they take.Their result is the same as theywould get
if they took their limit from the v > 1 side.
If the limits of approaching v ¼ 1 from above and below

are not the same for all applications of Wilson loop
potentials to splitting rates, and furthermore if gauge field
ordering prescriptions do matter in the lightlike limit, then
one will have to figure out how to appropriately adjust both
BDMPS-Z splitting rates and the more generalized dis-
cussion of this paper.

B. Time and distance scales for color dynamics

Earlier, I postponed discussing what it means to talk
about the joint color representation T i þ T j of two spatially
separated particles i and j.

1. An oversimplified argument

For this purpose, it is important to realize that the back-
ground fields of the plasma will have characteristic wave-
lengths and correlation lengths set by plasma scales (e.g.,
1=T or 1=gT or 1=g2T, etc., where T represents the temper-
ature). But the q̂ approximation relevant to high-energy
particles (E ≫ T) corresponds to Δb small compared to
plasma scales. That means that the different high-energy
particles represented by the lightlike Wilson lines in the
two-body orN-body potentials are so close to each other that,
to first approximation, they will experience the same back-
ground gauge field [Aplasmaðbi; z¼ tÞ≃Aplasmaðbj; z¼ tÞ].12
If two slightly separatedWilson lines i and j are experiencing
identical gauge fields as they move through light-cone time
xþ, then their color charges T i and T j will rotate the same
way, and so the sum T i þ T j will only experience an overall
color rotation. In this approximation, if one starts in a given
color subspace corresponding to some irreducible represen-
tation of T i þ T j, then one remains in that irreducible
representation.
However, no matter how close the bi are, there will be

small differences in the background color fields experi-
enced by the different particles, and these will slowly
accumulate over time.13 The individual colors will decohere
over a time known as the color decoherence time tdecohere,
which is parametrically of size

tdecohere ∼
1

q̂ðΔbÞ2 : ð4:2Þ

This is just the timescale L for which the values e−iVL of the
Wilson loops discussed in this paper [e.g., (1.1) with (1.2)]
first become significantly different from one. It is also the
same timescale as formation times in applications to in-
medium splitting rates. The important point is that, in the
limit of small Δb, the color decoherence time (4.2) is
parametrically large compared to all plasma scales, which
means that the irreducible color representations of T i þ T j

only mix slowly compared to the correlation length ξ of
the medium.

10See section VI of ref. [23]. (For a discussion of gauge
invariance in the case of that ordering prescription, see also
ref. [24].)

11Specifically, see the discussions of orders of limits in
section III of ref. [2] and especially the conclusion of their
section III. 3.

12Technically, pursuing the argument in the language of gauge
fields A requires insisting that the choice of gauge respects the
separation of physics scales, so that plasma gauge fields are
smooth on small scales (i.e., ≪ 1=T). I assume that and proceed.

13For a discussion of the language of color decoherence in the
context of in-medium radiative processes, see, for example,
Ref. [26]. The parametric estimates [such as their (5.2)] are
different because they consider the case of lines at some angle θqq̄
to each other, instead of the parallel lines with fixed separation bij
relevant to defining the potential V here.
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It is this hierarchy of timescales that makes it possible to
consider color dynamics in the context of a potential
approximation V. To define a potential, one needs Wilson
loops that are long compared to the correlation length of the
medium (L ≫ ξ). But since the color dynamics scale (4.2) is
also long compared to the correlation length, it is then
possible to treat that color dynamics in terms of a potential.
One can imagine picking the initial and final color states by
an appropriate contraction of the initial and final Wilson
lines, as depicted, for example, in Fig. 7. Repeating this for
all possible choices in some basis of possible color combi-
nations would allow one to interpret the Wilson loops of
Fig. 7 as giving a matrix result in color representation space
that can then bewritten in exponential form e−iVL to extract a
corresponding matrix result for the potential V in that basis.
We do not need to do any of this in practice, however, to
obtain the result (1.5) of this paper. The point is just to
understand why, for small transverse separations, it can
be sensible to talk about the color structure of V in the
first place.

2. Splitting contributions

The above discussion cheated somewhat, making an
implicit assumption that ignored an additional complica-
tion: I assumed that the only way that the lightlike Wilson
lines interact with the plasma is by directly experiencing
fields already present in the plasma. However, there are also
important contributions [20] where, instead, a lightlike
Wilson line emits a high-energy (ω ≫ T) nearly collinear
gluon, which propagates a long time Δt ≫ ξ (scattering
from the medium the whole time) before reattaching to a
Wilson line. An example is shown in Fig. 8. As I will

review, these processes either (i) can be absorbed into
the potential V or else (ii) are suppressed by the running
coupling αsðμÞ evaluated at momentum scale μ ∼ 1=Δb.
Even if the plasma is strongly coupled, αsð1=ΔbÞ will be
small for small enough Δb (which, formally at least, is the
relevant limit for applications to LPM splitting rates at large
enough energy).
It was shown by Liou, Mueller, and Wu [20] that

processes such as Fig. 8 generate corrections δq̂ to q̂ of
size αsq̂ times a large double logarithm. In the context of
the two-body potential, this corresponds to corrections δV
to the naive harmonic potential (1.2) of size14

δVðΔbÞ ∼ αsq̂ðΔbÞ2ln2
�
tdecohere

τ0

�

∼ αsq̂ðΔbÞ2ln2
�

1

q̂τ0ðΔbÞ2
�
; ð4:3Þ

where τ0 is a characteristic scale of the medium that, for
weakly coupled quark-gluon plasmas, corresponds to the
mean free path for elastic scattering. Various authors [11–13]
have shown that the double-log correction to q̂ is universal in
the sense that, if one computes similar double-log corrections
to QCD LPM splitting rates (related to three-body potentials
as in Fig. 3), then those corrections are also completely
accounted for by the correction to q̂ originally found by
Liou et al. [20]. They were also able to sum leading
logarithms at all orders in αs, but the points I need to make
here can already be discussed in the simpler context of (4.3).
Now consider what effect these double-log contributions

have on my argument about the slow rate of mixing of
different color representations for T 1 þ T 2 for N-body
potentials. The logarithms in (4.3) arise from time sepa-
rations Δt in Fig. 8 over the parametrically large range

τ0 ≪ Δt ≪ tdecohere ð4:4aÞ

in concert with gluon energies ω in the range

FIG. 8. A contribution where two lightlike Wilson lines are
connected by a high-energy (ω ≫ T), nearly collinear gluon line.
Though not drawn explicitly above, the high-energy Wilson lines
and gluon are all interacting repeatedly with the background
fields of the plasma.

x

y

x

+ + t

R = 1 or 8 or 8 or 10 or 10 or 24

z

FIG. 7. An example of different ways to contract color for
initial and final states in the case of an N-body potential with
N > 3. The particular example above is for N ¼ 4 lightlike
adjoint Wilson lines. Here, blue denotes adjoint representation.
The two red line segments, however, may each be independently
chosen to be in any irreducible representation 8 ⊗ 8 ¼ 1 ⊕ 8 ⊕
8 ⊕ 10 ⊕ 10 ⊕ 27. Because of the hierarchy of scales discussed
in the text, the details of the lengths of the red lines, or the
transverse positions of their end points, are not relevant to
defining the potential V in the limit of small transverse separa-
tions because of the hierarchy of scales discussed in the text.

14The double log shown in (4.3) assumes that the length L
of the Wilson loop is taken to infinity for fixed Δb. A more
general parametric estimate would be to replace the argument
1=q̂τ0ðΔbÞ2 of the log in (4.3) by minðtdecohere; LÞ=τ0. ForΔb→0
with fixed L, one then recovers the ln2ðL=τ0Þ in Eq. (45) of
Ref. [20], where my τ0 is their l0.
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q̂ðΔtÞ2 ≪ ω ≪ ðΔtÞ=ðΔbÞ2 ð4:4bÞ

[which together restrict ω to T ≪ ω ≪ ðΔtÞ=ðΔbÞ2, where
I have interpreted the plasma scale q̂τ20 as order T].15

Because Δt ≪ tdecohere, that means that the gluon
exchange shown in Fig. 8 is local compared to the time
tdecohere, at least as far as log-enhanced effects are con-
cerned. Earlier, when only considering the direct inter-
actions of Wilson lines with plasma fields, I asserted that
making sense of the color representation of T 1 þ T 2

required the hierarchy of scales tdecohere ≫ ξ so that the
rate of color change was slow compared to the timescales
of the physics generating the potential V. But the same
argument can still be made for double-log contributions
such as Fig. 8 because we have tdecohere ≫ Δt.
One might next be concerned about effects from Fig. 8

that are not log enhanced, specifically the contribution from
the upper end point Δt ∼ tdecohere of the range (4.4). In this
case, there is no separation of scale. The corresponding
contribution to the potential is of order (4.3) without the
double log factor,

δVðΔbÞ ∼ αsq̂ðΔbÞ2; ð4:5Þ

which is suppressed by an uncompensated factor of αs
compared to the potential (1.2). That would not really be
a “suppression” if the scale for that αs were a plasma scale,
e.g., αsðmDÞ, since the whole point is to be able to discuss
strongly coupled plasmas. However, the explicit αs in (4.5)
arises from the two factors of g associated with where the
high-energy gluon connects to theWilson lines in Fig. 8. The
relevant distance scale for this coupling is the typical relative
separationΔB⊥ of the gluon from the Wilson lines in Fig. 8,
which can be estimated from free gluon diffusion16 as
ΔB⊥ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔtÞ=ωp
. In the limiting case Δt ∼ tdecohere now

being discussed, this is ΔB⊥ ∼ Δb. So, in the limit of small
Δb, the troublesomeΔt ∼ tdecohere corrections to the potential
are proportional to αsð1=ΔbÞ and so are indeed suppressed
for small enough Δb. A recent discussion of this scale for α
in the application to overlapping formation times beyond
double-log approximation (a discussion related to the four-
body potential) can be found in Ref. [27].

V. CONCLUSION

The result of this paper (1.5) provides the equivalent of
the q̂ approximation but for N-body potentials defined
with parallel, lightlike Wilson lines. Such potentials will be
needed, for example, to study overlapping formation times
during in-medium shower development without taking the
large-Nc limit. The core argument, given in Sec. III, is short
and simple; the rest of this paper just frames it with the
necessary background. In particular, the N-body potential
has a nontrivial color structure for N > 3. A discussion of
how this structure could be implemented in calculations of
overlapping formation times for three-color (as opposed to
large-Nc) QCD requires additional machinery and is left
for later work [28].
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APPENDIX: TWO-POINT GAUGE
CORRELATORS AND Γel(b)

In this appendix, I review how two-point correlators
between the two lightlike Wilson lines in Fig. 5 are given
by the ΓelðbÞ of (2.4). Many of the original discussions
of the physics of q̂ and QCD LPM splitting rates in the
literature assume particular models for interactions with the
medium such as Debye-screened Coulomb scatterings from
static rather than dynamic scattering centers, ignoring the
dependence of scattering cross sections on the momentum
(and so momentum distribution) of plasma particles, and/or
assuming that individual momentum exchanges q are soft
compared to the plasma temperature T. But I will instead
keep the discussion here general.
Let x be a point on one lightlike Wilson line and y on the

other. First note that these two points are then spacelike
separated, which means (importantly) that we will not need
to worry about time ordering of the gauge fields AðxÞ and
AðyÞ in what follows. Now use translation invariance to fix
y at the origin and integrate x along its Wilson line
ðx0; x1; x2; x3Þ ¼ ðt; b; tÞ to give the correlator

C≡ g2
Z

dthv · Aðt; b; tÞv · Að0Þi; ðA1Þ

15I have assumed that L is large compared to all other distance
scales in (4.4). For readers who may find these ranges more
familiar or understandable in terms of other variables, here is a
translation. (Translation 1) I have assumed Δb nonzero and L ≫
tdecohere in my analysis, but many analyses instead study the case of
Δb → 0 with L fixed, for which tdecohere ≫ L. One can get the
parametric ranges in that case from the crossover case tdecohere ∼ L.
From (4.2), the crossover case corresponds to Δb ∼ ðq̂LÞ−1=2, and
so (4.4) becomes τ0 ≪ Δt ≪ L and q̂ðΔtÞ2 ≪ ω ≪ q̂LΔt, which
together restrict T ≪ ω ≪ ωc ≡ q̂L2. (Translation 2) If interested
instead in the application to LPM bremsstrahlung of a gluon with
energy Ω in an arbitrarily thick plasma (L → ∞), one may again
use the first translation but replace L by the formation time for the
underlying bremsstrahlung, which is of order tformðΩÞ ∼

ffiffiffiffiffiffiffiffiffi
Ω=q̂

p
.

That is equivalent to setting tdecohere ∼ tformðΩÞ. The typical size
of Δb for the underlying bremsstrahlung is then of order
Δb ∼ ðq̂tformÞ−1=2 ∼ ðq̂ΩÞ−1=4. The ranges (4.4) [now representing
double-log effects from additional bremsstrahlung (real or virtual)
of a second gluon (ω) from the original gluon (Ω)] are τ0 ≪ Δt ≪
tformðΩÞ and q̂ðΔtÞ2 ≪ ω ≪ q̂tformðΩÞΔt, which together restrict
T ≪ ω ≪ Ω.

16See the discussion of Eq. (13) of Liou et al. [20].
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where

vμ ≡ ð1; 0; 0; 1Þ: ðA2Þ

Rewriting hv · AðxÞv · Að0Þi in terms of its Fourier trans-
form and then performing the dt integral above gives

C ¼ g2
Z
q
eiq⊥·bhv · ÃðqÞ�v · ÃðqÞi2πδðv · qÞ; ðA3Þ

where the integral is over four-momentum q. Let jii be
any possible state of the medium. The above is then the
appropriate medium-state average of17

C ¼ g2
Z
q
eiq⊥·bhijv · ÃðqÞ�v · ÃðqÞjii2πδðv · qÞ: ðA4Þ

Inserting a complete set of intermediate states jfi in the
middle,

C ¼
Z
q
eiq⊥·b

X
f

jhfjgv · ÃðqÞjiij22πδðv · qÞ: ðA5Þ

Now consider instead calculating the elastic scattering
rate of a particle with very high energy E via exchanging a
gluon with the medium. In the limit that E is much higher
than the exchanged momentum q, the particle-gluon vertex
is igv · A times a relativistic normalization factor of 2E.
The rate is then

Γel ¼
X
f

Z
q

1

2E
jhfjgv · ÃðqÞ2Ejiij22πδððPþ qÞ2Þ; ðA6Þ

where P≡ ðE; 0; 0; EÞ is the high-energy particle’s four-
momentum, 1=2E is the usual initial-state normalization
factor, and δððPþ qÞ2Þ puts the final state of the high-
energy particle on shell. Remember that the states jii and jfi
above refer to states of the medium and do not include the
states of the high-energy particle, which here have been
treated explicitly. Making use of the high-energy limit for
the P inside the δ function,

Γel ¼
X
f

Z
q
jhfjgv · ÃðqÞjiij22πδðv · qÞ: ðA7Þ

Dropping the q⊥ integration above,

dΓel

d2q⊥
¼

X
f

Z
q0;qz

jhfjgv · ÃðqÞjiij22πδðv · qÞ: ðA8Þ

Plugging this into the definition (2.4) of ΓelðbÞ then shows
that the correlator C (A5) between two Wilson lines is the
same as ΓelðbÞ.
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